
Czech Technical University in Prague

Faculty of Information Technology

Department of Theoretical Computer Science

Bachelor’s thesis

Robots for Algorithmic Trading on Foreign

Exchange Market

Juraj Korček

Supervisor: Ing. Frantǐsek Štampach

12th May 2015

Acknowledgements

I would like to thank my supervisor Frantǐsek Štampach, who has been patient
enough, for assisting me with the thesis. I would also like to thank Jakub Žitný
for helping with measurement execution and Juraj Juráška and Martin Klepáč
for their review and general advice.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as school work under
the provisions of Article 60(1) of the Act.

In Prague on 12th May 2015 .

Czech Technical University in Prague
Faculty of Information Technology
c© 2015 Juraj Korček. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Korček, Juraj. Robots for Algorithmic Trading on Foreign Exchange Market.
Bachelor’s thesis. Czech Technical University in Prague, Faculty of Informa-
tion Technology, 2015.

Abstrakt

Táto bakalárska práca slúži ako úvod do sveta algoritmického obchodovania
pre l’ud́ı, ktoŕı majú predošlé skúsenosti s programovańım. Pre uvedenie
čitatel’a do problematiky obchodovania na burze menových párov bakalár-
ska práca popisuje proces výberu makléra z pohl’adu kritických parametrov
ovplyvňujúcich obchodovanie. Ďalej, práca sa zaoberá tvorbou obchodovaćıch
robotov uvedeńım najdôležiteǰśıch vlastnost́ı programovacieho jazyka MQL4,
analýzou existujúcich, verejne dostupných robotov a implementáciou vlast-
ného robota, ktorý môže slúžit’ ako vzor pre d’aľśı vývoj. Naviac, práca
sa snaž́ı ohodnotit’ výkon obchodovaćıch robotov s použit́ım trénerovania a
testovania modelu, pričom samotné testovanie modelu nie je súčast’ou exis-
tujúceho riešenia MetaTrader4.

Kl’účové slová burza menových párov, forex, algoritmické obchodovanie,
učenie modelu, Expert Advisor, MetaTrader4, MQL4, výber makléra

Abstract

This thesis serves as an introduction into the world of algorithmic trading
for people who possess some programming experience. In order to extend the
reader’s knowledge in terms of foreign exchnage trading, the thesis thoroughly

ix

describes the process of broker selection with focus on the most important
trade-affecting parameters. Furthermore, the thesis discusses a proper cre-
ation of trading robots by introducing the most important features of MQL4
programming language, by analyzing publicly available robots and implement-
ing a new, well-designed robot which may act as a template for further robot
development. Additionally, the thesis shows how to evaluate performance of
the trading robots using model training and testing, which is not implemented
in the state-of-the-art MetaTrader4 platform.

Keywords foreign exchange, forex, algorithmic trading, model learning, Ex-
pert Advisor, MetaTrader4, MQL4, broker selection

x

Contents

Introduction 1

1 State-of-the-Art 3
1.1 Existing Implementations . 3
1.2 Brokers Analysis and Comparison 4
1.3 Broker Fees Bypass . 26

2 Analysis 29
2.1 Choice of Trading Platform . 29
2.2 Choice of Broker . 30
2.3 Simple Programming Guide . 31
2.4 Analysis of Publicly Available Robots 48

3 Implementation 65
3.1 Trade Opening Criterion . 65
3.2 Trade Closing Criterion . 67
3.3 Trade Size Determination . 68
3.4 Physical Implementation . 68

4 Evaluation 81
4.1 Historical Data Acquisition . 81
4.2 Model Training . 84
4.3 Model Testing . 89
4.4 Results . 91

Conclusion 97

Bibliography 99

A Acronyms 101

xi

B Contents of enclosed CD 103

C OrdersBook Class 105

D MarketProperties Class 107

E Dukascopy SA vs. Atom8 111

xii

List of Figures

1.1 Forex broker types . 5
1.2 Market opening hours . 16

2.1 Trading system structure . 32
2.2 Program structure . 38
2.3 Array timeseries . 39
2.4 Input parameter settings . 40

3.1 My Expert Advisor trading style explanation 66

4.1 History center . 82
4.2 Geedo training parameters . 86
4.3 Geedo one month training results 86
4.4 Geedo one week training results . 86
4.5 Genie training parameters . 87
4.6 Genie one month training results 87
4.7 Genie one week training results . 87
4.8 My Expert Advisor training parameters 88
4.9 My Expert Advisor one month training results 88
4.10 My Expert Advisor one week training results 89
4.11 Geedo testing parameters . 90
4.12 Genie testing parameters . 91
4.13 My Expert Advisor testing parameters 92
4.14 Percentage of profitable trades over five weeks testing 92
4.15 Top 5% training configurations testing results 93

E.1 USD/EUR open price rate on 17th April 2015. 112
E.2 USD/EUR high price rate on 17th April 2015. 113
E.3 USD/EUR low price rate on 17th April 2015. 114
E.4 USD/EUR close price rate on 17th April 2015. 115

xiii

List of Tables

1.1 Initial financial standing . 10
1.2 Financial standing after currency appreciation 10
1.3 Financial standing after currency depreciation 11
1.4 Financial standing after closing the position 11
1.5 Financial standing after ignoring margin call 11
1.6 Final financial standing . 11

2.1 Possible values of the cmd parameter of the OrderSend() function 42

4.1 Best configurations based on the weighted average discounted. . . 95
4.2 Best configurations based on the average. 96

xv

Introduction

Forex or forex trading, once a playing field solely for huge investment com-
panies, has become available to masses recently. This was allowed to happen
mainly due to the emergence of trading platforms such as MetaTrader, which
are publicly available to be downloaded on the Internet free of charge and are
thus accessible to everybody.

Initially, forex trading consisted of people sitting in front of computers all
day long watching progress of the market. However, people are quite prone
to weariness, which results in difficulties when it comes to maintaining their
focus. What is more, people are usually likely to suffer from psychological
swings such as fear, greed or hope which might result in abandonment of their
strategy. These reasons caused an increased demand for robots performing
algorithmic trading.

Robots behave according to the set strategy on all possible occasions while
processing numerous market indicators simultaneously. Furthermore, unlike
human beings, robots never lose focus. Another advantage of the robots is
the fact that they render the requirement of watching the market all day long
obsolete. As a result, people who are unable to trade in a full-time manner
are granted the opportunity to actively participate in forex trade as well.
Consequently, forex has become a hobby or the second source of income for a
considerable number of people.

The objective of this thesis is to describe the whole process of entering
forex trade – starting from the decision of selecting the right broker, through
the choice of trading platform, continuing with an analysis and comparison of
some publicly available robots and strategies they implement, ending with a
basic guide to design and implement completely new strategies.

More specifically, the thesis will show process to choose suitable broker.
A comparison of trading platforms will follow. Then the focus will turn to
the basics of robot programming. Next, two publicly available robots will be
examined and compared performance-wise to the newly designed robot built
to show the construction process.

1

Chapter 1

State-of-the-Art

1.1 Existing Implementations

While numerous implementations exist, their authors are not particularly will-
ing to share them entirely. In other words, even if it occurs that the author
shares his robot, it is typically just the software itself with a description of
the input parameters. Therefore, the user does not really see how the robot
works on the inside and his only option is to test various combinations of
the input parameters until plausible results are obtained. This is generally a
time-consuming and, in case of testing using real accounts, also an expensive
process without any promise of success.

One can assume that if somebody develops a really successful robot, he
is unlikely to share it freely. One of the reasons supporting this claim is the
fact that the development of a profitable algorithm is a very time-consuming
process. Another reason is the fact that a person or, for that matter, a com-
pany develops the robot with the vision of profit. The desired profit can be
achieved either by investing your money using the robot or selling the robot
itself. While the former requires some initial capital, the latter needs none and
thus might be more appealing to developers. The outcome of the previous hy-
potheses is that the lower the price, the lower the quality of the algorithm.
While it does not apply strictly to every robot, I believe that this is generally
a valid principle, unless the author is some kind of an altruist. On the other
hand, an expensive robot does not necessarily mean that it is of a high quality
as several scams have already been reported.

With regard to large financial institutions, their expensive-to-develop high-
quality algorithms grant them a competitive advantage and thus these al-
gorithms are considered to be a trade secret. Therefore, they are neither
shared free of charge nor for money.

The outcome of the previous statements is that one should not really expect
a reasonably profitable robot to be obtainable on the Internet. Hence, in case
one wants to invest in the foreign exchange, the following two optimal solutions

3

1. State-of-the-Art

exist:

1. To invest using a financial institution – in this case the person is not
really able to affect a fashion in which the company invests. On the
other hand, it is usually quite likely that the investment will bear some
amount of profit. One should also consider the fact that financial insti-
tutions generate much higher profit from the person’s investment than
the person himself does.

2. To choose a broker, a trading platform and to develop a robot from
scratch – an interesting option for a person who has sufficient time,
determination, willingness to learn and who possess some financial re-
serves. In order to build a robot (also known as an Expert Advisor),
one needs to learn and understand thoroughly the way how forex works.
Once this has been accomplished, one should have enough insight to de-
termine how to invest and after all whether to invest or not. To put it
differently, the result will be either a profitable robot or a rational de-
cision not to invest in the foreign exchange trade at all. One should also
take into account the volatility1 of the foreign exchange and consider the
invested money to be already lost. It is not advisable to invest money
that is intended for basic needs such as living or food.

1.2 Brokers Analysis and Comparison

The Internet offers a wide variety of foreign exchange market brokers differ-
ing in many parameters such as type, account size, number of currency pairs
offered for trading, minimum opening deposit, fees, maximum leverage, demo
account availability, trustworthiness and customer service. Among all avail-
able options it is considerably difficult for a newcomer to the trading world to
find a broker that fits the trader’s requirements most. This is caused by the
fact that different brokers are suitable for different trading techniques. How-
ever, in the beginning it is quite challenging for a person to determine which
trading technique suits him the best.

In the following chapters I will discuss each parameter in terms of import-
ance and amount of attention one should pay to it.

1.2.1 Broker Type

Essentially, forex brokers can be divided into two main categories with re-
spect to what their forex quotations are based on – Dealing Desk broker and

1 “Volatility is the degree to which the price of currency tends to fluctuate within a certain
period of time. For instance, in an active global trading day (24 hours), the euro/dollar
exchange rate may change its value 18,000 times ‘flying’ 100-200 pips in a matter of seconds
if the market gets wind of a significant event.” [20, p. 10]

4

1.2. Brokers Analysis and Comparison

Figure 1.1: Forex broker types [6]

No Dealing Desk broker. Additionally, the No Dealing Desk broker has two
subcategories – Straight Through Processing and Electronic Communication
Network. See Figure 1.1.

Dealing Desk Broker

The Dealing Desk (DD) broker is also known as “market maker” because he
literally creates the market for his clients by taking the other side of a client’s
trade. This has a few implications. As the broker himself controls the price,
he is in a fairly low risk. Therefore, he can offer fixed spreads2. A fixed spread
is advantageous for the trader as it is easier to calculate the stop-loss3 and the
break-even points4 in advance. On the other hand, the broker’s rates might
not necessarily reflect the real interbank rates.

The DD broker makes money when the client loses the trade. Another
source of his income stems from the spread.

No Dealing Desk Broker

As the name suggests, the orders in this case do not pass through the dealing
desk. In other words, the broker does not take the other side of the client’s
trade. The No Dealing Desk (NDD) broker serves as a connecting element
between the trader and the other side of the transaction.

2 Spread is characterized as the difference between the bid and the ask price. [2, p. 20]
3 “Stop Loss Order – Order type whereby an open position is automatically liquidated

at a specific price. Often used to minimize exposure to losses if the market moves against
an investor’s position.” [2, p. 50]

4 “Breakeven Point (BEP) – In general, the point at which gains equal losses.” [15]

5

1. State-of-the-Art

Straight Through Processing NDD Broker

The Straight Through Processing (STP) means that the transactions are fully
computerized and are immediately processed basically without any broker
intervention by the other side of the transaction, which is, in case of the STP
NDD broker, the broker’s liquidity providers.

Unlike the spread of a DD broker, the spread with a NDD STP broker is
usually variable. Consequently, it is considerably more difficult to calculate
the exact stop-loss and break-even point. On the other hand, an advantage
in comparison with a DD broker is the fact that the ask and the bid prices
correlate with the real rates on the intrabank market.

The NDD STP broker does not make money from the difference between
the bid and the ask price, as he just forwards the trades to his liquidity pro-
vider. The source of the income for the NDD STP broker is a small markup5

on the spread.
In past, the usual way of trading was using a T + N trading system.

As everything was processed manually at that time, it usually took several
days between the transaction date (the day the trade was initiated) and the
settlement date (the date the deal was completed). The N denominated the
maximum number of days for the trade to be completed. For example, T + 3
means that the deal at hand must be processed three days after the transaction
initiation at the latest. So, in case the transaction is initiated on Monday, it
must be settled by Thursday, supposing there are no public holidays in that
time.

However, prices at the market are very volatile and thus can change con-
siderably during a three-day period. Immediate processing offered by the STP
significantly lowers the processing time and thus lowers the settlement risk –
a risk that one of the parties will not be able to pay, resulting in the trade not
being settled.

Electronic Communication Network NDD Broker

The Electronic Communication Network (ECN) broker is the most transparent
broker type. The other side of the transaction is not taken by the broker’s
liquidity providers, as it is in the case of the STP NDD broker, but it is taken
by different entities such as banks, hedge funds, mutual funds, other brokers
or traders. However, bypassing a liquidity provider has several consequences.

A negative consequence is that without a liquidity provider it is almost
impossible to trade small amounts of currency, since huge institutions usually
trade in a large amount of currency and are not willing to take an offer for
selling or buying small amounts, such as $100. Consequently, the ECN brokers

5 “Markup – The difference between an investment’s lowest current offering price among
dealers and the higher price a dealer charges a customer.” [15]

6

1.2. Brokers Analysis and Comparison

demand substantially high deposits when creating an account. The minimum
deposit with a usual ECN broker is between $50 000 and $100 000

The positive consequence is that the trading is very transparent because
one knows who is taking the other side of transaction. Rates are naturally the
same as at the market because trading is taking place directly at the market.
Due to the ECN NDD transparent nature, information regarding the depth of
market6 is also available, which is crucial for several trading strategies.

The spreads of the ECN broker are always variable. The ECN broker
makes profit from commissions7 charged at every trade. Some ECN brokers
might also add a tiny markup to the spread.

Hybrid Broker

Many brokers who claim that they operate as a NDD STP broker actually
represent a hybrid type between a DD and an NDD STP. They behave as a
DD broker when the trader makes a losing trade. In other words, they take
the other side of the trade when it is the losing trade for the trader, i.e. it is a
winning trade for the broker. On the other hand, in case the trader executes
a winning trade, brokers route it to the intrabank market (particularly their
liquidity providers), which corresponds to a usual NDD STP broker behavior.

Analogically, the profit source of this broker type is the same as the DD
broker’s profit source when the trader loses his trade – meaning that the broker
takes the other side of the trade and wins. When the trader wins his trade,
the transaction is directed to the broker’s liquidity providers and the broker
himself makes money on a little spread markup.

1.2.2 Account Type

Foreign exchange market accounts are divided into three main categories based
on the size of the minimum amount traded. The basic and, at the same time,
the oldest type is a standard account, where the minimum allowed amount
of currency is one lot. One lot is equivalent to 100 000 units of currency. So,
for instance, when the trader wants to buy $100 000 , he purchases one lot of
USD. Similarly, if the trader wants to buy 10 000 000 e, he purchases 100 lots
of e.

However, 100 000 units of currency, which represents the smallest tradable
amount, is a considerable amount of money for an average person. Therefore,
in order to make the forex trading accessible to more people, mini accounts
have been introduced. For traders with mini accounts the lowest tradable

6 “Depth of Market (DOM) – A measure of the number of open buy and sell orders for a
security or currency at different prices. The depth of market measure provides an indication
of the liquidity and depth for that security or currency. The higher the number of buy and
sell orders at each price, the higher the depth of the market.” [15]

7 “Commission – A transaction fee charged by a broker.” [2, p. 44]

7

1. State-of-the-Art

volume of currency is a mini-lot. A mini-lot is the equivalent of 10 000 units
of currency.

Eventually, micro accounts have become available. Micro accounts allow
traders to trade with a micro-lot as the smallest amount of currency. A micro-
lot is the equivalent of 1000 currency units. $1000 or 1000 e is still considered
to be a substantial amount of money for an average person, however, with the
help of leverage (see chapter 1.2.3) it is possible to trade 1000 units with as
little as 10 real units in the trader’s account. This has made trading on the
foreign exchange market accessible to a wider public.

Recently, some brokers allowed trading with an amount of currency as
small as one unit. It means, for instance, that a trader can open a position8

with only $1. There are not many brokers that offer this option. One of
them is Oanda. However, it is not without limitations. In case of Oanda
it is possible to trade such small amounts only manually, as the algorithmic
software trading is not compatible with such uncommon lot sizes.

1.2.3 Maximum Leverage

Maximum leverage values range from 1:50 to 1:400 with the most usual rate
being 1:100. Leverage is a tool to leverage the trader’s capital. The higher the
leverage, the higher the “virtual” capital available. However, it is considered
to be a double-edged sword, as approaching the maximum leverage results
in a higher potential profit, but also a higher possible loss. The following
example will attempt to explain this concept.

A trader has $5000 in his forex account with a leverage of 1:200. This
means he can open a trading position worth up to $1 000 000 (5000 ∗ 200). If
USD appreciates by 1%, the trader will make $10 000 with the investment of
only $5000 , thus he will make a 200% profit.

However, a USD depreciation by 0.5% is sufficient for the trader to empty
his account completely. To put it into perspective, the depreciation of USD
by 0.5% in the EUR/USD currency pair means a change in exchange rate
from 1.1477 to 1.1534. Considering that an average daily volatility for the
currency pair EUR/USD in the last three months (as of January 2015) was
approximately 90 pips9 – if the rate changes at least six times the average of
the average daily volatility, the trader can lose all his account (6 × 0.009 <
0.0057 = 1.1534− 1.1477).

8 “Position – The amount of a security either owned or borrowed by an individual or by
a dealer. In other words, it’s a trade an investor currently holds open.” [15]

9 “Price Interest point (Pip) is the term used in currency market to represent the smallest
price increment in a currency. It is often referred to as ticks or points in the market. In
EUR/USD, a movement from .9018 to .9019 is one pip. In USD/JPY, a movement from
128.50 to 128.51 is one pip.” [2, p. 19]

8

1.2. Brokers Analysis and Comparison

1.2.4 Margin, Margin Call and Stopout Level

If USD in the previous example depreciated by more than 0.5%, not only
would it wipe out the trader’s account, but also cause the account to go into
negative numbers, meaning it would cause a loss to the broker as well. This
loss would have to be exacted from the trader afterwards, which would be
a very lengthy process.

To avoid this kind of losses the broker has a set of useful tools at his
disposal. Although these tools are mainly to avoid the broker’s losses, they
also help the trader, as they notify him when his equity is dropping below
appropriate levels.

Margin is the amount of money that serves as a kind of a “safety cushion”.
It can be considered as a deposit for opening the position. Additionally, it can
be viewed as a limit for the trader’s equity when an action is necessary.

The size of the margin is calculated as a fraction of the value of the po-
sition that is about to be opened. Usually, this fraction is derived from the
maximum leverage value. So, if the maximum leverage is 1:100, the margin
is 1% (1/100) of the value of the opened position. Analogically, in case the
maximum leverage is 1:200, then the margin is 0.5% (1/200), and similarly
with any value of the maximum leverage.

In order to be able to define the margin call, the stopout level and to
provide an example we need to define further terms, such as balance, equity,
used margin, available margin and margin level.

Balance is the amount of money in the account before opening a position.
It changes only after the closing of a position, a withdrawal or depositing of
funds.

Equity is the actual amount of money including the profits or the losses
from the current open positions. The equity equals the balance if no positions
are open.

Used margin is defined as the sum of the margins from all open positions.
Available margin is calculated as the difference between the equity and the

used margin. It represents an amount of equity which is available for opening
new positions or for covering the losses from the already open positions.

Margin level is defined as the equity over the used margin as percentage. It
is a proportional representation of the equity available to be used for opening
new positions or for covering the losses from the open positions.

Margin call is a warning issued by the broker for the trader informing that
the trader’s equity is at the same level as the used margin or lower. In other
words, a margin call is issued when the margin level is equal or lower than
100%. It means that the trader is not allowed to open new positions, as he
has no available margin to do so. The trader has three different options how
to cope with a margin call. He can:

• put additional funds into the account. However, the bank transfer usu-

9

1. State-of-the-Art

Table 1.1: Initial financial standing

Balance Equity Used
margin

Available
margin

Margin
level

$6000 $6000 $4000 $2000 150%

Table 1.2: Financial standing after currency appreciation

Balance Equity Used
margin

Available
margin

Margin
level

$6000 $6200 $4000 $2200 155%

ally has a certain processing time. This measure does not have an im-
mediate effect and in case it is not executed in a timely manner, it will
be ineffective.

