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Introduction

During 1915, in pursuit of finding an elementary proof of the Hilbert inequality (1.1), Hardy discovered
a theorem of great beauty and simplicity which states that whenever the series

∑∞
n=1 a

2
n converges,

the series of cumulative averages
∑∞

n=1(An/n)
2, where An :=

∑n
k=1 ak, also converges. Other great

mathematicians, such as E. Landau, G. Pólya, I. Schur, and M. Riesz, also significantly contributed to
the subsequent development of the Hardy inequality (we refer the reader to [1] for a thorough historical
survey). The final Lp version of the classical discrete Hardy inequality reads

∞∑
n=1

(
An

n

)p

≤
(

p

p− 1

)p ∞∑
n=1

apn, (1)

which holds true for all p > 1 and for all non-negative sequences a ∈ C(N), where C(N) denotes the
space of all complex sequences indexed by N. Even though Hardy’s original work was related to the
discrete version, it was mainly the continuous version that found various applications, e.g. in PDEs,
mathematical physics, spectral theory, and geometry. The continuous Hardy inequality asserts that∫ ∞

0

(
F (x)

x

)p

dx ≤
(

p

p− 1

)p ∫ ∞

0
f(x)p dx (2)

for any non-negative function f ∈ Lp((0,∞)), where, this time, we utilized the notation F (x) :=∫ x
0 f(t) dt. Moreover, in both cases (1) and (2), the constant (p/(p− 1))p is optimal, meaning that it

cannot be replaced by a strictly smaller constant.
Both inequalities were first published in the book Inequalities [6] by the group of authors Hardy,

Littlewood, and Pólya. Since the Hardy inequalities appeared to be of tremendous use in applications
and brought up numerous intriguing questions, their research has flourished until today, giving rise to
a whole new discipline of modern analysis focused on Hardy-type inequalities.

In this thesis, we first discuss the classical discrete Hardy inequality in Chapter 1. In Section 1.1,
we will briefly concentrate on the historical background, while in the rest of the chapter, we provide
several possible proofs of (1). At the end of this chapter, in Section 1.4, we examine the similarities
(and differences) between the classical discrete and continuous Hardy inequalities, the most important
of them being the possible improvement of the discrete version, which will be examined in greater
detail in Chapter 2. Note that both Hardy inequalities (1) and (2) can be equivalently understood as
lower bounds −∆ ≥ ρ for the Laplace operator on respective spaces in the sense of quadratic forms,
see (2.11). In Chapter 3, we focus on the state of the art, which is the problem of finding analogous
lower bounds for higher integer powers of the Laplace operator. Our main results are formulated in
Section 3.1, where we find optimal discrete Hardy inequalities of higher order and prove the conjecture
(3.5) from [15].
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Chapter 1

Classical discrete Hardy inequality

In this chapter, we first focus on the historical account of the classical discrete Hardy inequality in
Section 1.1 providing the first proof of the weak form of (1). In Sections 1.2 and 1.3, we examine
possible proofs of (1), while in Section 1.4 we commentate upon the relation between the discrete and
continuous versions of the classical Hardy inequality.

1.1 Historical Background

Hardy’s original motivation, when discovering his celebrated inequality, was by no means less famous
Hilbert Inequality. In the weak form it asserts that if

∑∞
n=1 a

2
n converges, then the double series∑∞

n=1

∑∞
m=1

anam
n+m <∞ also converges. More precisely, it claims that the inequality

∞∑
n=1

∞∑
m=1

anam
n+m

≤ π
∞∑
n=1

an
2 (1.1)

holds true for all complex sequences a ∈ C(N). The inequality (1.1) was first deduced by Hilbert in
1906 with constant 2π, utilizing an advanced tool of Fourier’s series. Subsequently, additional proofs
were given by H. Weyl, F. Weiner, or even I. Schur (1911), who was the first to derive the continuous
integral version of (1.1), as well as the optimal constant π. However, Hardy craved for more elementary
proof to be found. He accomplished to publish it in the year 1915 in [4]. And it is in this paper, where
the weak form of the Hardy inequality implicitly appears for the first time. As a matter of interest, we
present two relevant statements from this writing together with Hardy’s proofs. We shall start with
the following lemma, that connects Hardy’s and Hilbert’s inequalities in an obvious manner.

Lemma 1.1. Let a ∈ C(N) be a non-negative sequence and An :=
∑n

k=1 ak. Then the convergence of
any of the three series

(i)
∞∑
n=1

anAn

n
, (ii)

∞∑
n=1

(
An

n

)2

, (iii)

∞∑
n=1

∞∑
m=1

anam
n+m

implies the convergence of the other two.

In fact, Hardy proved the integral version of this lemma and mentioned, that the proof for series,
which was not included in this work, was analogous. Nevertheless, we will try to outline the ideas of
his proof by means of the discrete case, which is perhaps a little more delicate.

Proof. The proof shall be done in two steps.
a) (i) converges ⇐⇒ (ii) converges: For the implication (⇒) we use an elementary estimate

2anAn = (An −An−1)(An +An−1) + a2n = A2
n −A2

n−1 + a2n ≥ A2
n −A2

n−1.
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Dividing by n and summing over n from 1 to N ∈ N, we obtain

N∑
n=1

2anAn

n
≥

N−1∑
n=1

(
A2

n

n
− A2

n

n+ 1

)
+
A2

N

N
≥

N−1∑
n=1

A2
n

n(n+ 1)
≥

N−1∑
n=1

A2
n

2n2
.

Since N was arbitrary, we can send N → ∞, thus arriving at
∞∑
n=1

A2
n

n2
≤ 4

∞∑
n=1

anAn

n
.

The reverse implication (⇐) can be shown in an analogous fashion observing that

anAn = (An −An−1)An = A2
n −AnAn−1 ≤ A2

n −A2
n−1.

Again, after dividing by n and summing over n from 1 to N ∈ N, we get

N∑
n=1

anAn

n
≤

N−1∑
n=1

A2
n

n(n+ 1)
+
A2

N

N
≤

N−1∑
n=1

A2
n

n2
+
A2

N

N
≤

N−1∑
n=1

A2
n

n2
+

∞∑
n=N

A2
n

n2
=

∞∑
n=1

A2
n

n2
,

because
A2

N

N
≤

∞∑
n=N

A2
N

n2
≤

∞∑
n=N

A2
n

n2
,

where we used a simple estimate 1/N =
∫∞
N 1/x2 dx ≤

∑∞
n=N 1/n2. Sending N → ∞ yields the desired

result.
b) (i) converges ⇐⇒ (iii) converges: For the implication (⇒) we will make use of the symmetry

of the expression (iii) interchanging n↔ m

2
N∑

n=1

n∑
m=1

anam
n+m

=
N∑

n=1

n∑
m=1

anam
n+m

+
N∑

m=1

m∑
n=1

anam
n+m

=
N∑

n=1

n∑
m=1

anam
n+m

+
N∑

n=1

N∑
m=n

anam
n+m

,

therefore
N∑

n=1

N∑
m=1

anam
n+m

≤ 2

N∑
n=1

n∑
m=1

anam
n+m

= 2

N∑
n=1

an

n∑
m=1

am
n+m

≤ 2

N∑
n=1

an
n

n∑
m=1

am = 2

N∑
n=1

anAn

n
.

Hence the implication is proven after we let N → ∞. Finally, the implication (⇐) is given by the
following series of estimates

2

∞∑
n=1

∞∑
m=1

anam
n+m

≥ 2

∞∑
n=1

n∑
m=1

anam
n+m

≥ 2

∞∑
n=1

an

n∑
m=1

am
2n

=

N∑
n=1

anAn

n
.

Remark 1.2. At this point, it is beneficial to realise, that it is sufficient to prove Hardy inequality (1)
for non-increasing sequences. Indeed, if the series

∑∞
n=1 an converges, the sequence {an}∞n=1 is bounded

and consequently there exists a non-increasing rearrangement {ãn}∞n=1. Evidently, it holds that
∞∑
n=1

apn =

∞∑
n=1

ãpn and An ≤ Ãn for all n ∈ N,

thus
∞∑
n=1

(
An

n

)p

≤
∞∑
n=1

(
Ãn

n

)p

≤
(

p

p− 1

)p ∞∑
n=1

ãpn =

(
p

p− 1

)p ∞∑
n=1

apn,

proving the Hardy inequality without loss of generality.
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To complete the proof of the weak form of the discrete Hardy inequality, we employ the following
theorem.

Theorem 1.3. Let a ∈ C(N) be a non-negative sequence and An :=
∑n

k=1 ak. Then

∞∑
n=1

a2n <∞ =⇒
∞∑
n=1

anAn

n
<∞.

Remark 1.4. Equipped with Lemma 1.1, we easily observe that Theorem 1.3 implies the weak form of
both, Hardy and Hilbert, inequalities.

Proof. Clearly, it is again sufficient to prove the statement for a non-increasing sequence a (the argu-
ment is similar as in Remark 1.2).

First, we rewrite the expression
∑∞

n=1 anAn/n =
∑∞

n=1

∑n
m=1(anam)/n = S =

∑∞
k=1 Sk, where we

denoted
Sk :=

∑∑
k≤ n

m
<k+1

anam
n

for all k ∈ N. We infer from the following estimates and the Cauchy–Schwarz inequality that

Sk ≤ 1

k

∑∑
k≤ n

m
<k+1

anam
m

=
1

k

∞∑
m=1

am
m

∑
k≤ n

m
<k+1

an ≤ 1

k

∞∑
m=1

am
m
akmm

≤ 1

k

( ∞∑
m=1

a2m

)1/2( ∞∑
m=1

a2km

)1/2

≤ 1

k

( ∞∑
m=1

a2m

)1/2(
1

k

∞∑
m=1

a2m

)1/2

=
1

k3/2

∞∑
m=1

a2m.

Finally, we get

S =

∞∑
k=1

Sk ≤
∞∑
k=1

1

k3/2

∞∑
m=1

a2m ≤ 3

∞∑
m=1

a2m <∞,

since
∑∞

k=1 k
−3/2 ≤ 1 +

∫∞
1 x−3/2 dx = 3.

Later in the year 1919, Hardy formulated the inequality (2) for p = 2 with integration from a
positive constant a > 0 instead of 0. Moreover, he published a sketch of proof of the discrete version
(1). It is important to mention the names of other mathematicians who were involved in the research
that followed Hardy’s initial discovery. In the year 1920, M. Riesz sent Hardy a letter with a proof
of (1) with the constant (p2/(p− 1))p. Based on a letter from I. Schur, Hardy improved the constant
to (pζ(p))p. In the same letter, Schur pointed out that for p = 2 the inequality holds true with
the constant 4, therefore Hardy conjectured that the inequality holds even with the optimal constant
(p/(p− 1))p. In addition, he hypothesised the Lp version of the continuous inequality (2), whilst still
integrating from a > 0. Although he did not provide a proof of this claim, he showed the optimality
of the constant (p/(p− 1))p considering the function f(x) = x−1/p−ε, where ε > 0 is sufficiently small.
Finally, one year later, E. Landau proved the final version of (1) and in the year 1925 he pointed
out that the discrete version of Hardy inequality can be deduced from the continuous one assuming
suitable step function f , see also Section 1.4. This motivated Hardy to formulate and prove the final
version of his famous inequality (2).

1.2 Elementary proof

First, we will show an elegant elementary proof from E. B. Elliot from [5], together with the optimality
of the constant (p/(p− 1))p, which was first proven by Landau, see for example [1]. For this purpose,
we will state the following auxiliary claims.
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Let a, b > 0 and p, q > 1, such that 1/p+ 1/q = 1. Then the Young inequality reads

ab ≤ ap

p
+
bq

q
. (1.2)

Now, consider p > 1 and set q := p/(p− 1). Then, with the aid of (1.2), we find that

ap−1b ≤ (ap−1)q

q
+
bp

p
= (p− 1)

ap

p
+
bp

p
,

for all a, b > 0 and p > 1. Moreover, if we put y := b/a, we observe that

pap−1b ≤ (p− 1)ap + bp ⇐⇒ py ≤ (p− 1) + yp ⇐⇒ yp ≥ 1 + p(y − 1).

Denoting x = y − 1 > −1, we conclude that the Bernoulli inequality

(1 + x)p ≥ 1 + px (1.3)

holds for any x ≥ −1. Lastly, let us also recall the famous Hölder inequality.

Theorem 1.5 (Hölder inequality). Let (X,M, µ) be a measurable space, f, g : X → C be measurable
functions and p, q > 1 satisfying 1/p+ 1/q = 1. Then it is true that∫

X
|fg| dµ ≤

(∫
X
|f |p dµ

)1/p(∫
X
|g|q dµ

)1/q

. (1.4)

Remark 1.6. If we consider X = N, M = P(N) to be the power set of N, and µ =
∑∞

n=1 δ{n} the
counting measure in Theorem 1.5, the Hölder inequality states

∞∑
n=1

anbn ≤

( ∞∑
n=1

apn

)1/p( ∞∑
n=1

bqn

)1/q

, (1.5)

for all non-negative sequences a, b ∈ C(N).
Now, we may proceed to prove the classical discrete Hardy inequality (1).

Proof. First, we show that the inequality (1) holds and then we verify the optimality of the constant
(p/(p− 1))p. Throughout this proof we will denote An :=

∑n
k=1 ak, and αn := An

n for all n ∈ N.
a) Since an = nαn − (n− 1)αn−1, we observe that

αp
n − p

p− 1
αp−1
n an = αp

n

(
1− np

p− 1

)
+

(n− 1)p

p− 1
αp−1
n αn−1.

Applying the Young inequality (1.2) to the second term on the right-hand side, we infer that

αp
n − p

p− 1
αp−1
n an ≤ αp

n

(
1− np

p− 1

)
+
n− 1

p− 1

(
(p− 1)αp

n + αp
n−1

)
= αp

n − αp
n

np

p− 1
+ (n− 1)αp

n +
n− 1

p− 1
αp
n−1,

hence
αp
n − p

p− 1
αp−1
n an ≤ 1

p− 1

(
(n− 1)αp

n−1 − nαp
n

)
.
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By summation by parts form n = 1 to N , we get

N∑
n=1

(
An

n

)p

− p

p− 1

N∑
n=1

(
An

n

)p−1

an ≤
−Nαp

N

p− 1
≤ 0,

therefore, invoking the Hölder inequality (1.5), we have

N∑
n=1

(
An

n

)p

≤ p

p− 1

N∑
n=1

(
An

n

)p−1

an ≤ p

p− 1

(
N∑

n=1

apn

)1/p( N∑
n=1

(
An

n

)p
)(p−1)/p

.

Since it suffices to consider a ̸= 0, we may divide by the last term on the right-hand side arriving at(
N∑

n=1

(
An

n

)p
)1/p

≤ p

p− 1

(
N∑

n=1

apn

)1/p

,

which is true for all N ∈ N. Sending N → ∞ yields the desired result.
b) Secondly, we will show the optimality of the constant (p/(p− 1))p, by introducing the sequence

an =
1

n1/p+ε

for all n ∈ N and for 0 < ε < 1− 1
p . We may estimate

An =

n∑
k=1

1

k1/p+ε
>

∫ n

1

1

x1/p+ε
dx =

1

1− 1/p− ε

(
n1−1/p−ε − 1

)
>

p

p− 1

(
n1−1/p−ε − 1

)
=

p

p− 1
n1−1/p−ε

(
1− 1

n1−1/p−ε

)
It follows from the Bernoulli inequality (1.3) that(

An

n

)p

>

(
p

p− 1

)p

n−1−εp

(
1− 1

n1−1/p−ε

)p

≥
(

p

p− 1

)p

n−1−εp
(
1− p

n1−1/p−ε

)
=

(
p

p− 1

)p (
apn − pn−2+1/p+ε−εp

)
.

Summing from n = 1 to N ∈ N, we get

N∑
n=1

(
An

n

)p

>

(
p

p− 1

)p
(

N∑
n=1

apn − p
N∑

n=1

1

n2−1/p−ε+εp

)
=

(
p

p− 1

)p
(

N∑
n=1

apn − pCN,ε

)
,

where we denoted CN,ε :=
∑N

n=1 n
−2+1/p+ε−εp. As 2− 1/p− ε+ εp > 1 and 2− 1/p > 1, we have

lim
N→∞

CN,ε =: Cε <∞ for all ε > 0 and lim
ε→0+

Cε =: C <∞.

On the other hand, it is true that

N∑
n=1

apn =

N∑
n=1

1

n1+εp

N→∞−→
ε→0+

∞,

thus ∑N
n=1

(
An
n

)p∑N
n=1 a

p
n

≥
(

p

p− 1

)p
(
1−

pCN,ε∑N
n=1 a

p
n

)
N→∞−→
ε→0+

(
p

p− 1

)p

,

from which the optimality readily follows.
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1.3 Norm of the Cesàro operator

In this section, we shall understand the Hardy inequality (1) as a problem of computing the norm of
the Cesàro (averaging) operator, which is defined as C : ℓp(N) → ℓp(N) :

(Ca)n =
1

n

n∑
k=1

ak

for all a ∈ ℓp(N), resp. in the continuous case as C∞ : Lp((0,∞)) → Lp((0,∞)) :

(C∞f)(x) =
1

x

∫ x

0
f(t) dt

for all f ∈ Lp((0,∞)). The claim that the operator C, resp. C∞, maps to ℓp(N), resp. to Lp((0,∞)),
is by no means trivial and it is actually asserted by the weak form of the Hardy inequality. In this
section, we further restrict ourselves to real sequences in the Hilbert space ℓ2(N) endowed with the
Euclidean inner product defined as ⟨a, b⟩ =

∑∞
n=1 anbn for all a, b ∈ ℓ2(N).

The classical discrete Hardy inequality (1) together with its optimality, can be understood as the
identity

∥C∥ = 2. (1.6)

The inequality ∥C∥ ≤ 2 asserts the inequality (1) since

∥Ca∥2 =
∞∑
n=1

(
An

n

)2

≤ 4 ∥a∥2 = 4
∞∑
n=1

a2n,

and the second inequality ∥C∥ ≥ 2 determines the optimality of the constant 4. In Sections 1.3.1 and
1.3.2, we provide two possible proofs of identity (1.6).

1.3.1 Schur test

In this section, we introduce a useful tool for estimating norms of integral operators, i.e. the Schur
test, which we will state here in a fully general version, see [7, Theorem 5.2.] for reference.

Theorem 1.7 (Schur test). Let (X,M, µ) be a σ-finite measurable space. Furthermore, let a measur-
able function K : X ×X → [0,∞) be a non-negative kernel and p, q > 1 such that 1/p + 1/q = 1. If
there exist constants A,B ≥ 0 and a measurable function h : X → (0,∞) satisfying∫

X
K(x, y)h(y)q dµ(y) ≤ Ah(x)q µ-a.e. x ∈ X,∫

X
K(x, y)h(x)p dµ(x) ≤ Bh(y)p µ-a.e. y ∈ X,

then for the integral operator T , given by

Tf(x) =

∫
X
K(x, y)f(y) dµ(y)

for µ-a.e. x ∈ X and for all f ∈ Lp(X,µ), it holds that T ∈ B(Lp(X,µ)) and ∥T∥ ≤ A1/qB1/p.
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Proof. Let f ∈ Lp(X,µ), such that ∥f∥p = 1, and x ∈ X arbitrary. We infer from the Hölder inequality
(1.4) that

|Tf(x)| ≤
∫
X
K(x, y)h(y)h(y)−1 |f(y)| dµ(y) =

∫
X
K(x, y)1/pK(x, y)1/qh(y)h(y)−1 |f(y)| dµ(y)

≤
(∫

X
K(x, y)h(y)q dµ(y)

)1/q (∫
X
K(x, y)h(y)−p |f(y)|p dµ(y)

)1/p

≤ A1/qh(x)

(∫
X
K(x, y)h(y)−p |f(y)|p dµ(y)

)1/p

.

Moreover, using the Tonelli–Fubini theorem we have∫
X
|Tf(x)|p dµ(x) ≤ Ap/q

∫
X
h(x)p

(∫
X
K(x, y)h(y)−p |f(y)|p dµ(y)

)
dµ(x)

= Ap/q

∫
X
h(y)−p |f(y)|p

(∫
X
K(x, y)h(x)p dµ(x)

)
dµ(y)

≤ Ap/qB

∫
X
|f(y)|p dµ(y) = Ap/qB.

It follows from the definition of the operator norm that ∥T∥ ≤ A1/qB1/p.

