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Introduction

This project is very closely related to my bachelor degree project, where the spectral enclo-
sures for discrete Lapalcian and bilaplacian with a complex potential were derived. Let us now
brie�y recall some key steps.

We are dealing with a di�erence operator T de�ned as

Ten = −en+1 + 2en − en−1, ∀n ∈ Z,

where {en}n∈Z is standard orthonormal basis of ℓ2(Z). The discrete bilaplacian is a second power
of operator T

T 2en = en+2 − 4en+1 + 6en − 4en−1 + en−2, ∀n ∈ Z.

Our aim is to analyze spectrum of an operator T 2 + V , where

V en = vnen, ∀n ∈ Z

and v ∈ ℓ1(Z).

Using the Birman-Schwinger principle it was obtained that

σ(T 2 + V ) ⊂

λ ∈ C \ [0, 16] :

∣∣∣∣∣∣ 2λ(λ− 16)

1−
√

1− 16
λ

∣∣∣∣∣∣ ≤ ∥v∥2ℓ1(Z)

 ∪ [0, 16].

All details could be �nd in [3]. These sets are called spectral enclosures. The spectrum of the
perturbed operator is de�nitely a subset of the spectral enclosure for a given norm of sequence
v. In the Bachelor degree project, a conjecture was considered. For Birman-Schwinger principle,
it was necessary to estimate the Green kernel of the operator T 2. There were some simple pos-
sibilities which allowed us to obtain spectral enclosures which were not optimal. The conjecture
was on an estimate of the Green kernel which allowed us to prove, that the spectral enclosures
obtained using this estimate were optimal.

The conjecture on the estimate of the Green kernel of T 2 will be proven in the �rst chapter.
Some basic analytic and topological properties of the enclosures will be shown in the second
chapter. Finally, in the third chapter the recherche of the proof of the absence of an eigenvalue
of the trace-class perturbed discrete Laplacian in the interior of its essential spectrum will be
done. Then, the there will be made a discussion about the generalization of this proof for the
discrete bilaplacian T 2.
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Chapter 1

Optimal spectral enclosures for the
discrete bilaplacian

In this chapter, the conjecture on the estimate of the Green kernel of T 2 will be proven.
According to my Bachelor degree project [3], where the conjecture was �rst introduced, we want
to show the following inequality∣∣(T 2 − λ)−1

m,n

∣∣ ≤ ∣∣∣(T 2 − λ)−1
0,0

∣∣∣ , ∀m,n ∈ Z. (1.1)

The Green kernel was obtain using a transformation of the number λ by a transform

ζ(k) = k−2 − 4k−1 + 6− 4k + k2,

which is a bijection from the set Dζ+ := {k ∈ C : |k| < 1, Im(k) > 0} ∪ (−1, 0) onto C \ [0, 16].
The formula for the Green kernel is as follows

(T 2 − λ)−1
m,n =

k

2(k − 1)2

(
k|m−n|

k − k−1
−

z
|m−n|
−

z− − z−1
−

)
, (1.2)

where z− = z−(k) is a root of the polynomial p(z) = z2 + z
(
k − 4 + k−1

)
+ 1. We can divide

the inequality (1.1) by the positive number |k/(2(k − 1)2)| and we can also denote s := |m− n|
which turns this inequality into a problem with one nonegative integer parameter.

1.1 Proof of the conjecture on optimal enclosures

The aim of this section is to prove following conjecture from my bachelor project. Here, D±
are simply the upper and the lower half of the unit circle respectively.

Conjecture 1.1. Let k ∈ Dζ+ and let z− be a root of the polynomial p(z) = z2+z
(
k − 4 + k−1

)
+

1 such that |z−| < 1. Then

∀s ∈ N0 : | ks
(
z− − z−1

−
)
− zs−

(
k − k−1

)
| ≤ |

(
z− − z−1

−
)
−
(
k − k−1

)
| .

Remark 1.2. It was proved in [3] that there exist such a root z−of p(z) for any k ∈ Dζ+.

Lemma 1.3. Let k ∈ D+ and let z− be a root of polynomial p(z) = z2 + z
(
k − 4 + k−1

)
+ 1

such that |z−| < 1. Then z− ∈ D−.
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Proof. It holds
z2 + z

(
k − 4 + k−1

)
+ k = (z − z−)

(
z − z−1

−
)
.

Hence
−(z− + z−1

− ) = k − 4 + k−1,

=⇒ − Im
(
z− + z−1

−
)
= Im

(
k + k−1

)
.

Now put z− := reiφ, r ∈ (0, 1), φ ∈ (−π, π]. Hence(
r − r−1

)
sin(φ) = − Im

(
k + k−1

)
> 0 ⇐= k ∈ D+.

Thus (
r − r−1

)︸ ︷︷ ︸
<0,∀r∈(0,1)

sin(φ)︸ ︷︷ ︸
must be<0

> 0,

therefore φ must be in (−π, 0), which was our aim to show. Let us look closer on proposition
Im
(
k + k−1

)
< 0. Put k := seiψ ∈ D+. It follows that s ∈ (0, 1) and ψ ∈ (0, π) and then

k + k−1 =
(
s+ s−1

)
cos(ψ) + i

(
s− s−1

)
sin(ψ).

Indeed Im
(
k + k−1

)
< 0.

Lemma 1.3 implies that it is su�cient to prove the following theorem , which is actually more
general.

Theorem 1.4. Let s ∈ N0, then

∀u ∈ D+, ∀v ∈ D− : | us
(
v − v−1

)
− vs

(
u− u−1

)
| ≤ |

(
v − v−1

)
−
(
u− u−1

)
| .

To prove the Theorem 1.4 we will use Maximum modulus principle (MMP).

Theorem 1.5. (Maximum Modulus Principle).
Let Ω be a connected open subset of C and f : Ω → C holomorphic on Ω and f ̸= const. Then
|f | cannot exhibit a strict local maximum in Ω.

Corollary 1.6. Let Ω be a bounded connected open subset of C and f : Ω → C holomorphic
on Ω and continuous on Ω̄. Then

max
Ω̄

|f | = max
∂Ω

|f |

Remark 1.7. Consider s ≥ 0 and the function

fs(u, v) :=
us
(
v − v−1

)
− vs

(
u− u−1

)
(v − v−1)− (u− u−1)

=
us+1

(
v2 − 1

)
− vs+1

(
u2 − 1

)
(1 + uv)(v − u)

.