• close the position to avoid additional loses

• ignore the warning with a hope that the market direction will change

Stopout level is a margin level limit at which the broker automatically
closes the trader’s open positions in order to avoid additional losses on the
trader’s side as well as possible losses on the broker’s side. It can range from
about 25% to 100%. If the stopout level is set to 100% it equals margin call.
To put it differently, as long as stopout level is set to 100%, all the trader’s
positions will be closed immediately at the margin call.

The following example will attempt to elaborate on the above-mentioned
concepts.

A trader opens a position worth $200 000 using his account with an actual
balance of $6000 , a maximum leverage of 1:50 and a stopout level of 50%.
The margin in this case will be $4000 (200 000×1/50). The trader’s financial
standing in the beginning is depicted in Table 1.1.

Let’s say that the currency the trader had bought appreciated by 0.1%.
Now, his position is worth $200 200 (200 000×1.001). The updated trader’s
financial standing is displayed in Table 1.2.

As the trader still has an available margin, he is allowed to open addi-
tional positions. Now, the trader’s currency rapidly depreciates by 1.1%. His
position is now worth $198 000 (200 200×(1 − 0.011)). The trader’s financial
standing is portrayed in Table 1.3.

At this point, the trader has no available margin and therefore he is not
allowed to open new positions. Moreover, the broker issues a margin call. If
the broker’s reaction to the margin call is the decision to close his position,
his financial standing after the trade will correspond to Table 1.4. The trader
loses $2000 in this trade.

10

1.2. Brokers Analysis and Comparison

Table 1.3: Financial standing after currency depreciation

Balance Equity Used
margin

Available
margin

Margin
level

$6000 $4000 $4000 $0 100%

Table 1.4: Financial standing after closing the position

Balance Equity Used
margin

Available
margin

Margin
level

$4000 $4000 $0 $4000 N/A

Table 1.5: Financial standing after ignoring margin call

Balance Equity Used
margin

Available
margin

Margin
level

$6000 $2000 $4000 – $2000 50%

Assuming that the trader decides to ignore the margin call and the cur-
rency he had bought depreciates by another 1%, the value of his position
reaches $196 000 (198 000×(1 − 0.01)) and the current financial standing is
displayed in Table 1.5.

At this time the trader’s equity is only 50% of his used margin. As the
broker’s stopout level is 50%, he automatically closes the trader’s position.
The final financial standing of the trader is depicted in Table 1.6. The trader
loses $4000 in this trade.

To sum it up, the size of the margin and the stopout level are among the
important factors that the trader should consider when choosing his broker.
While in most cases the margin is correlated to the leverage level, some brokers
offer different margins for different currency pairs regardless of the leverage.
As a result, it is not recommended to ignore this parameter. As for the stopout
level, if no statement exists about it on the broker’s website, it is expected that
it equals 100% (margin call). A margin call is usually not the only notification.
Many brokers issue several additional notifications when the margin level is
approaching the stopout limit.

Table 1.6: Final financial standing

Balance Equity Used
margin

Available
margin

Margin
level

$2000 $2000 $0 $2000 N/A

11

1. State-of-the-Art

1.2.5 Loss-limiting Mechanisms for the Trader

While in the previous chapter the broker’s mechanisms for limiting the loss
were discussed, now the mechanisms available to the trader will be ana-
lyzed. The loss-limiting mechanism for the trader based on choosing a suitable
strategy or on abiding to some rules will not be discussed, as they are solely
in the hands of the trader and do not influence the choice of the broker. The
main focus will be aimed at the technical mechanisms offered by the broker.

The two significantly widespread tools are stop-loss and trailing stop.
While the stop-loss is supported by all brokers, the trailing stop support is
slightly lagging behind with some brokers (such as eToro).

The stop-loss is a very simple mechanism. The trader decides at which
exchange rate his losses are too great to bear. If the exchange rate reaches
this limit, the position is automatically closed. This is useful for traders who
are not able to watch the market all day long. Thanks to the stop-loss this
kind of traders will not lose all the capital in case of a steep market change in
their absence.

The trailing stop works similarly to stop-loss. However, in case of the
trailing stop the trader does not select the exact exchange rate, but a difference
in pips, price or percentage instead. The advantage of the trailing stop is that
it does not only protect against a loss, but it secures a profit as well. It
is because the difference required for closing the position is calculated from
the highest (or the lowest, depending on the position type) price since the
introduction of the order. The following example will attempt to describe
these concepts.

Trader A opens a EUR/USD long position10 at 1.1362 and sets the stop-
loss at 1.1342. At the exactly same time, trader B opens a EUR/USD long
position at 1.1362 and sets the trailing stop at 20 pips (which corresponds to
a decrease of 0.002 points).

Scenario 1: the exchange rate drops to 1.1310. However, the stop-loss of
trader A was triggered at 1.1342, so his position was closed at this rate and
thus his losses were minimized. Similarly, the position of trader B was closed
after dropping by 20 pips (or 0.002 points), i.e. at the EUR/USD rate 1.1342
(1.1362− 0.002). In this scenario, the result is exactly the same regardless of
the mechanism being used.

Scenario 2: the exchange rate first rises to 1.1391 and then drops to 1.1310.
For trader A nothing has changed. The stop-loss was triggered at 1.1342, his
position was closed and the result is the same as in Scenario 1. However, for
trader B the result is very different in this case, as he is using the trailing
stop, which is triggered at the set difference from the peak. The peak in this
scenario is 1.1391, so the stop was triggered and his position was closed at
rate 1.1371 (1.1391− 0.002). Trader B ended much better off than trader A.

10 Long Position – An investment position that benefits from an increase in market price.
When the base currency in the pair is bought, the position is said to be long. [2, p. 48]

12

1.2. Brokers Analysis and Comparison

In fact, trader B made a profit of 0.0009 per unit. It is thanks to the stop
level being automatically adjusted when the market is moving in a profitable
direction, hence the name trailing stop.

These two orders are quite common. However, many more exist. It is
advisable to search through all options, find those that might suit the trader’s
needs and choose a broker based on this criterion if possible.

1.2.6 Minimum Opening Deposit

Minimum opening deposits range from $1 to $100 000. Usually, higher deposit
levels are required by the brokers focused on corporate or institutional traders.
Also, the deposits required by ECN brokers are approaching $100 000 because
with an ECN broker the traders access the intrabank market where huge
volumes of currency are traded, so it is not particularly feasible to trade small
amounts.

1.2.7 Fees

For the broker, as for any privately owned company, the goal is a profit. One
of the ways the broker is able to make money is by charging a fee. There are
several types of fees the trader should be familiar with. Some of them depend
on the broker type (DD, NDD STP, NDD ECN), others are more generic.

Spread

Although spread is not a fee itself, it can be considered a kind of a hidden
fee. A spread is the difference between the ask and the bid price. Normally, it
is decided automatically by the market. However, it is not the case with the
Dealing Desk (DD) brokers (also known as Market Makers), as they are taking
the other side of the transaction. Thus, they are creating the market and so
deciding the amount of spread. In this way they are capable of increasing
their profits and therefore decreasing the profits of the traders.

An example – if the ask price for the currency pair EUR/USD is 1.12089
and the bid price is 1.12039, then the spread has a value of 0.0005 (1.12089−
1.12039) or 5 pips.

Markup on Spread

Putting a markup on a spread is a usual practice of the STP brokers and
occasionally of the ECN brokers. The name exactly explains the operation.
The broker takes the spread given to him by his liquidity provider (in case of
STP) or the market (in case of ECN) and adds a small markup to it. It can
vary from fractions of a pip (i.e. a change less than 0.0001 in one unit price for
the EUR/USD pair) to several pips (a change by 0.0001 or more in one unit
price for the EUR/USD pair). An example follows to describe this concept.

13

1. State-of-the-Art

Let us assume that the broker receives an ask price of 1.12089 and a
bid price of 1.12039 for the currency pair EUR/USD from his liquidity pro-
vider. Assume that the broker’s policy is to put a one-pip markup on both
the ask and the bid price. Therefore, what the trader sees is the ask price
at 1.12099 and the bid price at 1.12029. The trader decides to buy 100 000 e.
At the ask price of 1.12099 he has to pay the broker $112 099. The broker
takes this amount and buys 100 000 e from his liquidity provider at the ask
price of 1.12089, thus paying him $121 089. In the end, the trader pays
$121 099 and gets his 100 000e, the liquidity provider receives $121 089 and
the broker earns $10 (121 099−121 089).

Any prospective trader should check with the broker what is the amount
of markup that is put on top of the spread because the higher the markup,
the harder it is for the trader to make a profit. However, not all brokers are
willing to admit putting a markup on top of the spread. Therefore, one should
trade with trustworthy brokers only. More on the topic of trustworthiness will
be discussed in section 1.2.17.

Commission

Commission is a measure commonly employed by the ECN brokers. It is
a small fee charged at the time of opening and closing of a position. It is
typically set as a certain amount of dollars per one traded lot. Mostly, it
fluctuates around $5 per one traded lot, i.e. $10 round trip ($5 for the position
opening and $5 for the position closing). Occasionally, some brokers set the
commission as a fixed value regardless of the traded amount.

An example – the trader using an ECN broker who charges a $5 commission
(one-way) buys $10 000 which is 0.1 of a lot (one lot being 100 000 currency
units). As a $5 commission is charged per one lot traded, the trader is charged
$0.5 (10 000 /100 000× 5). Then USD appreciates and the trader’s position is
now worth $10 010. The trader decides to close his position. He is charged
again, this time $0.5005 (10 010/100 000×5). To sum up, the trader has made
$8.9995 (10 010− 10 000− 0.5− 0.5005) and the broker has made $1.0005 (0.5
+ 0.5005).

Naturally, the broker charges a commission for the loss trades as well.

Rollover/Swap Charges

Rollover or swap charges are not fees in its essence, as the trader can both
lose and profit on it. However, it is important to take them into account when
building a strategy.

Swap charges are also known as overnight charges, as they are charged
on all positions that stay open overnight when the exchange is closed. They
are calculated from the difference between the annual interest rates of the
currencies in the currency pair. The reason for this is that in order to open

14

1.2. Brokers Analysis and Comparison

the position, the trader is effectively borrowing one currency to buy another.
For instance, if the trader wants to buy USD by trading the currency pair
EUR/USD, he first borrows the necessary amount of EUR in order to buy the
desired amount of USD. Naturally, an interest is paid on the borrowed money
and collected on the invested money. Thus, in the above example the trader
would pay an interest on the amount of EUR borrowed and at the same time
he would collect an interest on the amount of USD owned. A rollover charge is
the difference between the paid and the collected interest. In case the interest
rate on the currency owned is higher than the interest rate on the currency
borrowed, the trader collects a profit, otherwise he pays some loss.

The interest rate for every currency is set by the corresponding national
bank. However, these interest rates are not exactly those which are taken
into calculations. They are only the target interest rates that banks plan to
meet within a certain fiscal period. Therefore, the actual interest rates used
in the calculation of the rollover charges might differ to some extent. As these
interest rates are annual, they need to be normalized to a one-day period.

The liquidity providers of the brokers usually apply a certain spread to the
interest rates. Additionally, the brokers often put a certain markup either on
top of the interest rate or on top of the final rollover amount. So, the rollover
charges can be considered another source of income for the broker.

The trader does not need to calculate the rollover charges himself, as the
broker does this for him automatically. A rollover charge is usually normalized
per 100 000 units (i.e. one lot) and shown as an amount in the account currency
– the currency that is put on the account when depositing. However, it is not
always the case. Therefore, it is necessary to check how the broker calculates
this figure. For example, some brokers show the rollover charge normalized to
10 000 units of the account currency instead of 100 000, while others show the
charge as a number of pips of the traded currency pair. Yet again, an example
will follow to clarify the above concepts.

The trader is trading the currency pair GBP/USD. The interest rate on
GBP is 0.5% and 0.25% on USD. The exchange rate is 1.508. The trade’s
account currency is AUD, the GBP/AUD rate is 0.5272 and the AUD/USD
rate is 1.258.

The trader decides to buy £200 000 That means he needs to borrow
$301 600 (200 000×1.508). He decides to leave his position open overnight.
Therefore, the rollover charges are applied when the exchange market closes.
For the sake of example simplicity, let’s assume that the exchange rate did
not move or that it was at the same level as when the position was opened.
As the trader is holding GBP and the interest rate on GBP is higher than on
USD, the trader will collect profit. Ideally, the amount of the earned money
will be £1.3699 ((0.005− 0.0025)/365× 200 000).

The rollover charges per one unit of GBP/USD are 0.000006849 ((0.005−
0.0025)/365), or 0.06849 pips. As it was mentioned before, the broker might
display the rollover charge as an amount of the account currency per lot. In

15

1. State-of-the-Art

this case it would be 1.299 AUD ((0.005− 0.0025)/365× 100 000×1/0.5272).
However, in reality, because of the broker’s markup the trader’s profit will be
slightly lower.

In the same scenario, but the other way around, when the trader buys
$301 600 (worth £200 000), all the charges will be the same, only negative
because the trader bought USD, which has a lower interest rate than the
borrowed GBP:

• –£1.3699 ((0.0025− 0.005)/365× 301 600×1.508−1)

• –0.000006849 ((0.0025 − 0.005)/365) or –0.06849 pips per one unit of
GBP/USD

• –0.8616 AUD ((0.0025−0.005)/365×100 000×1.258) per one lot of USD,
which is –1.299 AUD (−− 0.8616× 1.508) per one lot of GBP

However, in reality, because of the broker’s markup the trader’s loss will be
slightly higher.

It is important to note that because of the interest rate, the spread and
the markup it might occur that (most often with currency pairs in which both
currencies have a similar interest rate) the rollover charge, when both buying
and selling, will be negative.

Another interesting thing is that on Wednesday the rollover charge is
charged three times. The reason for this is the fact that the interests are
calculated even for weekend days, but the foreign exchange trading does not
take place on weekends, so it is necessary to compensate this. The same logic
applies to banking holidays.

The forex exchange market is open without interruption from Sunday
21:00 GMT (Sydney exchange opening on Monday 8:00 AEDT – in summer)
or 22:00 GMT (Sydney exchange opening on Monday 8:00 AEST – in winter)
till Friday 21:00 GMT (New York exchange closing at 17:00 EDT – in sum-
mer) or 22:00 GMT (New York exchange closing at 17:00 EST – in winter).
Each broker decides the time when he charges the rollover charges. Usually, it
is in the evening, but the exact time may differ among brokers. For example,
if the rollover time set by the broker is 17:00, then the position open at 16:59
will be subject to charges that day while the position open at 17:01 will not.

Figure 1.2: Market opening hours GMT+2 [14]

16

1.2. Brokers Analysis and Comparison

Withdrawal and Deposit

Brokers sometimes charge fees for a withdrawal and a deposit. These fees
vary between different brokers and between different withdrawal and deposit
options. Some options might be free of charge, while others not. Also, some
brokers differentiate between local and international transactions – the inter-
national ones are charged with higher fees. It is also important to take into
account that you might be charged twice for a single transaction – once by
the broker and once by your financial institution.

Inactivity Fees

Most of the brokers charge inactivity fees when the trader does not open any
position or does not execute any trade for a certain period of time. This period
usually ranges between 30 and 90 days and the fee varies from $20 to $50.

Other Fees

Other fees may apply. It is recommended to study the broker’s website and
the conditions thoroughly so that the trader becomes informed about all his
rights and duties. It is useful for minimizing unexpected losses or for detecting
fraud.

1.2.8 Swapfree Account Availability

As the name suggests, a swapfree account is an account free of swap/rollover
fees. Swap/rollover fees are described in detail in chapter 1.2.7. Swapfree
accounts are also known as Muslim accounts or Sharia Law accounts, as they
were primarily created to make trading available to Muslims, whose religion
forbids profiting on interest rates. These accounts are offered only by a subset
of brokers.

To register this kind of account, more often than not, the brokers require
a piece of evidence that the trader is a Muslim. However, there are several
ways how a non-Muslim trader can obtain this type of account:

• Choosing a broker that does not require the trader to be a Muslim in
order to open the account. However, there are very few such brokers, so
this makes the list of available brokers considerably shorter.

• Faking a piece of evidence of being a Muslim, as the broker is usually
incapable of verifying the proof.

• In case the broker is located in one of the European Union member coun-
tries, the trader can contact the broker with a reference to the Charter
of Fundamental Rights of the EU regarding religious discrimination [11,
Ch. 21] and threaten him with a lawsuit. The broker will probably give

17

1. State-of-the-Art

in and allow the trader to create the swapfree account regardless of his
religion. Otherwise, the only way is to sue the broker.

Some brokers offer a swapfree account with exactly the same trading con-
ditions as with a standard account. On the other hand, some brokers charge
an additional fixed fee – usually a certain amount of USD per open position
per night.

The brokers offering swapfree accounts often include in their Terms & Con-
ditions that they reserve the right to close a swapfree account or transform it
to a standard one without previous notice and without giving reasons for such
an action. If the swapfree account is a part of the trader’s long-term strategy,
he should definitely examine the Terms & Conditions thoroughly.

As the trader can also profit from the swap/rollover charges, opening a
swapfree account is not always the best solution. Whether the swapfree ac-
count is beneficial to the trader or not depends solely on his strategy.

1.2.9 Withdrawal and Deposit

As brokers offer a wide variety of deposit and withdrawal options, it is ne-
cessary to check if the broker supports those suitable for the trader. Another
important thing to note is the fact that the deposit options offered by the
broker might differ from the withdrawal options. Specifically, the withdrawal
options are those that the trader should pay more attention to. Some brokers
intentionally make the withdrawal more difficult, for instance by applying lim-
its to the minimum amount of withdrawn money at once or by offering fewer
withdrawal options compared to the deposit options.

This is a list of different withdrawal and deposit options:

• Bank wire

• Credit/debit card

• Electronic payment (PayPal, Skrill, WebMoney, etc.)

• Western Union

• Digital currency (Bitcoin)

Brokers usually apply certain deposit and withdrawal fees. These are de-
scribed in chapter 1.2.7.

1.2.10 Number of Offered Currency Pairs

Forex brokers offer a wide range of currency pairs. The most traded currencies
are called Major currencies. Currencies belonging into this group are USD,
EUR, CHF, JPY, GBP, CAD, AUD and NZD. By combining these currencies

18

1.2. Brokers Analysis and Comparison

with USD seven Major currency pairs are obtained (EUR/USD, USD/JPY,
GBP/USD, USD/CHF, AUD/USD, USD/CAD, NZD/USD).

Additionally, a combination of the Major currencies, except for USD,
creates twenty-one Cross currency pairs (GBP/JPY, EUR/JPY, EUR/CHF
or EUR/GBP, to name a few).

The advantage of the Major currency pairs is a high level of liquidity. In
the forex market, liquidity pertains to a currency pair’s ability to be bought
and sold without causing a significant change in its exchange rate. A currency
pair is said to have a high level of liquidity when it is easily bought or sold and
there is a significant amount of trading activity for that pair [5]. Therefore,
brokers can offer lower spreads so it is easier to profit on this type of currency
pair.

Moreover, a combination of a Major currency with a non-Major currency,
such as CZK, RUB, HUF, NOK, SEK, HKD, belongs to a so-called group of
Exotic currency pairs. These currencies are usually traded neither very often
nor in sizeable volumes. It means a lower level of liquidity because it is more
difficult to execute a trade at a desired price. Therefore, brokers usually offer
wider spreads for these currency pairs. However, the Exotic currencies might
be more suitable than the Major currency pairs for some trading strategies.

A few brokers even offer combinations of two non-Major currencies, such
as NOK/SEK. These kind of combinations are very uncommon and do not
belong to any special group.

1.2.11 News Trading

News trading stands for trading during the time of significant economic an-
nouncements and therefore it is considered to be trading based on a funda-
mental analysis. The following list contains examples of such announcements:

• Interest rate decision

• Retail sales

• Inflation (consumer price or producer price)

• Unemployment

• Industrial production

• Business sentiment surveys

• Consumer confidence surveys

• Trade balance

• Manufacturing sector surveys

19

1. State-of-the-Art

Every country has some more or less regular time frames for such an-
nouncements.

However, not all brokers allow the news trading. Those who do not allow
the news trading usually freeze the market before the news announcement time
and unfreeze it afterwards, so that it is impossible to open or close positions
during that time. The reason for this is that during this time frame the market
volatility is noticeably high, which usually causes higher spreads and possible
significant slippage (see chapter 1.2.13). If the trader operates according to the
news trading strategy, he should definitely verify whether the broker supports
it or not.

1.2.12 Demo Account Availability

Demo accounts are priceless helpers for any novice trader who can try out dif-
ferent platforms, get accustomed to them, attempt different strategies, obtain
valuable experience also by making mistakes. Furthermore, one may easily
determine what type of trader he is, and all of that without spending a single
cent. Many professionals advise not to start trading on a live account unless
the trader is confident and profitable when trading on a demo account.

Basically, any decent broker should offer a demo account. If it is not the
case, the trader should consider this as a warning sign. These accounts are
for free. Some of them are time limited and their time range varies from two
weeks to one month, while others are unlimited. An important thing to check
is the extent to which the trading conditions for the demo accounts are the
same when compared to the live accounts, as“most demo trading platforms are
very similar to their live counterparts, but not exactly the same. There may
be a difference in speed of execution, slippage, and platform reliability”. [5]

1.2.13 Slippage

Slippage is an event when a market order is filled with price different from
the one requested. This usually happens when the market is highly volatile
or very illiquid. It can possibly have both a positive or a negative impact.