Analogously to the situation in vector spaces of finite dimension, bounded operators in ℓ2(N) may
also be represented by semi-infinite matrices. Here we consider the matrix of an operator in the
standard orthonormal basis E = (δn)

∞
n=1, where δnm is the Kronecker delta symbol for all m,n ∈ N. If

we restrict ourselves to bounded operators only, the operations with semi-infinite matrices will be done
similarly to their analogues in spaces of finite dimension and they will exhibit the same properties. In
particular, if we denote EA the matrix of the operator A in the standard basis, i.e. (EA)m,n = ⟨δm, Aδn⟩
for all n,m ∈ N, then it holds that E(A∗) = (EA)∗, where ∗ denotes the adjoint operator on the left-
hand side and the hermitian adjoint of a matrix on the right-hand side. Furthermore, the composition
of operators corresponds to matrix multiplication, which is defined analogously, but with convergent
series instead of finite sums. From now on, we will identify the bounded operator A ∈ B(ℓ2(N)) with
its matrix A ≡ EA. With this notation, we can reformulate the Schur test for linear operators on ℓ2(N).

Corollary 1.8 (Schur). Let (am,n)
∞
m,n=1 ≡ A be a linear operator in ℓ2(N), and am,n ≥ 0 for all

n,m ∈ N. If there exist constants B,C ≥ 0 and a positive sequence h ∈ C(N) satisfying

∞∑
n=1

am,nhn ≤ Bhm for all m ∈ N,

∞∑
m=1

am,nhm ≤ Chm for all n ∈ N,

then A ∈ B(ℓ2(N)) and ∥A∥ ≤
√
BC.

In particular, if am,n = an,m for all n,m ∈ N and there exist D ≥ 0 and a positive sequence h̃ ∈ C(N)
such that

∞∑
n=1

am,nh̃n ≤ Dh̃m for all m ∈ N,

then A ∈ B(ℓ2(N)) and ∥A∥ ≤ D.

Proof. The corollary readily follows from the Schur test 1.7 with the choice of p = q = 2 and X = N,
M = P(N), and µ =

∑∞
n=1 δ{n} the counting measure.
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The matrix representation of the Cesàro operator in the standard basis is

C =


1 0 0 · · ·

1/2 1/2 0 · · ·
1/3 1/3 1/3 · · ·
...

...
...

. . .

 , i.e. cm,n =

{
1/m if m ≥ n

0 if m < n
,

hence

C∗ =


1 1/2 1/3 · · ·
0 1/2 1/3 · · ·
0 0 1/3 · · ·
...

...
...

. . .

 , i.e. c∗m,n =

{
1/n if m ≤ n

0 if m > n

for all m,n ∈ N. For now, we understand C∗ only as the hermitian adjoint of the matrix C. In order to
show that it is indeed the adjoint operator of C, we have to verify that C ∈ B(ℓ2(N)). More precisely
we will prove that ∥C∥ ≤

√
6.

Proof. We will show that with the choice of hn = 1/
√
n, it is true that

∞∑
n=1

cm,nhn =
m∑

n=1

cm,nhn ≤ 2hm for all m ∈ N,

∞∑
m=1

cm,nhm =

∞∑
m=1

c∗n,mhm =

∞∑
m=n

c∗n,mhm ≤ 3hn for all n ∈ N.

Indeed, for the first inequality we have

m∑
n=1

cm,nhn =

m∑
n=1

1

m

1√
n
≤ 1

m

∫ m

0

1√
x
dx =

2√
m

= 2hm.

For the latter inequality, we use an analogous estimate

∞∑
m=n

c∗n,mhm =
∞∑

m=n

1

m3/2
≤ 1

n3/2
+

∫ ∞

n

1

x3/2
dx =

1

n3/2
+

2√
n
≤ 3√

n
= 3hn.

The proof is complete by the Schur test 1.8.

It turns out that it is difficult to show that ∥C∥ ≤ 2 using the Schur test directly. Nevertheless,
it is beneficial to compute the norm of the operator L := CC∗, also called the Hilbert L-matrix, from
which we can easily obtain the norm of the Cesàro operator because we have ∥L∥ = ∥C∥2. The Hilbert
L-matrix is given by

lm,n =

∞∑
k=1

cm,kc
∗
k,n =

min{m,n}∑
k=1

1

m

1

n
=

1

max{m,n}

for all n,m ∈ N, or equivalently

L = CC∗ =


1 0 0 · · ·

1/2 1/2 0 · · ·
1/3 1/3 1/3 · · ·
...

...
...

. . .



1 1/2 1/3 · · ·
0 1/2 1/3 · · ·
0 0 1/3 · · ·
...

...
...

. . .

 =


1 1/2 1/3 · · ·
1/2 1/2 1/3 · · ·
1/3 1/3 1/3 · · ·
...

...
...

. . .

 . (1.7)

We are ready to prove that ∥L∥ = 4 thus ∥C∥ = 2.
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Proof. We will show the equality as two inequalities, which shall be proven in two separate steps.
a) ∥L∥ ≤ 4: This inequality can be verified by the Schur test 1.8. In particular, we will make use

of the second claim, since lm,n = ln,m for all n,m ∈ N. With the same choice of hn = 1/
√
n as before

we obtain
∞∑
n=1

lm,nhn =

∞∑
n=1

1

max{m,n}
1√
n
=

1

m

m−1∑
n=1

1√
n
+

∞∑
n=m

1

n3/2

≤ 1

m
+

1

m

∫ m

1

1√
x
dx+

1

m3/2
+

∫ ∞

m

1

x3/2
dx =

1

m
+

2√
m

− 2

m
+

1

m3/2
+

2√
m

=
4√
m

+
1

m

(
1√
m

− 1

)
≤ 4√

m
,

which yields the inequality.
b) ∥L∥ ≥ 4: Since for the norm of a self-adjoint operator A = A∗ ∈ B(H) acting on an arbitrary

Hilbert space H, we have

∥A∥ = sup
∥x∥=1

| ⟨x,Ax⟩ | = sup
0̸=x∈H

| ⟨x,Ax⟩ |
∥x∥2

,

it suffices to find suitable sequences h(ε) ∈ ℓ2(N), such that

lim
ε→0+

| ⟨h(ε), Lh(ε)⟩ |
∥h(ε)∥2

= 4.

Introducing hn(ε) := n−1/2−ε for all n ∈ N, we estimate

∥h(ε)∥2 =
∞∑
n=1

1

n1+2ε
=

∫ ∞

1

1

x1+2ε
dx+O (1) =

1

2ε
+O (1) , ε→ 0+,

where O (1) as ε → 0+ is a function f = O (1) such that |f(x)| ≤ K for all x sufficiently small and
some constant K ≥ 0. For the numerator, we get

| ⟨h(ε), Lh(ε)⟩ | =
∞∑

m=1

∞∑
n=1

m− 1
2
−ε 1

max{m,n}
n−

1
2
−ε

=

∫ ∞

1

∫ ∞

1

1

x1/2+εmax{x, y}y1/2+ε
dx dy +O (1)

=

∫ ∞

1

(∫ x

1

1

y1/2+ε
dy

)
1

x3/2+ε
dx+

∫ ∞

1

(∫ ∞

x

1

y3/2+ε
dy

)
1

x1/2+ε
dx+O (1) .

The integrals on the right-hand side can be estimated as∫ ∞

1

(∫ x

1

1

y1/2+ε
dy

)
1

x3/2+ε
dx =

∫ ∞

1

[
y1/2−ε

1/2− ε

]x
1

1

x3/2+ε
dx

=
2

1− 2ε

∫ ∞

1

1

x1+2ε
dx− 2

1− 2ε

∫ ∞

1

1

x3/2+ε
dx =

1

ε
+O (1)

and ∫ ∞

1

(∫ ∞

x

1

y3/2+ε
dy

)
1

x1/2+ε
dx =

∫ ∞

1

[
y−1/2−ε

−1/2− ε

]∞
x

1

x1/2+ε
dx =

2

1 + 2ε

∫ ∞

1

1

x1+2ε
dx

=
1

ε
+O (1) .

16



Altogether, it holds that

lim
ε→0+

| ⟨h(ε), Lh(ε)⟩ |
∥h(ε)∥2

= lim
ε→0+

2
ε +O (1)
1
2ε +O (1)

= 4.

Remark 1.9. The Schur test 1.7 can be also used to derive the continuous Hardy inequality (2) for
p = 2. The operator C∞ is, in fact, an integral operator with the kernel

K(x, y) =

{
0 if x ≤ y

1/x if x > y

for all x, y ∈ (0,∞). With the choice of h(x) = x−1/4 for all x ∈ (0,∞) we get∫ ∞

0
K(x, y)h(y)2 dy =

1

x

∫ x

0

1
√
y
dy =

2√
x

and ∫ ∞

0
K(x, y)h(x)2 dx =

∫ ∞

y

1

x3/2
dx =

2
√
y
.

It follows from the Schur test that ∥C∞∥ ≤ 21/221/2 = 2.

1.3.2 Matrix factorization

In this section, we show that
∥C − I∥ = 1, (1.8)

together with several other findings, which appeared in [9]. Note, that the identity (1.8) implies the
classical discrete Hardy inequality, since

∥C∥ = ∥C − I + I∥ ≤ ∥C − I∥+ ∥I∥ = 2.

Remark 1.10. The inequality ≥ in (1.6) can be shown analogously as in Section 1.2 with the choice of
hn(ε) := n−1/2−ε for all n ∈ N, where ε > 0. Evidently,

(C∗h(ε))n =

∞∑
m=1

c∗n,mhm(ε) =
∞∑

m=n

1

m
hm(ε) =

∞∑
m=n

1

m3/2+ε
,

hence

∥C∗h(ε)∥2 =
∞∑
n=1

( ∞∑
m=n

1

m3/2+ε

)2

>
∞∑
n=1

(∫ ∞

n

1

x3/2+ε
dx

)2

=

(
2

1 + 2ε

)2 ∞∑
n=1

(
1

n1/2+ε

)2

=

(
2

1 + 2ε

)2

∥h(ε)∥2 .

Altogether, we have

lim
ε→0+

∥C∗h(ε)∥
∥h(ε)∥

≥ 2 =⇒ ∥C∗∥ = ∥C∥ ≥ 2.

Now we proceed to show the desired equality ∥C − I∥ = 1. To this end, we will state an elegant
lemma regarding matrix factorization.
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Lemma 1.11. Let us denote a diagonal matrix

D :=


1 0 0 · · ·
0 1/2 0 · · ·
0 0 1/3 · · ·
...

...
...

. . .

 .

Then (C − I)(C∗ − I) = I −D.

Proof. Bearing (1.7) in mind, we have

CC∗ =


1 1/2 1/3 · · ·
1/2 1/2 1/3 · · ·
1/3 1/3 1/3 · · ·
...

...
...

. . .

 = C + C∗ −D,

therefore
(C − I)(C∗ − I) = CC∗ − C − C∗ + I = I −D.

It is easy to check, that the norm of an arbitrary diagonal matrix T can be computed as

∥T∥ = sup
n∈N

|Tn,n|,

hence ∥I −D∥ = 1. Since (C − I)∗ = C∗ − I, Lemma 1.11 asserts that ∥I −D∥ = ∥C − I∥2, and
therefore we may conclude that the identity (1.8) holds.

Another interesting result can be deduced from this factorization, see [8]. It can be shown, that
the supremum in the definition of the operator norm of C is not attained by any non-zero sequence,
i.e. the classical discrete Hardy inequality ∥Ca∥ < 2 ∥a∥ is strict for all a ∈ ℓ2(N) unless a ≡ 0. For
this purpose, we will make the following observation.

Proposition 1.12. Let A ∈ B(H), such that ∥A∥ ≤ 1. If the exists 0 ̸= x ∈ H satisfying ∥Ax∥ = ∥x∥,
then there exists 0 ̸= y ∈ H satisfying ∥A∗y∥ = ∥y∥.

Proof. Set y := Ax ̸= 0, thus ∥x∥ = ∥y∥. Furthermore, the inequality ∥A∗A∥ = ∥A∥2 ≤ 1 and the
Cauchy–Schwarz inequality yield

∥x∥2 = ⟨Ax,Ax⟩ = ⟨A∗Ax, x⟩ ≤ ∥A∗Ax∥ ∥x∥ ≤ ∥x∥2 ,

therefore all inequalities stand as equalities. Dividing both sides by ∥x∥ ≠ 0, we obtain

∥A∗y∥ = ∥A∗Ax∥ = ∥x∥ = ∥y∥ .

It is obvious that ∥(I −D)a∥ < ∥a∥ whenever a ̸= 0. Employing Lemma 1.11 and the Cauchy–
Schwarz inequality we have

∥(C∗ − I)a∥2 = ⟨(C∗ − I)a, (C∗ − I)a⟩ = ⟨a, (C − I)(C∗ − I)a⟩ ≤ ∥(I −D)a∥ ∥a∥ < ∥a∥2

for all 0 ̸= a ∈ ℓ2(N). The preceding proposition yields

∥Ca∥ = ∥(C − I)a+ a∥ ≤ ∥(C − I)a∥+ ∥a∥ < 2 ∥a∥ .

As was further shown in [9], it is possible to derive certain equalities underlying the inequalities
∥(C∗ − I)a∥2 ≤ ∥a∥2 and ∥(C − I)a∥2 ≤ ∥a∥2.
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Proposition 1.13. For any a ∈ ℓ2(N) it holds that

∥(C∗ − I)a∥2 =
∞∑
n=1

(
1− 1

n

)
a2n.

Proof. This is an easy application of Lemma 1.11 that asserts

∞∑
n=1

(
1− 1

n

)
a2n = ⟨a, (I −D)a⟩ = ⟨a, (C − I)(C∗ − I)a⟩ = ∥(C∗ − I)a∥2 .

Evidently, this equality yields ∥(C∗ − I)a∥ ≤ ∥a∥ for all a ∈ ℓ2(N), since

∥(C∗ − I)a∥2 =
∞∑
n=1

(
1− 1

n

)
a2n ≤

∞∑
n=1

a2n = ∥a∥2 .

Proposition 1.14. For any a ∈ ℓ2(N) it holds that

∞∑
n=2

n

n− 1
((C − I)an)

2 =

∞∑
n=1

a2n.

This proposition can be proven either by direct algebra or by matrix factorization as previously,
but perhaps a little more delicately. As a matter of interest, we will show both of these approaches.

Proof. Let us denote An =
∑n

k=1 an and bn = (C − I)an. Firstly, we examine what the proposition
states for sequences satisfying an = 0 for all n > N . In that case An = AN and bn = AN/n for all
n ≥ N , hence

∞∑
n=2

n

n− 1
b2n =

N∑
n=2

n

n− 1
b2n +

∞∑
n=N+1

n

n− 1

A2
N

n2
=

N∑
n=2

n

n− 1
b2n +A2

N

∞∑
n=N+1

1

n(n− 1)
.

Moreover,
∞∑

n=N+1

1

n(n− 1)
= lim

M→∞

M∑
n=N+1

(
1

n− 1
− 1

n

)
= lim

M→∞

(
1

N
− 1

M

)
=

1

N
,

therefore altogether, we have
N∑

n=2

n

n− 1
b2n +

A2
N

N
=

N∑
n=1

a2n. (1.9)

This equality follows from mathematical induction. The statement is trivially true for N = 2 because

2b22 +
A2

2

2
= 2

(
a1 + a2

2
− a2

)2

+
1

2
(a1 + a2)

2 =
1

2
(a1 − a2)

2 +
1

2
(a1 + a2)

2 = a21 + a22.

Assuming the statement holds true for N − 1, we observe that for N , we have

N∑
n=2

n

n− 1
b2n +

A2
N

N
=

N−1∑
n=2

n

n− 1
b2n +

N

N − 1
b2N +

A2
N

N
±
A2

N−1

N − 1

?
=

N∑
n=1

a2n =
N−1∑
n=1

a2n + a2N

⇐⇒ N

N − 1
b2N +

A2
N

N
−
A2

N−1

N − 1
= a2N .
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Substituting bN = (AN −NaN )/N and AN−1 = AN − aN , the left-hand side of the preceding equality
becomes

1

N(N − 1)
(AN −NaN )2 +

A2
N

N
− (AN − aN )2

N − 1
=

(
N

N − 1
− 1

N − 1

)
a2N = a2N ,

which is equal to the right-hand side.
In order to complete the proof, it suffices to show that for all a ∈ ℓ2(N) the second term on the

left-hand side of (1.9) is vanishing for N → ∞, i.e. that

lim
n→∞

A2
n

n
= 0.

Indeed, for an arbitrary a ∈ ℓ2(N) and ε > 0 there exists n0 ∈ N such that
∑∞

n=n0+1 a
2
n < ε. If we

denote An = An0 + Sn, i.e. Sn =
∑n

k=n0+1 ak, the Cauchy–Schwarz inequality yields

S2
n ≤ (n− n0)

n∑
k=n0+1

a2k ≤ ε(n− n0) ≤ εn.

For n sufficiently large so that A2
n0

≤ εn, it holds that A2
n ≤ 2A2

n0
+ 2S2

n ≤ 4εn, thus

A2
n

n
≤ 4ε.

Since ε was arbitrary, the proof is complete.

In fact, Proposition 1.14 reads〈
(C − I)a, D̃(C − I)a

〉
=
〈
a, (C∗ − I)D̃(C − I)a

〉
= ⟨a, a⟩ ,

where we denoted

D̃ :=


0 0 0 · · ·
0 2/1 0 · · ·
0 0 3/2 · · ·
...

...
...

. . .

 . (1.10)

With this observation, Proposition 1.14 stems from the following lemma.

Lemma 1.15. In view of the definition (1.10), we have (C∗ − I)D̃(C − I) = I.

Proof. Since (C∗ − I)D̃(C − I) = C∗D̃C − D̃C −C∗D̃+ D̃ the lemma can be equivalently formulated
as

C∗D̃C = D̃C + C∗D̃ + I − D̃.

The left multiplication by the matrix D̃ creates zeros in the first row and for m ≥ 2 it multiplies m-th
row by m/(m− 1), therefore

D̃C =


0 0 0 · · ·
1 1 0 · · ·

1/2 1/2 1/2 · · ·
...

...
...

. . .

 , i.e. (D̃C)m,n =


0 if m = 1

1

m− 1
if m ≥ n and m ≥ 2

0 if m < n
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for all m,n ∈ N, and

(D̃C)∗ = C∗D̃ =


0 1 1/2 · · ·
0 1 1/2 · · ·
0 0 1/2 · · ·
...

...
...

. . .

 , i.e. (C∗D̃)m,n =


0 if n = 1

1

n− 1
if n ≥ m and n ≥ 2

0 if n < m

for all m,n ∈ N. Moreover, whenever m ̸= 1 or n ̸= 1

(C∗D̃C)m,n =
∞∑
k=1

c∗m,k(D̃C)k,n =
∞∑

k=max{m,n}

1

k(k − 1)
=

1

max{m,n} − 1
,

and if m = n = 1 we have

(C∗D̃C)1,1 =

∞∑
k=1

c∗1,k(D̃C)k,1 = 0 +

∞∑
k=2

1

k(k − 1)
= 1.

Combining these results, we arrive at

C∗D̃C =


1 1 1/2 1/3 · · ·
1 1 1/2 1/3 · · ·
1/2 1/2 1/2 1/3 · · ·
1/3 1/3 1/3 1/3 · · ·
...

...
...

...
. . .

 =


0 0 0 0 · · ·
1 1 0 0 · · ·

1/2 1/2 1/2 0 · · ·
1/3 1/3 1/3 1/3 · · ·
...

...
...

...
. . .



+


0 1 1/2 1/3 · · ·
0 1 1/2 1/3 · · ·
0 0 1/2 1/3 · · ·
0 0 0 1/3 · · ·
...

...
...

...
. . .

+


1 0 0 0 · · ·
0 −1 0 0 · · ·
0 0 −1/2 0 · · ·
0 0 0 −1/3 · · ·
...

...
...

...
. . .

 = D̃C + C∗D̃ + I − D̃,

completing the proof.

Evidently, Proposition 1.14 asserts inequalities ∥(C − I)a∥ ≤ ∥a∥ ≤
√
2 ∥(C − I)a∥ for all a ∈

ℓ2(N). Indeed, (C − I)a1 = 0 and thus

∥(C − I)a∥2 =
∞∑
n=1

((C − I)an)
2 ≤

∞∑
n=2

n

n− 1
((C − I)an)

2 =

∞∑
n=1

a2n = ∥a∥2

≤ 2
∞∑
n=1

((C − I)an)
2 = 2 ∥(C − I)a∥2 .