Theorem 1.4 is equivalent to

|fs(u, v)| ≤ 1,∀u ∈ D+, ∀v ∈ D−. (1.3)

We choose a �xed v ∈ D− arbitrarily and look closer to the function fs(·, v), which is analytic
on D+ and continuous on D+. Indeed, it holds that the limit

lim
u→v

fs(u, v)
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exists and is �nite. And the second factor in the denominator of fs could generate singularity if
1 + uv = 0, but in this case u = −1/v, thus u /∈ D+, since v ∈ D− and |u| = |1/v| > 1. We can
reformulate (1.3) using MMP as follows

|fs(u, v)| ≤ 1,∀u ∈ ∂D+, ∀v ∈ D−. (1.4)

Now, we take �xed u ∈ ∂D+ and we will analyze the function fs(u, ·). Function f is analytic
on D−. indeed, only term in the de�nition of function fs which could generate a singularity is
(1 + uv). It follows that v = −1/u and u ∈ ∂D+. We look closer on following situations:

u = eiϕ, ϕ ∈ (0, π) : v = −1

u
= eiϕ /∈ D−,

u ∈ (−1, 1) : v = −1

u
/∈ D−since

∣∣∣∣1u
∣∣∣∣ > 1,

u = ±1 : v = −1

u
= ∓1.

Functions fs(±1, v) do not have singularities at ∓1. Thus we can simplify (1.4), using MPP
again and we get

|fs(u, v)| ≤ 1,∀u ∈ ∂D+, ∀v ∈ ∂D−. (1.5)

Based on the Remark 1.7, it is su�cient to prove following theorem.

Theorem 1.8. Let s ∈ N0, then

∀u ∈ ∂D+, ∀v ∈ ∂D− : | us
(
v − v−1

)
− vs

(
u− u−1

)
| ≤ |

(
v − v−1

)
−
(
u− u−1

)
| . (1.6)

Proof. The Theorem 1.8 will be proven using following strategy. We divide the boundaries of the
upper and lower half of the unit circle into parts and then we will prove the theorem considering
all the positions of u and v step by step.

In following, we assume
u = rue

iϕu , v = rve
iϕv .

1. We consider the case, when both u and v are real. Without loss of generality, let us assume
that 0 < ru < rv < 1. If ru > rv we can use the symmetry of u, v in this problem. If
0 > ru > rv > −1 we can get the same problem as if the numbers are positive thanks to
the absolute value in (1.6).

We have u = ru, v = rv, thus the inequality is in the form∣∣rsu (rv − r−1
v

)
− rsv

(
ru − r−1

u

)∣∣ ≤ ∣∣(rv − r−1
v

)
−
(
ru − r−1

u

)∣∣ ,∣∣rs+1
u

(
1− r2v

)
− rs+1

v

(
1− r2u

)∣∣ ≤ ∣∣ru (1− r2v
)
− rv

(
1− r2u

)∣∣ .
Let us denote RHS := rv

(
1− r2u

)
− ru

(
1− r2v

)
and LHS := rs+1

v

(
1− r2u

)
− rs+1

u

(
1− r2v

)
.

Since RHS ≥ 0 and LHS ≥ 0, ∀s ∈ N0, the problem is as follows

0 ≤ RHS − LHS = rv
(
1− r2u

)
(1− rsv)− ru

(
1− r2v

)
(1− rsu) ,

0 ≤ rv (1− rsv)

1− r2v
− ru (1− rsu)

1− r2u
.
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Consider the real function

ξ(x) =
x (1− xs)

1− x2
,

which is increasing on interval (0, 1). Hence we get 0 ≤ ξ(y)−ξ(x) for any x, y ∈ (0, 1), y >
x. If we put x := ru and y := rv the lemma is proved. It also follows from this proof that
the inequality holds ∀ru, rv ∈ (−1, 1). Indeed for odd s we can use directly previous part of
this proof. For even s is function ξ odd and we can also prove it the same way. It remains
to prove that the function ξ is increasing.

Indeed, for s = 0 it is clear, for s ≥ 1 it holds

ξ(x) =
x

1 + x

s−1∑
j=0

xj

and thus

ξ′(x) =
1

(1 + x)2

(1 + x)

s−1∑
j=0

(j + 1)xj −
s−1∑
j=0

xj+1

 =

=
1

(1 + x)2

s−1∑
j=0

jxj +
s−1∑
j=0

jxj+1 +
s−1∑
j=0

xj

 ≥ 0,

for x ∈ (0, 1). Which was to be proved.

2. Now consider u and v such that ru = rv = 1. Let us denote

g(s) :=| us
(
v − v−1

)
− vs

(
u− u−1

)∣∣2
We have u = eiϕu and v = eiϕv , ϕu ∈ (0, π), ϕv ∈ (−π, 0) and using the de�nition of
absolute value of the complex number and some trigonometric identities we obtain

g(s) =
∣∣∣eisϕu2i sinϕv − eisϕv2i sinϕu

∣∣∣2 =
= 4

(
(sin (sϕu) sin (ϕv)− sin (sϕv) sin (ϕu))

2 − (cos (sϕu) sin (ϕv)− cos (sϕv) sin (ϕu))
2
)
=

= 4

sin2 (ϕu) + sin2 (ϕv)− 2 sin (ϕu) sin (ϕv) (cos (sϕu) cos (sϕv) + sin (sϕu) sin (sϕv))︸ ︷︷ ︸
cos(s(ϕu−ϕv))

)

 .

Now it is not hard to verify that g(s) ≤ g(0). Let us analyze

g(0)− g(s) = −8 sin (ϕu)︸ ︷︷ ︸
≥0

sin (ϕv)︸ ︷︷ ︸
≤0

(1− cos (s (ϕu − ϕv))︸ ︷︷ ︸
2 sin2( s

2
(ϕu−ϕv))

) ≥ 0.

Thus the inequality (1.6) holds for this range of u and v.
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3. Now consider number v to be real and positive, u to be complex. It is ru = 1, rv ∈ [0, 1]
and ϕu ∈ (0, π), ϕv = 0. Denote

h(s) :=| us
(
v − v−1

)
− vs

(
u− u−1

)∣∣2
As in the previous parts, we have u = eiϕu and v = rv and we obtain

h(s) =
∣∣∣eisϕu (rv − r−1

v

)
− rsv2i sinϕu

∣∣∣2 =
=
(
rv − r−1

v

)
cos2 (sϕu) +

((
rv − r−1

v

)
sin (sϕu)− 2rsv sin (ϕu)

)2
=
(
rv − r−1

v

)2 − 4rsv
(
rv − r−1

v

)
sin (sϕu) sin (ϕu) + 4r2sv sin2 (ϕu) .

In fact, the di�erence h(0)− h(s) is non-negative,

h(0)− h(s) = 4 sin2 (ϕu)
(
1− r2sv

)
+ 4rsv

(
rv − r−1

v

)
sin (sϕu) sin (ϕu)

?
≥ 0

Dividing both sides by positive terms 4 sin2 (ϕu) , r−1
v − rv, r

s
v, we get

0 ≤ r−sv − rsv
r−1
v − rv

− sin (sϕu)

sin (ϕu)
. (1.7)

Since the function

η(x) =
x−s − xs

x−1 − x

is decreasing on (0, 1), limx→1− η(x) = s (see the end of the proof) and

max
ϕu∈(0,π)

(
sin (sϕu)

sin (ϕu)

)
= s

(see the end of the proof), the inequality (1.7) holds. We can easily prove that the inequality
(1.6) holds for u ∈ D+, v ∈ D− such that rv = 1, ru ∈ [0, 1] and ϕv ∈ (−π, 0), ϕu = 0. It is
enough to use the symmetry of u and v in the problem and the fact that

max
ϕ∈(0,π)

(
sin (sϕ)

sin (ϕ)

)
= s.