An example – the trader wants to trade the EUR/USD currency pair at
a current exchange rate of 1.1286. He decides to buy 100 000 e, which means
he needs to borrow and pay $112 860.

Scenario A: The market is highly volatile because of the news announce-
ment, slippage occurs and the trader’s order gets filled at 1.1276. As he is
buying the currency, the consequence is that he has to pay a smaller amount
of USD for the same amount of EUR. To be exact, he has to borrow and pay
only $112 760, which makes a difference of $100 (112 860 − 112 760). This is
called positive slippage because the trader’s order gets filled at a better price
than he required and thus the broker saves/makes money.

20

1.2. Brokers Analysis and Comparison

Scenario B: The market is highly volatile again, slippage occurs, however,
this time in the opposite direction. The trader’s buy order gets filled at 1.1296.
As he is buying the currency, the consequence is that he has to pay a larger
amount of USD for the same amount of EUR. He has to borrow and pay
$112 960 instead of the expected $112 860 , which makes a difference of –$100.
This is called negative slippage because the trader had to enter the market at
a worse price than he had expected. The consequence is a loss of profit that
the trader would have obtained had his order been filled at the right time at
the expected exchange rate.

It is important to note that slippage is a usual occurrence at the foreign
exchange market. However, it is usually so small that it goes unnoticed. An
exception is when the market is very volatile (for example due to news events).
In that case, considerable slippage may occur, possibly incurring significant
losses or profits.

Slippage is not impossible to fight. Examples of measures to limit the
effect of slippage is the use of Limit orders or Market Range orders:

• Limit order – basically a Market order (a usual buy or sell order) with
one difference. A Market order is always filled. However, because of
slippage it might be filled at a worse price than requested. On the other
hand, a Limit order is filled only in case the price is at least as good as
the requested price. Otherwise, the order is not filled and stays in the
waiting mode.

• Market Range order – similar to a Limit order. The difference is that,
using this limit, the trader can set a range/amount by which the actual
order price can be worse than the requested one. The greater the range,
the higher the chance that the order will get filled. If the order is not
filled, it is cancelled as a result, unlike the Limit order that goes back
to the waiting mode.

Slippage should work both ways. Sometimes it results in a loss, sometimes
in a profit. However, with some brokers the trader experiences only negative
slippage. This is very unlikely to happen naturally. This might imply a
dishonest behavior of the broker and it is better to avoid this kind of fraudulent
brokers. To find out whether your potential broker belongs to this group
or not, it is recommended to check the reviews and forums. The trader should
be aware that these problems will hardly arise on demo accounts, as demo
accounts tend to work with infinite liquidity.

1.2.14 Tax Reporting Support

This service is often overlooked by beginner traders. As the foreign exchange
market is worldwide, unregulated and decentralized market brokers do not
report trader’s activity to tax authorities in the trader’s country of residence.

21

1. State-of-the-Art

It is a responsibility of the trader himself and if ignored, the trader might
face tax evasion charges. Although brokers do not provide tax reports, all
of them provide a detailed transaction history based on which the trader is
able to create his tax report. However, the way how the transaction history
is provided differs among brokers and might require additional effort when
creating the tax report. Therefore, in the beginning of cooperation with a
broker it is recommended to check if the transaction history provided by the
broker meets the trader’s requirements.

1.2.15 Trading Platform Options

Generally, trading platforms can be divided into the following three groups:

• Web

• Desktop software

• Mobile application

Some platforms cover more than one of these groups. For instance, Meta-
Trader 4 is considered to be one of the most famous platforms. It is used by a
considerable number of brokers. It is available as both a desktop and a mobile
application. Its successor MetaTrader 5 has not become so widespread yet. In
some cases, brokers create their own proprietary platforms, such as Trading
Station by the FXCM broker, which is a solution designed for web, desktop
and mobile alike.

The main properties the trader should check when choosing his trading
platform are the following:

• Expert Advisors (EA) support – in case the trader intends to automat-
ize his trading using Expert Advisors (trading robots, algorithms), it is
necessary to verify that the designated platform supports them.

• Charting – platforms also differ in charting capabilities, thus they might
suit the trader’s needs differently.

• Chart Trading – some platforms offer chart trading which, apart from
the ability to open a trade directly from the chart, also imply a better
overview of different orders, such as the stop-loss or the trailing stop,
and the ability to see whether the market approaches triggering of these
orders or not. Chart Trading is usually fast and comfortable.

• News Feed access – forex trading platforms often provide access to high-
quality news feeds from professional forex market information sources
that might include Reuters, Associated Press, Bloomberg or Telerate [13].
This is particularly useful when the trader builds his strategy on the fun-
damental analysis.

22

1.2. Brokers Analysis and Comparison

1.2.16 Virtual Private Server Service

A virtual private server (VPS) is a remote server where the trader can run his
trading application. It has several advantages, such as:

• Reliability – most companies guarantee at least a 99.9% uptime. The
usage of a VPS reduces the risk of a power outage and a hardware failure.

• Connection speed – usually VPS providers offer a higher and more stable
connection speed than an average trader can achieve from his home.
While the VPS service is offered by many IT companies, it is sometimes
also offered by the brokers themselves (and hence the service is tailored
for the requirements of algorithmic trading). In case the brokers do
not outsource the VPS service and keep their VPS servers in a close
distance to the main servers used for executing trades, the latency will
be significantly lower as well. All of this can considerably reduce the
amount of slippage, which might be expensive at times.

The VPS might be a very useful service in case the trader utilizes Expert
Advisors for automatic trading. However, it is advantageous for traders who
prefer manual trading as well, as the connection speed point applies to them as
well. Additionally, the trader can connect to a VPS from anywhere regardless
of the operating system being used. This adds another level of flexibility even
to manual traders.

Not all brokers offer the VPS service and mostly not for all platforms.
While some brokers offer the VPS service for free, others might charge money.
For example, the FXCM broker offers the VPS service for trading using the
MateTrader 4 platform for free as long as the trader has at least 5000 currency
units in his account. In case his balance is lower, this particular broker charges
30 currency units per month for this service. FXCM does not offer the VPS
service for demo accounts.

1.2.17 Trustworthiness and Customer Service

There is a huge amount of brokers available. Some of them are more reliable
and trustworthy than others. It is not recommended to trust everybody with
your money who claims to be trustworthy. Unsurprisingly, all of the brokers
claim that they are trustworthy. The way how to, at least partially, confirm
this claim is to check whether the broker is registered with the regulatory
bodies. For performing this action it is necessary to know in which country
the broker is located, as every country has its own regulatory bodies.

The following list contains several countries along with their corresponding
regulatory bodies:

• United States: National Futures Association (NFA) and Commodity
Futures Trading Commission (CFTC) [18] [8]

23

1. State-of-the-Art

• United Kingdom: Financial Conduct Authority (FCA) and Pruden-
tial Regulation Authority (PRA) [12] [19]

• Australia: Australian Securities and Investment Commission (ASIC) [3]

• Switzerland: Swiss Federal Banking Commission (SFBC) [22]

• Germany: Bundesanstalt für Finanzdienstleistungsaufsicht (BaFIN) [7]

• France: Autorité des marchés financiers (AMF) [4]

• Czech Republic: Česká Národńı Banka (ČNB) [10]

Although the fact that a broker is registered with the corresponding regu-
latory body ensures some level of security, it does not guarantee that there will
be no problems with the broker. However, if a problem arises and the broker
refuses to solve it, the trader always has the option to turn to these regulatory
bodies and ask for help. In case a problem arises when dealing with a broker
that is not registered with a regulatory body and the broker refuses to solve
it, the trader has no option but to file a lawsuit against him. Therefore, it is
not advisable to trade with unregulated brokers.

Another thing to consider when determining the trustworthiness of a broker
is the customer service quality. Some brokers have an outstanding customer
service when the trader is opening his account or is trading using a demo ac-
count. However, once the broker persuades the trader and obtains his money
(after opening a live account), the quality of the customer service decreases
rapidly. Note that this is not always the case. It is nevertheless recommen-
ded to conduct some research on the selected broker before opening a live
account. Numerous reviews of brokers on different forums regarding the forex
may become a source of such research. However, these forums are sometimes
indirectly owned or sponsored by a broker. Therefore, it is necessary to search
several forums of this type. The more, the better.

1.2.18 Other Parameters

FIFO

FIFO stands for “First In, First Out”. It is a measure, introduced by the
National Futures Association (NFA) in 2009, that forces the trader to close
the oldest positions of a currency pair and unit size first before being able to
close a younger position of the same currency pair and unit size. This measure
has several consequences. Firstly, it makes hedging impossible. Additionally,
it renders several trading strategies useless. It is obvious that this measure
significantly restricts the trader’s options to make a profit. However, as the
NFA is the regulatory body of the USA, this measure is obligatory only to the
brokers located in the USA. With the non-US brokers it is recommended to

24

1.2. Brokers Analysis and Comparison

make sure that they do not enforce FIFO. Generally, it is better to avoid this
kind of brokers.

An example – the trader trades the EUR/USD currency pair. He decides
to buy 100 000 e. In order to secure its investment he decides to hedge his po-
sition, i.e. open the opposing position, in other words, buying $130 000 (given
the EUR/USD exchange rate is 1.3000). However, purchasing $130 000 means
selling 100 000 e. Because of FIFO, the trader is not allowed to do this, as
first he would have to sell 100 000 ehe bought when he opened the first pos-
ition. In other words, the trader would have to close his first position as the
first step. Therefore, hedging is impossible.

Hedging

Hedging is one of the strategies to limit the losses when the trader enters into
a trade with the intent of protecting an existing or anticipated position from
an unwanted move in the foreign currency exchange rates [15]. The simplest
hedge is the offsetting of one position with the opposite position within the
same currency pair. The outcome is that in case the exchange rate increases,
the trader gains on one position and loses on the other one. Similarly, when
the rate goes down the trader loses on one position and profits on the other
one. Therefore, if both positions are of the same size the trader does not incur
any losses (with the exception of commission and spread) nor profits.

Not all brokers allow hedging. Therefore, if hedging is a part of the trader’s
strategy, he should verify that his chosen broker supports it.

Scalping

Scalping is one of the most popular foreign exchange strategies. It is based on
executing many (up to a few hundred) fast trades per day. These trades are
usually open only several seconds (a few minutes at most). Basically, they are
closed as soon as the trade becomes profitable. Thus, the trader profits from
tiny fluctuations in price. These profits are usually small, however, as trader
executes tens to hundreds of such trades per day, the small profits add up and
by the end of the day they might amount to a significant profit.

However, some brokers forbid scalping. One possible reason for this might
be a slow execution time of a broker. By prohibiting scalping, the broker de-
fends himself against arbitrage. Another reason might be a misleading beha-
vior of brokers. Dealing Desk brokers (Market Makers) profit from the trader’s
losses and lose on the trader’s profits. The minimization of the trader’s profits
is the incentive behind the scalping ban introduced by some deceptive brokers.
It is generally advisable to avoid this kind of brokers.

25

1. State-of-the-Art

PAMM Account Availability

PAMM stands for Percentage Allocation Management Module or Percentage
Allocation Money Management. With a PAMM account, a person using it
should be called an investor instead of a trader, as he does not trade himself,
but he lets a chosen money manager offered by the forex broker to trade on
his behalf. The reason for the name is that a single money manager usually
has multiple different investors. He puts their money together into one pool.
Each investor owns a percentage of the pool, depending on the amount of the
invested funds. Eventually, the total profit or loss is split (after subtracting
the money manager’s charge in case of a profit) and credited or debited based
on the percentage.

The broker displays the information regarding the performance of each of
the money managers, their ratings and review so that the investor can make
an informed choice.

This type of account is suitable for people who do not have time to study
the foreign exchange trading, nevertheless, they would like to invest into it
and eventually profit from it.

1.3 Broker Fees Bypass

The best way to lower broker’s fees is by choosing a serious broker. A positive
sign is when the broker specializes mainly on institutional traders instead
of retail traders. These brokers are much more trustworthy. However, they
require sizeable initial deposits and offer only standard accounts. Usually,
with a larger trade size they charge lower commission (lower percentage).

The only real way to bypass broker’s fees, and probably the most reliable
way how to profit from the foreign exchange market trading, is to become a
broker. The broker registration is administered by a regulatory body of the
country where the broker resides (see chapter 1.2.17 for more details). For
instance, if a company chooses to become a broker in Czech Republic, it must
register at the Česká Národńı Banka (Czech National Bank).

In the USA a prospective broker is required to take the following steps: [1]

1. Registration of the company in a local or offshore jurisdiction.

2. Application for a Forex broker license at the U.S. Security and Exchange
Commission (SEC).

3. Opening a bank account within the jurisdiction to collect funds from
clients.

4. An application for receiving online payments if the broker is to accept
online funding.

26

1.3. Broker Fees Bypass

5. Preparation of legal documents, including dealing manuals and agree-
ments, anti-money-laundering policies, conflict of interest policies etc.

6. Pay registration fees and meet the minimum capital requirements for
opening a brokerage business (Broker-dealer applicants and registrants
must have and maintain the minimum net capital required by the Se-
curities and Exchange Commission Rule 15c3-1 and comply with the
SEC Rule 15c3-3 governing customer protection, reserves and custody
of securities).

7. Find liquidity partners, clearing company(s) that will clear the broker’s
trades. (A clearing company will look for the broker to deliver a certain
trading volume per month: e.g. a total amount of lots the broker’s
clients will be able to trade every month).

Every step will include a set of documents to be prepared as well as qual-
ifications to be passed. The package of requirements will depend on the juris-
diction where the broker chooses to register his company.

Registrants must be prepared to pass a background investigation, pass ex-
aminations on general securities principles and state securities laws (NASD
series 7, NASD series 63, 66). Among others, the following criteria are con-
sidered during registration application:

• Financial solvency

• Conviction of a crime

• Evidence of past inequitable or fraudulent business practices in the sale
of securities

27

Chapter 2

Analysis

The analysis, and later the implementation chapter, will be dedicated to the
process of a robot creation, starting with the basics of the MQL4 programming
language, finishing with the implementation of a new robot. A suitable trading
platform and broker will be designated in the following two subchapters.

2.1 Choice of Trading Platform

For a demonstration of how Expert Advisors (EAs) are programmed and used,
I chose MetaTrader 4 from MetaQuotes Software Corp. – currently the most
widespread platform for algorithmic trading among retail traders.

MetaQuotes Software Corp. has already released a successor of Meta-
Trader 4, named MetaTrader 5. There are a few advantages of MetaTrader 5,
such as improved charting options, a polished graphical user interface, addi-
tional market indicators, built-in forex calendar, etc. However, MetaTrader 5
has several disadvantages. It implements FIFO (see chapter 1.2.18) and thus
forbids hedging. Another inconvenience is the incompatibility with the Meta-
Trader 4 Expert Advisors and Market Indicators. However, huge a community
around MetaTrader 4 created numerous Expert Advisors and Market Indic-
ators over the years that are still commonly used. The fact that they are
incompatible with MetaTrader 5 slows down the migration process. While
converting the Expert Advisor from MQL4 to MQL5 is not a difficult task
for an average programmer, many traders are mere EA users/consumers and
are not able to reprogram them themselves. Because of the MetaTrader 4’s
popularity among traders, a great majority of brokers has stayed with this
platform. Therefore, choosing MetaTrader 4 gives the trader many more op-
tions when choosing a broker.

29

2. Analysis

2.2 Choice of Broker

In order to be able to test an EA on live data, it is necessary to select a broker.
For this purpose, I tried to search for a broker with the following parameters
in mind:

• MetaTrader 4 support

• ECN broker type

• Hedging allowed

• No FIFO

• Scalping allowed

• Preferably mini account

• Low stopout level

• Leverage of 1:100

• Trustworthy

• As many order types available as possible

On the other hand, I ignored the following parameters:

• News trading – it is a part of the fundamental analysis, but EAs use the
mathematical analysis.

• PAMM – the goal is to show the workings of automatic trading, so having
the option to invest money to a person who trades instead of us is not
required.

• VPS – VPS service is normally not offered for demo accounts. Therefore,
for our purposes it does not matter whether the broker offers it or not.

• Tax reporting – money that will be traded are virtual, which means no
taxes.

• Slippage – does not occur on demo accounts.

• Available currency pairs – the Major currency pairs will be sufficient for
our purposes.

• Withdrawal and deposit – no real currency is going to be deposited nor
withdrawn.

• Minimum deposit – no real currency is going to be deposited.

30

2.3. Simple Programming Guide

• Swapfree account – not really necessary. Swap fees are a usual part of
trading. Therefore, in order to show the effect of the swap fees on the
final balance, I decided to skip the swapfree account option.

Based on the required parameters I decided for the British Atom8 foreign
exchange broker. It supports MetaTrader 4, is of the ECN type, allows hedging
and scalping, does not enforce FIFO, offers a mini account, has a stopout level
of 50%, offers a leverage of 1:100 and is regulated by the British Financial
Conduct Authority. I was not able to find the list of available order types.
However, the basic ones will be sufficient in the beginning.

2.3 Simple Programming Guide

As was mentioned before, the best option to join the foreign exchange trade
is by creating your own trading algorithm. This requires basic knowledge
of programming as well as knowledge of different market indicators and the
market itself.

Basic structures used for the robot programming will be introduced in this
section. Additionally, the use of market signals will be elaborated.

Expert Advisors for MetaTrader 4 are programmed in the MQL4 program-
ming language, which is based on the C language. However, with the release of
build 600 on the 3rd February 2014, MQL4 received an update and it now sup-
ports many features of the C++ language, such as structures, classes, object
pointers, void type, this keyword, encapsulation and extensibility of types,
inheritance, polymorphism and typecasting. For more information regarding
changes in build 600, refer to [16, Ch. What’s New in MQL4]. In the following
sections only features specific for MQL4 will be discussed. Therefore, some
previous knowledge of C++ is required.

One of the C++ language features that are still not supported in build
600 are class templates. However, function templates work well. Also, the
pointers work in a slightly different way.

2.3.1 The Big Picture

Figure 2.1 depicts the entire trading system structure and the place of EAs in
it. [21, Ch. Introduction to MQL4 programming]

The dealing center is basically the broker server chosen by the trader. It
communicates with the rest of the market participants, sends the current mar-
ket state information to the client’s terminal and receives orders from it (the
green line in the picture). The communication with the market participants is
dependent on the Internet connection of the trader. A stable Internet connec-
tion is crucial for a timely order execution and for obtaining the most current
market information.

31

2. Analysis

Figure 2.1: Trading system structure

The client terminal includes an informational environment, a set of para-
meters with information about the market state and about the relations between
the trader and the dealing center. These parameters include the information
about the current prices, the limitations on the maximum and minimum order
size, the minimum distance of stop orders, the allowance and prohibition of
the automated trading, and many other useful parameters characterizing the
current state. The informational environment is updated when new ticks are
received by the terminal (corresponding to the green line in Figure 2.1). [21,
Ch. Introduction to MQL4 programming]

The embedded controls allow the trader to conduct a technical analysis
of the market and to execute manual trading management. The trader’s ac-
tions with the built-in trading management tools result in a formation of trade
orders, which are sent through the terminal to the dealing center. [21, Ch. In-
troduction to MQL4 programming]

The market analysis and trade management in MetaTrader 4 client ter-
minal is implemented with the help of programs [21, Ch. Introduction to
MQL4 programming]. Three types of programs can be created:

1. Custom Market Indicators – display controls aiding the market analysis

32

2.3. Simple Programming Guide

2. Expert Advisors – perform automated trading

3. Scripts – execute one-time actions

This guide will focus mainly on the implementation of Expert Advisors.
Figure 2.1 shows that the program has the same means of access to the cli-

ent terminal informational environment as the embedded controls for manual
trading (displayed as blue arrows). It can also form managing influences
(portayed as red arrows), passed to the client terminal. Programs of dif-
ferent types can be used simultaneously and they can exchange data. [21,
Ch. Introduction to MQL4 programming]

2.3.2 Data Types

The basic data types supported by MQL4 originally were int, double, bool,
string, color and datetime [21, Ch. Data types]. Since MetaTrader 4 build 600
the language provides support for the char, short, long, uchar, ushort, uint,
ulong and double data types [16, Ch. What’s New in MQL4]. Additionally,
as the creation of classes was added as well, it is posibble to define a custom
data type.

With the exception of color and datetime, all the above types correspond
to the C++ types of the same name. Consequently, only color and datetime
will be discussed:

1. color – the values of color constants and variables can be represented
as one of the three kinds: literals, integer representations and color
names [21, Ch. Data types]:

• Literal – the value of the color type represented as a literal consists
of three parts representing the numeric values of the intensity of
the three basic colors: red, green and blue (RGB). The value of
this kind starts with a ‘C’ and is quoted by single quotes.

The numeric values of the RGB intensity range from 0 to 255, and
they can be recorded both decimally and hexadecimally.

Examples: C‘128,128,128’ (gray), C‘0x00,0x00,0xFF’ (blue). [21,
Ch. Data types]

• Integer representation – recorded as a hexadecimal or a decimal
number. A hexadecimal number is displayed as 0xRRGGBB, where
RR is the value of red intensity, GG of green and BB of blue.
Decimal constants are not directly reflected in RGB. They represent
the decimal value of a hexadecimal integer representation.