1.4 Relation between continuous and discrete Hardy inequalities

In this section, we will demonstrate that the classical discrete and continuous Hardy inequalities are
equivalent in the sense that one implies the other. For completeness, we shall prove the continuous
Hardy inequality (2) in a general Lp setting. To this end, we include the general Minkowski inequality,
which appears for example in [6, Theorem 202].
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Theorem 1.16 (Minkowski). Let (X,M, µ), (Y,N , ν) spaces with σ-finite measures, p ∈ [1,∞] and
f : X × Y → C measurable. Then

(∀x ∈ X) (f(x, ·) ν-measurable) ∧ (∀y ∈ Y ) (f(·, y) µ-measurable),∫
Y
f(·, y) dν(y) µ-measurable ∧

∫
X
f(x, ·) dµ(x) ν-measurable

and it holds that ∥∥∥∥∫
Y
f(·, y) dν(y)

∥∥∥∥
p

≤
∫
Y
∥f(·, y)∥p dν(y),

resp. ∥∥∥∥∫
X
f(x, ·) dµ(x)

∥∥∥∥
p

≤
∫
X
∥f(x, ·)∥p dµ(x).

Proof. The fact that f(·, y), f(x, ·),
∫
Y f(·, y) dν(y), and

∫
X f(x, ·) dµ(x) are measurable is a part of

the Tonelli–Fubini theorem. Moreover, it is sufficient to show the first statement since the second could
obviously be proven analogously.

a) p ∈ (1,∞): Since
∣∣∫

Y f(x, y) dν(y)
∣∣ ≤ ∫

Y |f(x, y)|dν(y) for all x ∈ X, it suffices to consider
f ≥ 0 without loss of generality. Let us denote H(x) :=

∫
Y f(x, y) dν(y). We will show that ∥H∥p ≤∫

Y ∥f(·, y)∥p dν(y). Evidently, we can restrict ourselves to the case ∥H∥p > 0. By the Tonelli–Fubini
theorem, we have

∥H∥pp =
∫
X
H(x)p dµ(x) =

∫
X

(∫
Y
f(x, y) dν(y)

)
H(x)p−1 dµ(x)

=

∫
Y

(∫
X
f(x, y)H(x)p−1 dµ(x)

)
dν(y).

Moreover, from the Hölder inequality (1.4) with q = p/(p− 1), we infer that

∥H∥pp ≤
∫
Y

(∫
X
f(x, y)p dµ(x)

) 1
p
(∫

X
H(x)p dµ(x)

) p−1
p

dν(y)

=

∫
Y

(∫
X
f(x, y)p dµ(x)

)1/p

dν(y) ∥H∥p−1
p .

Now, we have to consider two cases, regarding the finiteness of ∥H∥p.
(i) ∥H∥p <∞: Dividing the previous inequality by ∥H∥p−1

p , we obtain the desired result.
(ii) ∥H∥p = ∞: It follows from the σ-finiteness of considered spaces that

(∃{An}∞n=1 ⊂ M)(∀n ∈ N)(µ(An) <∞ ∧
∞⋃
n=1

An = X),

(∃{Bm}∞m=1 ⊂ N )(∀m ∈ N)(ν(Bm) <∞ ∧
∞⋃

m=1

Bm = Y ),

Without loss of generality, we can assume that An ⊂ An+1 for all n ∈ N. Otherwise we would define
Ãn :=

⋃n
k=1Ak, where µ(Ãn) ≤

∑n
k=1 µ(An) < ∞ and

⋃∞
n=1 Ãn = X. Analogously we assume that

Bn ⊂ Bn+1 for all n ∈ N. We further denote fk := min{f, k} for all k ∈ N. From the part (i), we
obtain (∫

An

(∫
Bm

fk(x, y) dν(y)

)p

dµ(x)

)1/p

≤
∫
Bm

(∫
An

fk(x, y)
p dµ(x)

)1/p

dν(y).

Tending k → ∞ and m,n→ ∞, the Monotone Convergence Theorem yields the result.
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b) p = 1: This case is an easy application of the Tonelli–Fubini theorem∫
X

∣∣∣∣∫
Y
f(x, y) dν(y)

∣∣∣∣ dµ(x) ≤ ∫
X

(∫
Y
|f(x, y)|dν(y)

)
dµ(x) =

∫
Y

(∫
X
|f(x, y)| dµ(x)

)
dν(y).

c) p = ∞: A simple estimate asserts∣∣∣∣∫
Y
f(·, y) dν(y)

∣∣∣∣ ≤ ∫
Y
|f(·, y)| dν(y) ≤

∫
Y
∥f(·, y)∥∞ dν(y),

hence ∥∥∥∥∫
Y
f(·, y) dν(y)

∥∥∥∥
∞

≤
∫
Y
∥f(·, y)∥∞ dν(y).

Now we may employ an elegant argument from [6, p. 243] to prove the continuous Hardy inequality
(2).

Proof. Substituting t = sx we get

C∞f(x) =
1

x

∫ x

0
f(t) dt =

∫ 1

0
f(sx) ds.

The Minkowski inequality 1.16 and the Tonelli–Fubini theorem yield

∥C∞f∥p =
∥∥∥∥∫ 1

0
f(tx) dt

∥∥∥∥
p

≤
∫ 1

0
∥f(tx)∥p dt =

∫ 1

0

(∫ ∞

0
f(tx)p dx

)1/p

dt

=

∫ 1

0

(∫ ∞

0
f(s)p

ds

t

)1/p

dt =
p

p− 1
∥f∥p ,

where we substituted tx = s.

We are ready to prove the equivalence of the classical discrete and continuous Hardy inequalities.
First, we show perhaps a more intuitive implication, which is that the continuous inequality implies
the discrete one.

Proof. Having Remark 1.2 in mind, it suffices to consider only a ∈ ℓp(N) non-negative and non-
increasing. Let us define f : R+

0 → R+
0 as f :=

∑∞
n=1 anχ[n−1,n). Then for any x ∈ [n− 1, n), where

n ∈ N, we have F (x) :=
∫ x
0 f(t) dt =

∑n−1
k=1 ak + an(x − n + 1). A simple observation asserts that

(F (x)/x)p is non-increasing on [n− 1, n) for all n ∈ N since(
F (x)

x

)′
=
F ′(x)x− F (x)

x2
=

−
∑n−1

k=1 ak + (n− 1)an
x2

≤ 0.

The last inequality holds because a is non-increasing, thus
∑n−1

k=1 ak ≥ (n − 1)an. Assuming that the
continuous Hardy inequality is true, we may estimate

∞∑
n=1

(
An

n

)p

≤
∞∑
n=1

∫ n

n−1

(∑n−1
k=1 ak + an(x− n+ 1)

x

)p

dx =

∫ ∞

0

(
F (x)

x

)p

dx

≤
(

p

p− 1

)p ∫ ∞

0
f(x)p dx =

(
p

p− 1

)p ∞∑
n=1

apn,

where we denoted An :=
∑n

k=1 ak, hence proving the classical discrete Hardy inequality.
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In order to show the reverse implication, we will rewrite both inequalities into their more renowned
forms. Let us denote an =: un − un−1, where u0 := 0. The classical discrete Hardy inequality can
clearly be equivalently written as

∞∑
n=1

|un − un−1|p ≥
(
p− 1

p

)p ∞∑
n=1

|un|p

np
(1.11)

for all finitely supported complex sequences u ∈ C0(N0) with u0 = 0. Analogously, if we introduce
f =: φ′, the continuous Hardy inequality is equivalent to∫ ∞

0
|φ′(x)|p dx ≥

(
p− 1

p

)p ∫ ∞

0

|φ(x)|p

xp
dx (1.12)

for all φ ∈ D((0,∞)), where D(U) denotes the set of smooth functions with compact support in the
subset U ⊂ R. We shall connect the discrete and continuous versions in an analogous fashion as in
[13].

Proof. Firstly, we will show that it suffices to consider only non-negative real function φ ∈ D((0, 1]).
Indeed, the non-negativity is obvious and if we have ψ ∈ D((0,∞)), therefore suppψ ⊂ [a, b] for some
0 < a < b, we define φ(x) := ψ(bx). Consequently, suppφ ⊂ [a/b, 1] and φ ∈ D((0, 1]), hence∫ ∞

0
ψ′(x)p dx =

∫ b

0
ψ′(x)p dx = b

∫ 1

0
ψ′(by)p dy = b1−p

∫ 1

0
φ′(y)p dy

≥ b1−p

(
p− 1

p

)p ∫ 1

0

φ(y)p

yp
dy = b1−p

(
p− 1

p

)p ∫ 1

0

ψ(by)p

yp
dy

= b1−p

(
p− 1

p

)p ∫ b

0

ψ(x)p

xpb−p

dx

b
=

(
p− 1

p

)p ∫ ∞

0

ψ(x)p

xp
dx,

where we used the substitution x = by twice.
Next, for φ ∈ D((0, 1]), we define sequences uNn := N (p−1)/pφ(n/N) for all n ∈ N0 and N ∈ N, thus

∞∑
n=1

(
uNn − uNn−1

)p
= Np−1

N∑
n=1

(
φ
( n
N

)
− φ

(
n− 1

N

))p

= Np−1
N∑

n=1

(
φ′
( n
N

) 1

N
+O

(
1

N2

))p

= Np−1
N∑

n=1

φ′
( n
N

)p 1

Np

(
1 +O

(
1

N

))p

=

N∑
n=1

φ′
( n
N

)p 1

N

(
1 +O

(
1

N

))

=

N∑
n=1

φ′
( n
N

)p 1

N
+O

(
1

N

)
, N → ∞,

where we employed the Taylor-Lagrange formula

φ

(
n− 1

N

)
= φ

( n
N

)
− φ′

( n
N

) 1

N
+O

(
1

N2

)
and

(
1 +O

(
1

N

))p

= 1 +O
(

1

N

)
.

On the other hand, we have(
p− 1

p

)p ∞∑
n=1

(
uNn
)p

np
=

(
p− 1

p

)p N∑
n=1

Np−1φ
(
n
N

)p
np

=

(
p− 1

p

)p N∑
n=1

φ
(
n
N

)p(
n
N

)p 1

N
.

Altogether, with the assumption of the veracity of the classical discrete Hardy inequality, we have

N∑
n=1

φ′
( n
N

)p 1

N
+O

(
1

N

)
≥
(
p− 1

p

)p N∑
n=1

φ
(
n
N

)p(
n
N

)p 1

N
.
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Since φ ∈ D((0, 1]), the function is Riemann integrable, hence after taking the limit N → ∞ in the
above expression, we obtain the desired integral inequality∫ 1

0
φ′(x)p dx ≥

(
p− 1

p

)p ∫ 1

0

φ(x)p

xp
dx.

Let us restrict ourselves to the case p = 2 once more. We have shown that the constant 1/4 in
(1.11) is optimal. The connection between the discrete and continuous versions thereby implies the
optimality of the constant 1/4 in (1.12) as well. Additionally, the weight 1/(4x2) in (1.12) is known to
be critical, meaning that if (1.12) holds with 1/(4x2) replaced by a measurable function ρ(x) ≥ 1/(4x2)
for a.e. x > 0, then ρ(x) = 1/(4x2) for a.e. x > 0. In contrast, the opposite was recently discovered
concerning the discrete version of the Hardy inequality, which will be discussed in the following chapter.
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Chapter 2

Improved discrete Hardy inequality

In [11], M. Keller, Y. Pinchover, and F. Pogorzelski discovered the improved Hardy inequality which
reads

∞∑
n=1

|un − un−1|2 ≥
∞∑
n=1

ρKPP
n |un|2 (2.1)

for all u ∈ C0(N0) with u0 = 0, where the weight 1/(4n2) in (1.11) was replaced by the point-wise
bigger sequence

ρKPP
n := 2−

√
n− 1

n
−
√
n+ 1

n
>

1

4n2
. (2.2)

Additionally, the authors proved in [10] that the weight ρKPP is optimal. The notion of optimality is
a rather strong property which was introduced in a discrete graph setting in [14] (see Definition 3.2
below). In particular, the optimality of ρKPP implies criticality, meaning that ρKPP cannot be further
improved by a point-wise bigger sequence such that the analogue of (2.1) would still hold. This chapter
will present three approaches for handling the optimal discrete Hardy inequality (2.1).

2.1 Original idea

In [10], M. Keller, Y. Pinchover, and F. Pogorzelski discovered optimal discrete Hardy inequalities
for Schrödinger operators in a general graph setting. Later, they published a shortened proof of the
optimal discrete Hardy inequality on the half-line [11], considering the standard graph N0. Let us
mention that the notation in this section differs from the rest of this paper as we intend to preserve
the graph notation from [11]. Namely, the combinatorial Laplacian (2.4) shall vary by a sign from the
standard discrete Laplacian defined by (2.7). We also restrict ourselves to real sequences u ∈ C(N).

First, we define several terms that will be frequently used in the following proof. A positive sequence
w ∈ C(N), i.e. wn > 0 for all n ∈ N, is called a weight and, in this case, we write w > 0. For a weight
w > 0, we denote the weighted ℓ2 space

ℓ2(w) := {u ∈ C(N) |
∞∑
n=1

u2nwn <∞}

endowed with the scalar product

⟨u, v⟩w =

∞∑
n=1

unvnwn

for all u, v ∈ ℓ2(w) and the induced norm ∥·∥w. We have the following natural unitary transformation
between the spaces ℓ2(N) and ℓ2(w).
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Lemma 2.1. Let w ∈ C(N) be a weight. Then the operator Tw : ℓ2(w2) → ℓ2(N) given by

Twu := wu (2.3)

for all sequences u ∈ ℓ2(w2), where the multiplication of sequences is to be understood point-wise, is
unitary.

Proof. The proof readily follows from the observation

∥Twu∥2 = ∥uw∥2 =
∞∑
n=1

u2nw
2
n = ∥u∥w2 .

We say that two vertices m,n of the graph N0 are connected by an edge if |n−m| = 1, in which
case we write m ∼ n. In this section, we set u0 = 0 for all u ∈ C(N). Given a weight w, we further
define the combinatorial Laplacian associated with w as

∆wun :=
1

w2
n

∑
m∼n

wnwm(un − um) (2.4)

for any u ∈ C(N) and n ∈ N. The combinatorial Laplacian ∆1 is often denoted as ∆, but we will keep
the notation ∆1 in order not to confuse it with the standard Laplacian (2.7). The starting point of
the proof of the optimal discrete Hardy inequality is the ground state transform, which is the content
of the following lemma, see also [10] for a proper definition of the (Agmon) ground state.

Lemma 2.2. Let w ∈ C(N) be a weight and ρ ∈ C(N) a sequence satisfying (∆1 − ρ)w = 0 on N.
Then

T−1
w (∆1 − ρ)Tw = ∆w

on C0(N).

Proof. The statement follows from a direct computation. In view of definitions (2.3) and (2.4), for any
u ∈ C0(N) and n ∈ N, we have

(∆1Twu)n =
∑
m∼n

(wnun − wmum) = un
∑
m∼n

(wn − wm) +
∑
m∼n

wm(un − um)

= un(∆1 − ρ)wn + unρnwn +
∑
m∼n

wm(un − um) = 0 + ρn(Twu)n + (Tw∆wu)n,

hence
∆1Tw = ρTw + Tw∆w.

Applying T−1
w from the left to the above equality yields the result.

Moreover, for a weight w ∈ C(N) and a sequence u ∈ C0(N), we define the quadratic form hw
associated with w by the formula

hw(u) :=
1

2

∞∑
n=1

∑
m∼n

wnwm(un − um)2.

The following lemma connects the scalar product and the quadratic form by means of the Green
formula.

Lemma 2.3. Let w ∈ C(N) be a weight. Then for any u ∈ C0(N), it holds that

⟨∆wu, u⟩w2 = hw(u) ≥ 0.
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Proof. The proof follows trivially from the respective definitions since

⟨∆wu, u⟩w2 =
∞∑
n=1

w2
n

(
1

w2
n

∑
m∼n

wnwm(un − um)

)
un

=
∞∑
n=1

∑
m∼n

wnwm(un − um)2 +
∞∑
n=1

∑
m∼n

wnwm(un − um)um = 2hw(u)− ⟨∆wu, u⟩w2 .

Proposition 2.4. Let w, ρ ∈ C(N) be weights, such that (∆1 − ρ)w = 0 on N. Then h1(u) ≥ ∥u∥2ρ for
all u ∈ C0(N).

Proof. Indeed, using Lemmas 2.1, 2.2, and 2.3, we infer that for all u ∈ C0(N) it is true that

⟨(∆1 − ρ)u, u⟩ =
〈
T−1
w (∆1 − ρ)TwT

−1
w u, T−1

w u
〉
w2 = ⟨∆w(u/w), u/w⟩w2 = hw(u/w) ≥ 0,

hence
⟨(∆1 − ρ)u, u⟩ = ⟨∆1u, u⟩ − ⟨ρu, u⟩ = h1(u)− ∥u∥2ρ ≥ 0,

by Lemma 2.3 once more.

With a suitable choice of the weights w and ρ, we may prove the optimal discrete Hardy inequality
(2.1). Using the definition (2.2), we set

ρn := ρKPP
n =

∆1
√
n√
n

and wn :=
√
n (2.5)

for all n ∈ N. Evidently, with this choice, we have

(∆1 − ρ)wn = ∆1

√
n− ∆1

√
n√
n

√
n = 0

for all n ∈ N, thus Proposition 2.4 implies that

h1(u) =
1

2

∞∑
n=1

∑
m∼n

(un − um)2 =
∞∑
n=1

(un − un−1)
2 ≥ ∥u∥2ρ =

∞∑
n=1

ρKPP
n u2n

for all u ∈ C0(N) with u0 = 0. Moreover, the weight can be expanded as

ρKPP
n =

∞∑
k=1

(
4k

2k

)
1

(4k − 1)24k−1

1

n2k
>

1

4n2
(2.6)

for all n ∈ N using the generalized binomial theorem.

2.2 Discrete Hardy equality

Looking more carefully at the proof of Proposition 2.4, one may notice that not only we can assert
the inequality, but we can even deduce the remainder in the optimal discrete Hardy inequality (2.1).
Quick observation provides the equality

h1(u)− ∥u∥2ρ = hw(u/w).

With the explicit choice (2.5), we find that

∞∑
n=1

(un − un−1)
2 −

∞∑
n=1

ρKPP
n u2n =

∞∑
n=2

(
4

√
n− 1

n
un − 4

√
n

n− 1
un−1

)2
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for all real sequences u ∈ C0(N).
It turns out, that having the additional information about the remainder is crucial for proving

criticality, resp. optimality, of a given Hardy weight. In the note [17] from Krejčiřík–Štampach, the
authors found an elementary proof of the above equality for complex sequences. In addition, they
proved the criticality of the Hardy weight ρKPP. Because analogous ideas will be used in the proof of
Theorem 3.10 in Chapter 3, we will restate the theorem here, together with its proof for illustrative
purposes.

To this end, it is beneficial to introduce our notation of discrete difference operators. From now
on, we use the following definition of the discrete Laplacian,

(∆u)n :=

{
un−1 − 2un + un+1 if n ≥ 2,

−2u1 + u2 if n = 1,
(2.7)

acting on the space of complex sequences u ∈ C(N) indexed by N. We will also utilize the discrete
gradient and divergence defined as

(∇u)n :=

{
un − un−1 if n ≥ 2,

u1 if n = 1,
and (divu)n := un+1 − un for n ∈ N. (2.8)

Notice that on the Hilbert space ℓ2(N), we have ∇∗ = −div, thus ∆ = div ◦ ∇ and −∆ = ∇∗ ◦ ∇ (we
omit ◦ when composing difference operators to simplify the notation below).

Theorem 2.5. For any u ∈ C0(N), it holds that

∞∑
n=1

|∇un|2 =
∞∑
n=1

ρKPP
n |un|2 +

∞∑
n=2

∣∣∣∣∣ 4

√
n− 1

n
un − 4

√
n

n− 1
un−1

∣∣∣∣∣
2

, (2.9)

where ρKPP is defined by (2.2). Moreover the Hardy weight ρKPP is critical.

Proof. a) Set gn =
√
n and suppose u ∈ C0(N). Then for the summands on the right-hand side of

(2.9) for any n ≥ 2, we have∣∣∣∣√gn−1

gn
un −

√
gn
gn−1

un−1

∣∣∣∣2 = gn−1

gn
|un|2 +

gn
gn−1

|un−1|2 − 2Re(unun−1)

= |∇un|2 −
∇gn
gn

|un|2 +
∇gn
gn−1

|un−1|2 .