4. Now consider similar case, but ru = 1, rv ∈ [−1, 0] and ϕu ∈ (0, π), ϕv = 0. Denote

h(s) :=| us
(
v − v−1

)
− vs

(
u− u−1

)∣∣2 .
Using exactly the same method as in the previous case we get

h(0)− h(s) = 4 sin2 (ϕu)
(
1− r2sv

)
+ 4rsv

(
rv − r−1

v

)
sin (sϕu) sin (ϕu) ≥ 0. (1.8)

Now we have to separately discuss two situations. Firstly, consider s is odd. In this case,
we divide both sides of the inequality (1.8) by the same terms as in the proof of previous
part, i.e. 4 sin2 (ϕu) > 0, r−1

v − rv < 0, rsv < 0. Now we have the same inequality for
di�erent range of parameters

0 ≤ r−sv − rsv
r−1
v − rv

− sin (sϕu)

sin (ϕu)
.
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Since both functions are even in this case, the inequality follows directly from the proof of
previous case.

To �nish the proof, we assume s even. Again, we divide both sides of the inequality (1.8)
by 4 sin2 (ϕu) > 0, r−1

v − rv < 0, rsv < 0 and obtain

0 ≥ r−sv − rsv
r−1
v − rv

+

(
−sin (sϕu)

sin (ϕu)

)
Now η(x) = x−s−xs

x−1−x is odd function and sin(sϕu)
sin(ϕu)

is odd. It is easy to see that the inequality
holds.
One can easily prove (1.6) for u ∈ D+, v ∈ D− such that rv = 1, ru ∈ [−1, 0] and
ϕv ∈ (−π, 0), ϕu = 0. It follows directly from symmetry of u and v in (1.6) and prop-
erties of the functions η and sin(sx)/ sin(x).

Now it remains to prove that the function η is decreasing. Moreover, η is odd function for
even s and even function for odd s. Indeed, the oddness/evenness follows directly from the
de�nition and the monotonicity is easy for s ∈ {0, 1}, for s ≥ 2

η(x) =
x−s − xs

x−1 − x
= x−s+1x

2s − 1

x2 − 1
= x−s+1

s−1∑
k=0

x2k =
s−1∑
k=0

x2k−s+1.

Hence

lim
x→1−

η(x) = s & lim
x→−1+

η(x) =

{
s : s odd
−s : s even

and also

η′(x) =
s−1∑
k=0

(2k − s+ 1)x2k−s.

Now we look closer to the sum. There are s terms in the sum for every even s ≥ 2 and
s − 1 terms for odd s > 2. There are also ⌊s/2⌋ positive terms and ⌊s/2⌋ negative terms.
It holds that for any x ∈ (0, 1)

∀s ≥ 2, ∀l ∈ {0, 1, . . . , ⌊s/2⌋−1} :
∣∣∣(2l − s+ 1)x2l−s

∣∣∣ ≥ ∣∣∣(2(s− 1− l)− s+ 1)x2(s−1−l)−s
∣∣∣ .

Indeed, using standard algebraic manipulations we get∣∣∣(2l − s+ 1)x2l−s
∣∣∣ ≥ ∣∣∣(2(s− 1− l)− s+ 1)x2(s−1−l)−s

∣∣∣ ,∣∣∣(2l − s+ 1)x2l−s
∣∣∣ | ≥ ∣∣∣−(2l − s+ 1)x−2l+s−2

∣∣∣ ,
x(2l−s)−(−2l+s−2) = x4l−2s+2 ≥ 1.

It holds, because 4l − 2s+ 2 ≤ 0,∀s ≥ 2,∀l ∈ {0, 1, . . . , ⌊s/2⌋ − 1} and x is from (0, 1).

13



Last proposition to show to �nish the proof is that for every s ∈ N0 is

max
ϕ∈(0,π)

sin (sϕ)

sin (ϕ)
= s.

It is true, because the function

sin (sϕ)

sin (ϕ)
= Un−1(cosϕ),

where Un(x) is the second kind Chebyshev polynomial which has extreme values at ±1.
The proof can be found in the �rst chapter in [6]. It is clear that the value of the function
at 0 is s.

14



Chapter 2

The analysis of boundary curves of the
spectral enclosures

In this chapter, we will do the analysis of the boundary curves of the spectral enclosures.
Now, according to the proven conjecture, we know that these are the optimal conjectures. By
the optimality it is now meant, that to any point z of the boundary it can be found a potential
V such that z is the eigenvalue of T 2 + V . Our goal is to justify analytically the shape of the
curves which was, until now, know just as a result of some numerical computations.

Let us start with few general propositions from complex analysis. We will be dealing with a
function f which is analytic on some open set U ⊂ C. By an level set of f we understand

Γc := {z ∈ U : |f(z)| = c} , for any c > 0. (2.1)

A level set Γc does have to be simple in general. A curve being simple now means that it can
be described by a graph of the 1-variable function locally. The function is y = y(x) or x = x(y),
where y−axis is considered to be Im-axis and x−axis the Re-axis in the complex plain. Shortly
said, the curve does not have any intersections with itself. But we know some su�cient condition
for simplicity.

Lemma 2.1. Let function f be analytic on an open U ⊂ C and c > 0. And let f ̸= 0 and
f ′ ̸= 0. Then Γc is either ∅ or it is simple.

Proof. Consider a function F (x, y) := |f(x + iy)| where z = x + iy. Then by Cauchy-Riemann
conditions either ∂yF ̸= 0 or ∂xF ̸= 0. The proposition follows directly from the the Implicit
function theorem applied to the function F .

Theorem 2.2. (Open Mapping Theorem) Let f be analytic on some open set U ⊂ C and
f ̸= const on U . Than the image of any open subset of U is an open subset in C.

Lemma 2.3. Let f be analytic function on a disc D ⊂ C, f ̸= 0 on D, and c > 0, we have
Γc = {z ∈ D : |f(z)| = c}. Then

if Γc ̸= 0 & D \ Γc is connected, then f is constant.

Proof. For a contradiction, let us assume that f is not constant on D and the conditions hold. Let
us denote h := log |f(x+ iy)| where z = x+ iy. Then, according to Cauchy-Riemann conditions,

∂2xh+ ∂2yh = 0, (2.2)
15



i.e. h is a harmonic function. It means h is continuous on D and moreover h ̸= c̃ on D \ Γc,
where c̃ := log(c). It follows that h > c̃ or h < c̃ on D \ Γc.

Let us assume, without loss of generality, that h < c̃ on D\Γc. Then h exhibits its maximum
c̃ on Γc and according to the MMP for harmonic functions, h = c̃ on D, i.e. |f | = c on D.
By the Open Mapping Theorem the image f(D) is open in C. Since |f | = c on D, the set
f(D) ⊂ {w ∈ C : |w| = c}. It follows that f is constant on D. This is the contradiction.