Examples: 0xFFFFFF (white), 0x008000 (green). [21, Ch. Data
types]

33

2. Analysis

• Color name – last but not least, one can use predefined color names.
These include Yellow, Green, MediumTurquoise, Magenta, etc. For
the full list of predefined colors see section named Color names
at [21, Ch. Data types].

2. datetime – as the name suggests, this type is used to store both date
and time. Time and date constants “start with letter ‘D’ and are framed
in single quotes. It is also possible to use truncated values without date,
or without time, or just as an empty value. The range of values is from
January 1, 1970 through December 31, 2037. The values of constants
and variables of datetime type take 4 bytes in the computer memory. A
value represents the amount of seconds elapsed from 00:00 of January 1,
1970” [21, Ch. Data types].

As for arrays, “all arrays are static, i.e. are of static type even if at the
initialization this is not explicitly indicated. It means all arrays preserve their
values between calls of the function, in which the array is declared”[21, Ch. Ar-
rays]. The maximum array dimension number allowed by MQL4 is 4.

2.3.3 File Types and Locations

The following file types are specific to MetaTrader 4:

• mq4 – source code (of an EA, a script or a custom indicator)

• ex4 – compiled executable from mq4, can also be used as a library

• mqh – header (include) files (included with the #include directive, usu-
ally residing in DataFolder/MQL4/Include) used for including frequently
used blocks of source code

Files for EAs reside in the DataFolder/MQL4/Experts folder; custom mar-
ket indicators are located in the DataFolder/MQL4/Indicators folder, while
scripts can be found in DataFolder/MQL4/Scripts.

It is also possible to create or utilize libraries for reusing of pieces of code
(these are located in the DataFolder/MQL4/Libraries folder). However, it is
advisable to use include files instead, as they are linked into the final executable
at compile time, while libraries are linked and called at run-time.

The easiest way to locate MetaTrader’s DataFolder is by running the ter-
minal and selecting Open Data Folder from the File menu.

2.3.4 Creating a New Expert Advisor

For programming new EAs (or for that matter, scripts, custom indicators,
include files and libraries), the MetaEditor is used. It is located in the Meta-
Trader’s installation folder, next to the executable that runs the trading ter-
minal. If you have the MetaTrader terminal running, the easiest way to invoke

34

2.3. Simple Programming Guide

the MetaEditor is by selecting Tools/MetaQuotes Language Editor in the menu
or by pressing F4. Another option is to right-click the Expert Advisors in the
Navigator control and choose Create in MetaEditor.

In MetaEditor, clicking the New button in the toolbar runs a wizard for
creating a new file. From the available types choose Expert Advisor and pro-
ceed with the next steps of the wizard until finished. If you do not know
whether you need to add certain events or inputs during the wizard or not,
you can simply skip them. They can be added later directly into the code if
required.

Listing 2.1

1 //+−−−+
2 // | s k e l e t on .mq4 |
3 // | Juraj Korcek |
4 // | h t t p s ://www. mql5 . com |
5 //+−−−+
6 #property copyr ight ”Jura j Korcek ”
7 #property l i n k ”https : //www. mql5 . com”
8 #property ve r s i on ”1 .00 ”
9 #property s t r i c t

10 //−−− input parameters
11 input int sample input ;
12 //+−−−+
13 // | Expert i n i t i a l i z a t i o n func t i on |
14 //+−−−+
15 int OnInit ()
16 {
17 //−−−
18
19 //−−−
20 return (INIT SUCCEEDED) ;
21 }
22 //+−−−+
23 // | Expert d e i n i t i a l i z a t i o n func t i on |
24 //+−−−+
25 void OnDeinit (const int reason)
26 {
27 //−−−
28
29 }
30 //+−−−+
31 // | Expert t i c k func t i on |
32 //+−−−+
33 void OnTick ()
34 {
35 //−−−
36
37 }
38 //+−−−+

Listing 2.1 represents a basic structure (without additional events) of
an EA. A single input was added in the wizard in order to clarify where

35

2. Analysis

the program inputs should be defined.
This basic structure can already be compiled. In order to do so, click the

Compile button in the MetaEditor toolbar or press F7. During the compil-
ation, the source code of the EA (the mq4 file) is taken and checked that
it is syntactically and semantically correct, and compiled into an ex4 file
afterwards. Unless an error occurs, the EA will appear in the MetaTrader
terminal’s Navigator control in the Expert Advisors category.

In order to use this EA, it is necessary to drag-and-drop it to the required
currency pair window, double-click it, or right-click it and choose the Attach
to a chart option. The name of the currently running EA is shown in the
upper right-hand corner of the currency pair window. It has either a smiling
or a frownin face attached to its name. The face depicts whether the EA was
enabled for live trading or not. A frowning face means live trading is disabled
for this EA and therefore it can be used with historical data in the strategy
tester. A smiling face means live trading is allowed for this particular EA. To
enable or disable live trading either double-click the face next to the name of
the EA in the upper right-hand corner of the currency pair window or right-
click the chart and choose Expert Advisors/Properties. . . or press F7. When
the properties dialog opens, navigate to the Common tab and enable/disable
the Allow live trading checkbox.

All the errors and messages from the EA will be shown in the Journal tab
of the terminal control.

Even though the EA is now running (given it is attached to the chart,
live trading is allowed and the market is open), nothing is happening. This
is because we are running only the base EA structure which contains no in-
structions for trading so far.

In order to remove the EA from the currency pair window, right-click any
part of it and choose Expert Advisors/Remove from the menu.

2.3.5 Execution Order

The program code consists of several distinct parts. To be specific, the parts
are the head, the OnInit() special function (init() before the changes in build
600), the OnTick() special function (start() before build 600), the OnDeinit()
special function (deinit() before build 600) and any user-defined functions.
Additionally, both the special functions and the user-defined functions can
use the standard functions of MQL4.

1. Head – this part is always the first one. It consists of the definitions
of properties, the definition and initialization of input, the extern and
global variables as well as the inclusion of libraries and include files.
The variables generally need to be defined before they are used in the
program. To ensure this property, the variables are declared in the
beginning of the program.

36

2.3. Simple Programming Guide

2. OnInit() – a special function called at the initialization of a given EA.
That is, “after a financial instrument and/or chart timeframe is changed,
after a program is recompiled in MetaEditor, after input parameters
are changed from the setup window of an Expert Advisor or a custom
indicator. An Expert Advisor is also initialized after the account is
changed” [16, Ch. Client Terminal Events]. It is typically used for the
initialization of global variables.

3. OnTick() – this special function “is generated if there are new quotes.
In case when the OnTick() function for the previous quote is being pro-
cessed when a new quote is received, the new quote will be ignored by an
Expert Advisor, because the corresponding event will not enqueued” [16,
Ch. Client Terminal Events]. All the trade execution takes place here.

4. OnDeinit() – another special function. It is triggered when the current
EA is unloaded. It is also invoked “when the client terminal is closed,
when a chart is closed, right before the security and/or timeframe is
changed, at a successful program re-compilation, when input paramet-
ers are changed, and when account is changed. The deinitialization
reason can be obtained from the parameter, passed to the OnDeinit()
function. The OnDeinit() function run is restricted to 2.5 seconds. If
during this time the function hasn’t been completed, then it is forcibly
terminated” [16, Ch. Client Terminal Events]. It can be used for cleaning
allocated resources.

5. User-defined functions – a special category of functions that are defined
by the user himself. They can be called from the special functions, such
as OnInit(), OnTick() or OnDeinit(). They are helpful for making the
code more readable by separating functionality into separate blocks.

Another category of functions are the standard functions. These are built-
in functions, therefore, they cannot be redefined. They can only be called
from the program parts 2 to 5 (see the previous list). The overall program
structure and the invocation of respective parts is portrayed in Figure 2.2. [21,
Ch. Program structure]

2.3.6 Predefined Variables

The values of all predefined variables are automatically updated by a client ter-
minal at the moment when the special functions are started for execution. [21,
Ch. Predefined Variables and RefreshRates Function]

A list of simple predefined names of variables [21, Ch. Predefined Variables
and RefreshRates Function]:

• Ask – last known sell-price of a current security

37

2. Analysis

Figure 2.2: Program structure

• Bid – last known buy-price of a current security

• Bars – number of bars on a current chart

• Point – point size of a current security in quote currency

• Digits – number of digits after a decimal point in the price of a current
security

A list of predefined names of arrray timeseries [21, Ch. Predefined Variables
and RefreshRates Function]:

• Time – opening time of each bar on the current chart

• Open – opening price of each bar on the current chart

• Close – closing price of each bar on the current chart

• High – maximal price of each bar on the current chart

• Low – minimal price of each bar on the current chart

• Volume – tick volume of each bar on the current chart

38

2.3. Simple Programming Guide

Figure 2.3: Array timeseries

For array timeseries the item at the zeroth index represents the newest bar,
the one at the first index represents the second newest bar, etc. This is depicted
in Figure 2.3. [21, Ch. Predefined Variables and RefreshRates Function]

If a new tick comes during the execution of the current one, it will be
ignored. However, this means that the values of the predefined variables,
which the OnTick() function is working with, are outdated, which can result in
incorrectly defined trades which will eventually be rejected. To avoid this, the
RefreshRates() function can be used inside the OnTick() function to update
these variables to most up-to-date values.

These predefined variables store only the basic information regarding the
current state of the market. However, using MarketInfo() it is possible to
obtain all the information in the predefined variables and additional pieces of
information, such as swap type, minimum lot and others. MarketInfo() always
returns the current values without the need to call RefreshRates() first.

2.3.7 External and Input Variables

External and input variables are supposed to be defined in the head of the
program. They define the input variables of the program. The external vari-
ables are set with the extern keyword, while the input variables are set with
the input keyword. The only difference between these two is that the input
variables are read-only, i.e. they cannot be modified inside the EA, while it is
allowed to modify the external variables.

Both input variables can be changed from the user interface, particularly
in the program properties toolbar, see Figure 2.4. However, “it must be re-
membered that program properties toolbar can be opened only in the period
when the program (Expert Advisor or Indicator) is waiting for a new tick, i.e.
none of special functions is executed. During the program execution period
this [toolbar] cannot be opened.” [21, Ch. Types of Variables]

Also, it is important to remember that changing these variables from the
user interface restarts the EA. More specifically, “the client terminal starts
successively the execution of the special function deinit(), then the special
function init(), after that when a new tick comes – start(). At the execution

39

2. Analysis

Figure 2.4: Input parameter settings

of deinit() that finishes a program, external variables will have values resulted
from the previous session, i.e. those available before the EA settings [toolbar]
was opened. Before the execution of init() external variables will get values
setup by a user in the settings toolbar and at the execution of init() external
variables will have new values set by a user. Thus new values of external
variables become valid from the moment of a new session (init – start – deinit)
of an Expert Advisor that starts from the execution of init().” [21, Ch. Types
of Variables]

2.3.8 Global Variables with Respect to the Environment

This section discusses the use of the global variables. However, not the vari-
ables global to the program (i.e. those defined in the head of the program),
but the variables global to the whole trading environment. That means they
can be accessed by any EA, custom Market Indicator or script running in
the terminal. To avoid confusion, these global variables will be referred to as
environment variables throughout the rest of the thesis.

As distinct from other variables, environment variables can be not only
created from any program, but also deleted. Environment variable value is
stored on a hard disk and saved after a client terminal is closed. Once declared,
environment variable exists in the client terminal for 4 weeks from the moment
of the last call. If during this period none of programs called this variable, it
is deleted by the client terminal. Environment variables can be only of double
type. [21, Ch. GlobalVariables]

40

2.3. Simple Programming Guide

Basic methods for working with the environment variables are the follow-
ing:

• datetime GlobalVariableSet(string name, double value)

If a variable with the given name exists, it updates its value, otherwise it
creates a new environment variable with the given name and initializes
it to the desired value.

• double GlobalVariableGet(string name)

Retrieves the value of an environment variable.

• bool GlobalVariableDel(string name)

Tries to delete a environment variable and returns true in case of success,
false otherwise.

For more available methods for working with environment variables see [16,
Ch. Global Variables of the Client Terminal].

2.3.9 Trade Operations and Order Management

The basic functions used for managing trades and positions are the following:

• int OrderSend(string symbol, int cmd, double volume, double

price, int slippage, double stoploss, double takeprofit,

string comment=NULL, int magic=0, datetime expiration=0,

color arrow_color=clrNONE)

This function is used to open market and pending orders. Volume is set
in lots. Slippage, stopLoss and takeprofit are set in points. The magic
parameter is for setting the magic number. The expiration parameter
is used only for the pending orders. If the order is not executed before
this time, the order will be cancelled. The arrow color parameter sets
the color of the arrow on the chart. Cmd can be one of those in the
table 2.1.

It returns the number of the ticket as assigned by the server or -1 in case
of an order open failure. [16, Ch. OrderSend]

• bool OrderClose(int ticket, double lots, double price, int

slippage, color arrow_color)

A function used to close an order. The ticket parameter is a unigue
number by which the order to be closed is determined. Number of lots
does not have to be necessarily equal to the amount of lots of the open
order. If the amount is lower, the order will be closed only partially. The
rest of the parameters bahave in the same way as their equivalents in
the OrderSend() function. OrderClose() returns true in case of success,

41

2. Analysis

Table 2.1: Possible values of the cmd parameter of the OrderSend() function

OP BUY 0 Buy

OP SELL 1 Sell

OP BUYLIMIT 2 Pending order BUY LIMIT

OP SELLLIMIT 3 Pending order SELL LIMIT

OP BUYSTOP 4 Pending order BUY STOP

OP SELLSTOP 5 Pending order SELL STOP

false otherwise. An attempt to close a pending order will result in an
error, as pending orders can be deleted but not closed.

• bool OrderCloseBy(int ticket, int opposite, color arrow_-

color)

This function closes a market order by another one of the opposite type
(i.e. a buy order can be closed by a sell order or vice versa). [16, Ch. Or-
derCloseBy] In this way, the pips amounting to one spread can be saved.
The ticket parameter takes the number of one order, the opposite para-
meter takes the number of the second order. Returns true in case of
success, false otherwise. An attempt to close a pending order will result
in an error, as pending orders can be deleted but not closed.

• bool OrderDelete(int ticket, color arrow_color)

Deletes a pending order (determined by the ticket number) which has
not been executed yet. An attempt to delete a market order will result
in an error, as only the deletion of pending orders is allowed. Returns
true in case of success, false otherwise.

• bool OrderModify(int ticket, double price, double stoploss,

double takeprofit, datetime expiration, color arrow_color)

A function used to modify a previously open market or pending order.
Open price and expiration time can only be changed for pending orders.
Returns true in case of success, false otherwise. [16, Ch. OrderModify]

Only one request is possible in time per terminal. When trade request
is created by EA, no other trade request is allowed by any EA regardless of
the currency pair until the original request is either rejected by the terminal,
rejected by the server or accpeted by the server. [21, Ch. Common Way of
Making Trades]

When opening, modifying and deleting orders, it is necessary to pay at-
tention to the minimum and freeze distance in order to avoid errors.

The minimum distance is a parameter set by the broker and it sets the
minimum distance in points from current price for setting StopLoss, TakeProfit
and for opening pending positions. If the user tries to set StopLoss, TakeProfit

42

2.3. Simple Programming Guide

or to open pending positions closer to the current price than this distance, the
order will be rejected. To avoid this kind of errors it is recommended to
obtain the minimum distance value using the function MarketInfo(Symbol(),
MODE STOPLEVEL) and adjust StopLoss, TakeProfit and the open price
for opening pending positions accordingly. [21, Ch. Event Tracking Function]

Similarly, the freeze distance is set by the broker. Modifying an order is
forbidden if the current price is closer to the order than this distance. There-
fore, in that case the calls to functions OrderModify() and OrderDelete() will
result in an error. To avoid these errors it is recommended to check the
current value of the freeze distance and according to that to call or not to
call the aforementioned functions. The current value of the freeze distance is
obtained by calling MarketInfo(Symbol(), MODE FREEZELEVEL). [21, Ch.
Requirements and Limitations in Making Trades]

In order to access the information about a given order it is required to
load the order first by using the OrderSelect() function. The signature of
OrderSelect() is the following: bool OrderSelect(int index, int select,

int pool=MODE_TRADES).
The select paramter sets the selection mode, which can be either selec-

tion by position (SELECT BY POS) or selection by ticket (SELECT BY -
TICKET). Based on this flag, the index parameter should be set either to
index (with 0 being the newest trade in case of SELECT BY POS) or to
ticket number (in case of SELECT BY TICKET). The pool parameter defines
weather to search in the current open and pending orders (MODE TRADES)
or in the history – closed and cancelled orders (MODE HISTORY). If select is
set to SELECT BY TICKET, the pool parameter is ignored and the order is
searched by tick in both categories. Returns true on success, false otherwise.
Possible reasons for failure are, for example, a nonexistent ticket order or a
postion higher than number of orders. [16, Ch. OrderSelect]

Once an order was selected by using the OrderSelect() function, the trader
can obtain information about the order by subsequent calls to these func-
tions: OrderClosePrice(), OrderCloseTime(), OrderComment(), OrderCom-
mission(), OrderExpiration(), OrderLots(), OrderMagicNumber(), OrderOpen-
Price(), OrderOpenTime(), OrderPrint(), OrderProfit(), OrderStopLoss(), Or-
derSwap(), OrderSymbol(), OrderTakeProfit(), OrderTicket(), OrderType().
[16, Ch. OrderSelect]

2.3.10 Use of Market Indicators

Market indicators are a useful tool for aiding trading decisions. Many contem-
porary strategies consist of combined use of various indicators. MetaTrader4
has two categories of market indicators – technical and custom. [21, Ch. Usage
of Technical Indicators]

43

2. Analysis

Technical Indicators

The technical indicators are indicators that are built-in by default. Their
names usually start with an ‘i’. For example, iMA (Moving average), iSAR
(Parabolic Stop And Reverse System) or iStochastic (Stochastic Oscillator)
are very popular. For list of all available technical indicators see appendix.
[21, Ch. Usage of Technical Indicators]

Following is an example of the setup and use of iMA indicator.
This technical indicator calculates moving average. It has the following

signature:

Listing 2.2

1 double iMA(
2 s t r i n g symbol , // symbol
3 int timeframe , // timeframe
4 int ma period , // MA averag ing per iod
5 int ma shi f t , // MA s h i f t
6 int ma method , // averag ing method
7 int a p p l i e d p r i c e , // app l i e d p r i c e
8 int s h i f t // s h i f t
9) ;

Therefore, if the trader wants to obtain the value of the moving average at
the last bar for the current symbol and the current timeframe (the timeframe
of the window the EA is attached to) with the period set to 10 bars, no shift,
using the simple averaging method on the close price, the call will look like:
MA=iMA(NULL, 0, 10, 0,MODE_SMA,PRICE_CLOSE,0).

If NULL is passed as the symbol parameter, the function will automatically
use the symbol of the window in which the EA is running. It is equivalent to
passing Symbol() as the parameter. If 0 is passed to the timeframe parameter,
the function will automatically use the timeframe of the window the EA is
running in. It is equivalent to passing Period() as the parameter.

In this case the averaging method is the simple one (MODE SMA). Addi-
tional averaging methods are exponential (MODE EMA), smoothed (MODE -
SMMA) and linear-weighted (MODE LWMA). [16, Ch. Smoothing Methods]

The applied price can be one of seven possible values. The basic four val-
ues are close (PRICE CLOSE), open (PRICE OPEN), high (PRICE HIGH)
or low (PRICE LOW) price of the bar. The other three values are a combina-
tion of the previous four. Median price (PRICE MEDIAN) is (high + low)/2,
typical price (PRICE TYPICAL) is (high+ low+close)/3 while weighted price
(PRICE WEIGHTED) is (high+ low+2×close)/4. [16, Ch. Price Constants]

Every indicator has a different set of parameters. To see indicators other
than iMA refer to the official documentation.

44

2.3. Simple Programming Guide

Custom Indicators

The second group of the market indicators available in MetaTrader4, the cus-
tom indicators, is user-made. Custom indicators are called with iCustom
function, where one of its parameters is the name of the custom user-defined
indicator. [21, Ch. Usage of Technical Indicators]

The signature of the function is double iCustom(string symbol, int

timeframe, string name, ..., int mode, int shift), where name is the
name of the custom indicators and ... stands for all the parameters it requires.

The custom indicator must be compiled (.ex4 file) and located in the
directory Terminal data folder\MQL4\Indicators. [21, Ch. Combined Use of
Programs]

The execution of iCustom() does not require the attachment of a corres-
ponding indicator to a security window, as well as the call of iCustom() from
any application program does not result in the attachment of a corresponding
indicator to a security window. The attachment of a technical indicator to a
security window also does not lead to the call of iCustom() in any application
program. [21, Ch. Combined Use of Programs] The same rules apply to the
built-in technical parameters.

2.3.11 Permanent Run

One of the options is a program running permanently. That means that it
does not get activated with every new tick, but it runs in a loop until the EA
is closed. As new OnTick() events are not received in this case, it is necessary
to use the RefreshRates() function to update the predefined variables with the
most up-to-date values.