Summing over n from 2 to ∞, we obtain

∞∑
n=2

∣∣∣∣√gn−1

gn
un −

√
gn
gn−1

un−1

∣∣∣∣2 = ∞∑
n=2

|∇un|2 −
∞∑
n=2

∇gn
gn

|un|2 +
∞∑
n=1

∇gn+1

gn
|un|2

=
∞∑
n=2

|∇un|2 +
∞∑
n=1

div∇gn
gn

|un|2 +
∇g1
g1

|u1|2 .

It follows from definitions (2.8), (2.7), and (2.2), that

∇g1
g1

|u1|2 = |∇u1|2 and
div∇gn

gn
=

∆
√
n√
n

= −ρKPP
n

for all n ∈ N, hence the above equality coincides with the identity (2.9).
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b) Suppose that the sequence ρ, such that ρn ≥ ρKPP
n for all n ∈ N, satisfies the inequality (2.1).

Using identity (2.9) together with the Hardy inequality for ρ, we find that

0 ≤
∞∑
n=1

(ρn − ρKPP
n ) |un|2 ≤

∞∑
n=2

∣∣∣∣∣ 4

√
n− 1

n
un − 4

√
n

n− 1
un−1

∣∣∣∣∣
2

(2.10)

for all u ∈ C0(N). Notice that if we substitute un =
√
n, the right-hand side of the above inequality

vanishes. However,
√
n /∈ C0(N), hence we must find a suitable regularization. For N ≥ 2, set

uNn := ξNn
√
n, where

ξNn :=


1 if n ≤ N,
2 lnN−lnn

lnN if N < n ≤ N2,

0 if n > N2.

Notice that ξN → 1 point-wise as N → ∞ and ξNn ≤ ξN+1
n for all n ∈ N and N ≥ 2. Moreover, we

have

∞∑
n=2

∣∣∣∣∣ 4

√
n− 1

n
uNn − 4

√
n

n− 1
uNn−1

∣∣∣∣∣
2

=
∞∑
n=2

√
n(n− 1)

∣∣ξNn − ξNn−1

∣∣2
=

1

ln2N

N2∑
n=N+1

√
n(n− 1) ln2

(
n

n− 1

)

≤ 1

ln2N

N2∑
n=N+1

√
n(n− 1)

(n− 1)2
≤ 2

ln2N

∫ N2

N

1

x− 1
dx ≤ 4

lnN
.

Since the last expression tends to 0 as N → ∞, we deduce from the Monotone Convergence Theorem
and (2.10) with uN instead of u, that

∞∑
n=1

n(ρn − ρKPP
n ) = 0.

Bearing in mind that ρn ≥ ρKPP
n for all n ∈ N, we conclude that ρn = ρKPP

n for all n ∈ N.

2.3 Factorization of the discrete Laplacian

The proof of Theorem 2.5 relied heavily on the prior knowledge of the remainder term on the right-hand
side of (2.9), hence this method might not be viable for deducing more general Hardy-like equalities
or inequalities, i.e. the Rellich and Birman inequalities, see Chapter 3.

Bearing definitions (2.7) and (2.8) in mind, we observe that −∆ = ∇∗ ◦ ∇ is a self-adjoint non-
negative operator, which is determined by its quadratic form ⟨·,−∆·⟩. Therefore, the Hardy inequalities
(1.11) and (1.12) can be interpreted in the sense of quadratic forms in ℓ2(N) or L2(0,∞) respectively
as lower bounds

−∆ ≥ ρ (2.11)

for the discrete and the continuous Dirichlet Laplacian on the half-line, where ρ stands for the operator
of multiplication by either the discrete or the continuous Hardy weight.

In [15], B. Gerhat, D. Krejčiřík, and F. Štampach introduced the idea of factorizing the matrix

−∆− ρ = R∗R. (2.12)

30



Since −∆−ρ is a tridiagonal matrix, it is reasonable to assume that R is a bidiagonal matrix operator
of the form

2− ρ1 −1 0 · · ·
−1 2− ρ2 −1 · · ·
0 −1 2− ρ3 · · ·
...

...
...

. . .

 =


a1 0 0 · · ·

−1/a1 a2 0 · · ·
0 −1/a2 a3 · · ·
...

...
...

. . .



a1 −1/a1 0 · · ·
0 a2 −1/a2 · · ·
0 0 a3 · · ·
...

...
...

. . .

 ,

i.e. Run = anun − un+1/an for all n ∈ N, hence (2.12) takes the form

∞∑
n=1

|∇un|2 =
∞∑
n=1

ρn |un|2 +
∞∑
n=1

∣∣∣∣anun − 1

an
un+1

∣∣∣∣2 ,
for all u ∈ C0(N). Expanding the above equality with the weight ρKPP defined by (2.2), we arrive at
the set of equations

a21 =
√
2 and a2n +

1

a2n−1

=

√
n+ 1

n
+

√
n− 1

n
for all n ≥ 2,

which has a unique explicit positive solution

an =
4

√
n+ 1

n
=⇒ Run =

4

√
n+ 1

n
un − 4

√
n

n+ 1
un+1

for all n ∈ N. A shift of the index n in the remainder yields identity (2.9) once again.
In addition, the authors of [15] formulated and proved the optimality of the weight ρKPP, see

Definition 3.2. The methods of this proof are analogous to the ones used in Chapter 3, hence the proof
is omitted here.
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Chapter 3

Optimal discrete Hardy inequalities of
higher order

Lower bounds, analogous to (2.11), were found for higher integer powers of the continuous Dirichlet
Laplacian, which we shall call the continuous Hardy inequalities of higher order. In 1954, F. Rellich
discovered (see [2]) the Hardy inequality of order two (also called the Rellich inequality) which reads∫ ∞

0

∣∣φ′′(x)
∣∣2 dx ≥ 9

16

∫ ∞

0

|φ(x)|2

x4
dx,

where φ is from the Sobolev space H2(0,∞) with φ(0) = φ′(0) = 0. Later, in 1961, Birman generalized
the Hardy and Rellich inequalities in [3], deriving the Hardy inequality of an arbitrary order ℓ ∈ N
(also called the Birman inequality)∫ ∞

0

∣∣∣φ(ℓ)(x)
∣∣∣2 dx ≥ ((2ℓ)!)2

16ℓ(ℓ!)2

∫ ∞

0

|φ(x)|2

x2ℓ
dx, (3.1)

which holds true for any φ ∈ Hℓ(0,∞) with φ(0) = · · · = φ(ℓ−1)(0) = 0. Moreover, the constant on the
right-hand side of (3.1) is known to be the best possible. Thereby arose a natural question whether
a discrete analogue of this statement also holds true and whether it admits improvement similarly to
the classical Hardy inequality, see Chapter 2. The classical discrete Hardy inequality of order ℓ reads

∞∑
n=⌈ℓ/2⌉

∣∣∣(−∆)ℓ/2un

∣∣∣2 ≥ ((2ℓ)!)2

16ℓ(ℓ!)2

∞∑
n=ℓ

|un|2

n2ℓ
(3.2)

for any u ∈ ℓ2(N) satisfying u1 = · · · = uℓ−1 = 0, where ⌈x⌉ denotes the lowest integer greater or equal
to x ∈ R and the half-integer powers of discrete Laplacian (2.7) are defined as

(−∆)ℓ/2 :=

{
(−∆)m if ℓ = 2m ∈ 2N,
∇ ◦ (−∆)m if ℓ = 2m+ 1 ∈ 2N0 + 1.

(3.3)

The first steps toward proving (3.2) were made in [15], where the authors studied the case of
ℓ = 2, i.e. the discrete Rellich inequality. Not only did they prove the inequality, but via a matrix
factorization method, similar to the one presented in Section 2.3, they were also able to show that the
inequality can be improved to

∞∑
n=2

|(−∆)un|2 ≥
∞∑
n=2

ρGKS
n |un|2
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for all u ∈ ℓ2(N) with u1 = 0, where

ρGKS
n :=

(−∆)2n3/2

n3/2
= 6− 4

(
1− 1

n

)3/2

− 4

(
1 +

1

n

)3/2

+

(
1− 2

n

)3/2

+

(
1 +

2

n

)3/2

>
9

16n4
(3.4)

for all n ≥ 2. However, the optimality of ρGKS was not asserted. The authors of [15] also conjectured
that the discrete Hardy inequalities of higher order (3.2) can be improved to

∞∑
n=⌈ℓ/2⌉

∣∣∣(−∆)ℓ/2un

∣∣∣2 ≥ ∞∑
n=ℓ

(−∆)ℓnℓ−1/2

nℓ−1/2
|un|2 (3.5)

for all ℓ ∈ N. Furthermore, the authors demonstrated that the weights in (3.5) improve upon the
classical Birman weights on the right-hand side of (3.2).

Later, in [13] X. Huang and D. Ye proved the inequality (3.2) using a weighted analogue of the
identity (2.9) and demonstrated that the assumption u1 = · · · = uℓ−1 = 0 is fundamentally necessary
for the inequality (3.2) to hold, answering another question from [15], see also [18] in this regard.
Moreover, they found yet another discrete Rellich weight

ρHY
n =

9

16n4
+

15

16n5
+

213

128n6
+O

(
1

n7

)
, n→ ∞, (3.6)

which is asymptotically bigger than the previous best-known weight

ρGKS
n =

9

16n4
+

105

128n6
+O

(
1

n7

)
, n→ ∞,

but commented that it can still be improved. A question was raised whether the coefficient 15/16 by
the second term on the right-hand side of (3.6) is sharp.

The main result of this work is the discovery of optimal weights for the discrete Hardy inequality
of order ℓ ∈ N, establishing an improved optimal version of (3.2). Moreover, we will answer all the
questions mentioned above by analyzing properties of concrete discrete Hardy weights of higher order
in greater detail.

The chapter is organized as follows. In Section 3.1, we formulate our main results by means of
five theorems, all of which shall be proven in Section 3.2. We complement our main results with
several remarks on more general families of discrete Hardy weights of higher order addressing their
non-uniqueness and optimality in Section 3.3.

3.1 Main Results

In this section, we explain how to construct optimal Hardy weights of any order ℓ ∈ N. Theorems 3.6,
3.8, and 3.10 provide sufficient conditions on a parameter sequence g to give rise to an optimal discrete
Hardy weight of any order. With an explicit choice of g = g(ℓ), depending on the order ℓ ∈ N of the
given inequality, we obtain a concrete Hardy weight of order ℓ in Theorem 3.11. Several properties of
these weights will be described in Theorem 3.14.

It turns out to be advantageous, to consider complex sequences indexed by Z, with zero entries
up to a certain index, rather than by N. For this reason, we introduce the following subspaces of the
space of complex sequences C(Z). Namely, we denote

Hℓ := {u ∈ C(Z) | un = 0 for all n < ℓ}

and
Hℓ := Hℓ ∩ ℓ2(Z)
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endowed with the Euclidean inner product. Accordingly to our previous notation,

Hℓ
0 := Hℓ ∩ C0(Z)

denotes finitely supported sequences in Hℓ. With a slight abuse of notation, we further define the
discrete gradient and divergence acting on complex sequences in C(Z) as

(∇u)n := un − un−1 and (divu)n := un+1 − un (3.7)

for all n ∈ Z. Naturally, we define the discrete Laplacian acting on C(Z) as ∆ := div ◦ ∇, i.e.

(∆u)n := un−1 − 2un + un+1 (3.8)

for all n ∈ N. The half-integer powers of the Laplacian are defined similarly as in (3.3). The main
reason for this notation is that ∇, div, and ∆ commute on C(Z).
Remark 3.1. It is important to point out the differences between positive powers of the discrete Lapla-
cian L := −∆|ℓ2(N) on the half-line, which coincides with the definition (2.7) and which we studied
in Sections 2.2 and 2.3, and between positive powers of the discrete Laplacian −∆ acting on C(Z)
defined by (3.8). In a recent study [18], the authors analyzed positive powers Lα for α > 0, defined by
the standard functional calculus using spectral resolution of L. While L coincides with −∆|H1 after
an obvious identification of spaces ℓ2(N) ≡ H1, their integer powers differ by a finite rank operator.
This can be readily seen from their matrix representations. For example, for ℓ = 3, operators (−∆)3

(restricted to H1) and L3 are determined by the semi-infinite matrices

(−∆)3 =



20 −15 6 −1
−15 20 −15 6 −1
6 −15 20 −15 6 −1
−1 6 −15 20 −15 6 −1

−1 6 −15 20 −15 6 −1
. . . . . . . . . . . . . . . . . . . . .


and

L3 =



14 −14 6 −1
−14 20 −15 6 −1
6 −15 20 −15 6 −1
−1 6 −15 20 −15 6 −1

−1 6 −15 20 −15 6 −1
. . . . . . . . . . . . . . . . . . . . .


.

Notice that the matrix of L3 is not Toeplitz and differs from the matrix of (−∆)3 by the upper-left
2 × 2 matrix. In general, matrices of Lℓ and (−∆)ℓ differ by an upper-left (ℓ − 1) × (ℓ − 1) matrix,
hence Lℓ|Hℓ(N) = (−∆)ℓ|Hℓ , where we denoted and naturally identified the space

Hℓ(N) := {u ∈ ℓ2(N) | u1 = · · · = uℓ−1 = 0} ≡ Hℓ.

In fact, the matrix of (−∆)ℓ is a sub-matrix of Lℓ after removing the first ℓ − 1 rows and columns.
Both (−∆)ℓ and Lℓ determine non-negative operators on ℓ2(N). However, it is proven in [18] that
Lα is critical if and only if α ≥ 3/2 meaning that, if Lα ≥ ρ ≥ 0 with α ≥ 3/2, then ρ must be
trivial. Hence non-trivial Hardy-like inequalities exist for Tα only if α ∈ (0, 3/2), and some non-trivial
weights (although not optimal) were also found in [18]. Clearly, this contrasts with the operator (−∆)ℓ

considered here since (−∆)ℓ is sub-critical on Hℓ for every ℓ ∈ N.
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Let us recall the definition of optimality adopted from [14], [10], and also [15], formulated for higher
integer powers of the Laplacian acting on the space Hℓ.

Definition 3.2. Let ℓ ∈ N. A positive sequence {ρn}∞n=ℓ is called a discrete Hardy weight of order ℓ
if and only if the discrete Hardy inequality of order ℓ

∞∑
n=⌈ℓ/2⌉

∣∣∣(−∆)ℓ/2un

∣∣∣2 ≥ ∞∑
n=ℓ

ρn |un|2 (3.9)

holds for any u ∈ Hℓ
0. In addition, the weight ρ is said to be optimal if it exhibits the following three

properties:

(i) Criticality : The weight ρ is called critical if for any Hardy weight ρ̃ of order ℓ such that ρ̃n ≥ ρn
for all n ≥ ℓ it follows that ρ̃ = ρ.

(ii) Non-attainability : The weight ρ is called non-attainable if whenever the equality in (3.9) is
attained for u ∈ Hℓ such that the right-hand side is finite, i.e. √

ρu ∈ Hℓ, necessarily u ≡ 0.

(iii) Optimality near infinity : The weight ρ is called optimal near infinity if for any M ≥ ℓ and ε > 0
there exists u ∈ HM

0 such that

∞∑
n=⌈ℓ/2⌉

∣∣∣(−∆)ℓ/2un

∣∣∣2 < (1 + ε)
∞∑
n=ℓ

ρn |un|2 . (3.10)

Remark 3.3. We complement the definition with several explanatory remarks.

(i) Criticality means that the Hardy weight ρ of order ℓ cannot be further improved by a point-wise
greater weight. However, in [16] it was shown that there exist infinitely many critical Hardy
weights of order 1. Analogous property will be observed in Section 3.3 for Hardy weights of an
arbitrary order ℓ.

(ii) Non-attainability of a Hardy weight ρ of order ℓ means that in the weighted ℓ2-space of complex
sequences such that √

ρu ∈ Hℓ, the inequality (3.9) is strict unless u ≡ 0.

(iii) Optimality of ρ near infinity means that the constant 1 on the right-hand side of (3.9) cannot be
further improved, even if the space Hℓ

0 is replaced by HM
0 for an arbitrary M ≥ ℓ. Equivalently,

it can be formulated as

inf
u∈HM

0 (N)\{0}

∞∑
n=⌈ℓ/2⌉

∣∣(−∆)ℓ/2un
∣∣2

∞∑
n=ℓ

ρn |un|2
= 1. (3.11)

Remark 3.4. The inequality (3.9) can be straightforwardly extended to all u ∈ Hℓ (or even to all
u ∈ Hℓ) and therefore to all u ∈ Hℓ(N) with (−∆)ℓ/2 also acting on the respective spaces. Since

∞∑
n=⌈ℓ/2⌉

∣∣∣(−∆)ℓ/2un

∣∣∣2 = ∞∑
n=ℓ

un(−∆)ℓun =
〈
u, (−∆)ℓu

〉
,

the inequality (3.9) can be equivalently written as a lower bound for the integer power of the discrete
Laplacian

(−∆)ℓ ≥ ρ

on the space Hℓ, where we again identify ρ with the corresponding multiplication operator.
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In [16], a generalization of identity (2.9) was derived for generating Hardy weights of order 1. Our
starting point shall be a generalized weighted analogue of this identity, which first appeared in [13]. For
the reader’s convenience, we will restate the equality here allowing complex sequences together with
its proof, which is analogous to the proof of Theorem 2.5 but will be listed in Section 3.2.1 nonetheless.

Theorem 3.5. Let V ∈ C(Z) and g ∈ H1 such that gn > 0 for all n ≥ 1. Then for any u ∈ H1
0, we

have the identity

∞∑
n=1

Vn |∇un|2 +
∞∑
n=1

div(V∇g)n
gn

|un|2 =
∞∑
n=1

Vn+1

∣∣∣∣√ gn
gn+1

un+1 −
√

gn+1

gn
un

∣∣∣∣2 .
Via iteration of this identity, we will obtain our first main result, which is an analogous identity

for the quadratic form of (−∆)ℓ with ℓ ∈ N. The key idea for deriving such identities lies in a
suitable choice of the parametric sequences g in the individual steps of the iterative process, which
generate convenient weights V in terms of g. For this reason, it is necessary to impose some positivity
assumptions on the parameter sequence g. In fact, in Theorems 3.6, 3.8, and 3.10 the assumptions on
g will be gradually strengthened, because of which they will be numbered separately.

Theorem 3.6. Let ℓ ∈ N. Suppose that

g ∈ Hℓ such that divkgn > 0 for all n ≥ ℓ− k and k ∈ {0, . . . , ℓ− 1}. (A1)

Then for any u ∈ Hℓ
0, we have the identity

∞∑
n=⌈ℓ/2⌉

∣∣∣(−∆)ℓ/2un

∣∣∣2 = ∞∑
n=ℓ

(−∆)ℓgn
gn

|un|2 +
ℓ−1∑
k=0

R(ℓ)
k (g;u), (3.12)

where

R(ℓ)
k (g;u) :=

∞∑
n=ℓ−k

(−∆)ℓ−1−kdivk+1gn

divk+1gn

∣∣∣∣∣∣
√

divkgn

divkgn+1

divkun+1 −

√
divkgn+1

divkgn
divkun

∣∣∣∣∣∣
2

. (3.13)

(For k = ℓ− 1, the coefficient in front of the absolute value in (3.13) is to be understood as 1.)

Remark 3.7. In fact, Theorem 3.6 can be seen as a corollary of a weighted analogue of the identity
(3.12), which may be of independent interest (we refer the reader to [13] and [19], where the authors
studied weighted Hardy and Rellich inequalities). Namely, if ℓ ∈ N and g satisfies the assumptions
(A1), then for any weight V ∈ C(Z), we have the identity

∞∑
n=⌈ℓ/2⌉

Vn−⌈ℓ/2⌉+1

∣∣∣(−∆)ℓ/2un

∣∣∣2 = (−1)ℓ
∞∑
n=ℓ

div∇ℓ−1(V (divℓ−1∇g))n
gn

|un|2 +
ℓ−1∑
k=0

R(ℓ)
k (V ; g;u), (3.14)

where R(ℓ)
k (V ; g;u) is defined as

(−1)ℓ+k+1
∞∑

n=ℓ−k

div∇ℓ−2−k(V (divℓ−2−k∇divk+1g))

divk+1gn

∣∣∣∣∣∣
√

divkgn

divkgn+1

divkun+1 −

√
divkgn+1

divkgn
divkun

∣∣∣∣∣∣
2

;

(3.15)

for k = ℓ − 1, the coefficient in front of the absolute value in (3.15) is to be understood as Vn+1.
Notice that for V ≡ 1 this statement becomes Theorem 3.6. The differences between the first term
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on the right-hand side of (3.12) and (3.14) and the coefficients in front of the absolute value in (3.13)
and (3.15) is due to the fact, that the multiplication operator V does not commute with ∇ nor div.
Similarly, the reason for shifting the indices of V on the left-hand side of (3.14) emerged from the
non-commutativity of V and the shift operator (3.30), in order to obtain more concise formulas. The
proof of this generalization is analogous to the proof of Theorem 3.6 and is therefore omitted.