Remark 2.4. It follows from the Lemma 2.3, that the level set of non-constant analytic function
f cannot "end" in the middle of the disc D. It must start at the boundary of D and continue
through the interior of D to another point of the boundary or it must be closed in D.

Lemma 2.5. Let f be analytic on a bounded nonempty connected set Ω ⊂ C. Let f ∈ C(Ω).
If f = c on ∂Ω, then f = const. on Ω.

Proof. It directly follows from the maximum modulus principle.

Remark 2.6. If a level set Γc of some analytic function had a loop, the interior of this loop is a
bounded nonempty connected set. Then according to Lemma 2.5, the function (if it ful�lls the
assumptions) must be constant on the interior of this loop and since the function is continuous,
it must be equal to c too. It follows that non-constant analytic function cannot have level sets
with loops.

2.1 Shape of boundary curves and intersections with the real axis

Boundary curves of the enclosures are given by the equation∣∣∣∣∣∣ 2λ(λ− 16)

1−
√

1− 16
λ

∣∣∣∣∣∣ = ∥v∥2ℓ1(Z) . (2.3)

In this section, let us denote Q := ∥v∥2ℓ1(Z). Since v is the V potential-generating sequence, we
consider v ̸= 0 and thus Q > 0.

In keeping with the general result in the beginning of this chapter we now consider a concrete
function

f(λ) :=
2λ(λ− 16)

1−
√

1− 16
λ

. (2.4)

Boundaries of spectral enclosures are then

{λ ∈ C : |f(λ)| = Q} = ΓQ. (2.5)

To apply Lemmas 2.1, 2.3, 2.5, we need the f to be analytic. Function (2.4) is de�nitely analytic
and continuous on C \ [0, 16].
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2.1.1 Transformation of the boundary curve

To make the analysis more convenient, we introduce following transformation. Let us put

λ =
16

sin2(z)
, for z ∈ (0, π/2)× iR ∪ i(0,+∞). (2.6)

The bijectivity of this transformation should be veri�ed. Let us consider S := (0, π/2)× iR and
show the bijectivity for it onto C \ [0, 16] �rst, adding the upper half of the Im axis is just an
easy modi�cation.

Let us start just with sine function transform. Complex sin is injective on S. Indeed, we
choose z ∈ S, it means z = x+ iy where x ∈ (0, π/2) and y ∈ R. Then

sin(x+ iy) = sin(x) cosh(y)︸ ︷︷ ︸
=:α>0

+i cos(x) sinh(y)︸ ︷︷ ︸
=:β

,

it follows that

(α cos(x))2 − (β sin(x))2 = sin2(x) cos2(x).

Now denote t := sin2(x) ∈ (0, 1) and we obtain

α2(1− t)− β2t− (1− t)t = 0,

it can be rewritten as

t2 − (α2 + β2 + 1)t+ α2︸ ︷︷ ︸
=:p(t)

= 0. (2.7)

It holds that p(0) = α2 > 0 and p(1) = −β2 < 0. It follows that there exist

t0 ∈ (0, 1), p(t0) = 0.

Solutions of the quadratic equation (2.7) are of following form

t± =
1

2

(
(α2 + β2 + 1)±

√
(α2 + β2 + 1)2 − 4α2

)
. (2.8)

It is clear that they are both positive and the root t0 must be t0 = t−. For such a t0 we have

sin(x) =
√
t0 =⇒ x = arcsin(

√
t0).

Next, with this result we have

α =
√
t0 cosh(y),

β =
√
1− t0 sinh(y),

it follows that y = argsinh( β√
1−t0

). From the �rst expression for α we have

α√
t0

≥ 1,
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and thus we must consider this restriction. But the inequality holds using the equivalent formu-
lation α2 ≥ t0 and (2.8) for t− = t0.

Based on this, we know where the exact form of S came from. We have the expression for
reverse transform now. As it was said sin is injective on this set.

The image sin(S) is then as follows

sin(S) = {w ∈ C : Re(w) > 0 } \ [1,+∞]. (2.9)

If we put S′ := S ∪ i[0,+∞], we obtain

sin(S′) = {w ∈ C : Re(w) > 0 } \ [1,+∞] ∪ i[0,+∞]. (2.10)

Then it is easy to see that
sin2(S′) = C \ [1,+∞] \ {0}, (2.11)

If we do inverted value for any number in sin2(S′) we get

1

sin2(S′)
= C \ [0, 1]. (2.12)

Multiplying by 16 it becomes
16

sin2(S′)
= C \ [0, 16]. (2.13)

The injectivity is preserved during these transformations.

2.1.2 Intersections with the axes

Using the transformation λ = 16
sin2(z)

, we can rewrite formula∣∣∣∣∣∣ 2λ(λ− 16)

1−
√

1− 16
λ

∣∣∣∣∣∣ = Q

as follows. First we have

1−
√

1− 16

λ
= 1− cos(z) = 2 sin2(z/2),

λ(λ− 16) =
256 cos2(z)

sin4(z)
.

The equation then takes the following form

256

∣∣∣∣ cos(z)

sin2(z) sin(z/2)

∣∣∣∣2 = Q. (2.14)

In what follows, we will use the well known formulas

sin(x+ iy) = sin(x) cosh(y) + i cos(x) sinh(y), (2.15)

cos(x+ iy) = cos(x) cosh(y)− i sin(x) sinh(y). (2.16)
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1. Intersections with the interval [0,16].
If we want λ to be in [0,16] then z ∈ π/2 + i[0,+∞]. Thus we consider z = π/2 + iy. We
substitute into (2.14). We also denote a constant on the RHS of the equation by c and any
time we divide the equation by a positive constant, the value of c changes, but we will not
change the symbol. We obtain

2 sinh2(y)

cosh4(y)|1 + i sinh(y)|
= c.

We used (2.15),(2.16) and |2 sin2(z/2)| = |1− cos(z)|, then

2 sinh2(y) = c cosh4(y) |1 + i sinh(y)|︸ ︷︷ ︸
=
√

1+sinh2(y)=cosh(y)

.

Now divide both sides by 2 and then add 1 to both sides

cosh2(y) = c cosh5(y) + 1.

If we put t := cosh2(y) we obtain

ct5 − t2 + 1︸ ︷︷ ︸
=:g(t)

= 0. (2.17)

It is clear, that if there exists t∗ > 1 such that g(t∗) = 0 than there is an intersection of the
boundary curve in the λ−plane with the interval [0, 16]. Number of the roots is equivalent
to the number of intersections. The restriction t > 1 is due to the substitution.

Let us analyze the polynomial. The derivative

g′(t) = 5ct4 − 2t = 0 ⇐⇒ t = 3
√
2c/5 =: tc.

We �nd, such a c, that the value

g(tc) = g( 3
√

2c/5) = 0,

(2/5)5/3
1

c2/3
− (2/5)2/3

1

c2/3
+ 1 = 0,

1

c2/3
=

1

(2/5)5/3 − (2/5)2/3
,

c = (2/5)(3/5)3/2 = c0 ∼= 0, 186.