Example of such a function [21, Ch. General Characteristics of Complex
Programs]:

Listing 2.3

1 void OnTick () // Spec i a l f unc t i on Tick ()
2 {
3 // Unt i l user s t op s execu t ion o f the program
4 while (! IsStopped ())
5 {
6 RefreshRates () ; // Data renewal
7 // . . . The main code o f the program i s s p e c i f i e d here
8 Sleep (5) ; // Short pause
9 }

10 return ; // Contro l i s re turned to the termina l
11 }

2.3.12 External Library Usage

It is also possible to import and call functions from any Dynamic-link lib-
rary (DLL). This has a few advantages. A DLL can be written in any language

45

2. Analysis

and any editor. The programmer can therefore use tools that he is used to and
avoid using the incomplete MQL4 language and not so user-friendly MetaEd-
itor. All this can increase effectiveness of the EA programming significantly.
Additionally, in this way, multithreading, database connection and other useful
constructs or tools can be used to create advanced (for example machine learn-
ing) algorithms which would be impossible to program in MQL4/MetaEditor.

The idea is to initialize a library in the OnInit() function. Then, in the
OnTick() function send all the current account and market data and received
trading commands from it. In the OnDeinit() function the library will be
deinitialized.

As a DLL can run asynchronously, the response to the function calls can
be immediate. This means that the execution of the OnTick() function will
be very fast, which considerably increases the chance that only the absolute
minimum of ticks are missed.

An example of a DLL being called from the EA:

Listing 2.4

1 #import ”my expert . d l l ”
2 int ExpertReca lcu late (int wParam , int lParam) ;
3
4 void OnTick () // Spec i a l f unc t i on Tick ()
5 {
6 ExpertReca lcu late (2 , 1) ;
7 return ; // Contro l i s re turned to the termina l
8 }

2.3.13 Other Useful Functions

This section lists some of the most used standard functions with the explan-
ations of their functionality.

• double AccountFreeMargin()

Returns the free margin of the current account [16, Ch. AccountFree-
Margin]. It is usually used for determining the upper limit for the order
size.

• double AccountFreeMarginCheck(string symbol, int cmd,

double volume)

Returns the remaining free margin given that the order of the type cmd
is executed with the volume specified by the volume parameter. If lower
than 0, then the free margin is insufficient for executing this order. [16,
Ch. AccountFreeMarginCheck]

• int ArrayMaximum(const void& array[], int count=WHOLE_AR-

RAY, int start=0)

46

2.3. Simple Programming Guide

This function returns the index of the biggest element in a numeric array.
It can also be specified from which element to start searching and how
many elements to search. If these parameters are not specified, the whole
array is searched. [16, Ch. ArrayMaximum]

• int ArrayMinimum(const void& array[], int count=WHOLE_AR-

RAY, int start=0)

Works in the same way as the ArrayMaximum() function with the only
difference being the fact that it returns the index of the element with
the lowest value in the array.

• void Comment(argument, ...)

This function displays a message in the upper left corner of the chart
window. It can be used to communicate the status of the EA to the
user. It takes up to 64 arguments which are shown on separate lines.
The limit for the whole comment is 2045 symbols. [16, Ch. Comment]

• int GetLastError()

Returns the value of the last error that occurred during the execution of
a MQL4 program. After the call of the function, the last error value is
reset to 0. For the list of the trade server return codes see [16, Ch. Trade
Server Return Codes]. [16, Ch. GetLastError]

• double NormalizeDouble(double value, int digits)

Rounds a floating-point number (the value parameter) to the number of
decimal digits given by the digits parameter. [16, Ch. NormalizeDouble]

• int OrdersTotal()

Returns the number of the open market and pending orders. [16, Ch. Or-
dersTotal]

• int Period()

Returns the current chart timeframe as an integer which can be checked
against the periods from ENUM TIMEFRAMES (e.g. PERIOD M1=1,
PERIOD H1=60). For the list of all possible timeframes see [16, Ch. Chart
Timeframes]. It is often used as a parameter for the market indicator
functions. [16, Ch. Period]

• void Sleep(int milliseconds)

The function stops the execution of the program for the given amount
of milliseconds. It cannot be called from the custom market indicators.
The function call is ignored during a run in the Strategy Tester. [16,
Ch. Sleep]

47

2. Analysis

• string Symbol()

“This function returns a string value that corresponds with the name of
the symbol, in the window of which the EA or script is being executed.”
[16, Ch. Opening and Placing Orders]

2.3.14 Control

Once the trader attached a program (an EA or a custom indicator) to the
symbol window, the program makes some preparations and switches to the
tick-waiting mode. “As soon as a new tick comes, the program is launched
by the client terminal for execution. Then it makes all necessary operations
prescribed by its algorithm. Upon completion, the program passes the con-
trol to the client terminal, i.e. it switches to the tick-waiting mode.” [21,
Ch. Program Types]

“If a new tick comes when the program is being executed, this does not have
an effect on the program execution – the program continues being executed
according to its algorithm, and the program passes the control to the client
terminal only upon completion. This is why not all the ticks result in launching
of an EA or a custom indicator. Only those ticks that come in when the control
is in the client terminal and when the program is in the tick-waiting mode call
the EA or the custom indicator.” [21, Ch. Program Types]

“The new tick launches the program for execution. Thus, an EA or a
custom indicator can operate within a long period of time, being attached
to the symbol window and starting to run from time to time (as often as
a new tick comes in while the program is in the tick-waiting mode).” [21,
Ch. Program Types]

The difference between EAs and custom indicators is in the first-time exe-
cution. While in case of the EAs OnInit() is called immediately and OnTick()
is then called after receiving the first tick, in case of the market indicators
both OnInit() and OnTick() are launched immediately after attaching the
indicator to the chart window. [21, Ch. Program Types]

2.4 Analysis of Publicly Available Robots

Out of the EAs publicly available on the official website ([17]) I have chosen
Geedo and Genie for analysis. These robots have numerous input parameters
and therefore many different setup configurations to test and choose from.

2.4.1 Geedo

This algorithm has only two input parameters (TakeProfit S and TradeTime)
by default. However, by inspecting the head of the program many more para-
meters were found. In order to obtain more options to optimize the algorithm

48

2.4. Analysis of Publicly Available Robots

I made all of them available by adding the extern keyword before their declar-
ation. The additional parameters are TakeProfit L, StopLoss L, StopLoss S,
t1, t2, delta L, delta S, lot, Orders, MaxOpenTime, BigLotSize.

Head

In the head the algorithm contains the initialization of the parameters and the
declaration of the global variables that are used later in some of the functions.

Listing 2.5: Geedo input parameters

1 extern int TakeProf i t L = 39 ; // Take Pro f i t in po in t s
2 extern int StopLoss L = 147 ; // Stop Loss in po in t s
3 extern int TakeProf i t S = 15 ; // Take Pro f i t in po in t s
4 extern int StopLoss S = 6000 ; // Stop Loss in po in t s
5 extern int TradeTime=18; // Time to en ter the market
6 extern int t1 =6;
7 extern int t2 =2;
8 extern int de l ta L =6;
9 extern int de l t a S =21;

10 extern double l o t = 0 . 0 1 ; // Lot s i z e
11 extern int Orders =1; // Maximal number o f posi−
12 // −t i on s opened at a time
13 extern int MaxOpenTime=504;
14 extern int BigLotSize = 1 ; // By how much l o t s i z e i s
15 // mu l t i p l i c a t e d in Big l o t

Listing 2.6: Geedo variables

1 int t i c k e t , t o ta l , cnt ;
2 bool cantrade=true ;
3 double c l o s e p r i c e ;
4 double tmp ;

globPos()

The first function, globPos(), increases the value of the environment variable
globalPosic by 1. However, after inspecting the usage of this function I found
out that it is useless, as always after calling this function the environment vari-
able globalPosic is set to 0 by calling GlobalVariableSet("globalPosic",0).

OpenLong()

As its name suggests, the function OpenLong() takes care of opening a long
position. It takes the size of the position in lots as a parameter.

In the beginning some of the constants are set. Maximum allowed slippage
is set to 10. The comment to distinguish the long position is set. It is usually
good practice to set the comment to the name of the EA, so that the trader
can easily distinguish which trades were opened by him manually and which
were opened by the EA. Setting the arrow color is necessary to draw an arrow

49

2. Analysis

into the chart. If no color is set, no arrow is drawn. It is also good practice to
distinguish different market orders opening and closing with different colors.
The magic number is set to 0. This is fine if we are sure that our EA is the
only one running for the given currency pair and that no manual trading takes
place. However, it is usually set to a high number specific to the EA. This
way it can be used to make sure that EA works only with orders which it itself
created.

The line 9 in Listing 2.7 checks the value of global variable globalBalans
and if it is more then the actual balance, the volume is increased by the
BigLotSize constant at line 10. However, given that this EA is the only one
using the globalBalans environment variable, and as globalBalans is updated
after opening of every order, the only case when this condition is true is
when an order is closed with a loss. Therefore, the result of these two lines
is that after a losing trade the volume traded is increased, which is slightly
unanticipated. Testing of this algorithm will show the extent to which this
condition is useful.

The statement at lines 14 to 16 sends a buy order to the server. As no check
exists for the minimal distance of stop orders (StopLoss and TakeProfit), the
order will be rejected if StopLoss and TakeProfit ale closer to the opening price
than the minimum distance set by the broker. It is good practice to check for
the minimum distance before sending the order request. If the check fails, the
solution would be either not sending the request at all and thus saving some
processing time or adjusting StopLoss and TakeProfit to the allowed values.

Then the globalBalans environment variable is set to the current account
balance at line 18. Afterwards, the globalPosic environment variable is in-
creased by 1 in the globPos() function and it is set to 0 in next line. Therefore
these two lines can be considered useless.

Then result of the order request is checked. The OrderSend() function
returns the ticket number if the order was successful, otherwise it returns
0. Therefore if the ticket is 0, the order was not successful and an error is
printed. If the ticket is greater than 0, the order was successful. Then the
check whether the order is among open orders is executed. However, this is
not necessary.

Listing 2.7

1 int OpenLong (double volume =0.1)
2 // the func t i on opens a long po s i t i o n wi th l o t s i z e=volume
3 {
4 int s l i p p a g e =10;
5 s t r i n g comment=”20/200 expert v2 (Long) ” ;
6 c o l o r a r row co lo r=Red ;
7 int magic=0;
8
9 i f (GlobalVariableGet (”g loba lBa lans ”)>AccountBalance ())

10 volume=l o t ∗BigLotSize ;
11 // i f (Globa lVar iab leGet (” g l o ba lBa l an s ”)>AccountBalance ())

50

2.4. Analysis of Publicly Available Robots

12 // i f (AutoLot) LotS i ze () ;
13
14 t i c k e t=OrderSend (Symbol () ,OP BUY, volume , Ask , s l i ppage ,
15 Ask−StopLoss L∗Point , Ask+TakeProf i t L ∗Point , comment ,
16 magic , 0 , a r row co lo r) ;
17
18 Globa lVar iab leSet (”g loba lBa lans ” , AccountBalance ()) ;
19 globPos () ;
20 // i f (Globa lVar iab leGet (” g l o b a lPo s i c ”)>25)
21 // {
22 Globa lVar iab leSet (”g l o b a l P o s i c ” , 0) ;
23 // }
24
25 i f (t i c k e t >0)
26 {
27 i f (OrderSe l ec t (t i c k e t ,SELECT BY TICKET,MODE TRADES))
28 {
29 return (0) ;
30 }
31 else
32 {
33 Pr int (”OpenLong () , OrderSe l ec t () − returned
34 an e r r o r : ” , GetLastError ()) ;
35 return (−1);
36 }
37 }
38 else
39 {
40 Pr int (”Error opening Buy order : ” , GetLastError ()) ;
41 return (−1);
42 }
43 }

OpenShort()

This function works analogically to OpenLong(). The only difference is in the
statement at lines 12 to 14 in Listing 2.8, which creates a sell market order
instead of buy market order.

Listing 2.8

1 int OpenShort (double volume =0.1)
2 // The func t i on opens a shor t p o s i t i o n wi th l o t s i z e=volume
3 {
4 int s l i p p a g e =10;
5 s t r i n g comment=”Gabr ie l Eze Junior >>>SHORT” ;
6 c o l o r a r row co lo r=Red ;
7 int magic=0;
8
9 i f (GlobalVariableGet (”g loba lBa lans ”)>AccountBalance ())

10 volume=l o t ∗BigLotSize ;
11
12 t i c k e t=OrderSend (Symbol () ,OP SELL, volume , Bid , s l i ppage ,

51

2. Analysis

13 Bid+StopLoss S ∗Point , Bid−TakeProf i t S ∗Point , comment ,
14 magic , 0 , a r row co lo r) ;
15 Globa lVar iab leSet (”g loba lBa lans ” , AccountBalance ()) ;
16 globPos () ;
17 // i f (Globa lVar iab leGet (” g l o b a lPo s i c ”)>25)
18 // {
19 Globa lVar iab leSet (”g l o b a l P o s i c ” , 0) ;
20 // }
21
22 i f (t i c k e t >0)
23 {
24 i f (OrderSe l ec t (t i c k e t ,SELECT BY TICKET,MODE TRADES))
25 {
26 return (0) ;
27 }
28 else
29 {
30 Pr int (”OpenShort () , OrderSe l ec t () − returned
31 an e r r o r : ” , GetLastError ()) ;
32 return (−1);
33 }
34 }
35 else
36 {
37 Pr int (”Error opening S e l l order : ” , GetLastError ()) ;
38 return (−1);
39 }
40 }

init()

As mentioned before, the init() function is run only once. In case of this EA the
environment variable globalBalans and the useless globalPosic are initialized
here. In other words, if they do not already exist, they are created and set to
the default value.

Listing 2.9

1 int i n i t ()
2 {
3 // con t r o l o f a v a r i a b l e b e f o r e us ing
4 i f (! GlobalVariableCheck (”g loba lBa lans ”))
5 Globa lVar iab leSet (”g loba lBa lans ” , AccountBalance ()) ;
6 i f (! GlobalVariableCheck (”g l o b a l P o s i c ”))
7 Globa lVar iab leSet (”g l o b a l P o s i c ” , 0) ;
8 return (0) ;
9 }

deinit()

The deinit() function does nothing in this EA and it could have been omitted
altogether.

52

2.4. Analysis of Publicly Available Robots

Listing 2.10

1 int d e i n i t ()
2 {
3 return (0) ;
4 }

start()

As mentioned before, the start() function is executed every time when a new
tick is received as long as the EA is in the tick-awaiting mode, i.e. when it is
initialized and not in execution of a previous tick.

First, at line 3 in Listing 2.11 it checks if the current hour is later than the
one set in the TradeTime parameter. If it is the case, the cantrade variable is
set to true.

With the OrdersTotal() function the number of open and pending orders
is obtained. If the number of open orders is less than the number of the
maximum allowed open orders set by the input parameter Orders, then a new
position might be opened.

At line 10 it is checked that the current hour equals the one set in the
TradeTime input variable and whether a trade has already been executed at
this hour. In other words, this condition equals to true only if the current
hour is the desired TradeTime and that no trade has been executed in this
hour and day thus far.

In the block between line 13 and line 28 the trend is determined by sub-
tracting the open values at bars t1 and t2 before the current bar. If the dif-
ference is greater than the value denoted by delta S multiplied by Point, the
trade should be executed. However, it is necessary to check if there is enough
money on the account. This is done by the AccountFreeMarginCheck() part
of the condition. The GetLastError() part is useless here, as the error 134 is
NOT ENOUGH MONEY ERROR and, with the AccountFreeMarginCheck()
check and the given structure of the EA, it would never occur.

If the account has sufficient funds, the OpenShort() function is called to
execute the trade. Then cantrade is set to false, therefore no more trades
will be open during this hour. However, the small error here is the lack of
the OpenShort() error handling. If the request for opening a short position is
rejected, cantrade will be set to false anyway, resulting in no trade open in
the given trading hour. Then return is called.

The block of code between line 30 and line 44 contains logic for deciding
whether or not to open a long postion. It works analogically to the previous
one.

If MaxOpenTime is set to something else than 0, the block between line 52
and line 81 loops through all open orders and if any of them is open for a
longer period of time than the number of hours set in the MaxOpenTime
input variable, it is closed.

53

2. Analysis

There is one peculiarity with this block. If a trade is executed in the
previous blocks, the control never gets to this one. Therefore trades might be
closed one tick later. In case of this EA it is insignificant as it works on the
one-hour timeframe. Regardless, it is not considered a good practice.

Listing 2.11

1 int s t a r t ()
2 {
3 i f ((TimeHour (TimeCurrent ())>TradeTime)) cantrade=true ;
4 // check i f t h e r e are open orders . . .
5 t o t a l=OrdersTotal () ;
6 i f (t o ta l<Orders)
7 {
8 // . . . i f no open orders , go f u r t h e r
9 // check i f i t ’ s time f o r t rade

10 i f ((TimeHour (TimeCurrent())==TradeTime)&&(cantrade))
11 {
12 // . . . i f i t i s
13 i f (((Open [t1]−Open [t2])> de l t a S ∗Point)) // i f i t i s
14 {
15 // cond i t i on i s f u l f i l l e d , en ter a shor t
16 // po s i t i o n : check i f t h e r e i s f r e e money
17 // f o r opening a shor t p o s i t i o n
18 i f (AccountFreeMarginCheck (Symbol () ,OP SELL,
19 l o t)<=0 | | GetLastError ()==134)
20 {
21 Pr int (”Not enough money”) ;
22 return (0) ;
23 }
24 OpenShort (l o t) ;
25 // p r o h i b i t repea ted t rade u n t i l the next bar
26 cantrade=fa l se ;
27 return (0) ;
28 }
29 // i f the p r i c e increased by d e l t a
30 i f (((Open [t2]−Open [t1])> de l ta L ∗Point))
31 {
32 // cond i t i on i s f u l f i l l e d , en ter a long
33 // po s i t i o n : check i f t h e r e i s f r e e money
34 i f (AccountFreeMarginCheck (Symbol () ,OP BUY,
35 l o t)<=0 | | GetLastError ()==134)
36 {
37 Pr int (”Not enough money”) ;
38 return (0) ;
39 }
40 OpenLong (l o t) ;
41
42 cantrade=fa l se ;
43 return (0) ;
44 }
45 }
46 }
47

54

2.4. Analysis of Publicly Available Robots

48 // b l o c k o f a t rade v a l i d i t y time checking ,
49 // i f MaxOpenTime=0, do not check .
50 i f (MaxOpenTime>0)
51 {
52 for (cnt =0; cnt<t o t a l ; cnt++)
53 {
54 i f (OrderSe l ec t (cnt , SELECT BY POS, MODE TRADES))
55 {
56 tmp = (TimeCurrent()−OrderOpenTime ()) / 3 6 0 0 . 0 ;
57 i f (((NormalizeDouble (tmp,8)−MaxOpenTime)>=0))
58 {
59 RefreshRates () ;
60 i f (OrderType()==OP BUY)
61 c l o s e p r i c e=Bid ;
62 else
63 c l o s e p r i c e=Ask ;
64 i f (OrderClose (OrderTicket () , OrderLots () ,
65 c l o s e p r i c e , 1 0 , Green))
66 {
67 Pr int (”Forced c l o s i n g o f the
68 trade − ” , OrderTicket ()) ;
69 OrderPrint () ;
70 }
71 else
72 Pr int (”OrderClose () in block o f a
73 trade v a l i d i t y time checking returned
74 an e r r o r − ” , GetLastError ()) ;
75 }
76 }
77 else
78 Pr int (”OrderSe lec t () in block o f a trade
79 v a l i d i t y time check ing returned
80 an e r r o r − ” , GetLastError ()) ;
81 }
82 }
83 return (0) ;
84 }

Summary

This EA opens a trade once per day at a given hour if a trend condition is
satisfied. It sets StopLoss and TakeProfit for each trade. It also allows the
trader to set the maximum time for the trade being open.

This EA was probably not written by a programmer as it is poorly written
and has some basic logical mistakes in the control flow. Also, it uses deprecated
functions (init(), start(), deinit()) from the time before MetaTrader build 600.

2.4.2 Genie

Another algorithm to be analyzed is Genie. It is a slightly advanced algorithm
which is building on data from Parabolic SAR indicator created by Genaro

55

2. Analysis

Gravoso. Unlike Geedo, it already has all the neccessary input parameters
enabled. Therefore, no changes are needed.

Head

The head of the algorithm already suggests that it is of a higher quality than
the previous one. It declares #property strict, which enables the most
C++-like compiler functionality. This parameter breaks the backward com-
patibility with the pre-build-600 EAs. However, as this algorithm is pro-
grammed in a post-build-600 style, it is insignificant.

Another positive feature is the definition of the magic number in the line
#define MAGICMA 20140730. All the trades manipulated by this EA will
bear this magic number. In this way the EA can recognize trade orders not
belonging to it. Thus these orders are not affected by the EA. All of this
results in a possibility of concurrent manual and automatic trading in one
currency pair window.

The input parameters in Listing 2.12 are declared in the head as well.

Listing 2.12: Genie input parameters

1 input double TakeProf i t =500;
2 input double Lots =0.01;
3 input double Tra i l i ngStop =200;
4 input double MaximumRisk =0.02;
5 input double DecreaseFactor =3;
6 input double Step =0.02; // Acce l e ra t i on Factor

CalculateCurrentOrders()

This function loops through all the open orders from which it chooses only
those belonging to the EA (based on the magic number) and counts the num-
ber of buy and sell orders. If any buy orders exist, it returns their count,
otherwise the number of sell orders is returned as a negative number.