By imposing additional assumptions on the parameter sequence g, we may ensure non-negativity
of the remainders on the right-hand side of (3.12) obtaining an abstract discrete Hardy inequality of
order ℓ.

Theorem 3.8. Let ℓ ∈ N. Suppose (A1) and, in addition,

(−∆)ℓ−kdivkgn ≥ 0 for all n ≥ ℓ+ 1− k and k ∈ {1, . . . , ℓ− 1}. (A2)

Then for all u ∈ Hℓ
0, we have the inequality

∞∑
n=⌈ℓ/2⌉

∣∣∣(−∆)ℓ/2un

∣∣∣2 ≥ ∞∑
n=ℓ

ρn(g) |un|2 , (3.16)

where ρ(g) := (−∆)ℓg/g. If moreover,

(−∆)ℓgn > 0 for all n ≥ ℓ, (A3)

then ρ(g) > 0, i.e. ρ(g) is a discrete Hardy weight of order ℓ.

Remark 3.9. If the parameter sequence g satisfies the assumptions (A1) and (A2), the remainder terms
on the right-hand side of (3.12) can be interpreted as a norm

R(ℓ)
k (g;u) =

∥∥∥R(ℓ)
k (g)u

∥∥∥2 ,
where

R
(ℓ)
k (g)un :=

√
(−∆)ℓ−1−kdivk+1gn

divk+1gn

√ divkgn

divkgn+1

divkun+1 −

√
divkgn+1

divkgn
divkun

 (3.17)

for all k ∈ {0, . . . , ℓ − 1} and n ≥ ℓ − k (for k = ℓ − 1 the coefficient in front of the parentheses is to
be understood as 1). Since (−∆)ℓ is a bounded operator, the identity (3.12) can be extended to all
u ∈ Hℓ (in fact, it can be extended even further, see Proposition 3.19). Recalling Remark 3.4, equality
(3.12) yields an algebraic identity on the level of semi-infinite matrices. Namely, restricting indices of
the respective matrices to ℓ, ℓ+ 1, . . . , we obtain the identity

(−∆)ℓ − ρ(g) =

ℓ−1∑
k=0

(
R̃

(ℓ)
k (g)

)∗
R̃

(ℓ)
k (g) (3.18)

on the space Hℓ, where ρ(g) = (−∆)ℓg/g is identified with the corresponding multiplication operator
and R̃(ℓ)

k (g) := S−kR
(ℓ)
k (g) and S−k acts as the backward shift of the index by k, see (3.30) below. The

shift S−k is present as a consequence of the range of the summation index n in (3.13), which is starting
from ℓ− k.

For ℓ = 1, such factorization has been used to provide an alternative proof of the optimal discrete
Hardy inequality in [15]. For ℓ = 2, the authors of [15] factorized the matrix (−∆)2 − ρ(g), with
gn = n3/2, into a single remainder matrix of a form R∗R, where R is a tridiagonal matrix. As the
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remainder were sought in terms of a single matrix rather than two matrices, its entries could not be
found explicitly. The idea was to decompose the pentadiagonal matrix (−∆)2 − ρ(g) into a product
of a tridiagonal matrix and its adjoint reducing the order of the corresponding difference operators.
The idea behind the factorization (3.18) is similar, however, its main novelty is that the order is
reduced successively giving rise to more remainder terms on the right expressed explicitly in terms of
the parameter sequence g. In addition, the diagonal term ρ(g), i.e. the actual Hardy weight of order
ℓ, is also identified in terms of g. It turns out, that such a concrete description is crucial for the proof
of optimality of the weight ρ(g) in Theorem 3.10.

The matrix identity (3.18) can be viewed as a factorization of particular banded Toeplitz matrices.
Indeed, the non-vanishing matrix elements of (−∆)ℓ are

(−∆)ℓm,n =
〈
δm, (−∆)ℓδn

〉
= (−1)n−m

(
2ℓ

ℓ+ n−m

)
for m,n ≥ ℓ with |n−m| ≤ ℓ, hence the matrix representation of (−∆)ℓ with respect to the standard
basis of ℓ2(Z), here denoted as {δn | n ≥ ℓ}, is a semi-infinite Hermitian banded Toeplitz matrix with
diagonals given by the binomial coefficients. On the other hand, by inspection of matrix entries of
remainder matrices (3.17), we observe that R̃(ℓ)

k (g) are semi-infinite (k+2)-diagonal lower Hessenberg
matrices, i.e. the (m,n)-th entry of R̃(ℓ)

k (g) vanishes if n−m > 1 or m− n > k.

Under additional requirements on the asymptotic behaviour of gn, as n→ ∞, and strict positivity
in assumption (A2) for k = 1, we can assert optimality of the discrete Hardy weight ρ(g).

Theorem 3.10. Let ℓ ∈ N. Suppose (A1), (A2), (A3), and, in addition, suppose that g admits the
asymptotic expansion

gn =

2ℓ∑
j=0

αjn
ℓ−1/2−j +O

(
n−ℓ−3/2

)
for some αj ∈ R with α0 ̸= 0, (A4)

as n → ∞. Then the discrete Hardy weight ρ(g) = (−∆)ℓg/g of order ℓ is critical and optimal near
infinity. If moreover,

ℓ = 1 or (−∆)ℓ−1divgn > 0 for all n ≥ ℓ ≥ 2, (A5)

then ρ(g) is also non-attainable and therefore optimal.

It remains to find a concrete parameter sequence g, which satisfies all the assumptions of the above
theorems. To this end, for given ℓ ∈ N, we define

g(ℓ)n :=
√
n

ℓ−1∏
j=1

(n− j) (3.19)

for all n ∈ N0 and gn := 0 for all n < 0. Additional (but more complicated) examples will be discussed
in Section 3.3.

Theorem 3.11. Let ℓ ∈ N. The sequence ρ(ℓ), given by

ρ(ℓ)n :=
(−∆)ℓg

(ℓ)
n

g
(ℓ)
n

(3.20)

for all n ≥ ℓ, where g(ℓ) is given by (3.19), is an optimal discrete Hardy weight of order ℓ.
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Our final theorem summarizes properties of the optimal weight ρ(ℓ) in greater detail. A remarkable
property is that ρ(ℓ)n has a convergent series representation in negative powers of n with all coefficients
being non-negative (in fact, for ℓ ≥ 2 the coefficients are positive) for all n ≥ ℓ. Consequently, using
more terms of the truncated series representation always produces a tighter inequality.

In order to formulate this theorem, we introduce several combinatorial numbers. First, we will
make use of the binomial coefficient and the Pochhammer symbol defined by standard formulas(

ν

n

)
:=

ν(ν − 1) . . . (ν − n+ 1)

n!
and (ν)n := ν(ν + 1) . . . (ν + n− 1)

for all ν ∈ R and n ∈ N0. Next, we denote the Stirling numbers of the first kind as

s(n, k) := (−1)n+k
∑

1≤i1<···<in−k<n

i1i2 . . . in−k (3.21)

and the Stirling numbers of the second kind as

S(n, k) :=
∑

j1,...,jk≥0
j1+···+jk=n−k

1j12j2 . . . kjk (3.22)

for all n ∈ N and k ∈ {0, . . . , n− 1}, see [20, § 26.8]. By convention, we also set s(n, n) = S(n, n) := 1
for all n ∈ N0 and s(n, k) := 0 whenever k < 0. Moreover, we employ the numbers

X(ℓ)
m :=

ℓ∑
j=−ℓ

(
2ℓ

ℓ+ j

)
(−1)jjm (3.23)

for all m, ℓ ∈ N with X(ℓ)
0 := 0 for all ℓ ∈ N.

Remark 3.12. For m ∈ N odd and ℓ ∈ N, we have

X(ℓ)
m =

ℓ∑
j=−ℓ

(
2ℓ

ℓ+ j

)
(−1)jjm =

ℓ∑
j=−ℓ

(
2ℓ

ℓ− j

)
(−1)−j(−j)m = −

ℓ∑
j=−ℓ

(
2ℓ

ℓ+ j

)
(−1)jjm = −X(ℓ)

m ,

hence X(ℓ)
m = 0. Furthermore, in [15] the authors found that

X(ℓ)
m = 0 for all m < 2ℓ (3.24)

and that for the remaining values, we have

X
(ℓ)
2ℓ = (−1)ℓ(2ℓ)! and X

(ℓ)
2ℓ+2m = (−1)ℓ(2ℓ)!

∑
1≤k1≤···≤km≤ℓ

(k1k2 . . . km)2 (3.25)

for all m ∈ N. The expressions in (3.25) reveal the nontrivial fact that (−1)ℓX
(ℓ)
2ℓ+2m is a positive

integer for all m ∈ N0.

Lastly, we define the numbers

r(ℓ)m :=
m∑

j=2ℓ

(
ℓ+ j −m− 1/2

j

)
s(ℓ, ℓ+ j −m)X

(ℓ)
j (3.26)

for all ℓ ∈ N and m ≥ 2ℓ.
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Remark 3.13. Since s(ℓ, j) = 0 whenever j ≤ 0 and X
(ℓ)
j = 0 whenever j is odd, we may restrict the

range of the summation index j in formula (3.26) even further. It turns out, that after this restriction,
each summand is positive and the formula reads

r(ℓ)m =

m∑
j=max(2ℓ,m−ℓ+1)

j≡0 mod 2

(
ℓ+ j −m− 1/2

j

)
s(ℓ, ℓ+ j −m)X

(ℓ)
j .

Consequently, it holds true that for all ℓ ≥ 2 and m ≥ 2ℓ, we have r(ℓ)m > 0 and if ℓ = 1, then r(1)2m+1 = 0

and r
(1)
2m > 0 for all m ≥ 1, which will be shown in the proof of claim (ii) of Theorem 3.14 in Section

3.2.6.

Theorem 3.14. Let ℓ ∈ N and ρ(ℓ) defined by the formulas (3.20) and (3.19), then the following
properties hold true.

(i) The weight sequence ρ(ℓ) admits the convergent series expansion

ρ(ℓ)n =
∞∑

k=2ℓ

A
(ℓ)
k

nk
(3.27)

for all n ≥ ℓ, where the coefficients are defined as

A
(ℓ)
k :=

k∑
m=2ℓ

S(k −m+ ℓ− 1, ℓ− 1)r(ℓ)m . (3.28)

(ii) For all ℓ ≥ 2 and k ≥ 2ℓ, we have A(ℓ)
k > 0.

For ℓ = 1 and k ≥ 1, we have A(1)
2k+1 = 0 and A(1)

2k > 0.

(iii) For all n ≥ ℓ ≥ 2, it is true that

ρ(ℓ)n >
(−∆)ℓnℓ−1/2

nℓ−1/2
>

(
1

2

)2

ℓ

1

n2ℓ
. (3.29)

(For ℓ = 1, the first inequality in (3.29) holds as equality.)

Remark 3.15. We complement Theorem 3.14 with several remarks.

(i) For the first two coefficients in the expansion (3.27), we have

A
(ℓ)
2ℓ =

(
1

2

)2

ℓ

and A
(ℓ)
2ℓ+1 =

2ℓ2(ℓ− 1)

2ℓ− 1

(
1

2

)2

ℓ

for all ℓ ∈ N, which can be computed directly from the formulas (3.28) and (3.26), realizing that
X

(ℓ)
2ℓ+1 = 0 and X(ℓ)

2ℓ = (−1)ℓ(2ℓ)!.

(ii) The first inequality in (3.29) shows that the weight ρ(ℓ) improves upon the weights suggested by
Gerhat–Krejčiřík–Štampach, see (3.5), and proves the conjecture in [15]. Noticing that(

1

2

)2

ℓ

=
((2ℓ)!)2

16ℓ (ℓ!)2
,

the second inequality in (3.29) shows that ρ(ℓ) improves upon the classical discrete Hardy weights
(3.2).
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(iii) For ℓ = 1, we rediscovered the optimal Hardy weight (2.2), whose expansion (2.6) is explicitly
known, see [11]. The expansions in the first few terms for ℓ = 2, 3, 4, 5, as n→ ∞, read

ρ(2)n =
9

16n4
+

3

2n5
+

297

128n6
+O

(
1

n7

)
,

ρ(3)n =
225

64n6
+

405

16n7
+

114975

1024n8
+O

(
1

n9

)
,

ρ(4)n =
11025

256n8
+

4725

8n9
+

4879665

1024n10
+O

(
1

n11

)
,

ρ(5)n =
893025

1024n10
+

2480625

128n11
+

4023077625

16384n12
+O

(
1

n13

)
.

As was mentioned earlier, in [13], the authors ask whether the constant 15/16 by the second term
in (3.6) is sharp. The above expansion of ρ(2)n shows that it is not the case.

3.2 Proofs

In the course of the proofs worked out below, we will frequently use (besides the operators ∇, div, and
∆) the forward shift operator S acting on C(Z) defined as

Sun := un+1 (3.30)

for all n ∈ Z. Obviously, for any k ∈ Z it holds that Skun = un+k for all n ∈ Z. Recalling definition
(3.7), we see that div = S− I and ∇ = I− S−1, where I stands for the identity operator. In particular,
we have identities div = S ◦∇ = ∇◦S, that will be used several times below. Note also that subspaces
Hℓ are not preserved under the action of S and hence neither under the action of div (S is a bijection
of Hℓ onto Hℓ−1).

3.2.1 Proof of Theorem 3.5

Suppose g ∈ H1, gn > 0 for all n ≥ 1, and u ∈ H1
0. For any n ≥ 2, we have∣∣∣∣√gn−1

gn
un −

√
gn
gn−1

un−1

∣∣∣∣2 = gn−1

gn
|un|2 +

gn
gn−1

|un−1|2 − 2Re(unun−1)

= |∇un|2 −
∇gn
gn

|un|2 +
∇gn
gn−1

|un−1|2 .

Multiplying both sides by Vn and summing over n from 2 to ∞, we obtain

∞∑
n=2

Vn

∣∣∣∣√gn−1

gn
un −

√
gn
gn−1

un−1

∣∣∣∣2 = ∞∑
n=2

Vn |∇un|2 −
∞∑
n=2

Vn
∇gn
gn

|un|2 +
∞∑
n=1

Vn+1
∇gn+1

gn
|un|2

=
∞∑
n=2

Vn |∇un|2 +
∞∑
n=1

div(V∇g)n
gn

|un|2 + V1
∇g1
g1

|u1|2

By assumptions, u0 = g0 = 0, thus

V1
∇g1
g1

|u1|2 = V1 |∇u1|2 .

A shift of the summation index n by one on the left-hand side now yields the claim of Theorem 3.5.
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3.2.2 Proof of Theorem 3.6

The proof proceeds by a two-step induction in ℓ ∈ N:

a) We verify Theorem 3.6 for ℓ = 1, 2.

b) Assuming Theorem 3.6 to hold for all ℓ ≤ 2m, where m ∈ N, we prove it for ℓ = 2m+ 1.

c) Assuming Theorem 3.6 to hold for all ℓ ≤ 2m+ 1, we prove it also for ℓ = 2m+ 2.

The reason to treat even and odd indices ℓ separately stems from the fact that, when lowering a
half-integer power of the discrete Laplacian, ∇ or div emerge depending on the parity of ℓ because we
have

(−∆)ℓ/2 =

{
∇(−∆)(ℓ−1)/2 if ℓ ∈ 2N0 + 1,

−div(−∆)(ℓ−1)/2 if ℓ ∈ 2N.

Since the resulting differences are subtle, parts b) and c) of the proof are analogical, and therefore
we only briefly indicate the proof of c). Note also that the case ℓ = 2 is shown only for clarity and
illustrative purposes since it could be omitted after interchanging the order of the steps a) and b).

a) For ℓ = 1, Theorem 3.6 coincides with the special case of Theorem 3.5 with V ≡ 1. Next, we
suppose ℓ = 2 and g to satisfy the assumption (A1), i.e. g ∈ H2, gn > 0 for all n ≥ 2, and divgn > 0
for all n ≥ 1. Clearly, divg ∈ H1 hence we may apply Theorem 3.5 with g replaced by divg, u replaced
by divu, and V ≡ 1, from which it follows that

∞∑
n=1

|(−∆)un|2 =
∞∑
n=1

|div∇un|2 =
∞∑
n=1

|∇(divu)n|2 =
∞∑
n=1

(−∆)divgn
divgn

|divun|2 +R(2)
1 (g;u)

for all u ∈ H2
0, where R(2)

1 (g;u) is defined by (3.13). Bearing in mind that divu = ∇Su, we apply
Theorem 3.5 once more, this time with Sg ∈ H1, Su ∈ H1

0, and Vn := (−∆)divgn/divgn to the first
term on the right-hand side, obtaining the identity

∞∑
n=1

|(−∆)un|2 = −
∞∑
n=1

div(V∇Sg)n
Sgn

|Sun|2 +
∞∑
n=1

Vn+1

∣∣∣∣∣
√

Sgn
Sgn+1

Sun+1 −

√
Sgn+1

Sgn
Sun

∣∣∣∣∣
2

+R(2)
1 (g;u)

for all u ∈ H2
0. Taking also into account that

−div(V∇Sg) = div

(
∆divg

divg
divg

)
= S(−∆)2g,

we arrive at the desired result
∞∑
n=1

|(−∆)un|2 =
∞∑
n=2

(−∆)2gn
gn

|un|2 +R(2)
0 (g;u) +R(2)

1 (g;u)

for all u ∈ H2, with R(2)
0 (g;u) given again by the general definition (3.13).

b) Suppose m ∈ N and assume that Theorem 3.6 holds true for all ℓ ≤ 2m. Let us consider
sequences u ∈ H2m+1

0 and g ∈ H2m+1 satisfying the assumption (A1) for ℓ = 2m+ 1. We shall verify
(3.12) for ℓ = 2m+ 1. We have

∞∑
n=⌈ 2m+1

2
⌉

∣∣∣(−∆)(2m+1)/2un

∣∣∣2 = ∞∑
n=m+1

|∇(−∆)mun|2 =
∞∑

n=m+1

|(−∆)m∇un|2 =
∞∑

n=m

|(−∆)mdivun| .
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Since divu ∈ H2m
0 and divg satisfies assumption (A1) for ℓ = 2m, we may apply the induction

hypothesis and obtain
∞∑

n=m

|(−∆)mdivun|2 =
∞∑

n=2m

(−∆)2mdivgn
divgn

|divun|2 +
2m−1∑
k=0

R(2m)
k (divg; divu).

Recalling the general definition of remainders (3.13), we observe that

R(2m)
k (divg; divu) = R(2m+1)

k+1 (g;u) =⇒
2m−1∑
k=0

R(2m)
k (divg; divu) =

2m∑
k=1

R(2m+1)
k (g;u).

Next, we shift the index in the first sum on the right-hand side finding that
∞∑

n=⌈ 2m+1
2

⌉

∣∣∣(−∆)(2m+1)/2un

∣∣∣2 = ∞∑
n=1

S2m−1(−∆)2mdivgn

S2m−1divgn

∣∣∇S2mun
∣∣2 + 2m∑

k=1

R(2m+1)
k (g;u). (3.31)

Furthermore, we apply Theorem 3.5 with S2mu ∈ H1
0, together with S2mg ∈ H1, and the weight

Vn :=
S2m−1(−∆)2mdivgn

S2m−1divgn
,

to the first term on the right-hand side of (3.31) obtaining
∞∑
n=1

S2m−1(−∆)2mdivgn

S2m−1divgn

∣∣∇S2mun
∣∣2 =−

∞∑
n=1

div(V∇S2mg)n

S2mgn

∣∣S2mun∣∣2
+

∞∑
n=1

Vn+1

∣∣∣∣∣∣
√

S2mgn

S2mgn+1
S2mun+1 −

√
S2mgn+1

S2mgn
S2mun

∣∣∣∣∣∣
2

.