Thus

tc0 = (2/5)1/3(5/2)1/3(5/3)1/2 =

√
5

3
. (2.18)

It is easy to see that limt→+∞ g(t) = +∞ and g(1) = d > 0. Then we can make a following
conclusion. Note, that the size of constant c can be chosen arbitrarily in (0,+∞) because
it is dependent only on the ℓ1(Z)− norm of the sequence v and now it is just multiplied by
some positive constants.
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� If c = c0 then g(tc) = 0 and there is only one root of g(t) which is a local minimum
at the same time. Since tc > 1, the root ful�lls the restriction and there is only one
intersection of the boundary curve with the interval [0, 16].

� If c ∈ (0, c0) Then tc > tc0 and g(tc) < 0. Thus there are two roots of g(t) bigger than
1 and there are also two intersections of the boundary curve with the interval [0, 16].

� If (c > c0), then tc < 0 and both roots are smaller than 1. It means that there is no
intersection of the boundary curve with the interval [0, 16].

As can bee seen from the �gures 2.2, the results correspond to the plots made by a CAS.

2. Intersections with the interval (16,+∞)
In this case, we consider z ∈ (0, π/2), i.e. z = x ∈ (0, π/2). Again, we substitute into
(2.14) and obtain

cos2(x)

(1− cos2(x))2| sin2(x/2)|
= c,

2 cos2(x)(1− cos2(z))2| sin2(x/2)| = c(1− cos2(x))2(1− cos(x)).

If we put t := cos(x) ∈ (0, 1), mind that x ∈ (0, π/2), we obtain

c(1− t2)2(1− t) = 2t2,

c(1− 2t2 + t4)(1− t) = 2t2,

c(1− 2t2 + t4 − t+ 2t3 − t5)− 2t2 = 0,

−c+ 2(c+ 1)t2 − ct4 + ct− 2ct3 + ct5︸ ︷︷ ︸
=:p(t)

= 0.

It is easy to see that p(1) = 2 and g(0) = −c < 0. Since p is continuous, there is a root
t0 ∈ (0, 1), by the analysis of derivatives of p (the �rst derivative is positive in (0, 1), it can
be veri�ed the monotonicity of p on [0,1], thus there is a single root. It means that there
is only one intersection of the boundary curve with the interval (16,+∞).

3. Intersections with the interval (−∞, 0).
Finally for λ ∈ (−∞, 0) we consider z ∈ i(0,+∞), i.e. z = iy, y > 0. We substitute into
(2.14) and using the same formulas as before, we obtain

2 cosh2(y)

sinh4(y)|1− cosh(y)|
= c,

c(1− cosh2(y))2(cosh(y)− 1) = 2 cosh2(y).

Let us now make the substitution t := cosh(y) > 1. We reduce the problem to �nding
roots of some polynomial again. We have

c(t2 − 1)2(t− 1) = 2t2,

ct5 − ct4 − 2ct3 + 2(c− 1)t2 + ct− c︸ ︷︷ ︸
=:p(t)

= 0.

Now, it is easy to see that p(1) = −2 < 0 and limt→+∞ p(t) = +∞. Since p is continuous,
there is a root of p in (1,+∞). According to analysis of derivatives, there is only one root.
It means, that there is only one intersection with the interval of the boundary curve with
the interval (−∞, 0).
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This brings us to the next part where we will discuss some properties of boundary curves with
relation to Lemma 2.1. We are dealing with function (2.4) after transform λ := 1

sin2(z)
, where

z ∈ S′.Thus f is up to real constant (consider the constant to be 1, without loss of generality)
as follows

f(z) =
cos(z)

sin2(z) sin(z/2)
,

f ′(z) = − sin3(z) sin(z/2)− 2 sin(z) cos2(z)︸ ︷︷ ︸
=1−sin2(z)

sin(z/2)− 1

2
sin2(z) cos(z) cos(z/2)) =

= sin3(z) sin(z/2)− sin(z) sin(z/2)− 1

2
sin2(z) cos(z) cos(z/2))

= sin(z) cos(z)︸ ︷︷ ︸
̸=0, z∈S′

(
sin(z/2) cos(z) +

1

2
sin(z) cos(z/2)

)
.

If we want f ′(z) = 0 then it has to hold

sin(z/2) cos(z) +
1

2
sin(z) cos(z/2) = 0,

sin(z/2)
(
cos2(z/2)− sin2(z/2)

)
+ sin(z/2) cos2(z/2) = 0,

sin(z/2)︸ ︷︷ ︸
̸=0, z∈S′

(
3 cos2(z/2)− 1

)
= 0,

cos(z) =
1√
3
.

Solutions of this equation are not in S′. Thus f ′(z) ̸= 0 on S′ and the Lemma 2.1 can be applied.
The level curves of the function s are simple curves (in the sense of Lemma 2.1).

Moreover, assumptions of Lemma 2.3 and Lemma 2.5 are ful�lled too. Using Remarks 2.4 and
2.6, we can see that the boundary curves have no loops and they simply cannot end somewhere
in the interior of S′ and since f(z) is analytic on whole S′, the level set cannot be closed in S′.
The situation look di�erent when we are in λ−plane, because , as we can see from the pictures,
the level sets are kind closed of ovals. But mind that the oval is surrounding the interval [0, 16]
where is the function f(λ) given by (2.4) not analytic.

Let us now brie�y discuss the shape of the boundary curves. The constants Q in (2.14) and
c from calculations can be chosen arbitrarily positive and it holds c = Q · const. In our analysis,
we will restrict our z ∈ S and λ ∈ C \ [0, 16] to the ones with non-negative imaginary part. It is
because of the curves are symmetric with respect to the real axis.

Starting with the range of constant Q in (2.14) such that there are just two intersections of
the non-transformed (i.e. in λ−plane) boundary curve with real axis. Consider now the z−plane
with the non-negative imaginary part restriction. Than according to the known position of the
intersections, one on i(0,+∞) and the second in (0, π/2) and also to the "no loop" and "no-
ending" argument (Lemma 2.3 and Lemma 2.5), the level sets look topologically as in the Figure
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Figure 2.1: Level sets in z−plane, the case of 2 intersections.

Figure 2.2: Level sets in λ−plane, all cases.