When this function is called later in the code, its return value is only
checked against zero (i.e. the case when no trades are open). Therefore, it
could have been simplified by returning only true if a trade is open or false
otherwise. It could have been renamed to IsTradeOpen(). In this way, looping
over all the orders could have been stopped at the first open order. It would
make the function run faster. All of this would improve the readability of this
EA while not changing its functionality at all.

Listing 2.13

1 int CalculateCurrentOrders (s t r i n g symbol)
2 {
3 int buys=0, s e l l s =0;
4 //−−−
5 for (int i =0; i<OrdersTotal () ; i++)

56

2.4. Analysis of Publicly Available Robots

6 {
7 i f (OrderSe l ec t (i , SELECT BY POS,MODE TRADES)==fa l se)
8 break ;
9 i f (OrderSymbol()==Symbol () &&

10 OrderMagicNumber()==MAGICMA)
11 {
12 i f (OrderType()==OP BUY) buys++;
13 i f (OrderType()==OP SELL) s e l l s ++;
14 }
15 }
16 //−−− re turn orders volume
17 i f (buys>0) return (buys) ;
18 else return(− s e l l s) ;
19 }

LotsOptimized()

The optimal lot size is determined by this function. At line 3 in Listing 2.14 the
local variable lot is defined and initialized to the value of the input parameter
Lots. However, this initialization is useless, as the lot variable is overwritten
at line 8, resulting in the value of Lots not being used.

The statement at line 4 loads all the past trades. “The history list size de-
pends on the current settings of the Account history tab of the terminal.” [16,
Ch. OrdersHistoryTotal] A small issue with this line is that the HistoryTotal()
function is deprecated and OrderHistoryTotal() should be used instead.

The initialization of the local variable for the counting of losing trades in
the trades history is at line 5.

Line 8 sets lot to have value of account free margin multiplied by Maxim-
umRisk. The interval of allowed values for MaximumRisk is (0, 1> where 0 is
0% and 1 means 100%. The value is then divided by 1 000. This suggests that
author expects leverage to be 1:100. Therefore, this EA might not work well
on accounts with other levels leverage. Subsequently, the value is normalized
to one decimal place and assigned to lot.

If the DecreaseFactor variable is set to a value different from 0, the al-
gorithm loops through all orders in the history starting with the most recent
one and counts the number of consecutive losing ones (lines 13 to 25). As soon
as it finds a profitable trade, it stops. If there had been more than one losing
trade, the lot size is decreased by lot× losses/DecreaseFactor.

If lot is too small, set it to 0.1 (line 30). Then return the lot size.

Listing 2.14

1 double LotsOptimized ()
2 {
3 double l o t=Lots ;
4 int orde r s=HistoryTota l () ; // h i s t o r y orders t o t a l
5 int l o s s e s =0; // number o f l o s s e s
6 // orders wi thout a break
7 //−−− s e l e c t l o t s i z e

57

2. Analysis

8 l o t=NormalizeDouble (AccountFreeMargin ()∗MaximumRisk /1000 .0 ,
9 1) ;

10 //−−− c a l c u u l a t e number o f l o s s e s orders wi thout a break
11 i f (DecreaseFactor >0)
12 {
13 for (int i=orders −1; i >=0; i−−)
14 {
15 i f (OrderSe l ec t (i , SELECT BY POS,MODE HISTORY)==fa l se)
16 {
17 Pr int (”Error in h i s t o r y ! ”) ;
18 break ;
19 }
20 i f (OrderSymbol () != Symbol () | | OrderType()>OP SELL)
21 continue ;
22 //−−−
23 i f (OrderPro f i t ()>0) break ;
24 i f (OrderPro f i t ()<0) l o s s e s ++;
25 }
26 i f (l o s s e s >1)
27 l o t=NormalizeDouble (lo t−l o t ∗ l o s s e s / DecreaseFactor , 1) ;
28 }
29 //−−− re turn l o t s i z e
30 i f (l o t <0.1) l o t =0.1;
31 return (l o t) ;
32 }

CheckForOpen()

Line 3 in Listing 2.15 declares the local variables which will be used to hold
values from the market indicastors. At line 4 there is a declaration of two
more local variables. Ticket will be used to hold the current trade number or
0 if the opening of a trade position using OrderSend() failed, and total will
contain the count of open orders.

Line 6 ensures that the trading will only be executed during the first tick
of a new bar. Volume[0] gives the number of ticks at the given bar, with 0
determining the latest bar.

The block of lines 9 to 15 retrieves the values from the market indicators,
namely the SAR and the ADX indicator. SAR stands for Parabolic Stop and
Reverse system indicator, while ADX is the Average Directional Movement In-
dex indicator. For more information about these indicators see [16, Ch. iSAR]
and [16, Ch. iADX] respectively. Notice that the SAR indicator uses an input
variable Step. This variable is usually set to 0.02. For optimization purposes
the range between 0.01 and 0.03 will be tested.

Line 17 initializes the local variable total to the number of open orders.
The rest of the function is only executed when the number of total open

orders is less than three. It is not clear what the developer’s intention was using
this condition. The OnTick() function ensures that CheckForOpen() is called
only when no sell nor buy orders are open by the EA. Therefore, the number of

58

2.4. Analysis of Publicly Available Robots

orders returned from OrdersTotal() were opened manually or by some other
EA. To me, the most sensible explanation is that this condition checks the
amount of manual trading that currently takes place and, based on that,
this EA either stops opening new trades (if the number of manually opened
trades is three or more) or it trades simultaneously with manual trading (if
the number of manually opened positions is one or two).

Given that the number of manually opened trades is less than three, this
function continues with the block of lines 21 to 26. These lines check if the
available free margin is at the level counted by 1000×Lots, where Lots is the
input variable. If the free margin is lower than this minumum required value,
then the function is terminated.

The block of code between line 28 and 45 checks the level of all market
indicators and, based on them, it decides whether it is a suitable time to
open a sell order. If so, it sends the SELL order using OrderSend() of a size
determined by the function LotsOptimized(), with allowed slippage of three
points, stoploss not set (set to 0), takeprofit set using the TakeProfit input
variable, and the magic number to identify that the trade was created by
this EA. If opening of the position was successful, then ticket will contain the
ticket number. In case of failure the ticket will have a value of 0. Depend-
ing on the result of the opening of the order, either ("SELL order opened:

",OrderOpenPrice()) or an error will be printed.
The block between line 47 and 64 works analogically to the previous one,

just for opening a buy order instead of a sell order.
In both cases (opening of a sell and a buy order) not setting stoploss is

a huge risk and I advise against it, even though it will be set in the following
call of CheckForClose(). However, as this EA trades only for the first tick
of a new bar, CheckForClose() will be closed at the formation of the next
bar which can be, depending on the timeframe, in one minute or one day. A
lot can change during that time. That is why I consider not setting stoploss
immediately to be causing a considerable risk.

Listing 2.15

1 void CheckForOpen ()
2 {
3 double Previous , Current , PDI1 , PDI ,MDI1,MDI,ADX;
4 int t i c k e t , t o t a l ;
5 //−−− go t rad ing only f o r f i r s t t i k s o f new bar
6 i f (Volume [0] >1) return ;
7 //−−− to s imp l i f y the coding and speed up acces s data are
8 // put in t o i n t e r n a l v a r i a b l e s
9 Current=iSAR(NULL, 0 , Step , 0 . 2 , 0) ;

10 Previous=iSAR(NULL, 0 , Step , 0 . 2 , 1) ;
11 ADX=iADX(NULL, 0 , 1 4 ,PRICE CLOSE,MODE MAIN, 0) ;
12 PDI=iADX(NULL, 0 , 1 4 ,PRICE CLOSE,MODE PLUSDI, 0) ;
13 PDI1=iADX(NULL, 0 , 1 4 ,PRICE CLOSE,MODE PLUSDI, 1) ;
14 MDI=iADX(NULL, 0 , 1 4 ,PRICE CLOSE,MODE MINUSDI, 0) ;
15 MDI1=iADX(NULL, 0 , 1 4 ,PRICE CLOSE,MODE MINUSDI, 1) ;

59

2. Analysis

16
17 t o t a l=OrdersTotal () ;
18 i f (t o ta l <3)
19 {
20 //−−− no opened orders i d e n t i f i e d
21 i f (AccountFreeMargin ()<(1000∗Lots))
22 {
23 Pr int (”We have no money . Free Margin = ” ,
24 AccountFreeMargin ()) ;
25 return ;
26 }
27 //−−− s e l l c ond i t i on s
28 i f (Previous<Close [1] && Current>Close [0] &&
29 PDI1>MDI1 && PDI<MDI && ADX>PDI && ADX>MDI)
30 {
31 t i c k e t=OrderSend (Symbol () ,OP SELL, LotsOptimized () ,
32 Bid , 3 , 0 , Bid−TakeProf i t ∗Point , ”Genie ” ,
33 MAGICMA, 0 , Red) ;
34 i f (t i c k e t >0)
35 {
36 i f (OrderSe l ec t (t i c k e t ,SELECT BY TICKET,
37 MODE TRADES))
38 Pr int (”SELL order opened : ” ,
39 OrderOpenPrice ()) ;
40 }
41 else
42 Pr int (”Error opening SELL order : ” ,
43 GetLastError ()) ;
44 return ;
45 }
46 //−−− buy cond i t i on s
47 i f (Previous>Close [1] && Current<Close [0] &&
48 PDI1<MDI1 && PDI>MDI && ADX>PDI && ADX>MDI)
49 {
50 t i c k e t=OrderSend (Symbol () ,OP BUY, LotsOptimized () ,
51 Ask , 3 , 0 , Ask+TakeProf i t ∗Point , ”Genie ” ,
52 MAGICMA, 0 , Blue) ;
53 i f (t i c k e t >0)
54 {
55 i f (OrderSe l ec t (t i c k e t ,SELECT BY TICKET,
56 MODE TRADES))
57 Pr int (”BUY order opened : ” ,
58 OrderOpenPrice ()) ;
59 }
60 else
61 Pr int (”Error opening BUY order : ” ,
62 GetLastError ()) ;
63 return ;
64 }
65 return ;
66 }
67 //−−−
68 }

60

2.4. Analysis of Publicly Available Robots

CheckForClose()

This function checks if some of the orders opened by this EA can be closed or
should be modified when it comes to the trailing stop.

Again, line 4 in Listing 2.16 ensures that the trading will only be executed
during the first tick of a new bar.

The block between line 14 and 34 is executed if the current order is of the
buy type. First, the current stoploss value is checked, and if its distance from
the current price is greater than that set by the trailing stop, or if it is not
set, then the order is updated with a new stoploss value and the function is
finished.

If it is not necessary to adjust stoploss, the next condition checks whether
the order should be closed or not. The Bid-OrderOpenPrice()>Ask-Bid part
of the condition checks if the trade is profitable. The Open[1]>Close[1] part
of the condition checks if the market went down in the last bar. So, if the
market went down and despite that we are still profitable, the order will be
closed.

Analogically, the block of code between line 35 and 55 works for a sell
order.

Listing 2.16

1 void CheckForClose ()
2 {
3 //−−− go t rad ing only f o r f i r s t t i k s o f new bar
4 i f (Volume [0] >1) return ;
5 //−−−
6 for (int i =0; i<OrdersTotal () ; i++)
7 {
8 i f (OrderSe l ec t (i , SELECT BY POS,MODE TRADES)==fa l se)
9 break ;

10 i f (OrderMagicNumber () !=MAGICMA | |
11 OrderSymbol () != Symbol ())
12 continue ;
13 //−−− check order type
14 i f (OrderType()==OP BUY)
15 {
16 i f (OrderStopLoss ()<Bid−Point∗Tra i l i ngStop | |
17 OrderStopLoss ()==0)
18 {
19 //−−− modify order and e x i t
20 i f (! OrderModify (OrderTicket () , OrderOpenPrice () ,
21 Bid−Point∗Trai l ingStop , OrderTakeProf it () ,
22 0 , Green))
23 Pr int (”OrderModify e r r o r ” , GetLastError ()) ;
24 return ;
25 }
26 i f (Bid−OrderOpenPrice ()>Ask−Bid &&
27 Open[1]> Close [1])
28 {
29 i f (! OrderClose (OrderTicket () , OrderLots () ,

61

2. Analysis

30 Bid , 1 , White))
31 Pr int (”OrderClose e r r o r ” , GetLastError ()) ;
32 }
33 break ;
34 }
35 i f (OrderType()==OP SELL)
36 {
37 i f (OrderStopLoss ()>Ask+Point∗Tra i l i ngStop | |
38 OrderStopLoss ()==0)
39 {
40 //−−− modify order and e x i t
41 i f (! OrderModify (OrderTicket () , OrderOpenPrice () ,
42 Ask+Point∗Trai l ingStop , OrderTakeProf it () ,
43 0 ,Red))
44 Pr int (”OrderModify e r r o r ” , GetLastError ()) ;
45 return ;
46 }
47 i f (OrderOpenPrice ()−Ask>Ask−Bid &&
48 Open[1]< Close [1])
49 {
50 i f (! OrderClose (OrderTicket () , OrderLots () ,
51 Ask , 1 , White))
52 Pr int (”OrderClose e r r o r ” , GetLastError ()) ;
53 }
54 break ;
55 }
56 }
57 }

OnTick()

OnTick(), the equivalent of the deprecated start() function, is quite simple.
The lines 4 to 5 in Listing 2.17 check if the EA is allowed to trade and if
sufficient amount of bars is loaded in history. This is necessary for the proper
functioning of the market indicators. At lines 7 to 10 it is checked that no
orders are opened by this EA. If so, it opens one if the conditions are fulfilled. If
some orders are already open, it either updates their stoploss level, if necessary,
or closes them, if they can be closed.

Listing 2.17

1 void OnTick ()
2 {
3 //−−− check f o r h i s t o r y and t rad ing
4 i f (Bars<100 | | IsTradeAllowed()== fa l se)
5 return ;
6 //−−− c a l c u l a t e open orders by current symbol
7 i f (Calcu lateCurrentOrders (Symbol ())==0)
8 CheckForOpen () ;
9 else

10 CheckForClose () ;
11 //−−−

62

2.4. Analysis of Publicly Available Robots

12 }

Summary

The Genie Expert Advisor can be evaluated positively with regard to the pro-
gramming style. It uses the newest MQL4 standards (except for one use of the
deprecated HistoryTotal() function). The code is fairly well-readable. How-
ever, CalculateCurrentOrders() could have been simplified. Furthermore, the
limiting functionality of the EA – when at least three manually opened posi-
tion are present in the CheckForOpen() function – is undocumented and rather
confusing. A positive aspect is that it uses the magic number. Additionally,
it uses built-in market indicators.

All in all, it is an interesting algorithm and, while not being perfect, it is
better written and more advanced than the aforementioned Geedo.

63

Chapter 3

Implementation

After getting acquainted with the theory and after the analysis of the publicly
available Expert Advisors the implementation of a sample Expert Advisor
follows. I decided that one of the features of my Expert Advisor should be a
consistent structure, so that this algorithm can be easily reused as a template
for new algorithms in the future.

Another goal is the creation of a new trading strategy. The focus will be
on a criterion for opening a trade, while a criterion for closing a trade will be
a simple stop-loss (trailing stop) and take-profit. Also, a smart function for
determining the trad esize will be implemented.

For the sake of simplicity, only one position of the buy type and one posi-
tion of the sell type can be open at the time.

3.1 Trade Opening Criterion

The trading criterion of my EA is based on two simple moving averages – one
with a short period (magnitude of tens of bars) and one with a medium/long
period (magnitude of hundreds of bars). From these moving averages the
short-term and the midterm trend are determined.

The EA looks for abrupt changes of the market in a direction outwards
from the midterm trend. If this abrupt change slows down, the EA expects
that the market will return back towards the midterm trend. A buy market
order is sent in case this abrupt deviation from the midterm trend happens
in a downward direction. If the abrupt deviation from the midterm trend
happens in an upward direction, a sell order is opened. See Figure 3.1.

In order to be able to program the behavior described in the previous
paragraph, it is necessary to break it down to a few basic steps. The three
main steps are:

1. Checking for an abrupt deviation in a direction outwards from the mid-
term trend.

65

3. Implementation

2. After the completion of step 1, wait for the end (slow down) of this
abrupt change in order to open a position.

3. Simple check of the wait duration in step 2 and terminating it if this
duration is longer than a certain threshold.

Figure 3.1: My Expert Advisor trading style explanation

In Figure 3.1 the yellow line represents the midterm simple moving average.
The red line is the short-term simple moving average and the silver lines show
its threshold.

Step 1 Detailed

I have defined a set of conditions which must be fulfilled for the current market
state to be considered an abrupt deviation outward from the midterm trend.

For a downward abrupt deviation the conditions are the following:

1. The midterm trend must be ranging or upwards.

2. The current ask price must be lower than the short-term moving average
(minus a certain threshold).

3. The short-term moving average must be lower than the midterm moving
average.

For an upward abrupt deviation the conditions are the following:

66

3.2. Trade Closing Criterion

1. The midterm trend must be ranging or downwards.

2. The current bid price must be higher than the short-term moving average
(plus a certain threshold).

3. The short-term moving average must be higher than the midterm moving
average.

Step 2 Detailed

In order to determine whether the abrupt deviation from the midterm trend
stopped or slowed down, it is necessary to check the short-term trend. For
a downward abrupt deviation slowdown the condition is that the short-term
trend is ranging or having an upward direction. For an upward abrupt devi-
ation slowdown the condition is that the short-term trend is ranging or having
a downward direction.

Remarks

The algorithm trades only the first tick of a new bar. Therefore, the most
relevant value, on which the moving average is calculated, is the close price of
the previous bar.

As it is difficult to guess the correct values for constants such as the
threshold, I have decided to change most of the hardcoded constants into
input parameters. In this way, the optimal values can be found using optim-
ization.

The trader can set the period of both the short-term and the midterm
simple moving average. Then the threshold from the short-term simple moving
average (used in Step 1: Condition 2) can be set as well.

Additionally, for determining the trend of the simple moving average the
number of bars can be set. Also, the tangent of the angle can be set to set
the limit between the trending and the ranging moving average. This can be
done for both the short-term and the midterm simple moving average trends.

Another available input parameter is the maximum duration of waiting for
an abrupt deviation from the midterm simple moving average slowdown used
in Step 3.

3.2 Trade Closing Criterion

As was already mentioned, the trade closing criterion is fairly simple. It
consists of setting the stop-loss, the trailing stop and the take-profit values.
However, again, it is difficult to determine permanent values for these values,
as the market is changing all the time. That is why the stop-loss, the trailing
stop and the take-profit levels were made available as input parameters and
thus can be used for optimization.

67

3. Implementation

3.3 Trade Size Determination

As for the trade size, I gave the user a lot of freedom. The trader can either
set the trade size to a constant amount of lots or it can be set to a percentage
of the free margin available for the account.

3.4 Physical Implementation

In the following sections the functions of my Expert Advisor will be explained
one by one. It was built based on the guidelines from the official guide [21,
Ch. Creation of a Normal Program]. However, these guidelines are slightly
outdated as they still use the old pre-build600 constructs. Therefore, I decided
to improve them by using contemporary language constructs.

3.4.1 Head

Listing 3.1

1 //+−−−+
2 // | MyAlg .mq4 |
3 // | Juraj Korcek |
4 // | |
5 //+−−−+
6 #property copyr ight ”Jura j Korcek ”
7 #property l i n k ””
8 #property v e r s i on ”1 .00 ”
9 #property s t r i c t

10
11 //+−−−+
12 // | Inc l ude s |
13 //+−−−+
14 #inc lude <MarketPropert ies .mqh>
15 #inc lude <OrdersBook .mqh>
16
17 //+−−−+
18 // | Input parameters |
19 //+−−−+
20 input int i magicNumber = 1231564651;
21 // Magic number
22
23 input double i r e l a t i v e L o t S i z e = 0 . 1 ;
24 // Lot s i z e as a percentage o f
25 // Free Margin (0 ; 100>
26 input double i l o t s = 0 ;
27 // S i z e o f order ; i f 0 , l o t s i z e i s
28 // c a l u c l a t e d us ing r e l a t i v e L o t S i z e
29
30 input int i MAshortTermPeriod = 10 ;
31 // Period o f Shorterm MA
32 input int i MAshortTermThreshold = 50 ;

68

3.4. Physical Implementation

33 // Threshold o f Shorterm MA
34 input int i MAshortTermTrendBars = 1 ;
35 // Number o f bars to determine the
36 // trend o f Shortterm MA
37 input double i MAshortTermTrendToleranceAngleTan = 0 . 4 ;
38 // Tangens o f l im i t ang l e when Shortterm
39 // MA trend i s cons idered to be ranging
40 input int i MAmidTermPeriod = 250 ;
41 // Period o f Midterm MA
42 input int i MAmidTermTrendBars = 10 ;
43 // Number o f bars to determine the trend
44 // o f Midterm MA
45 input double i MAmidTermTrendToleranceAngleTan = 0 . 4 ;
46 // Tangens o f l im i t ang l e when Midterm MA
47 // trend i s cons idered to be ranging
48 input int i f l a g T i m e r = 250 ;
49 // Number o f t i c k s f o r buy or s e l l f l a g
50 // s t a y s t r i g g e r e d
51
52 input int i s t o p L o s s = 50 ;
53 // StopLoss in po in t s
54 input int i t a k e P r o f i t = 200 ;
55 // TakeProf i t in po in t s
56 input int i t r a i l i n g S t o p = 100 ;
57 // Tra i l i ngS top in po in t s
58
59 //+−−−+
60 // | Globa l v a r i a b l e s |
61 //+−−−+
62 bool g buy f l ag = False ;
63 bool g s e l l f l a g = False ;
64 int g t i m e r b uy f l ag = 0 ;
65 int g t i m e r s e l l f l a g = 0 ;
66
67 MarketPropert ies ∗ g marketProper t i e s ;
68 OrdersBook∗ g ordersBook ;

The head of the EA in Listing 3.1 is split into several distinct parts.
First, the basic properties are set. The interesting one is #property

strict, which ensures the compiler behavior to be as close as possible to
the one of the standard C++ compiler, although it breaks the backward com-
patibility with the terminals of an earlier build than 600.