Again, bearing in mind that

−div(V∇S2mg) = −div

(
S2m−1(−∆)2mdivg

S2m−1divg
S2m−1divg

)
= −S2m−1div(−∆)2mdivg

= S2m(−∆)2m+1g,

we arrive, after shifting the indices, at the formula
∞∑
n=1

S2m−1(−∆)2mdivgn

S2m−1divgn

∣∣∇S2mun
∣∣2 = ∞∑

n=2m+1

(−∆)2m+1gn
gn

|un|2

+
∞∑

n=2m+1

(−∆)2mdivgn
divgn

∣∣∣∣√ gn
gn+1

un+1 −
√

gn+1

gn
un

∣∣∣∣2 .
By (3.13), the last term coincides with R(2m+1)

0 (g;u). Hence, when combined with (3.31), we obtain
the identity (3.12) for ℓ = 2m+ 1.

c) Lastly, we assume that Theorem 3.6 holds for all ℓ ≤ 2m+ 1 and verify it for ℓ = 2m+ 2. If we
have u ∈ H2m+2

0 and g ∈ H2m+2 satisfying the assumption (A1) for ℓ = 2m+ 2, we can write
∞∑

n=⌈ 2m+2
2

⌉

∣∣∣(−∆)(2m+2)/2un

∣∣∣2 = ∞∑
n=m+1

∣∣(−∆)m+1un
∣∣2 = ∞∑

n=m+1

|∇(−∆m)(divu)n|2

and apply Theorem 3.6 for ℓ = 2m + 1, i.e. the induction hypothesis, with divu ∈ H2m+1
0 and

divg ∈ H2m+1 satisfying the assumption (A1) for ℓ = 2m+ 1. Using the same methods as in b)
we would obtain that the identity (3.12) holds for ℓ = 2m + 2, thus the proof of Theorem 3.6 is
complete.
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3.2.3 Proof of Theorem 3.8

The claim is an immediate consequence of Theorem 3.6. It suffices to notice that the assumptions (A2)
together with (A1) guarantee non-negativity of all the remainders on the right-hand side of (3.12).
Assumption (A3) then implies positivity of the weight ρ(g). The proof of Theorem 3.8 is complete.

3.2.4 Proof of Theorem 3.10

We check that, under the respective assumptions, the discrete Hardy weight ρ(g) := (−∆)ℓg/g possesses
all the three properties from Definition 3.2: criticality, non-attainability, and optimality near infinity.
The properties will be gradually worked out in three separate steps.

Similarly to the proof of Theorem 2.5, the core idea of this proof is that all the remainders on the
right-hand side of (3.12) vanish if we consider u = g. However, g /∈ Hℓ

0 so we must find a suitable
regularization of g. Furthermore, the asymptotic properties of divkg turn out to be important to assert
optimality of the weight ρ(g). For this purpose, we will state the following lemmas. Additionally, for
more concise formulas, we introduce the middle operator acting on C(Z) defined as M := (S+I)/2, i.e.

Mun :=
un + un+1

2
.

Lemma 3.16. Let k ∈ N, α ∈ R \ N0, and g be a sequence admitting the asymptotic expansion

gn =
k∑

j=0

ajn
α−j +O

(
nα−k−1

)
, n→ ∞, (3.32)

for some aj ∈ R and a0 ̸= 0. Then the following claims hold true.

(i) For all m ∈ Z, there exist coefficients a(m)
j ∈ R such that

Smgn = a0n
α +

k∑
j=1

a
(m)
j nα−j +O

(
nα−k−1

)
, n→ ∞.

(ii) For all m ∈ N0, there exist coefficients b(m)
j ∈ R with b(m)

0 ̸= 0 such that

Mmgn =
k∑

j=0

b
(m)
j nα−j +O

(
nα−k−1

)
, n→ ∞.

(iii) For all m ∈ {0, . . . , k}, there exist coefficients c(m)
j ∈ R with c(m)

m ̸= 0 such that

divmgn =

k∑
j=m

c
(m)
j nα−j +O

(
nα−k−1

)
, n→ ∞.

Proof. In order to prove Lemma 3.16, it suffices to show the first point for m = ±1, which can be seen
from the Taylor series expansion

(n± 1)β = nβ
(
1± 1

n

)β

= nβ
∞∑
j=0

(
β

j

)(
±1

n

)j

= nβ +
k∑

j=1

c
(±)
j nβ−j +O

(
nα−k−1

)
, n→ ∞.

The rest readily follows by induction, but we leave the technical details as an easy exercise for the
reader.
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The third statement of Lemma 3.16 asserts that, to some extent, the sequence divkg, for g ∈ C(Z)
of the form (3.32), can be treated as a derivative g(k). We will need another auxiliary claim of this
sort – a generalization of the Mean Value Theorem, which is most likely known, but we will prove it
here for the reader’s convenience nonetheless.

Lemma 3.17. Let n ∈ Z, N ∈ N and g ∈ C([n, n + N ]) such that g ∈ CN ((n, n + N)). Then there
exists ξ ∈ (n, n+N) such that

divNgn = g(N)(ξ),

where we denoted gn := g(n).

Proof. Let p be a polynomial of degree less or equal to N such that pn+j = gn+j for all j ∈ {0, . . . , N}.
Here and below, we use the notation pn := p(n) and gn := g(n). Notice that

divNgn =

N∑
j=0

(
N

j

)
(−1)N−jgn+j =

N∑
j=0

(
N

j

)
(−1)N−jpn+j = divNpn.

Next, we will show that
divNpn = p(N)(n).

First, we prove that if the degree of p is less or equal to N , then the polynomial divp(x) = p(x+1)−p(x)
is of degree less or equal to N − 1. Indeed, for p(x) =

∑n
k=0 akx

k, where ak ∈ R, we have

divp(x) =

n∑
k=0

ak

(
(x+ 1)k − xk

)
=

n∑
k=0

ak

 k∑
j=0

(
k

j

)
xj − xk

 =

n∑
k=0

ak

k−1∑
j=0

(
k

j

)
xj .

Consequently, divNp = c for some constant c ∈ R and therefore divMp = 0 for all M > N . Because
both div and d/dx are linear operators on respective spaces, it suffices to show that (divNxN ) =
(xN )(N) = N !. We will prove this by induction once again. For N = 0 the statement holds trivially.
Assuming the claim holds for N − 1 we have

divNxN = divN−1(divxN ) = divN−1((x+ 1)N − xN ) =
N−1∑
k=0

(
N

k

)
(divN−1xk)

= N(divN−1xN−1) = N(N − 1)! = N !.

As pn+j−gn+j = 0 for all j ∈ {0, . . . , N}, we infer from Rolle’s theorem, that for all j ∈ {0, . . . , N−
1} there exists cj ∈ (n+ j, n+ j +1) such that p′(cj)− g′(cj) = 0. By iteration of Rolle’s theorem, we
obtain ξ ∈ (n, n+N) such that

g(N)(ξ) = p(N)(ξ) = p(N)(n) = divNpn = divNgn.

The last auxiliary identity is the Leibnitz formula for the discrete divergence. The multiplication
of sequences is to be understood point-wise.

Lemma 3.18. For all m ∈ N0 and sequences f, g ∈ C(Z), we have

divm(fg) =

m∑
j=0

(
m

j

)(
divjMm−jf

) (
divm−jMjg

)
.

45



Proof. The proof of Lemma 3.18 proceeds by induction. The statement is trivially true for m = 0. For
m = 1, we have

div(fg) = (S− I)(fg) =

{
(Sf)(Sg)− fg ± (Sf)g = (Sf)(divg) + (divf)g

(Sf)(Sg)− fg ± f(Sg) = f(divg) + (divf)(Sg)

Adding the two lines above and diving by 2, we verify the statement for m = 1. Next, for the case
m+ 1 we infer from the induction hypothesis that

divm+1(fg) =div(divm(fg)) = div

 m∑
j=0

(
m

j

)
(divjMm−jf)(divm−jMjg)


=

m∑
j=0

(
m

j

)
(divj+1Mm−jf)(divm−jMj+1g) +

m∑
j=0

(
m

j

)
(divjMm+1−jf)(divm+1−jMjg)

=(divm+1f)(Mm+1g) + (Mm+1f)(divm+1g)

+
m∑
j=1

[(
m

j − 1

)
+

(
m

j

)]
(divjMm+1−jf)(divm+1−jMjg)

=

m+1∑
j=0

(
m+ 1

j

)
(divjMm+1−jf)(divm+1−jMjg),

hence the proof is complete.

Now, we are ready to prove Theorem 3.10.
a) Proof of criticality : Suppose that the sequence ρ̃ = {ρ̃n}∞n=ℓ is a discrete Hardy weight of order ℓ

satisfying ρ̃n ≥ ρn(g) for all n ≥ ℓ. Using identity (3.12) for the weight ρ(g) together with the discrete
Hardy inequality of order ℓ for the weight ρ̃, we find that

0 ≤
∞∑
n=ℓ

(ρ̃n − ρn(g)) |un|2 ≤
ℓ−1∑
k=0

R(ℓ)
k (g;u) (3.33)

for all u ∈ Hℓ
0.

As was mentioned earlier, an important fact is that all the remainders are simultaneously anni-
hilated if we set u = g, i.e. R

(ℓ)
k (g; g) = 0 for all k ∈ {0, . . . , ℓ − 1}. However, we cannot directly

substitute u = g into (3.33) and conclude from here that ρ̃ = ρ(g) since g /∈ Hℓ
0. This is an issue which

is to be overcome by a suitable regularization of g.
Fix an arbitrary ε ∈ (0, 1/2) and a smooth function η such that η ≡ 0 on (−∞, ε) and η ≡ 1 on

(1 − ε,∞). Then for any N ≥ 2, we introduce uN := ξNg, where ξNn := ξN (n) is a cut-off sequence
define as

ξN (x) :=


1 if x ≤ N,

η
(
2 lnN−lnx

lnN

)
if N < x ≤ N2,

0 if x > N2.

(3.34)

Notice that ξN → 1 and hence uN → g point-wise as N → ∞. With this choice of uN ∈ Hℓ
0, we will

show that for all k ∈ {0, . . . , ℓ− 1} we may estimate

0 ≤ R(ℓ)
k

(
g;uN

)
≲

1

lnN
, (3.35)
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where ≲ means the inequality ≤ up to a N -independent multiplicative constant. Invoking Fatou’s
lemma, we infer from (3.33) and (3.35) that

∞∑
n=ℓ

(ρ̃n − ρn(g)) g
2
n =

∞∑
n=ℓ

(ρ̃n − ρn(g)) lim
N→∞

∣∣uNn ∣∣2 ≤ lim inf
N→∞

∞∑
n=ℓ

(ρ̃n − ρn(g))
∣∣uNn ∣∣2 = 0.

Bearing in mind, that all the terms in the sum on the left are non-negative and gn > 0 for all n ≥ ℓ
by (A1), we may conclude that ρ̃n = ρn(g) for all n ≥ ℓ, and the proof of criticality of ρ(g) will be
complete.

It remains to verify the inequality (3.35). Recalling Remark 3.9, we use the notation

R(ℓ)
k (g;u) =

∥∥∥R(ℓ)
k (g)u

∥∥∥2 = ∞∑
n=ℓ−k

∣∣∣R(ℓ)
k (g)un

∣∣∣2
for all k ∈ {0, . . . , ℓ − 1}, where the operators R(ℓ)

k (g) are defined by (3.17). Next, we substitute
u = uN = ξNg into (3.17) and inspect the two factors of

∣∣∣R(ℓ)
k (g)uNn

∣∣∣ =
√

(−∆)ℓ−1−kdivk+1gn

divk+1gn

∣∣∣∣∣∣
√

divkgn

divkgn+1

divk(ξNg)n+1 −

√
divkgn+1

divkgn
divk(ξNg)n

∣∣∣∣∣∣
separately.

For the first factor, by assumption (A3) and claims (i) and (iii) of Lemma 3.16, we observe that√
(−∆)ℓ−1−kdivk+1gn

divk+1gn
=

√
(−1)ℓ−1−kdiv2ℓ−k−1Sk+1−ℓgn

divk+1gn
≲

√
nℓ−1/2−(2ℓ−k−1)

nℓ−1/2−(k+1)
= nk+1−ℓ

for any n ≥ ℓ and k ∈ {0, . . . , ℓ− 1}, where the unspecified constant is n-independent but may depend
on k or ℓ.

Similarly, we find that √
divkgn

divkgn+1

≲ 1,

and therefore the second factor can be estimated as√
divkgn

divkgn+1

∣∣∣∣∣divk(ξNg)n+1 −
divkgn+1

divkgn
divk(ξNg)n

∣∣∣∣∣ ≲
∣∣∣∣∣divk(ξNg)n+1 −

divkgn+1

divkgn
divk(ξNg)n

∣∣∣∣∣ .
Applying Lemma 3.18 in the last expression, we can rewrite it as∣∣∣∣∣∣

k∑
j=0

(
k

j

)
(divjMk−jg)n+1(div

k−jMjξN )n+1 −
divkgn+1

divkgn

k∑
j=0

(
k

j

)
(divjMk−jg)n(div

k−jMjξN )n

∣∣∣∣∣∣
≤

k∑
j=0

(
k

j

)
(divjMk−jg)n+1

∣∣∣∣∣(divk−jMjξN )n+1 −
divkgn+1

divkgn

divjMk−jgn

divjMk−jgn+1

(divk−jMjξN )n

∣∣∣∣∣ .
Yet another application of (A3) and formulas from Lemma 3.16 reveals that

(divjMk−jg)n+1 ≲ nℓ−1/2−j and
divkgn+1

divkgn

divjMk−jgn

divjMk−jgn+1

=
1 +O (1/n)

1 +O (1/n)

1 +O (1/n)

1 +O (1/n)
= 1 + p(k,j)n ,
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where p(k,j)n = O (1/n), as n→ ∞, i.e. p(k,j)n ≲ 1/n. Altogether, we deduce the upper bound

∣∣∣R(ℓ)
k (g)uNn

∣∣∣ ≲ nk+1/2
k∑

j=0

(
k

j

)
n−j

(∣∣∣(divk+1−jMjξN )n

∣∣∣+ ∣∣∣p(k,j)n (divk−jMjξN )n

∣∣∣) (3.36)

for all N ≥ 2, n ≥ ℓ, and k ∈ {0, . . . , ℓ − 1}, where the unspecified multiplicative constant does not
depend on n nor N . In order to complete the proof, we have to estimate also the terms with divmξ in
(3.36). To this end, note that for all x ∈ [N,N2], we have

(ξN )′(x) = −η′
(
2 lnN − lnx

lnN

)
1

x lnN
,

thus
∣∣(ξN )′(x)

∣∣ ≲ 1/(x lnN), where we estimated η′ with maxx∈[0,1] |η′(x)|. By induction, it is straight-
forward to generalize this bound to higher-order derivatives, i.e.∣∣∣(ξN )(m)(x)

∣∣∣ ≲ 1

xm lnN
(3.37)

for all m ∈ N and x > 0. Consequently, Lemma 3.17 implies that∣∣divmξNn ∣∣ ≲ 1

nm lnN
,

which is true for any m,n ∈ N and N ≥ 2. As the right-hand side is a decreasing function of n, we
also have ∣∣divmMjξN

∣∣ ≲ 1

nm lnN

for any j ∈ N0, from which we infer the needed estimates in (3.36) getting

∣∣∣R(ℓ)
k (g)uNn

∣∣∣ ≲ nk+1/2
k∑

j=0

(
k

j

)
n−j

(
1

nk+1−j lnN
+

1

n

1

nk−j lnN

)
≲

1√
n lnN

(3.38)

for all N ≥ 2, n ≥ ℓ, and k ∈ {0, . . . , ℓ− 1}. Finally, for sufficiently large N we may estimate

R(ℓ)
k (g;u) =

N2∑
n=N−k

∣∣∣R(ℓ)
k (g)uNn

∣∣∣2 ≲ 1

ln2N

N2∑
n=N−k

1

n
≲

1

ln2N

∫ N2

N

1

n
dn =

1

lnN

for all k ∈ {0, . . . , ℓ− 1} arriving at the desired result (3.35). The proof of criticality is complete.
b) Proof of non-attainability : For the proof of non-attainability, we first state the following auxiliary

claim which asserts that under certain assumptions, the identity from Theorem 3.6 extends from Hℓ
0

to all sequences in Hℓ for which the left-hand side of (3.12) is finite.

Proposition 3.19. Let ℓ ∈ N. Suppose that assumptions (A1), (A2), and (A3) hold. Then the identity
(3.12) extends from Hℓ

0 to all sequences from the space

Dℓ :=
{
u ∈ Hℓ

∣∣ ∥(−∆)ℓ/2u∥ <∞
}
.

Proof. We will prove Proposition 3.19 in three steps.
a) First, we show that the range of (−∆)ℓ/2|Hℓ

0
is dense in H⌈ℓ/2⌉. It follows from the definition

of (−∆)ℓ/2 that for any u ∈ Hℓ
0, we have (−∆)ℓ/2un = 0 for all n < ⌈ℓ/2⌉, i.e. (−∆)ℓ/2u ∈ H⌈ℓ/2⌉.

Moreover, from the boundedness of the operator (−∆)ℓ/2, we infer that (−∆)ℓ/2u ∈ ℓ2(Z), hence
(−∆)ℓ/2u ∈ H⌈ℓ/2⌉. In order to prove the density, we check that if v ∈ H⌈ℓ/2⌉ satisfies

⟨v, (−∆)ℓ/2u⟩ = 0
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for all u ∈ Hℓ
0, then v ≡ 0. According to the parity of ℓ, we distinguish two cases. Let ℓ = 2m ∈ 2N,

then
⟨v, (−∆)ℓ/2u⟩ = ⟨v, (−∆)mu⟩ = ⟨(−∆)mv, u⟩

for all u ∈ H2m
0 . In particular, by taking u = δn, i.e. uk = δnk, where δ is the Kronecker delta, for

n ≥ 2m, we observe that v solves the linear difference equation of order 2m with constant coefficients

(−∆)mvn =
m∑

j=−m

(
2m

m+ j

)
(−1)jvn+j = 0

for all n ≥ 2m. It is easy to show that the fundamental system of the above linear difference equation
consists of sequences 1, n, . . . , n2m−1. Therefore, we find that

vn =

2m−1∑
j=0

cjn
j

for all n ≥ m and some cj ∈ C. Taking also into account that v ∈ ℓ2(Z), necessarily, we have
cj = 0 for all j ∈ {0, . . . , 2m − 1} and since v ∈ Hm, we conclude that v ≡ 0. The argument for
l = 2m+ 1 ∈ 2N0 + 1 is analogous. In this case, we have

⟨v, (−∆)ℓ/2u⟩ = ⟨v,∇(−∆)mu⟩ = −⟨(−∆)mdivv, u⟩ = 0

for all u ∈ H2m+1
0 . Again, we consider u = δn for n ≥ 2m + 1, from which we infer that v solves the

linear difference equation

−(−∆)mdivvn =
m+1∑
j=−m

(
2m+ 1

m+ j

)
(−1)jvn+j = 0

for all n ≥ 2m+ 1, whose general solution is given by the linear combination

vn =
2m∑
j=0

cjn
j

for all n ≥ m+1 and some cj ∈ C. The same argumentation as in the case where ℓ is even then implies
v ≡ 0.

b) Pick arbitrary v ∈ H⌈ℓ/2⌉. By a), there exists a sequence {uN}∞N=1 ⊂ Hℓ
0 such that (−∆)ℓ/2uN →

v, as N → ∞, in the norm of ℓ2(Z). In particular, the sequence {(−∆)ℓ/2uN}∞N=1 is Cauchy in
ℓ2(Z). Recalling Remark 3.9, assumptions (A1) and (A2) imply that the remainders in (3.12) can be
interpreted as a (non-negative) norm of R(ℓ)

k (g)uN and assumption (A3) guarantees positivity of the
weight ρn(g). Consequently, identity (3.12) asserts inequalities∥∥∥√ρ(g)(uN − uM )

∥∥∥ ≤
∥∥∥(−∆)ℓ/2(uN − uM )

∥∥∥ and
∥∥∥R(ℓ)

k (g)(uN − uM )
∥∥∥ ≤

∥∥∥(−∆)ℓ/2(uN − uM )
∥∥∥

for all k ∈ {0, . . . , ℓ− 1} and N,M ∈ N, hence the sequences {
√
ρ(g)uN}∞N=1 and {R(ℓ)

k (g)uN}∞N=1 are
also Cauchy and therefore convergent in ℓ2(Z). Let us denote w the ℓ2-limit of

√
ρ(g)uN , as N → ∞.

Clearly, w ∈ Hℓ and
√
ρn(g)u

N
n → wn, as N → ∞, for every n ∈ Z. Since ρn(g) > 0 for all n ≥ ℓ,

there exists u ∈ Hℓ such that w =
√
ρ(g)u and uNn → un, as N → ∞, for all n ∈ Z. Moreover, the

limits of all the above-mentioned ℓ2-convergent sequences must coincide with their point-wise limits,
i.e.