2.1. And the situation in λ−plane is then in accordance with the Figure 2.2.

There are more options when it comes to three intersections of the non-transformed boundary
curve with real axis. Again according to same we have 4 possibilities They can be seen in the
Figure 2.3. The con�guration B is the one from numerical simulations. Con�guration A can not
be possible, since it is in contradiction with "no-loop" argument. And con�guration C and D
might be excluded using implicit function theorem. Indeed, for z = x+ iy we de�ne

F (x, y) := |f(z)|2 =
∣∣∣∣ cos(z)

sin2(z) sin(z/2)

∣∣∣∣2 . (2.19)

Using the standard formulas (2.16),(2.15) we obtain

F (x, y) =
cos(2x) + cosh(2y)

(cosh(y)− cos(x))3(cosh(y) + cos(x))3
. (2.20)
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Then consider y > 0, because we now want to reject con�guration C, we have

∂yF (0, y) = − 1

128

2 + 17 cosh(y) + 2 cosh(2y) + 3 cosh(3y)︸ ︷︷ ︸
>0

 1

sinh7(y/2) cosh5(y/2)︸ ︷︷ ︸
̸=0

. (2.21)

Thus ∂yF (0, y) ̸= 0 for any y > 0 and the level curve, which is the solution of an equation

Figure 2.3: Level sets in z−plane, the cases of 3 intersections.

F (x, y) = c should be a graph of some function y = y(x) on the neighborhood of the intersection.
Mind that we do not need to know exactly its position, since we know that it is on i(0,+∞). To
conclude, the curve must be graph of the function y = y(x), but the con�guration C is de�nitely
not the case.
In the same way, we will exclude the con�guration D. We choose x ∈ (0, π/2), then it holds

∂yF (0, y) = − 1

128

2 + 17 cos(x) + 2 cos(2x) + 3 cos(3x)︸ ︷︷ ︸
=:p(cos(x)

 1

sin7(y/2) cos5(y/2)︸ ︷︷ ︸
̸=0

. (2.22)

To show ∂xF (x, 0) ̸= 0 it is su�cient to show

p(cos(x)) ̸= 0, for x ∈ (0, π/2),

2 + 17 cos(x) + 2 cos(2x) + 3 cos(3x) ̸= 0.

We will show that
2 + 17 cos(x) + 2 cos(2x) + 3 cos(3x) > 0.
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Indeed, using formulas for cos(2x) and cos(2x+ x) we obtain

2 + 17 cos(x) + 2 cos2(x)− 2 sin2(x) + 3 cos(2x) cos(x)− 3 sin(2x) sin(x) > 0,

2 + 17 cos(x) + 2 cos2(x)− 2 sin2(x) + 3 cos3(x)− 3 sin2(x) cos(x)− 6 sin2(x) cos(x) > 0,

2 + 17 cos(x) + 2 cos2(x) + 3 cos3(x) > 2 sin2(x) + 9 sin2(x) cos(x).

As usual, we put t := cos(x) ∈ (0, 1) and get

12t3 + 4t2 + 8t > 0.

Which holds, since for t ∈ (0, 1) is it just a sum of positive numbers. To conclude, it means, that
in the neighborhood of the intersection with the real axis in z−plane must the curve must be a
graph of function x = x(y). It is de�nitely not. Thus the only possible con�guration is B.

Having the case of 4 intersections, there are again more possible con�gurations. The one which
is observed in numerical simulations is in the Figure 2.4. According to results in previous parts,
we can immediately exclude most of them. We know, that there is exactly one intersection in
(0, π/2) and one in i(0,+∞). We also know that there have to be 2 intersections in π/2+i(0,+∞).
According to the Implicit Function Theorem, it was shown in the case of three intersections, that
in the neighborhood of (0, π/2) the level set must be a graph of the function x = x(y) and in the
neighborhood of i(0,+∞) it must be a graph of function y = y(x) where we put x + iy = z. It
follows that there must be exactly one line from the real axis to π/2+i(0,+∞) and one line from
the imaginary axis to π/2+ i(0,+∞). If these two lines had a common intersection, it would be
a contradiction with Lemma 2.1.

Figure 2.4: Level sets in z−plane, the case of 4 intersections.
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Chapter 3

Absence of the eigenvalues in the
interior of essential spectrum of
unperturbed discrete (bi)-Laplace
operator

In this chapter, we will go through a proof of absence of the eigenvalues of perturbed discrete
Laplacian ∆ in the interior of the essential spectrum, which is a well known result for discrete
Schrödinger operators. As a result of the perturbation by a compact potential V , the spectrum
of the Schrödinger operator ∆+V consists of σess(∆+V ) = σess(∆) = [−2, 2] and possible eigen-
values outside the essential spectrum. It will be proven here, that there cannot be eigenvalues
in the interior of essential spectrum which is the interval (−2, 2).

There is more than one possibility how to approach this result, we will choose a direct one,
which was proved in [1]. In this project, the proof will be done exactly in the same way.The
proposition for Laplacian and complex potential then follows directly from this result. We will
discuss possibilities of generalization of this proof for the bilaplace operator T 2. Let us start
with some basic de�nitions. We consider operators on the Hilbert space ℓ2(Z).

De�nition 3.1. Let a, b, c ∈ ℓ2(Z). By a general Jacobi operator is understood an operator
J = J(a, b, c) which is de�ned

Jen = cnen−1 + bn+1en + cn+1en+1, ∀n ∈ Z. (3.1)

Remark 3.2. Matrix of the operator J is called Jacobi matrix and it is of following form

J =



. . . . . . . . .
a−1 b0 c0

a0 b1 c1
a1 b2 c2

. . . . . . . . .


.

De�nition 3.3. We de�ne the operator J0 := J({1}, 0, {1}).
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Spectrum of the discrete Laplacian J0 is well known. It is σ(J0) = σess(J0) = [−2, 2] =. It
was shown for e.g. in [3].

De�nition 3.4. Perturbation V = J − J0 is called trace class if it holds∑
n∈Z

(|1− an|+ |bn|+ |1− cn|) < +∞. (3.2)

Remark 3.5. It follows directly from the necessary condition for convergent series that

lim
n→±∞

an = lim
n→±∞

cn = 1,

lim
n→±∞

bn = 0.

Now we will study the equation for eigenvalues of J

Ju = λu, (3.3)

which is equivalent to

ai−1ui−1 + biuk + ciui+1 = (k +
1

k
)ui, i ∈ Z, (3.4)

where the Joukowski transform λ = λ(k) = k + 1/k was used. We would like to study Jost
solutions of this equation.

De�nition 3.6. Solutions u± of (3.4) are called Jost solutions at ±∞ if

lim
n→±∞

k∓nu±n = 1, ∀k ∈ D \ {0}.

Our aim is to generalize following part for the dicsrete bilaplacian with a complex potential,
thus we do not need to consider general trace class perturbation but only the diagonal one. Since
now, we put an = cn = 1, ∀n ∈ Z.
Remark 3.7. In the original proof general sequences a and c are considered. In that case, it is
necessary to reformulate the equation (3.4) in the way that there is coe�cient 1 in front of the
element ui+1 or ui−1 for iteration to plus or minus in�nity respectively.

Remark 3.8. It is a well know fact, that the Green kernel of the discrete Laplacian is

(J0 − λ(k))−1
m,n =

k|m−n|

k − k−1
, (3.5)

where λ = λ(k) = k + k−1 is the Joukowski transform. Proof can be found in [3].