Then, the includes are defined starting on line 14. These lines include
classes which make bookkeeping and holding of the market information easier.

The declaration and the initialization of the input variables follows. First,
the magic number is set. It will be used to distinguish trades opened by this
EA from other trades. Then, at lines 23 to 28 the input parameters affecting
the order size are set. The next group of parameters is the one used in tweaking
of the trading criterion. The last group of input parameters sets the limits for
closing a trade.

69

3. Implementation

The last part (starting at line 62) of the head is used for the declaration
and the initialization of the global variables.

3.4.2 OnInit()

Listing 3.2

1 //+−−−+
2 // | Expert i n i t i a l i z a t i o n func t i on |
3 //+−−−+
4 int OnInit ()
5 {
6 g marketProper t i e s = new MarketPropert ies () ;
7 Terminal () ;
8 return (INIT SUCCEEDED) ;
9 }

During the initialization of the EA, the current market properties are
assigned to the global variable g marketProperties. Then the function Ter-
minal() is called for the creation of the orders book. For more information on
Terminal() function see Section 3.4.5.

3.4.3 OnDeinit()

Listing 3.3

1 //+−−−+
2 // | Expert d e i n i t i a l i z a t i o n func t i on |
3 //+−−−+
4 void OnDeinit (const int reason)
5 {
6 delete g marketProper t i e s ;
7 delete g ordersBook ;
8 }

The only role of the deinitialization in my EA is the cleanup of allocated
objects.

3.4.4 OnTick()

Listing 3.4

1 //+−−−+
2 // | Expert t i c k func t i on |
3 //+−−−+
4 void OnTick ()
5 {
6 PlaySound (” t i c k . wav”) ;
7 Terminal () ;
8 Events () ;
9 Trade (C r i t e r i o n ()) ;

10 }

70

3.4. Physical Implementation

As a rule, OnTick() is the main function of the EA. This case is no ex-
ception. At line 6 a sound is played to notify the user about a new tick. This
might become annoying after some time. It is used to demonstrate the op-
tion of playing sounds from an EA. Then the orders book is updated using
the Terminal() function and the market info is updated using the Events()
function. For more information on Events() see Section 3.4.6. Finally, the
trade criterion is checked in the Criterion() function and, based on its result,
the Trade() function either executes a trade or not. For more information
on Criterion() and Trade() functions see Section 3.4.8 and Section 3.4.10 re-
spectively.

3.4.5 Terminal()

Listing 3.5

1 //+−−−+
2 // | (user−de f ined) Function f o r keep ing book o f orders |
3 //+−−−+
4 void Terminal ()
5 {
6 int qnt = 0 ;
7
8 delete g ordersBook ;
9 g ordersBook = new OrdersBook () ;

10
11 for (int i =0; i<OrdersTotal () ; i++)
12 {
13 i f ((OrderSe lec t (i , SELECT BY POS) == true) &&
14 (OrderSymbol () == Symbol ()) &&
15 OrderMagicNumber () == i magicNumber)
16 {
17 g ordersBook . Orders [qnt] = new Order (
18 OrderOpenPrice () ,
19 OrderStopLoss () ,
20 OrderTakeProf it () ,
21 OrderTicket () ,
22 OrderLots () ,
23 OrderType () ,
24 OrderMagicNumber ()) ;
25 g ordersBook . OrderTypeCount [OrderType ()]++;
26 qnt++;
27 }
28 }
29 g ordersBook . OrderCount = qnt ;
30 }

This function initializes the orders book. It iterates through all the orders
and picks only those with a desired symbol (currency pair) and a desired magic
number, i.e. orders belonging to this EA. The filtered order is saved into the
Orders array with the information about its open price, stop-loss, take-profit,
ticket number, size and type. Additionally, the count of each order type is kept

71

3. Implementation

in the OrderTypeCount array. In the end, the count of all orders belonging to
this EA is saved into the OrderCount member variable of g ordersBook.

3.4.6 Events()

Listing 3.6

1 //+−−−+
2 // | (user−de f ined) Function f o r determing i n t e r e s t i n g |
3 // | s e r v e r changes |
4 //+−−−+
5 void Events ()
6 {
7 g marketProper t i e s . Update () ;
8 i f (g marketProper t i e s . m minimumDistance . Changed () == true)
9 Pr int (”New minimum di s t ance : ” +

10 g marketProper t i e s . m minimumDistance . Get ()) ;
11 }

In Listing 3.6 the code of the Events() function is shown. This function
is responsible for maintaining up-to-date information about the server – in
particular, about the minimum distance set by the broker, one lot cost, the
minimum allowed lot size and the lot step. As usually, only the minimum
distance is changed by the broker during the day (often during high market
volatility, e.g. at a news announcement), the function checks for a change of
this option and logs a new value in case a change occurred.

3.4.7 Lot()

Listing 3.7

1 //+−−−+
2 // | (user−de f ined) Function f o r determing order s i z e |
3 //+−−−+
4 double Lot ()
5 {
6 double oneLotCost = g marketProper t i e s . m oneLotCost . Get () ;
7 double minLot = g marketProper t i e s . m minimumLotSize . Get () ;
8 double l o tS t ep = g marketProper t i e s . m lotStep . Get () ;
9 double f reeMargin = AccountFreeMargin () ;

10 double r e l a t i v e L o t S i z e ;
11 double o r de r S i z e ;
12
13 i f (i l o t s > 0)
14 {
15 double moneyRequired = i l o t s ∗ oneLotCost ;
16 i f (moneyRequired <= freeMargin)
17 o r de r S i z e = i l o t s ;
18 else
19 o r de r S i z e = MathFloor (f reeMargin / oneLotCost
20 / l o tS t ep) ∗ l o tS t ep ;
21 }

72

3.4. Physical Implementation

22 else
23 {
24 i f (i r e l a t i v e L o t S i z e > 100)
25 r e l a t i v e L o t S i z e = 100 ;
26 else
27 r e l a t i v e L o t S i z e = i r e l a t i v e L o t S i z e ;
28 i f (i r e l a t i v e L o t S i z e == 0)
29 o r d e r S i z e = minLot ;
30 else
31 o r d e r S i z e = MathFloor (f reeMargin
32 ∗ r e l a t i v e L o t S i z e
33 / 100
34 / oneLotCost
35 / l o tS t ep)
36 ∗ l o tS t ep ;
37 }
38 i f (o r d e r S i z e < minLot)
39 o r de r S i z e = minLot ;
40 i f (o r d e r S i z e ∗ oneLotCost > f reeMargin)
41 {
42 Pr int (”Not enough money f o r ” +
43 DoubleToStr (minLot , 2) + l o t s ”) ;
44 re turn (0) ;
45 }
46 return (o r de r S i z e) ;
47 }

Listing 3.7 shows the workings of the trade size management. If the i lots
input variable is different form zero, then its value is used as an absolute trade
size in lots. In case of insufficient funds (insufficient account’s free margin),
the order size is adjusted to the maximum possible value not exceeding the free
margin amount and then the size is adjusted to abide with the lot step decided
by the broker. In case the i lots input variable is equal to zero, the relative
trade size will be determined based on the i relativeLotSize input parameter.
At lines 24 to 29 extreme values are checked and adjusted. The value of i rel-
ativeLotSize cannot be higher than one hundred as it would always trigger an
error about an insufficient margin, while it cannot be equal to zero because
orders with a zero size are neither allowed nor do they make sense. Then the
order size is adjusted to comply with the broker’s requirement of the lot step
and, eventually, the check for the minimal lot size limit is executed. If the
minimum lot size is exceeding the free margin, an error is logged and a trade
size equal to zero is returned.

3.4.8 Criterion()

Listing 3.8

1 //+−−−+
2 // | (user−de f ined) Function f o r determing whether |
3 // | to open t rade or not |

73

3. Implementation

4 //+−−−+
5 int C r i t e r i o n ()
6 {
7 i f (Volume [0] > 1) return (0) ;
8
9 i f (g t i m e r bu y f l ag > 0) g t imer buy f l ag −−;

10 i f (g t i m e r bu y f l ag == 0) g buy f l ag = False ;
11 i f (g t i m e r s e l l f l a g > 0) g t i m e r s e l l f l a g −−;
12 i f (g t i m e r s e l l f l a g == 0) g s e l l f l a g = False ;
13
14 s t r i n g symbol = Symbol () ;
15 int per iod = Period () ;
16
17 double MAshortTermCur ;
18 double MAshortTermPrev ;
19 int MAshortTermTrend ;
20 double MAshortTermTopThreshold ;
21 double MAshortTermBottomThreshold ;
22 double MAmidTermCur ;
23 double MAmidTermPrev ;
24 int MAmidTermTrend ;
25
26 MAshortTermCur = iMA(symbol , per iod ,
27 i MAshortTermPeriod , 0 , MODE SMA,
28 PRICE CLOSE, 1) ;
29 MAshortTermPrev = iMA(symbol , per iod ,
30 i MAshortTermPeriod , 0 , MODE SMA,
31 PRICE CLOSE, 1 + i MAshortTermTrendBars) ;
32 MAshortTermTrend = DetermineTrend (MAshortTermCur ,
33 MAshortTermPrev ,
34 i MAshortTermTrendBars ,
35 i MAshortTermTrendToleranceAngleTan) ;
36 MAshortTermTopThreshold = MAshortTermCur +
37 i MAshortTermThreshold ∗ Point ;
38 MAshortTermBottomThreshold = MAshortTermCur −
39 i MAshortTermThreshold ∗ Point ;
40 MAmidTermCur = iMA(symbol , per iod ,
41 i MAmidTermPeriod , 0 , MODE SMA, PRICE CLOSE, 1) ;
42 MAmidTermPrev = iMA(symbol , per iod ,
43 i MAmidTermPeriod , 0 , MODE SMA,
44 PRICE CLOSE, 1 + i MAmidTermTrendBars) ;
45 MAmidTermTrend = DetermineTrend (MAmidTermCur ,
46 MAmidTermPrev ,
47 i MAmidTermTrendBars ,
48 i MAmidTermTrendToleranceAngleTan) ;
49
50 i f (g buy f l ag == True && MAshortTermTrend >= 0)
51 {
52 g buy f l ag == False ;
53 return (1 0) ;
54 }
55
56 i f (g s e l l f l a g == True && MAshortTermTrend <= 0)
57 {

74

3.4. Physical Implementation

58 g s e l l f l a g = False ;
59 return (2 0) ;
60 }
61
62 i f ((MAmidTermTrend == 1 | | MAmidTermTrend == 0) &&
63 Ask < MAshortTermBottomThreshold &&
64 MAshortTermCur < MAmidTermCur)
65 {
66 g buy f l ag = True ;
67 g t i m e r b uy f l ag = i f l a g T i m e r ;
68 return (0) ;
69 }
70
71 i f ((MAmidTermTrend == −1 | | MAmidTermTrend == 0) &&
72 Bid > MAshortTermTopThreshold &&
73 MAshortTermCur > MAmidTermCur)
74 {
75 g s e l l f l a g = True ;
76 g t i m e r s e l l f l a g = i f l a g T i m e r ;
77 return (0) ;
78 }
79
80 return (0) ;
81 }

This function is responsible for determining the trade criterion based on
the conditions described in chapter 3.1. Line 7 should ensure that only the
first tick of a new bar is traded. Lines 9 to 12 execute the logic of step 3 of
the trade opening criterion. Then at lines 17 to 48 all the necessary variables
are initialized, including the moving averages values, thresholds and trends.
The logic for step 2 (see Chapter 3.1) at lines 50 to 60. Finally, the logic for
step 1 (see Chapter 3.1) is executed at lines 62 to 78. The return values of
this function are 10 (signaling that a buy order should be opened), 20 (signal-
ing that a sell order should be opened) and 0 (signaling that no order should
be opened). The return value is used as an input parameter for the Trade()
function (see Section 3.4.10).

3.4.9 DetermineTrend()

Listing 3.9

1 //+−−−+
2 // | (user−de f ined) Function f o r trend check |
3 //+−−−+
4 int DetermineTrend (double currentValue , double previousValue ,
5 int barsBetweenValues , double thresholdTan)
6 {
7 double d i f f = currentValue − prev iousValue ;
8 double tangens = (MathAbs(d i f f) / Point)
9 / f loat (barsBetweenValues) ;

10 i f (tangens < thresholdTan)

75

3. Implementation

11 return 0 ;
12 else i f (d i f f > 0)
13 return 1 ;
14 else return −1;
15 }

This is a simple function for determining whether the market is ranging
or moving in a certain direction (trending). It calculates the tangent value by
taking the current and the previous price difference in points as the opposite
side, and the number of the bars produced between the current and the pre-
vious price as the adjacent side. If the absolute value of the result is lower
than the threshold, no trend is recorded and 0 is returned. On the other hand,
if the absolute value of the result is higher than the threshold and the value
of the result is positive, then the trend is in the upward direction and 1 is
returned. If the result is negative, the trend is moving downwards and –1 is
returned.

3.4.10 Trade()

Listing 3.10

1 //+−−−+
2 // | (user−de f ined) Function f o r execu t i ong and |
3 // | modify ing t rade s |
4 //+−−−+
5 void Trade (int Trad Oper)
6 {
7 double o r de r S i z e = Lot () ;
8
9 switch (Trad Oper)

10 {
11 case 10 :
12 i f (o r d e r S i z e == 0 . 0)
13 return ;
14 OpenOrder (0 , o r de r S i z e) ;
15 return ;
16 case 20 :
17 i f (o r d e r S i z e == 0 . 0)
18 return ;
19 OpenOrder (1 , o r de r S i z e) ;
20 return ;
21 case 0 :
22 AdjustTra i l ingStop (0) ;
23 AdjustTra i l ingStop (1) ;
24 return ;
25 }
26 }

The Trade() function first determines the order size using the Lot() func-
tion. Then, based on the value returned from the Criterion() function, it
opens either a buy position (see line 14) or a sell position (see line 19) given

76

3.4. Physical Implementation

that the order size is not 0. If Criterion() returns 0, no new trades are sup-
posed to be opened and, therefore, only the trailing stop is adjusted. For more
information on the Lot() function see Section 3.4.7.

3.4.11 OpenOrder()

Listing 3.11

1 //+−−−+
2 // | (user−de f ined) Function tha opens an order o f |
3 // | g iven type |
4 //+−−−+
5 void OpenOrder (int type , double o r de r S i z e)
6 {
7 int t i c k e t ;
8 int s topLoss InPo int s ;
9 int t a k e P r o f i t I n P o i n t s ;

10 double stopLoss ;
11 double t a k e P r o f i t ;
12
13 while (g ordersBook . OrderTypeCount [type] == 0)
14 {
15 int minimumDistance =
16 g marketProper t i e s . m minimumDistance . Get () ;
17 i f (i s t o p L o s s < minimumDistance)
18 s topLoss InPo int s = minimumDistance ;
19 else
20 s topLoss InPo int s = i s t o p L o s s ;
21 i f (i t a k e P r o f i t < minimumDistance)
22 t a k e P r o f i t I n P o i n t s = minimumDistance ;
23 else
24 t a k e P r o f i t I n P o i n t s = i t a k e P r o f i t ;
25
26 i f (type > 0)
27 Pr int (”Trying to open order S e l l . . ”) ;
28 else
29 Pr int (”Trying to open order Buy . . ”) ;
30
31 i f (type == 0)
32 {
33 stopLoss = Bid − s topLoss InPo int s ∗ Point ;
34 t a k e P r o f i t = Bid + t a k e P r o f i t I n P o i n t s ∗ Point ;
35 t i c k e t = OrderSend (Symbol () , 0 , o rderS i ze , Ask ,
36 2 , stopLoss , t akePro f i t , ”” ,
37 i magicNumber) ;
38 }
39 i f (type == 1)
40 {
41 stopLoss = Ask + stopLoss InPo int s ∗ Point ;
42 t a k e P r o f i t = Ask − t a k e P r o f i t I n P o i n t s ∗ Point ;
43 t i c k e t = OrderSend (Symbol () , 1 , o rderS i ze , Bid ,
44 2 , stopLoss , t akePro f i t , ”” ,
45 i magicNumber) ;

77

3. Implementation

46 }
47
48 i f (t i c k e t < 0)
49 {
50 i f (Errors (GetLastError ()) == fa l se)
51 return ;
52 }
53 Terminal () ;
54 Events () ;
55 }
56
57 return ;
58 }

This function opens a market order of a given type and size. It also ensures
that the stop-loss and the take-profit levels are compliant with the require-
ments of the broker. It updates the order book and the market information
in the end by calling Terminal() and Events() respectively.

3.4.12 AdjustTrailingStop()

Listing 3.12

1 //+−−−+
2 // | (user−de f ined) Function tha ad j u s t s StopLoss |
3 // | based on Tra i l i n gS top |
4 //+−−−+
5 void AdjustTra i l ingStop (int type)
6 {
7 int t i c k e t ;
8 int t r a i l i n g S t o p I n P o i n t s ;
9 double openPrice ;

10 double t r a i l i n g S t o p ;
11 double stopLoss ;
12 double t a k e P r o f i t ;
13 bool toBeModif ied ;
14
15 for (int i = 0 ; i < g ordersBook . OrderCount ; i++)
16 {
17 i f (g ordersBook . Orders [i] . Type () != type)
18 continue ;
19 toBeModif ied = fa l se ;
20 openPrice = g ordersBook . Orders [i] . OpenPrice () ;
21 stopLoss = g ordersBook . Orders [i] . StopLoss () ;
22 t a k e P r o f i t = g ordersBook . Orders [i] . TakeProf i t () ;
23 t i c k e t = g ordersBook . Orders [i] . Ticket () ;
24 int minimumDistance =
25 g marketProper t i e s . m minimumDistance . Get () ;
26 i f (i t r a i l i n g S t o p < minimumDistance)
27 t r a i l i n g S t o p I n P o i n t s = minimumDistance ;
28 else
29 t r a i l i n g S t o p I n P o i n t s = i t r a i l i n g S t o p ;
30 t r a i l i n g S t o p = t r a i l i n g S t o p I n P o i n t s ∗ Point ;

78

3.4. Physical Implementation

31
32 switch (type)
33 {
34 case 0 :
35 i f (NormalizeDouble (stopLoss , D i g i t s) <
36 NormalizeDouble (Bid − t r a i l i n g S t o p , D i g i t s))
37 {
38 stopLoss= Bid − t r a i l i n g S t o p ;
39 toBeModif ied = true ;
40 }
41 break ;
42 case 1 :
43 i f (NormalizeDouble (stopLoss , D i g i t s) >
44 NormalizeDouble (Ask + t r a i l i n g S t o p , D i g i t s) | |
45 NormalizeDouble (stopLoss , D i g i t s) == 0)
46 {
47 stopLoss = Ask + t r a i l i n g S t o p ;
48 toBeModif ied = true ;
49 }
50 }
51 i f (toBeModif ied == fa l se)
52 continue ;
53 bool r e s u l t = OrderModify (t i c k e t , openPrice , stopLoss ,
54 takePro f i t , 0) ;
55
56 i f (r e s u l t == fa l se)
57 {
58 i f (Errors (GetLastError ()) == fa l se)
59 return ;
60 i−−;
61 }
62 Terminal () ;
63 Events () ;
64 }
65 return ;
66 }

The AdjustTrailingStop() function adjusts the stop-loss levels of all orders
of a given type based on the trailing-stop setting while respecting the min-
imum distance requirement set by the broker.

3.4.13 Errors()

Listing 3.13

1 //+−−−+
2 // | (user−de f ined) Error hand l ing func t i on |
3 //+−−−+
4 bool Errors (int errorCode)
5 {
6 i f (errorCode == 0)
7 return (fa l se) ;
8

79

3. Implementation

9 switch (errorCode)
10 {
11 case 129 :
12 Pr int (”Wrong p r i c e . ”) ;
13 RefreshRates () ;
14 return (true) ;
15 case 135 :
16 Pr int (”Pr i ce changed . ”) ;
17 RefreshRates () ;
18 return (true) ;
19 case 136 :
20 Pr int (”No p r i c e s . Awaiting a new t i c k . ”) ;
21 while (RefreshRates () == fa l se)
22 Sleep (1) ;
23 return (true) ;
24 case 146 :
25 Pr int (”Trading subsystem i s busy . ”) ;
26 S leep (5 0 0) ;
27 RefreshRates () ;
28 return (true) ;
29
30 case 2 :
31 Pr int (”Common e r r o r . ”) ;
32 return (fa l se) ;
33 case 5 :
34 Pr int (”Old ve r s i on o f the te rmina l . ”) ;
35 return (fa l se) ;
36 case 64 :
37 Pr int (”Account i s blocked . ”) ;
38 return (fa l se) ;
39 case 133 :
40 Pr int (”Trading i s p roh ib i t ed ”) ;
41 return (fa l se) ;
42 default :
43 Pr int (”Occurred e r r o r ” + errorCode) ;
44 return (fa l se) ;
45 }
46 }

Listing 3.13 shows the error handling function. The errors are split into
two groups – recoverable and unrecoverable. In case of an unrecoverable error
false is returned, otherwise true is returned. The trader should act according
to the result of this function (e.g. stop the EA in case of an unrecoverable
error).