(−∆)ℓ/2uN → (−∆)ℓ/2u,
√
ρ(g)uN →

√
ρ(g)u, R

(ℓ)
k (g)uN → R

(ℓ)
k (g)u
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in ℓ2(Z) as N → ∞. In particular, we have v = (−∆)ℓ/2u, hence u ∈ Dℓ. Tending N → ∞ in the
identity (3.12) for uN , i.e. in

∥∥∥(−∆)ℓ/2uN
∥∥∥2 = ∥∥∥√ρ(g)uN∥∥∥2 + ℓ−1∑

k=0

∥∥∥R(ℓ)
k (g)uN

∥∥∥2 ,
yields ∥∥∥(−∆)ℓ/2u

∥∥∥2 = ∥∥∥√ρ(g)u∥∥∥2 + ℓ−1∑
k=0

∥∥∥R(ℓ)
k (g)u

∥∥∥2 .
c) Now, pick arbitrary ũ ∈ Dℓ. By definition, (−∆)ℓ/2ũ ∈ H⌈ℓ/2⌉. Part b) applied to (−∆)ℓ/2ũ

implies the existence of a sequence u ∈ Hℓ, such that the above identity holds and (−∆)ℓ/2ũ =
(−∆)ℓ/2u. In order to finish the proof, it remains to show that for two sequences u, ũ ∈ Hℓ, we have
the implication

(−∆)ℓ/2ũ = (−∆)ℓ/2u =⇒ ũ = u.

By linearity, it suffices to prove that for any w ∈ Hℓ such that (−∆)ℓ/2w = 0, we have w ≡ 0. This
can be easily seen from the fact that w solves the linear difference equation

(−∆)ℓ/2wn = 0

for all n ∈ Z with the boundary condition wn = 0 for all n < ℓ. Recursively, we obtain wn = 0 also for
all n ≥ ℓ, thus proving Proposition 3.19.

Now, suppose that u ∈ Hℓ fulfils (3.16) as equality whose (both) sides are finite. In view of
Proposition 3.19, assumptions (A1), (A2), and (A3) imply that R(ℓ)

k (g;u) = 0 for all k ∈ {0, . . . , ℓ−1}.
In particular, for k = 0, we derive a necessary condition (which is in fact sufficient)

(−∆)ℓ−1divgn
divgn

∣∣∣∣√ gn
gn+1

un+1 −
√

gn+1

gn
un

∣∣∣∣2 = 0

for all n ≥ ℓ, see (3.13). By the additional assumption (A5) and also (A1), the prefactor is strictly
positive and therefore the sequence u is a solution of the difference equation of the first order√

gn
gn+1

un+1 −
√

gn+1

gn
un = 0

for all n ≥ ℓ. However, this equation has the only solution g up to a multiplicative constant, i.e.
un = cgn for some constant c ∈ C and n ≥ ℓ. Obviously, for such u it holds that R(ℓ)

k (g;u) = 0 for all
k ∈ {0, . . . , ℓ− 1}. By assumption (A3) and Lemma 3.16, we have

ρn(g) ≳
nℓ−1/2−2ℓ

nℓ−1/2
= n−2ℓ

and due to the asymptotic behaviour of gn, we may conclude that

ρn(g)g
2
n ≳

1

n2ℓ
n2ℓ−1 =

1

n
(3.39)

for all n ≥ ℓ. Consequently, the right-hand side of (3.16) can be estimated as

∞∑
n=ℓ

ρn(g) |un|2 ≳
∞∑
n=ℓ

1

n
= ∞,
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whenever c ̸= 0, hence the proof of non-attainability is complete.
c) Proof of optimality near infinity : Fix M ∈ N. As follows form (3.11), this property can be

proven by finding a sequence {uN}N≥M ⊂ HM
0 (N) \ {0} such that

lim
N→∞

∑ℓ−1
k=0R

(ℓ)
k (g;uN )∑∞

n=ℓ ρn(g) |uNn |2
= 0. (3.40)

Such sequence can be obtained by slightly modifying the regularization (3.34) used in the proof of
criticality a). We define uN := ξNg, where, this time, ξN is given by

ξN (x) :=



0 if x ≤ N,

η
(
lnx−lnN

lnN

)
if N < x ≤ N2,

1 if N2 < x ≤ 2N2,

η
(
ln(2N3)−lnx

lnN

)
if 2N2 < x ≤ 2N3,

0 if x > 2N3,

where function η has the same properties as in (3.34). Then, indeed, uN ∈ HM
0 \ {0} for all N ≥ M .

Note that the inequality (3.37) still holds for any m ∈ N and x > 0. Therefore, the same estimates as
in the proof of criticality a) apply and we get

R(ℓ)
k (g;uN ) =

N2∑
n=N−k

∣∣∣R(ℓ)
k (g)uNn

∣∣∣2 + 2N3∑
n=2N2−k

∣∣∣R(ℓ)
k (g)uNn

∣∣∣2 ≲ 1

ln2N

 N2∑
n=N−k

1

n
+

2N3∑
n=2N2−k

1

n

 ≲
1

lnN

for all N sufficiently large and k ∈ {0, . . . , ℓ− 1}.
On the other hand, having (3.39) in mind, we may estimate the denominator in (3.40) from below

as
∞∑
n=ℓ

ρn(g)
∣∣uNn ∣∣2 ≥ 2N2∑

n=N2

ρn(g)g
2
n ≳

2N2∑
n=N2

1

n
≥
∫ 2N2

N2

1

n
dn = ln 2

for all N sufficiently large. Altogether, the above estimates immediately imply (3.40), completing the
proof of optimality near infinity and subsequently also the proof of Theorem 3.10.

3.2.5 Proof of Theorem 3.11

For the parameter sequence g(ℓ) defined by (3.19), we verify below that

a) divkg
(ℓ)
n > 0 for all n ≥ ℓ− k and k ∈ {0, . . . , ℓ− 1};

b) (−∆)ℓ−kdivkg
(ℓ)
n > 0 for all n ≥ ℓ− k and k ∈ {0, . . . , ℓ− 1}.

Claim a) together with the obvious fact g(ℓ) ∈ Hℓ means that g(ℓ) fulfils assumption (A1). Claim b)
implies that g(ℓ) satisfies assumptions (A2), (A3), and (A5). As it follows trivially from definition
(3.19) that g(ℓ) satisfies also (A4), Theorem 3.10 asserts that the sequence ρ(ℓ) given by (3.20) is an
optimal discrete Hardy weight of order ℓ.

a) First we show that divℓg
(ℓ)
n > 0 for all n ≥ 0. For x ≥ 0, let us denote

g(ℓ)(x) :=
√
x

ℓ−1∏
j=1

(x− j).
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Then g
(ℓ)
n = g(ℓ)(n) for all n ∈ N0. By [20, Eq. (26.8.7)], we have

g(ℓ)(x) =
ℓ∑

j=1

s(ℓ, j)xj−1/2, (3.41)

where s(ℓ, j) are the Stirling numbers of the first kind defined by formula (3.21). Evidently, we have
(−1)ℓ+js(ℓ, j) > 0 for all j ∈ {1, . . . , ℓ}. It follows from Lemma 3.17, that for any n ∈ N0 there exists
ξ ∈ (n, n+ ℓ), such that

divℓg(ℓ)n =
dℓg(ℓ)

dxℓ
(ξ).

Moreover, for any x > 0, we have

dℓg(ℓ)

dxℓ
(x) =

ℓ∑
j=1

s(ℓ, j)
dℓ

dxℓ
xj−1/2 =

ℓ∑
j=1

b
(ℓ)
j xj−1/2−ℓ,

where

b
(ℓ)
j := (−1)ℓ+js(ℓ, j)

ℓ∏
k=1

∣∣∣∣j + 1

2
− k

∣∣∣∣ > 0

for all j ∈ {1, . . . , ℓ}. Therefore, we infer that divℓg
(ℓ)
n > 0 for all n ∈ N0, indeed.

Next, notice that, since g(ℓ) ∈ Hℓ, we have

divkg
(ℓ)
ℓ−k = g

(ℓ)
ℓ =

√
ℓ(ℓ− 1)! > 0 (3.42)

for every k ∈ {0, . . . , ℓ}. By definition of the discrete divergence, divℓg(ℓ) > 0 on N0 means that
the sequence divℓ−1g(ℓ) is strictly increasing on N0. Since divℓ−1g

(ℓ)
1 > 0 by (3.42), we conclude that

divℓ−1g
(ℓ)
n > 0 for all n ≥ 1. Iteration of this argument yields claim a).

b) We make use of Lemma 3.17 once more. Since

(−∆)ℓ−kdivkgn = (−1)ℓ−kdiv2ℓ−kg
(ℓ)
n−ℓ+k,

Lemma 3.17 implies that, for any n ≥ ℓ− k and k ∈ {0, . . . , ℓ}, there is ξ > 0 such that

(−∆)ℓ−kdivkgn = (−1)ℓ−k d
2ℓ−kg(ℓ)

dx2ℓ−k
(ξ)

Similarly as in part a) of this proof, we find, this time, that

(−1)ℓ−k d
2ℓ−kg(ℓ)

dx2ℓ−k
(x) = (−1)ℓ−k

ℓ∑
j=1

s(ℓ, j)
d2ℓ−k

dx2ℓ−k
xj−1/2 =

ℓ∑
j=1

c
(ℓ)
j xj−1/2−2ℓ+k,

where

c
(ℓ)
j := (−1)ℓ−ks(ℓ, j)(−1)2ℓ−k−j

2ℓ−k∏
k=1

∣∣∣∣j + 1

2
− k

∣∣∣∣ = (−1)ℓ+js(ℓ, j)
2ℓ−k∏
k=1

∣∣∣∣j + 1

2
− k

∣∣∣∣ > 0

for every j ∈ {1, . . . , ℓ}. Consequently,

(−1)ℓ−k d
2ℓ−kg(ℓ)

dx2ℓ−k
(x) > 0

for all x > 0 and k ∈ {0, . . . , ℓ}, from which claim b) readily follows. The proof of Theorem 3.11 is
complete.
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3.2.6 Proof of Theorem 3.14

First, with the aid of the generalized binomial theorem, we find for all ν ∈ R and n > ℓ that

(−∆)ℓnν =
ℓ∑

j=−ℓ

(
2ℓ

ℓ+ j

)
(−1)j(n+ j)ν = nν

ℓ∑
j=−ℓ

(
2ℓ

ℓ+ j

)
(−1)j

(
1 +

j

n

)ν

= nν
ℓ∑

j=−ℓ

(
2ℓ

ℓ+ j

)
(−1)j

∞∑
m=0

(
ν

m

)
jm

nm
= nν

∞∑
m=0

(
ν

m

) ℓ∑
j=−ℓ

(
2ℓ

ℓ+ j

)
(−1)jjm

 1

nm
.

Recalling the definition (3.23) and the property (3.24), we arrive at the identity

(−∆)ℓnν =
∞∑

m=2ℓ

(
ν

m

)
X

(ℓ)
m

nm−ν
(3.43)

for all ν ∈ R and n > ℓ. Moreover, if ν > 0, the convergence of the series in (3.43) can be extended to
all n ≥ ℓ by inspection of the asymptotic behaviour of the summand. Indeed, one deduces from (3.23)
and the Stirling formula, see [21], that

X
(ℓ)
2m ∼ 2(−1)ℓℓ2m and

(
ν

m

)
∼ 1

Γ(−ν)
(−1)m

mν+1

as m→ ∞. Therefore, the non-vanishing even summands of (3.43) behave as(
ν

2m

)
X

(ℓ)
2m

n2m−ν
∼ 2nν

Γ(−ν)
(−1)ℓ

(2m)ν+1

(
ℓ

n

)2m

,

as m→ ∞ and the series in (3.43) converges even for n = ℓ.
a) Proof of claim (i): Recalling that

g(ℓ)n =
ℓ∑

j=1

s(ℓ, j)nj−1/2

for all n ≥ 0, see (3.41), and invoking the expansion (3.43), we find that

(−∆)ℓg(ℓ)n =

ℓ∑
j=1

s(ℓ, j)(−∆)ℓnj−1/2 =

ℓ∑
j=1

s(ℓ, j)

∞∑
m=2ℓ

(
j − 1/2

m

)
X

(ℓ)
m

nm−j+1/2

= nℓ−1/2
∞∑

m=2ℓ

ℓ−1∑
j=0

(
ℓ− j − 1/2

m

)
s(ℓ, ℓ− j)

X
(ℓ)
m

nm+j

for all n ≥ ℓ. Therefore, for the weight ρ(ℓ), we have

ρ(ℓ)n =
(−∆)ℓg

(ℓ)
n

g
(ℓ)
n

=
nℓ−1

(n− 1) . . . (n− ℓ+ 1)

∞∑
m=2ℓ

ℓ−1∑
j=0

(
ℓ− j − 1/2

m

)
s(ℓ, ℓ− j)

X
(ℓ)
m

nm+j

=
nℓ−1

(n− 1) . . . (n− ℓ+ 1)

∞∑
m=2ℓ

∞∑
j=m

(
ℓ+m− j − 1/2

m

)
s(ℓ, ℓ+m− j)

X
(ℓ)
m

nj

=
nℓ−1

(n− 1) . . . (n− ℓ+ 1)

∞∑
j=2ℓ

[
j∑

m=2ℓ

(
ℓ+m− j − 1/2

m

)
s(ℓ, ℓ+m− j)X(ℓ)

m

]
1

nj
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for all n ≥ ℓ. Using also the definition (3.26), we infer that

ρ(ℓ)n =
nℓ−1

(n− 1) . . . (n− ℓ+ 1)

∞∑
j=2ℓ

r
(ℓ)
j

nj

for all n ≥ ℓ. The final step is to expand the prefactor in front of the sum in the above expression
in terms of negative powers of n, which is to be done using the Stirling numbers of the second kind
(3.22). Namely, by [20, Eq. (26.8.11)], we have

nℓ−1

(n− 1) . . . (n− ℓ+ 1)
=

∞∑
j=0

S(j + ℓ− 1, ℓ− 1)

nj

for all n ≥ ℓ ≥ 1. Altogether, we find that

ρ(ℓ)n =
∞∑
j=0

S(j + ℓ− 1, ℓ− 1)

nj

∞∑
j=0

r
(ℓ)
j+2ℓ

nj+2ℓ
=

∞∑
k=0

[
k∑

m=0

S(k −m+ ℓ− 1, ℓ− 1)r
(ℓ)
m+2ℓ

]
1

nk+2ℓ

=
∞∑

k=2ℓ

[
k∑

m=2ℓ

S(k −m+ ℓ− 1, ℓ− 1)r(ℓ)m

]
1

nk

for all n ≥ ℓ, from which we extract the formula (3.28) for the coefficients A(ℓ)
k , thus completing the

proof of claim (i).
b) Proof of claim (ii): Since ρ(1) = ρKPP, see (2.2), for ℓ = 1, the claim is an immediate consequence

of the explicitly known expansion (2.6), from which we deduce that

A
(1)
2k+1 = 0 and A

(1)
2k =

(
4k

2k

)
1

(4k − 1)24k−1
> 0

for all k ∈ N.
Suppose ℓ ≥ 2. Recalling the definition (3.22), we have S(k −m + ℓ − 1, ℓ − 1) > 0 for all ℓ ≥ 2

and k ≥ m, hence in order to prove that A(ℓ)
k > 0 for all k ≥ 2ℓ, it suffices to show, that r(ℓ)m > 0

for all m ≥ 2ℓ which is done in the rest of this part. Recalling formulas (3.21) and (3.25), we find by
inspection of the sign of each of the three terms in the sum from (3.26) that

(−1)ℓX
(ℓ)
j ≥ 0, (−1)j+ms(ℓ, ℓ+ j −m) ≥ 0, (−1)ℓ+m

(
ℓ+ j −m− 1/2

j

)
≥ 0 (3.44)

for all m ≥ 2ℓ and m ≥ j ≥ 2ℓ. Taking also into account that X(ℓ)
j = 0 whenever j is odd, we see

that each summand from the sum for coefficients r(ℓ)m in (3.26) is non-negative. Consequently, r(ℓ)m ≥ 0

for all m ≥ 2ℓ. Moreover, we can estimate r(ℓ)m from below by the last non-vanishing summand which
corresponds to index j = m if m is even and j = m− 1 if m is odd. If m ≥ 2ℓ is even, then

r(ℓ)m ≥
(
ℓ− 1/2

m

)
s(ℓ, ℓ)X(ℓ)

m =

∣∣∣∣(ℓ− 1/2

m

)
X(ℓ)

m

∣∣∣∣ > 0,

by (3.25). If m ≥ 2ℓ is odd, then

r(ℓ)m ≥
(
ℓ− 3/2

m− 1

)
s(ℓ, ℓ− 1)X

(ℓ)
m−1 =

∣∣∣∣(ℓ− 3/2

m− 1

)(
ℓ

2

)
X

(ℓ)
m−1

∣∣∣∣ > 0,

by (3.25) again and the fact that s(ℓ, ℓ − 1) = −ℓ(ℓ − 1)/2. In total, we verify that r(ℓ)m > 0 for all
m ≥ 2ℓ and the proof of claim (ii) is complete.
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c) Proof of claim (iii): The case for ℓ = 1 is an immediate consequence of the expansion (2.6).
Suppose n ≥ ℓ ≥ 2. The inequality

(−∆)ℓnℓ−1/2

nℓ−1/2
>

(
1

2

)2

ℓ

1

n2ℓ

has been already proven in [15]. It can be also deduced by using (3.43) with ν = ℓ− 1/2 and noticing
that each summand corresponding to m odd is vanishing while each summand corresponding to m
even is positive, see (3.44). Then we may estimate

(−∆)ℓnℓ−1/2

nℓ−1/2
>

(
ℓ− 1/2

2ℓ

)
X

(ℓ)
2ℓ

n2ℓ
=

(
1

2

)2

ℓ

1

n2ℓ

by (3.25) and a little algebra.
Next, we verify the inequality

ρ(ℓ)n >
(−∆)ℓnℓ−1/2

nℓ−1/2
.

We show that the summands in

(−∆)ℓg(ℓ)n =

ℓ∑
j=1

s(ℓ, j)(−∆)ℓnj−1/2

are all positive. First, recall that (−1)ℓ+js(ℓ, j) > 0 for all j ∈ {1, . . . , ℓ}, see (3.21). Second, Lemma
3.17 implies the existence of ξ ∈ (n− ℓ, n+ ℓ), hence ξ > 0, such that

(−∆)ℓnj−1/2 = (−1)ℓ
d2ℓ

dx2ℓ

∣∣∣∣
x=ξ

xj−1/2 = (−1)ℓ
2ℓ∏
k=1

(
j +

1

2
− k

)
ξj−2ℓ−1/2.

It follows that (−1)j+ℓ(−∆)ℓnj−1/2 > 0 for all j ∈ {1, . . . , ℓ}. Consequently, we may estimate

(−∆)ℓg(ℓ)n > s(ℓ, ℓ)(−∆)ℓnℓ−1/2 = (−∆)ℓnℓ−1/2,

from which we conclude that

ρ(ℓ)n (g) =
(−∆)ℓg

(ℓ)
n

g
(ℓ)
n

>
nℓ−1

(n− 1) . . . (n− ℓ+ 1)

(−∆)ℓnℓ−1/2

nℓ−1/2
>

(−∆)ℓnℓ−1/2

nℓ−1/2
.

The proof of Theorem 3.14 is complete.

3.3 More general families of discrete Hardy weights of higher order

The concrete parameter sequence g(ℓ), defined by the formula (3.19), was considered in Theorem
3.11 because it gives rise to the corresponding optimal weight ρ(ℓ) which is of a relatively simple form.
However, these are not the only optimal discrete Hardy weights. In this section, we intend to emphasize
that the abstract formulation of Theorems 3.6, 3.8, and 3.10 can be used to derive more general discrete
Hardy weights of higher order.
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3.3.1 q-generalized Hardy weights of higher order

In Theorem 3.10, we restricted ourselves to parametric sequences that satisfy gn ∼ nℓ−1/2, as n→ ∞,
see (A4). However, an analogous claim holds even if we let the asymptotic behaviour of gn, as n→ ∞,
depend on a real parameter s ∈ (0, 1).

Proposition 3.20. Let ℓ ∈ N. Suppose (A1), (A2), (A3), and, in addition, suppose that g admits the
asymptotic expansion

gn =
2ℓ∑
j=0

αjn
ℓ−s−j +O

(
n−ℓ−s−1

)
for some αj ∈ R with α0 ̸= 0 and s ∈ (0, 1), (A4’)

as n → ∞. Then the discrete Hardy weight ρ(g) = (−∆)ℓg/g of order ℓ is critical if s ∈ [1/2, 1),
optimal near infinity if s = 1/2, and non-attainable if g meets the assumption (A5) and s ∈ (0, 1/2].