Now, let us de�ne few more things. First, according to the formula (3.5) we de�ne non-
symmetric Green kernels

Gr(n,m) :=

{
km−n−kn−m

k−k−1 , m ≥ n,

0, m ≤ n,
, (3.6)

Gl(n,m) :=

{
0, m ≥ n,
kn−m−km−n

k−k−1 , m ≤ n.
(3.7)
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Using the de�nitions in (3.6) and (3.7), one can easily see that

Gr,l(n,m− 1) +Gr,l(n,m+ 1)− (k +
1

k
)Gr,l(n,m) = δm,n, (3.8)

Gr,l(n− 1,m) +Gr,l(n+ 1,m)− (k +
1

k
)Gr,l(n,m) = δm,n. (3.9)

Following two theorems introduce an iterative way to �nd the Jost solutions of (3.4).

Theorem 3.9. The Jost solution v+ = {v+n }n∈Z of the di�erence equation (3.4) at +∞ satis�es
the discrete Volterra-type equation

v+n = kn +
∞∑

m=n+1

−bmGr(n,m)v+m, n ∈ Z, k ∈ D \ {0}. (3.10)

On the other hand, every solution v = {vn}n∈Z of the Volterra-type equation (3.10) solves
the equation (3.4).

Proof. We will show the �rst part of the statement. Let the {v+m} be the Jost solution at +∞ and
multiply the equation (3.8) by v+m and the eigenvalue equation by Gr(n,m) and then subtract
them. The equations are

Gr(n,m− 1)v+m +Gr(n,m+ 1)v+m − (k +
1

k
)Gr(n,m)v+m = δm,nv

+
m,

v+m−1Gr(n,m) + bmv
+
mGr(n,m) + v+m+1Gr(n,m) = (k +

1

k
)v+mGr(n,m).

And after subtracting we get[
Gr(n,m+ 1)v+m −Gr(n,m)v+m−1

]
+ [Gr(n,m− 1)− bmGr(n,m)] v+m − v+m+1Gr(n,m) = δm,nv

+
m.

From the de�nition of the kernel (3.6) it is clear that Gr(n, n) = 0, Gr(n, n+1) = 1, ∀n ∈ Z.
Using this, one can sum the last relation from n + 1 to N > n over m. The �rst term in the
equation is a telescopic sum, only �rst and last term remain after summation. Indeed,

Gr(n,N + 1)v+N −Gr(n, n+ 1)︸ ︷︷ ︸
=1

v+n +
N∑

m=n+1

[Gr(n,m− 1)− bmGr(n,m)] v+m

−
N∑

m=n

v+m+1Gr(n,m)︸ ︷︷ ︸
vn+1Gr(n,n)=0 was added

= 0.

Now we can shift index in the last sum and then subtract it with the part of the second sum.
Hence

v+n = Gr(n,N + 1)v+N −Gr(n,N)v+N+1 +

N∑
m=n+1

−bmGr(n,m)v+m. (3.11)

To �nish this part of the proof, we just do the limit N → +∞. It holds that

lim
N→+∞

Gr(n, n+ 1)v+N −Gr(n,N)v+N+1 = kn.
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Indeed, we use the de�nitions of the kernels and the fact from De�nition 3.6,

Gr(n, n+ 1)v+N −Gr(n,N)v+N+1 = −k
n−(N+1) − kN+1−n

k − k−1
v+N +

kn−N − kN−n

k − k−1
v+N+1 =

−k−Nv+N︸ ︷︷ ︸
→−1

(
kn−1

k − k−1

)
+ k−Nv+N︸ ︷︷ ︸

→1

(
k2N−n+1

k − k−1

)
︸ ︷︷ ︸

→0

+ k−N+1v+N+1︸ ︷︷ ︸
→1

(
kn+1

k − k−1

)

− k−(N+1)v+N+1︸ ︷︷ ︸
→1

(
k2N−n+1

k − k−1

)
︸ ︷︷ ︸

→0

−→
N→+∞

kn
k − k−1

k − k−1
= kn.

.
To prove the second part, we consider a solution {vn}n∈Z of the (3.10). One has

vn−1 + vn+1 = kn(k + 1/k)− bnGr(n− 1, n)vn︸ ︷︷ ︸
=−bnvn

−bn+1Gr(n− 1, n+ 1)vn+1

+

+∞∑
m=n+2

−bm[Gr(n− 1,m) +Gr(n+ 1,m)]vm,

Gr(n− 1,m) +Gr(n+ 1,m) =
km−n+1 − kn−m−1 + km−n−1 − kn−m+1

k + k−1
= (k + k−1)Gr(m,n),

Gr(n− 1, n+ 1) = k + k−1, and thus

vn−1 + bnvn + vn+1 = (k + k−1)

kn +
∞∑

m=n+1

−bmGr(n,m)vm︸ ︷︷ ︸
=vn

 .

Which �nishes the proof.

Theorem 3.10. The Jost solution v− = {v−n }n∈Z of the di�erence equation (3.4) at −∞ satis�es
the discrete Volterra-type equation

v−n = k−n +
n−1∑

m=−∞
−bmGl(n,m)v−m, n ∈ Z, k ∈ D \ {0}. (3.12)

On the other hand, every solution v = {vn}n∈Z of the Volterra-type equation (3.12) solves
the equation (3.4).

Proof. We proceed in the exactly same way as in the previous proof but we use the equations
(3.8), (3.4) for Gl instead of Gr.

We obtained two linearly independent solutions of the second order di�erence equation, thus
we have a fundamental system. We will analyze their properties more in detail.

Now, put

f rm := v+mk
−m − 1, G̃r(n,m) = Gr(n,m)km−n, (3.13)

f lm := v−mk
m − 1, G̃l(n,m) = Gl(n,m)kn−m. (3.14)
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It holds that G̃r(n,m) are polynomials in k. Indeed, for m > n it follows from

G̃r(n,m) =
km−n − kn−m

k − k−1
km−n = k

k2(m−n) − 1

k2 − 1
= k

(km−n − 1)(km−n + 1)

(k − 1)(k + 1)
. (3.15)

We can reduce the factors (k − 1) and (k + 1) in the fraction. For the G̃l in the same way.