3.4.14 OrdersBook and MarketProperties

OrdersBook and MarketProperties were implemented as support classes to
make the main algorithm cleaner and its development faster. For the imple-
mentations of these classes see Appendix C and Appendix D respectively.

80

Chapter 4

Evaluation

My Expert Advisor (see Chapter 3) and the two previously analyzed publicly
available algorithms (discussed in Sections 2.4.1 and 2.4.2) will be trained and
tested on historical data over different periods of time. Subsequently, they
will be compared to each other.

For each EA, two models will be trained:

1. One with the data starting one week before the given point in time.

2. One with the data starting one month before the given point in time.

28th February 2015 was chosen to be the point when the training ends and
the testing starts.

Each model will then be tested on five consecutive weeks – one by one.
Eventually, the testing results will be used for a comparison of the given Expert
Advisors.

4.1 Historical Data Acquisition

It is necessary to choose the historical data source wisely, as proper data are
crucial for the precision of the model training and testing. Sources of historical
forex data vary wildly in quality and price. The following paragraphs discuss
some of the available options.

a) The trader can obtain certain historical data from his broker using Meta-
Trader 4’s History Center (Tools/History Center or pressing F2). This
option is for free and data are immediately available. However, brokers
usually offer only a limited number of days (with a periodicity of one
minute) of historical data which is not suitable for the model training
and testing.

81

4. Evaluation

Figure 4.1: History center

b) In case the broker does not offer any historical data in MetaTrader 4’s
History Center, it is possible to download some free data from MetaQuotes
Software Corp. (the company developing MetaTrader 4). However, these
data also have a span of only a limited number of days with a maximum
periodicity of one minute, they often contain holes and the way how
MetaQuotes Software Corp. generates these data is unknown. There-
fore, this data source is also inappropriate for the model training and
testing.

c) Some brokers provide free historical data feeds on their websites. These
are quite precise (a periodicity of one tick) and often cover extensive
periods of time. However, these feeds are usually not in a format com-
patible with MetaTrader 4 by default. Therefore, they need to be con-
verted first. For this, the trader might have to write a conversion script
himself. Another option is to search the Internet, as there is a good
chance that somebody from the community has already developed and
shared the required tool.

d) Another option is the buy the historical data. In this case, a vendor is
required to deliver the marketed quality and format. This is probably
the fastest way to obtain high-precision, wide-timespan historical data,
as long as the trader is willing to spend some money.

Atom8, my chosen broker, does not provide long term historical data inside
MetaTrader 4’s History Center nor on their website. Therefore, I have decided
to get historical data from a different broker. I chose Dukascopy SA, a Swiss
forex broker, because it has a reputation of offering high-quality historical
data feeds with periodicity of one tick. As Atom8 is a white label partner

82

4.1. Historical Data Acquisition

broker of Dukascopy [9], there should not be any significant differences in the
bid/ask amount levels. In order to prove this, one-day data (open, high, low
and close price) were obtained from both brokers and they were compared (see
Appendix E).

However, Dukascopy does not offer historical data in a format compatible
with MetaTrader 4. For conversion into a compatible format the Tickstory
utility can be used. It downloads the data from Dukascopy, converts them
into a MetaTrader 4 compatible format and imports them into MetaTrader 4.
The following section describes this in detail.

4.1.1 Tickstory Guide

The Tickstory utility can be found enclosed on the attached CD. However, to
ensure the installation of the newest version it is recommended to download
the current version from the official website [23].

1. Install Tickstory as any other application. In case of an “access denied”
error it is advised to run the installation as the administrator.

2. At the first run, it is necessary to set the application settings.

a) In the Dukascopy Datasource tab test your connection and make
changes if required.

b) In the MetaTrader 4 Settings tab fill in the path to your Meta-
Trader 4 folder. When it comes to the MetaTrader 4 Data Folder,
the easiest way how to find it is by opening MetaTrader 4 and
selecting File/Open Data Folder from the menu.

3. The next step is to select the desired currency pair, right-click it and
choose Export to MT4. . .

4. Before exporting the data, it is needed to obtain the configuration of the
chosen broker (in my case Atom8). In order to generate the configuration
file, click the Help tab and follow all the steps mentioned there. Note
that the procedure will probably not work on weekends and banking
holidays. Therefore, if no configuration file is generated, wait until the
market is open to repeat this step. The configuration used for testing
and training can be found on the enclosed CD.

5. If you finished all the steps mentioned in the Help tab (including loading
the configuration in the MetaTrader Info tab), verify that the symbol in
the MetaTrader Info tab matches the symbol name used by your broker.
Brokers often add some letters after the currency pair name. If the name
is the same, you can continue to the next step. However, if the names
differ, put the broker’s name of the currency pair into the Map to field.

83

4. Evaluation

6. Change to the Data export tab, choose the desired timespan and time-
frames, change additional settings if required, and click OK in order to
export the data.

7. Once the export is finished, check if any errors occurred. If they did,
consult the official website for help.

8. If the export ended without errors, run MetaTrader 4 either by clicking
the Launch Metatrader for Back-testing button or pressing F8.

9. Now, the historical data are ready for the model training and testing.

4.1.2 Historical Data Requirements

The point in time when the training stops and the testing starts is February
28th 2015. Given that the longest training period used will be one month,
the historical data has to start on February 1st 2015. Given that the testing
period is five weeks long, it is necessary to obtain historical data up to April
5th 2015.

As both Genie and my Expert Advisor use a one-minute timeframe (M1)
for trading and Geedo uses a one-hour timeframe (H1), obtaining these two
timeframes is sufficient for our needs.

As the Atom8 broker uses EURUSDv name for the EUR/USD currency
pair, it is necessary to put EURUSDv into the Map to field in the Tickstory
export settings.

For a proper data acquisition from the Tickstory, the broker’s configur-
ation file must be loaded. The configuration file that was used for the data
acquisition can be found on the enclosed CD.

4.2 Model Training

Having all the necessary data available the training can be started. Meta-
Trader 4 offers an option to use a genetic algorithm for the optimization. This
is very useful, as it can decrease the amount of required parameter config-
uration performance measurements from billions down to about 10 000. An-
other means how to accelerate the processing is by setting an optimization
limit. When the limit is reached, the measurement is stopped and the result
is thrown away. As all the trainings will be run with an initial balance of
10 000 e, I decided that a suitable limit for stopping of the test should be the
balance dropping below 9000 e.

Before every training all the parameters must be set carefully. This in-
cludes the model, training start and end, timeframe (period), spread, op-
timization, initial deposit and its currency, allowed position types, optimized
parameter, genetic algorithm, input parameters ranges and optimization lim-
its.

84

4.2. Model Training

Generic Training Parameters

In this section the parameters that are the same for every algorithm are
defined.

• Symbol: EURUSDv

• Model: Every tick

• Spread: 2

• Optimization: True

• Initial deposit and Currency: 10 000 EUR

• Positions: Long & Short

• Optimized parameter: Balance

• Genetic algorithm: True

• Optimization limit: Balance minimum checked and set to 9 000

• For one month training => From: 2015.02.01; To: 2015.02.28

• For one week training => From: 2015.02.21; To: 2015.02.28

Geedo-specific Training Parameters

• Period: H1

The rest of the training parameters for Geedo is shown in Figure 4.2. In
order to avoid adjusting them manually, the user can load the configuration
file found on the enclosed CD.

Geedo Training Results

The results summarized in Figures 4.3 and 4.4 can also be found in a text file
on the enclosed CD.

Genie-specific Training Parameters

• Period: M1

The rest of the training parameters for Genie is shown in Figure 4.5. In
order to avoid adjusting them manually a user can load the configuration file
found on the enclosed CD.

85

4. Evaluation

Figure 4.2: Geedo training parameters

Figure 4.3: Geedo one month training results

Figure 4.4: Geedo one week training results

86

4.2. Model Training

Figure 4.5: Genie training parameters

Figure 4.6: Genie one month training results

Figure 4.7: Genie one week training results

Genie Training Results

The results summarized in Figures 4.6 and 4.7 can also be found in a text file
on the enclosed CD.

87

4. Evaluation

My-EA-specific Training Parameters

• Period: M1

Figure 4.8: My Expert Advisor training parameters

The rest of the training parameters for my Expert Advisor is shown in
Figure 4.8. In order to avoid adjusting them manually a user can load the
configuration file found on the enclosed CD.

My EA Training Results

The results summarized in Figures 4.9 and 4.10 can also be found in a text
file on the enclosed CD.

Figure 4.9: My Expert Advisor one month training results

88

4.3. Model Testing

Figure 4.10: My Expert Advisor one week training results

4.3 Model Testing

As mentioned before, the model testing consists of running measurements on
five consecutive weeks. Only profitable (and those whose profit is equal to
0) parameter configurations from he training are used for the testing. This is
impossible to achieve in the MetaTrader’s graphic user interface (GUI). There-
fore, all the discussed Expert Advisors were slightly modified for the testing
purposes. This modification includes the loading of configuration parameters
from a file (not GUI) in the OnInit() function and the saving of the results
into another file in the OnTester() function. The modified EAs for the testing
purposes can be found on the enclosed CD.

Generic Testing Parameters

In this section the parameters that are the same for every algorithm are
defined.

• Symbol: EURUSDv

• Model: Every tick

• Spread: 2

• Optimization: True

• Initial deposit and Currency: 10 000 EUR

• Positions: Long & Short

• Optimized parameter: Balance

• Genetic algorithm: False

• Optimization limit: None

• For week 1 testing => From: 2015.03.01; To: 2015.03.07

• For week 2 testing => From: 2015.03.08; To: 2015.03.14

• For week 3 testing => From: 2015.03.15; To: 2015.03.21

89

4. Evaluation

• For week 4 testing => From: 2015.03.22; To: 2015.03.28

• For week 5 testing => From: 2015.03.29; To: 2015.04.04

Geedo-specific Testing Parameters

• Period: H1

Figure 4.11: Geedo testing parameters

The rest of the testing parameters for Geedo is shown in Figure 4.11.
Basically, when it comes to the input parameters for the testing, the only
requirement is that the optimization is checked for one parameter only and
that this parameter has more steps than the number of tested configurations.
This parameter is used as an iterator. Tested configuration will be loaded
automatically from a file in the OnInit() method. Again, the configuration
file can be found on the enclosed CD.

Genie-specific Testing Parameters

• Period: M1

The rest of the testing parameters for Genie is shown in Figure 4.12. The
same way as in case of the Geedo testing parameters (see Section 4.3), the

90

4.4. Results

Figure 4.12: Genie testing parameters

optimized parameter is used only as an iterator. Again, the configuration file
can be found on the enclosed CD.

My-Alg-specific Testing Parameters

• Period: M1

The rest of the testing parameters for my Expert Advisor is shown in
Figure 4.13. The same way as in case of the Geedo testing parameters (see
Section 4.3), the optimized parameter is used only as an iterator. Again, the
configuration file can be found on the enclosed CD.

4.4 Results

The measured data from the testing are used to compare all three EAs perfor-
mance-wise.

4.4.1 First Comparison

The first comparison shown in Figure 4.14 shows the performance of each EA
in the both training periods for every week. The performance in this figure
is determined as the number of profitable configurations out of all the testing
configurations (i.e. out of all the profitable configurations from the training).

Figure 4.14 shows the Genie EA not trading profitably neither when trained
on the one-week period nor on the one-month period. This means that the
model is weak and does not contain enough parameters necessary to set its
behavior correctly.

91

4. Evaluation

Figure 4.13: My Expert Advisor testing parameters

Figure 4.14: Percentage of profitable trades over five weeks testing

The other two EAs delivered plausible results regardless of the training
period.

4.4.2 Second Comparison

Then, the set of the top five percent of the most profitable configurations was
taken from each EA and a training period combination. Figure 4.15 shows the

92

4.4. Results

percentage of the lossy and the profitable configurations in the testing among
the chosen set.

Figure 4.15: Top 5% training configurations testing results

Figure 4.15 shows that not a single one from the top 5% configurations
from the training were profitable during the testing period for Geedo trained
on the one-month period. This confirms a very important fact about the EA
training – even the most profitable EA from the training does not ensure profits
during the testing or the live trading. One of the possible reasons for this is,
for example, model overlearning. Attempting to determine the configuration
quality solely based on the training is a trap that many beginners fall into.
The absence of a simple testing functionality in MetaTrader 4 worsens the
situation.

As the Genie EA does not trade (see Section 4.4.1), the results of this EA
can be considered to be insignificant.

My EA trained on the one-week period has interestingly good results.
However, further research would be necessary to find out the exact reason for
this.

4.4.3 Best Configurations

Two methods were used to determine the best configurations for each period
and algorithm. The first one uses the average of 5 weeks discounted by the
(1 − drawdown) factor. The second method works similarly. It uses the
weighted average instead of the simple one. The weights of weeks one to five
are 1, 0.7, 0.5, 0.3 and 0.2 respectively.

The drawdown is an interesting factor as it is an indicator of how much
the equity dropped during the course of trading. Generally, the configurations

93

4. Evaluation

with a lower drawdown are safer. However, these configurations usually yield
lower profits. The goal was to find an exception to the rule – a configuration
that has both high profits and a low drawdown.

The best configuration for each EA and each training period can be seen
in Tables 4.1 and 4.2.

94

4.4.
R

esu
lts

Table 4.1: Best configurations based on the weighted average discounted by (1 − drawdown). Geedo 1w parameters:
TakeProfit L=500.00, StopLoss L=425.00, TakeProfit S=425.00, StopLoss S=500.00, TradeTime=15.00, t1=7.00, t2=1.00,
delta L=5.00, delta S=40.00, Orders=5.00, MaxOpenTime=475.00, lot=1.00, BigLotSize=1.00. Geedo 1m parameters:
TakeProfit L=450.00, StopLoss L=475.00, TakeProfit S=400.00, StopLoss S=375.00, TradeTime=16.00, t1=7.00, t2=1.00,
delta L=20.00, delta S=50.00, Orders=1.00, MaxOpenTime=25.00, lot=1.00, BigLotSize=1.00. Genie 1w parameters:
TakeProfit=250.00, Lots=7.00, TrailingStop=475.00, MaximumRisk=0.01, DecreaseFactor=6.00, Step=0.037.
Genie 1m parameters: TakeProfit=125.00, Lots=1.00, TrailingStop=500.00, MaximumRisk=0.01, DecreaseFactor=4.00,
Step=0.037. My EA 1w parameters: i stopLoss=275.00, i takeProfit=425.00, i trailingStop=200.00, i relativeLot-
Size=100.00, i MAshortTermPeriod=6.00, i MAshortTermThreshold=40.00, i MAshortTermTrendBars=1.00, i -
MAshortTermTrendToleranceAngleTan=0.50, i MAmidTermPeriod=150.00, i MAmidTermTrendBars=10.00, i MAmidTer-
mTrendToleranceAngleTan=0.60, i flagTimer=250.00, i magicNumber=165343.00, i lots=0.00. My EA 1m parameters:
i stopLoss=225.00, i takeProfit=425.00, i trailingStop=200.00, i relativeLotSize=100.00, i MAshortTermPeriod=14.00,
i MAshortTermThreshold=90.00, i MAshortTermTrendBars=5.00, i MAshortTermTrendToleranceAngleTan=0.40, i MAm-
idTermPeriod=200.00, i MAmidTermTrendBars=20.00, i MAmidTermTrendToleranceAngleTan=0.60, i flagTimer=250.00,
i magicNumber=165343.00, i lots=0.00.

Train Week 1 Week 2 Week 3 Week 4 Week 5 Testing profit

Geedo 1w 830.23 855.89 2000.71 934.24 455.72 -675.55 3571.01

Geedo 1m 2079.6 996.61 682.15 1261.26 1254.4 1459.6 5654.02

Genie 1w 49.21 -0.24 -39.45 -4.22 -150.12 -273.29 -467.32

Genie 1m 10.28 1.12 -15.11 -16.07 -111.42 -295.46 -436.94

My EA 1w 119.16 -5640.82 152773.3 -1450.42 -9399.11 -3752.05 132530.9

My EA 1m 24096.54 4062.22 19638.63 828.63 774.25 4369.71 29673.44

95

4
.

E
v
a
l
u
a
t
io
n

Table 4.2: Best configurations based on the average discounted by (1 − drawdown). Geedo 1w parameters: Take-
Profit L=375.00, StopLoss L=200.00, TakeProfit S=350.00, StopLoss S=500.00, TradeTime=17.00, t1=7.00, t2=5.00,
delta L=10.00, delta S=5.00, Orders=4.00, MaxOpenTime=475.00, lot=1.00, BigLotSize=1.00. Geedo 1m parameters:
TakeProfit L=450.00, StopLoss L=475.00, TakeProfit S=400.00, StopLoss S=375.00, TradeTime=16.00, t1=7.00, t2=1.00,
delta L=20.00, delta S=50.00, Orders=1.00, MaxOpenTime=25.00, lot=1.00, BigLotSize=1.00. Genie 1w parameters:
TakeProfit=250.00, Lots=7.00, TrailingStop=475.00, MaximumRisk=0.01, DecreaseFactor=6.00, Step=0.037.
Genie 1m parameters: TakeProfit=75.00, Lots=7.00, TrailingStop=475.00, MaximumRisk=0.01, DecreaseFactor=7.00,
Step=0.034. My EA 1w parameters: i stopLoss=300.00, i takeProfit=400.00, i trailingStop=200.00, i relativeLot-
Size=100.00, i MAshortTermPeriod=6.00, i MAshortTermThreshold=40.00, i MAshortTermTrendBars=1.00, i -
MAshortTermTrendToleranceAngleTan=0.30, i MAmidTermPeriod=50.00, i MAmidTermTrendBars=20.00, i MAmidTer-
mTrendToleranceAngleTan=0.60, i flagTimer=250.00, i magicNumber=165343.00, i lots=0.00. My EA 1m parameters:
i stopLoss=225.00, i takeProfit=425.00, i trailingStop=200.00, i relativeLotSize=100.00, i MAshortTermPeriod=14.00,
i MAshortTermThreshold=90.00, i MAshortTermTrendBars=5.00, i MAshortTermTrendToleranceAngleTan=0.40, i MAm-
idTermPeriod=200.00, i MAmidTermTrendBars=20.00, i MAmidTermTrendToleranceAngleTan=0.60, i flagTimer=250.00,
i magicNumber=165343.00, i lots=0.00.

Train Week 1 Week 2 Week 3 Week 4 Week 5 Testing profit

Geedo 1w 1036.49 343.02 1337.87 1169.24 637.58 821.21 4308.92

Geedo 1m 2079.6 996.61 682.15 1261.26 1254.4 1459.6 5654.02

Genie 1w 49.21 -0.24 -39.45 -4.22 -150.12 -273.29 -467.32

Genie 1m 45.44 -69.2 -51.31 37.35 -115.27 -178.29 -376.72

My EA 1w 1368.81 -2713.77 171757 -8086.08 9276.27 6667.03 176900.45

My EA 1m 24096.54 4062.22 19638.63 828.63 774.25 4369.71 29673.44

96

Conclusion

The purpose of the thesis was to study existing trading algorithms for foreign
exchange market trading. Furthermore, an implementation of an own robot
was to be delivered. Performance-wise comparison based on historic data was
to be realised.

Firstly, the most significant parameters of broker selection were discussed.
The reader was advised which parameters he should focus on in order to
find the most suitable broker for his needs while avoiding fraudulent brokers.
This is the first step to increase probability of profits. Also, the necessity of
risk management was stressed by recommending the use of stop orders and
hedging.

Secondly, main features of MQL4 language were introduced and explained
in detail, as it is necessary to know the details of the language in order to be
able to unleash all of its capabilities.

Afterwards, the code of two publicly available expert advisors were ana-
lyzed showing varying qualities of free robots. The analysis was beneficial by
pointing out the mistakes that should be avoided.

Furthermore, a new EA was implemented with focus on code clarity and
reusability, so that it can be utilised as a template for future development.

Next, the two previously analyzed EAs and my new EA were analyzed
performance-wise. The analysis was based on model learning and evaluation,
which consists of training and testing. The solution of the absence of model
testing feature in MetaTrader4 was to tweak training feature of MetaTrader4
in order to be able to load parameter configuration from file instead of GUI.
This way, it was made possible to test only parameter configurations which
resulted from model training.

Having obtained the testing data, the EAs were compared to each other.
A slightly surprising fact is that poorly written (when it comes to coding style)
algorithm Geedo significantly outperformed the better written Genie.

Also, the necessity for model testing was confirmed by proving that many
top-performing parameter configurations in training were lossy in testing.

97