Proof. The proof of Proposition 3.20 can be done in a similar manner as the proof of Theorem 3.10 in
Section 3.2.4.

a) Criticality : Suppose s ∈ [1/2, 1). The proof of criticality proceeds analogously as the proof of
criticality in Section 3.2.4 with the only difference being the resulting estimate∣∣∣R(ℓ)

k (g)uNn

∣∣∣ ≲ 1

ns lnN
,

that can be further estimated from above by 1/(
√
n lnN), for all n ≥ ℓ and N ≥ 2, as in (3.38)

nonetheless. The details are left as an exercise for the reader.
The second way of proving the criticality is to restrict ourselves to the case s ∈ (1/2, 1) since the

claim for s = 1/2 is a part of Theorem 3.10. Now, similarly as in the proof of criticality in Section 3.2.4,
suppose that the sequence ρ̃ = {ρ̃n}∞n=ℓ is a discrete Hardy weight of order ℓ satisfying ρ̃n ≥ ρn(g) for
all n ≥ ℓ. Using identity (3.12), with the extension provided by Proposition 3.19, for the weight ρ(g)
together with the discrete Hardy inequality of order ℓ for the weight ρ̃ (which can be straightforwardly
extended to all u ∈ Hℓ), we find that

0 ≤
∞∑
n=ℓ

(ρ̃n − ρn(g)) |un|2 ≤
ℓ−1∑
k=0

R(ℓ)
k (g;u)

for all u ∈ Dℓ. Invoking Lemma 3.16, we observe that (−∆)ℓ/2gn ∼ n−s, hence g ∈ Dℓ. Substituting
u = g into the above inequality, we conclude that ρ̃n = ρn(g) for all n ≥ ℓ, since all the remainders on
the right-hand side are annihilated by this particular choice of u.

b) Optimality near infinity : If s = 1/2 Proposition 3.20 becomes Theorem 3.10, hence the optimality
near infinity was already proven in Section 3.2.4.

c) Non-attainability : Suppose s ∈ (0, 1/2]. Since g satisfies the assumptions (A1) and (A5), we
find, similarly as in the proof of non-attainability in Section 3.2.4, that if u ∈ Hℓ fulfils (3.9) as equality
with ρ = ρ(g), then un = cgn for some constant c ∈ C and all n ≥ ℓ. Moreover, by assumption (A4’)
and Lemma 3.16, we have

ρn(g)g
2
n ≳

1

n2ℓ
n2ℓ−2s

for all n ≥ ℓ, which is not a summable sequence for s ∈ (0, 1/2]. Therefore, we conclude that c = 0,
i.e. u ≡ 0, proving the non-attainability.

Proposition 3.20 can be used to derive more Hardy weights of any order. For a parameter q > 0,
we set

g(ℓ)n (q) := nq
ℓ−1∏
j=1

(n− j) (3.45)
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for all n ≥ 0 and g
(ℓ)
n (q) = 0 if n < 0.

Proposition 3.21. Let ℓ ∈ N and q ∈ (0, 1). Then the sequence ρ(ℓ)(q) given by

ρ(ℓ)n (q) :=
(−∆)ℓg

(ℓ)
n (q)

g
(ℓ)
n (q)

(3.46)

for all n ≥ ℓ, where g(ℓ)(q) is defined by (3.45), is a discrete Hardy weight of order ℓ. Furthermore,
ρ(ℓ)(q) is critical if and only if q ∈ (0, 1/2], non-attainable if and only if q ∈ [1/2, 1) and optimal near
infinity if and only if q = 1/2.

Remark 3.22. If q = 1, ρ(ℓ)(1) ≡ 0 for all ℓ ≥ 1 and therefore it is meaningful to consider only q ∈ (0, 1).
In the case ℓ = 1, weight ρ(1)(q) appeared already in [16]. Clearly, g(ℓ) defined in (3.19) corresponds
to q = 1/2, thus ρ(ℓ)(1/2) = ρ(ℓ) defined by (3.20). Moreover, Proposition 3.21 asserts that the weight
ρ(ℓ)(q) is optimal if and only if q = 1/2.

Proof. For q ∈ (0, 1), claims a) and b) from the proof of Theorem 3.11 in Section 3.2.5 can be verified in
an analogous fashion. Consequently, g(ℓ)(q) meets the assumptions (A1), (A2), and (A3), hence ρ(ℓ)(q)
is a discrete Hardy weight of order ℓ for all q ∈ (0, 1) by Theorem 3.8. Let us discuss the optimality of
ρ(ℓ)(q).

a) Criticality : Suppose q ∈ (0, 1/2]. Then the assumption (A4’) holds for g(ℓ)(q) with s = 1− q ∈
[1/2, 1), and therefore the weight ρ(ℓ)(q) is critical by Proposition 3.20.

On the other hand, if q ∈ (1/2, 1), ρ(ℓ)(q) is not critical because, in this case,

ρ(ℓ)n (q) < ρ(ℓ)n (1/2) for all n ≥ ℓ. (3.47)

Indeed, in view of the definition (3.46) and the formula (3.41), statement (3.47) can be equivalently
written as

ℓ∑
j=1

s(ℓ, j)(−∆)ℓnj−1+q <

ℓ∑
j=1

s(ℓ, j)nq−1/2(−∆)ℓnj−1/2

for all n ≥ ℓ. Recalling that (−1)ℓ+js(ℓ, j) > 0 for all ℓ ∈ N and j ∈ {1, . . . , ℓ}, it suffices to show that

(−1)ℓ+j(−∆)ℓnj−1+q < (−1)ℓ+jnq−1/2(−∆)ℓnj−1/2

for all n ≥ ℓ and j ∈ {1, . . . , ℓ}. With the aid of the expansion (3.43) and the fact that X(ℓ)
m = 0

whenever m is odd, the above expression can be written as

(−1)ℓ+jnj−1+q
∞∑

m=ℓ

(
j − 1 + q

2m

)
X

(ℓ)
2m

n2m
< (−1)ℓ+jnq−1/2nj−1/2

∞∑
m=ℓ

(
j − 1/2

2m

)
X

(ℓ)
2m

n2m
.

Moreover, (−1)ℓX
(ℓ)
2m > 0 for all m ≥ ℓ by (3.25), hence the inequality (3.47) follows from the fact that

(−1)j
(
j − 1 + q

2m

)
< (−1)j

(
j − 1/2

2m

)
for all m ≥ ℓ and j ∈ {1, . . . , ℓ}. This can be verified, realizing that both expressions are positive, see
(3.44), and that (q + k)(1− q + k) < (k + 1/2)2, which holds true for all q ∈ (1/2, 1) and k ∈ N0.

b) Non-attainability : Suppose q ∈ [1/2, 1). Then the assumption (A4’) holds for g(ℓ)(q) with
s = 1− q ∈ (0, 1/2], and therefore the weight ρ(ℓ)(q) is non-attainable by Proposition 3.20.

57



Conversely, for q ∈ (0, 1/2), the Hardy inequality of order ℓ (3.9), with the weight ρ(ℓ)(q), holds as
equality for u = g(ℓ)(q), while both sides are finite. This stems from the fact that

(−∆)ℓ/2g(ℓ)n (q) ∼ 1

n1−q
, n→ ∞,

hence g(ℓ)(q) ∈ Dℓ. Proposition 3.19 then implies, that the identity (3.12) holds for u = g(ℓ)(q), while
all the remainders on the right-hand side vanish. Moreover, with the aid of (3.43) and (3.25), we find
that

ρ(ℓ)n (q) =

(
ℓ− 1 + q

2ℓ

)
X

(ℓ)
2ℓ

n2ℓ
+O

(
1

n2ℓ+1

)
=

(q)ℓ(1− q)ℓ
n2ℓ

+O
(

1

n2ℓ+1

)
, (3.48)

as n→ ∞, hence

ρ(ℓ)n (q)(g(ℓ)n (q))2 ∼ 1

n2−2q

for all n ≥ ℓ, from which we infer that
√
ρ(ℓ)(q)g(ℓ)(q) ∈ Hℓ for all q ∈ (0, 1/2).

c) Optimality near infinity : Theorem 3.11 asserts optimality near infinity of ρ(ℓ)(1/2). The non-
optimality near infinity of ρ(ℓ)(q) for q ̸= 1/2 is a consequence of the fact that the constant by the
leading term in (3.48) is smaller than for q = 1/2, i.e.

(q)ℓ(1− q)ℓ <

(
1

2

)2

ℓ

for q ̸= 1/2. This can be seen from the definition of the Pochhammer symbol and from the inequality
(q + k)(1− q + k) < (k + 1/2)2 once again. Consequently, for q ̸= 1/2 fixed, we find ε > 0 sufficiently
small, such that

(1 + ε)ρ(ℓ)n (q) ≤ ρ(ℓ)n

for all n sufficiently large. Then, for all M ∈ N sufficiently large and any u ∈ HM
0 , we have

∞∑
n=⌈ℓ/2⌉

∣∣∣(−∆)ℓ/2un

∣∣∣2 ≥ ∞∑
n=M

ρ(ℓ)n |un|2 ≥ (1 + ε)
∞∑

n=M

ρ(ℓ)n (q) |un|2 ,

contradicting (3.10).

3.3.2 Countable sets of Hardy weights of higher order

Recall that the concrete parameter sequence g(ℓ) defined by (3.19) meets all the assumptions of The-
orems 3.6, 3.8, and 3.10 for all ℓ ∈ N. In fact, any family of parameter sequences with this property
gives rise to a countably infinite set of new optimal discrete Hardy weights of order ℓ. In the next
statement, g[ℓ] stands for any family of parameter sequences with explicitly designated dependence on
the integer ℓ.

Proposition 3.23. Suppose that the sequences g[ℓ] fulfill the assumptions (A1), (A2), and (A3) for
all ℓ ∈ N. Then for any k ∈ N0, the sequence ρ[ℓ,k], given by

ρ[ℓ,k]n :=
(−∆)ℓdivkg

[ℓ+k]
n

divkg
[ℓ+k]
n

for all n ≥ ℓ, is a discrete Hardy weight of order ℓ. If, in addition, g[ℓ] satisfy the assumption (A4’)
for fixed s ∈ (0, 1) and all ℓ ∈ N, then the weight ρ[ℓ,k] is critical if s ∈ [1/2, 1), optimal near infinity if
s = 1/2, and non-attainable if g[ℓ] meet the assumption (A5) and s ∈ (0, 1/2].
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Proof. We will prove both claims of Proposition 3.23 separately.
a) First, we show that if the sequences g[ℓ+1] fulfill all the assumptions (A1), (A2), and (A3) with

ℓ + 1, then the sequences divg[ℓ+1] also meet these assumptions, but with ℓ. By induction, we find
that, for all k ∈ N0, the sequences divkg[ℓ+k] also satisfy the assumptions (A1), (A2), and (A3), hence
Theorem 3.8 implies that ρ[ℓ,k] are discrete Hardy weights of order ℓ for all k ∈ N0.

Suppose ℓ ∈ N. Evidently, the assumption (A1) for g[ℓ+1] (with ℓ + 1) implies that divg[ℓ+1] also
satisfies the assumption (A1) (with ℓ). Analogously, inequalities of assumption (A2) for g[ℓ+1] include
the respective inequalities of (A2) for divg[ℓ+1].

Moreover, the assumption (A2) for g[ℓ+1] with k = 1, yields inequalities

(−∆)ℓdivg[ℓ+1]
n ≥ 0 for all n ≥ ℓ+ 1. (3.49)

In order to deduce it also for n = ℓ, and hence to check non-strict inequalities in the assumption (A3)
for divg[ℓ+1], we need to apply (A3) to g[ℓ+1], which can be written as the inequality

−∇(−∆)ℓdivg[ℓ+1]
n > 0

for all n ≥ ℓ+ 1. It follows that, for all n ≥ ℓ+ 1, we have

(−∆)ℓdivg
[ℓ+1]
n−1 > (−∆)ℓdivg[ℓ+1]

n , (3.50)

which, together with (3.49), implies that the inequality (3.49) holds also with n = ℓ. To complete part
a) of this proof, we must show that the inequalities in (3.49) are strict for all n ≥ ℓ, and therefore that
divg[ℓ+1] meets the assumption (A3). Indeed, from (3.50), we infer that if there exists n0 ≥ ℓ, such
that (−∆)ℓdivg

[ℓ+1]
n0 = 0, then for all n > n0, we have (−∆)ℓdivg

[ℓ+1]
n < 0 contradicting (3.49).

b) It is easy to see that, if g[ℓ+1] admits the expansion (A4’) with ℓ+1, α0 ̸= 0, and s ∈ (0, 1), then
divg[ℓ+1] fulfils (A4’) with the same s and α0 replaced by (ℓ+1− s)α0 ̸= 0. In order to finish the proof
of the second part of Proposition 3.23, it suffices to show that if g[ℓ+1] meets also the assumption (A5),
then the sequence divg[ℓ+1] satisfies (A5) too. The rest readily follows by induction and Proposition
3.20.

Indeed, if ℓ = 1, then the assumption (A5) (with ℓ = 1) is trivially true for divg[ℓ+1]. Furthermore,
for ℓ ≥ 2, the assumption (A2) applied to g[ℓ+1] with k = 2 yields

(−∆)ℓ−1div2g[ℓ+1]
n ≥ 0 (3.51)

for all n ≥ ℓ. In order to show that inequalities (3.51) are actually strict, we proceed analogously
as in part a) of this proof. Suppose that there exists n0 ≥ ℓ such that (−∆)ℓ−1div2g

[ℓ+1]
n0 = 0. The

assumption (A5) imposed on g[ℓ+1] tells us that

(−∆)ℓ−1div2g[ℓ+1]
n < (−∆)ℓ−1div2g

[ℓ+1]
n−1

for all n ≥ ℓ+ 1, hence (−∆)ℓ−1div2g
[ℓ+1]
n < 0 for all n > n0, contradicting (3.51).

Proposition 3.23 is evidently applicable for the parameter-dependent sequences (3.45). The fol-
lowing extension of Proposition 3.21 yields a countable set of Hardy weights of any order for any
q ∈ (0, 1). Since the proof of attainability and non-optimality near infinity in Proposition 3.21 relies
on the asymptotic behaviour of g(ℓ)(q) and ρ(ℓ)(q), defined by (3.45) and (3.46) respectively, these
properties can be verified in an analogous fashion, and therefore the proof will be omitted.

Proposition 3.24. Let ℓ ∈ N. For any k ∈ N0 and q ∈ (0, 1), the sequence ρ(ℓ,k)(q), given by

ρ(ℓ,k)n (q) :=
(−∆)ℓdivkg

(ℓ+k)
n (q)

divkg
(ℓ+k)
n (q)
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for all n ≥ ℓ, where g(m)(q) is defined by (3.45) for any m ∈ N, is a discrete Hardy weight of order ℓ.
Furthermore, ρ(ℓ,k)(q) is critical if q ∈ (0, 1/2], non-attainable if and only if q ∈ [1/2, 1) and optimal
near infinity if and only if q = 1/2.

Remark 3.25. Evidently, Proposition 3.24 asserts Proposition 3.21, for any ℓ ∈ N, since ρ(ℓ,0)(q) =
ρ(ℓ)(q). Furthermore, for q = 1/2, we obtain a countable set of explicit optimal discrete Hardy weights
of any order. For example, for ℓ = 2 and k = 1, we have the optimal discrete Rellich weight

ρ(2,1)n (1/2) =
(−∆)2divg

(3)
n

divg
(3)
n

=
9

16n4
+

63

40n5
+

9357

3200n6
+O

(
1

n7

)
.

Notice that the coefficient 63/40 by the second term improves upon the analogous term 3/2 in the
expansion of ρ(2), see claim (iii) of Remark 3.15. On the other hand, for the weight ρ(2,1)(1/2) it does
not hold, that all the terms in the expansion are non-negative (unlike for ρ(2)).

3.3.3 Multi-parameter families of optimal discrete Hardy weights of higher order

For ℓ ≥ 2, more optimal weights generalizing (3.20) in (ℓ−1)-parameters can be found. The basic idea
for their detection is reminiscent of the one developed in [10], where the authors related Hardy weights
(ℓ = 1) to positive harmonic functions. For ℓ ≥ 2, we seek poly-harmonic functions, i.e. solutions of
the equation

(−∆)ℓhn = 0

for all n ≥ ℓ, satisfying the boundary condition h0 = · · · = hℓ−1 = 0, and then we take g :=
√
h,

provided that h ≥ 0, as a candidate for the parameter sequence. Up to a multiplicative constant, a
general solution h of this problem can be expressed as

hn =
ℓ−1∏
j=0

(n− j)
ℓ−1∏
k=1

(n− αk), (3.52)

where α1, . . . , αℓ−1 ∈ R are parameters.
Notice, that if αk = k, then

√
h coincides with the sequence g(ℓ) given by (3.19). However, for

general α1, . . . , αℓ−1, we find it difficult to formulate further restrictions, directly in terms of the
parameters, so that the sequence g =

√
h would satisfy the assumptions (A1), (A2), and (A3). Never-

theless, the verification of claims a) and b) from Section 3.2.5 for the sequence g(ℓ) and perturbation
arguments imply that the set of admissible values of α1, . . . , αℓ−1 contains other solutions than the one
corresponding to the particular parameter sequence g(ℓ).

As far as the optimality is concerned, notice that the assumption (A4) always holds for g =
√
h,

with h given by (3.52), by the generalized binomial theorem. Therefore, the resulting candidate weight
ρ(g) = (−∆)ℓg/g is critical and optimal near infinity. The non-attainability of ρ(g) is again a question
of additional restrictions of the parameters α1, . . . , αℓ−1 guaranteeing the assumption (A5).

We illustrate the situation in the still relatively simple case ℓ = 2 when our candidate is

gn(α) :=
√
n(n− 1)(n− α).

Assumption (A1) requires gn+1(α) > gn(α) > 0 for all n ≥ 2. The positivity of gn(α) for all n ≥ 2
induces the restriction α < 2 which is also sufficient for the monotonicity gn+1(α) > gn(α) for all
n ≥ 2. Assumptions (A5) (hence also (A2)) and (A3) amount to inequalities 0 < (−∆)divgn(α) <
(−∆)divgn−1(α) for all n ≥ 2, from which only the second inequality introduces new restrictions on α
since

(−∆)divgn(α) =
3

8n3/2
+O

(
1

n5/2

)
, as n→ ∞.
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Thus, the final range for α < 2 is determined by the requirement (−∆)2gn(α) > 0 for all n ≥ 2.
However, it seems difficult to find the solution analytically. Nevertheless, numerically we get the
approximate range 0.847 < α < 1.307 (a suitable CAS such as Wolfram Mathematica is capable of
expressing the lower and upper bounds in radicals). Thus, we conclude that for any α approximately
within this range, the weight

ρ(2)(α) :=
(−∆)2g(α)

g(α)

is an optimal Rellich weight by Theorem 3.10.
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Conclusion

In this thesis, we first studied the classical discrete Hardy inequality (1) in Chapter 1, summarizing its
existing proofs and the historical circumstances leading to its discovery. In Chapter 2, we looked into
the recent development of the improved optimal discrete Hardy inequality (2.1). Finally, in Chapter
3, we tackled the contemporary problem of optimal discrete Hardy inequalities of higher order. As our
main result, we discovered the optimal Hardy weight (3.20) of an arbitrary order ℓ ∈ N. For ℓ = 1, we
rediscovered the optimal Hardy weight (2.2) of Keller–Pinchover–Pogorzelski. For ℓ = 2, we improved
upon the best known Rellich weights due to Gerhat–Krejčiřík–Štampach (3.4) and Huang–Ye (3.6).
For ℓ ≥ 3, we proved the conjecture (3.5) by Gerhat–Krejčiřík–Štampach and improved the classical
discrete weights (3.2) due to Huang–Ye to optimal weights. Moreover, by means of Theorems 3.6, 3.8,
and 3.10, we provided a way of detecting and constructing additional optimal weights. Some examples
were given in Section 3.3.

Nevertheless, it is also important to mention some related questions and possible open problems.
For example, as we mentioned in Remark 3.7, there are numerous unanswered questions concerning
weighted discrete Hardy-type inequalities such as the Knopp inequality, which was studied in [19], or
the Hardy inequality with shifting weight investigated in [13]. As of our knowledge, optimal versions
of these inequalities remain an unsolved mystery, for which identity (3.14) might be a potent tool.
Lastly, optimal Hardy weights (of any order) in a general ℓp setting are yet to be found, see [12] and
[13] for some improvements in this regard, however it seems that the approach from Chapter 3 might
not be viable.
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