Equations (3.10) and (3.12) are now of the form

f rn(k) =
+∞∑

m=n+1

−bmG̃r(n,m) +
+∞∑

m=n+1

−bmG̃r(n,m)f rm (3.16)

and

f ln(k) =
n−1∑

m=−∞
−bmG̃l(n,m) +

n−1∑
m=−∞

−bmG̃l(n,m)f lm, (3.17)

it follows directly from the de�nitions of f r,l and Gr,l. We cane easily estimate

| − bmGr,l(m,n)| ≤ |bm|
∣∣∣∣ k

k2 − 1

∣∣∣∣ . (3.18)

It follows from (3.15) and the fact that |k2(|m|)| ≤ 1. And since b is a summable sequence, the
following sums can be estimated∣∣∣∣∣

+∞∑
m=n+1

−bmG̃r(n,m)

∣∣∣∣∣ ≤
∣∣∣∣ k

k2 − 1

∣∣∣∣Rrn, (3.19)

∣∣∣∣∣
n−1∑

m=−∞
−bmG̃l(n,m)

∣∣∣∣∣ ≤
∣∣∣∣ k

k2 − 1

∣∣∣∣Rln, (3.20)

Where

Rrn :=
+∞∑

m=n+1

|bm| −→
n→+∞

0,

Rln :=

n−1∑
m=−∞

|bm| −→
n→−∞

0,

since they are remainders of convergent series for sequence b. It follows from these estimates
that the series

+∞∑
m=n+1

−bmG̃r(n,m) and
n−1∑

m=−∞
−bmG̃l(n,m)

converge absolutely on D̄ \ {±1}. Now it is possible to show that

|v+n − kn| ≤ |k|n
∣∣∣∣ k

k2 − 1

∣∣∣∣Rrnexp(∣∣∣∣ k

k2 − 1

∣∣∣∣Rrn) ,
|v−n − k−n| ≤ |k|−n

∣∣∣∣ k

k2 − 1

∣∣∣∣Rlnexp(∣∣∣∣ k

k2 − 1

∣∣∣∣Rln) .
It follows directly from the following proposition which can be found as Lemma 7.8 in [5].
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Lemma 3.11. Consider the sequences {fn} and {fn} satisfying

fn = gn +

+∞∑
m=n+1

G(n,m)fm, nZ. (3.21)

And consider a kernel G̃(n,m) such that

|G(n,m)| ≤ |G̃(n,m)|, G̃(n+ 1,m) ≤ G̃(n,m) and G̃(n, ·) ∈ ℓ∞.

Then for the sequence g ∈ ℓ∞ there exists a unique solution f ∈ ℓ∞ of (3.21), ful�lling the
estimate

|fn| ≤
(
sup
m>n

|gm|
)
exp

(
+∞∑

m=n+1

G̃(n,m)

)
.

It is clear that the assumptions of this Lemma are ful�lled in our case.

Now we will consider a k ∈ T \ {±1}, where T is the unit circle. We obtained two linearly
independent Jost solutions of the equation (3.4) and according to the last result, we know that
v+ behaves as kn at +∞ and the v− as k−n at −∞. Moreover any solution s of the equation
(3.4) must be in the form s = αv+ + βv−. To get the solution s in ℓ2(Z), the limits of s must be
0. Let us assume that

αv+n + βv−n −→
n→±∞

0.

If α = 0 then β = 0 since the limit at −∞ of v− is not 0. If β = 0 then α = 0, the reason is
almost the same. Now consider α, β ̸= 0 and the limit at +∞. Since k ∈ T \ {±1}, it follows
that

αv+n + βv−n −→
n→+∞

0,

α v+n k
−n︸ ︷︷ ︸

→1

+βv−n k
−n −→

n→+∞
0,

k−nv−n −→
n→+∞

α

β
.

Thanks to the linear independence of v±, the wronskian W (v+, v−) = const ̸= 0. On the other
hand

W (v+, v−) = (v+n+1v
−
n −v+n v−n+1) = = k2n+1

k−n−1v+n+1︸ ︷︷ ︸
→1

k−nv−n︸ ︷︷ ︸
→α

β

− k−nv+n︸ ︷︷ ︸
→1

k−n−1v−n+1︸ ︷︷ ︸
→α

β

 −→
n→+∞

0,

what is a contradiction. We can proceed the same way for the case of the limit at −∞. Hence
we have that only the trivial combination of the Jost solutions is in ℓ2(Z) and thus there can be
no eigenvalue for k ∈ T \ {±1}.

To conclude, both upper and lower half of the unit circle is mapped onto the interval [−2, 2]
by the Joukowski transform. Moreover, k = ±1 is mapped on λ = ±2 and thus there cannot be
the eigenvalue of J({1}, b, {1}) in the interval (−2, 2) what is an interior of the essential spectrum
of J0.
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3.1 Some ideas of generalization for the discrete bilaplacian

In this section, we will point out the key parts of the proof and then discuss possible gener-
alization on the operators from the Laurent class, especially for the bilplacian. In that case, we
need to have four linearly independent solutions of the 4-th order di�erence equation

vn−2 − 4vn−1 + 6vn − 4vn+1 + vn−2 = λ(k)vn, (3.22)

where λ(k) = k−2 − 4k−1 +6− 4k1 + k2 is the bijection from Dζ onto C \ [0, 16], which was used
in [3]. It would be necessary to show that for k in the upper half of the unit circle except ±1
(which is mapped by the transform onto 0 and 16) only a trivial linear combination is in ℓ2(Z).
We would like to proceed the same way as in the beginning of this chapter.

The key parts of the proof for Jacobi operators are as follows. The �rst is de�nition of
non-symmetric Green kernels (3.6) and (3.7). For T 2 it could be in the similar way

Gr(n,m) :=

 k
2(k−1)2

(
km−n−kn−m

k−k−1 − zm−n
− −zn−m

−
z−−z−1

−

)
, m ≥ n,

0, m ≤ n,

Gl(n,m) :=

 k
2(k−1)2

(
kn−m−km−n

k−k−1 − zn−m
− −zm−n

−
z−−z−1

−

)
, m ≤ n,

0, m ≥ n.

In this case, we have just two kernels, but it seems, that it would be necessary to de�ne four
kernels since we want four independent solutions. Thus we can split the kernels and de�ne four
new kernels in following way

G1
r(n,m) :=

{
km−n−kn−m

k−k−1 , m ≥ n,

0, m ≤ n,

G2
r(n,m) :=


zm−n
− −zn−m

−
z−−z−1

−
, m ≥ n,

0, m ≤ n,

G1
l (n,m) :=

{
kn−m−km−n

k−k−1 , m ≤ n,

0, m ≥ n,

G2
l (n,m) :=


zn−m
− −zm−n

−
z−−z−1

−
, m ≤ n,

0, m ≥ n.

We have not included the factor k/(2(k− 1)2) into the de�nition since it seems not to be neces-
sary which will be explained in following paragraph.

The second key part is the formula in (3.8) and (3.9). It is necessary to de�ne the kernel G
in the way that they ful�ll following identity

G(n,m− 2)− 4G(n,m− 1) + 6G(n,m)− 4G(n,m+ 1) +G(n,m+ 2)

−
(
k2 − 4k + 6− 4k−1 + k−2

)
G(n,m) = δn,m. (3.23)
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This identity is given according to (3.8) with appropriate shift of indexes for bilplacian. The
proof of the Theorem 3.9 is based on these two key properties, standard algebraic manipulations
and basic operations of mathematical analysis. It is not hard to verify that the kernels Gr and
Gl do not ful�ll this identity. It is caused by the fraction

zm−n
− − zn−m−

z− − z−1
−

.

Indeed, we consider m > n, then the formula on the LHS of (3.23) should be equal to 0. Thanks
to the factor

(
k2 − 4k + 6− 4k−1 + k−2

)
G(n,m) there is the same shift in the powers of k as

in the part G(n,m − 2) − 4G(n,m − 1) + 6G(n,m) − 4G(n,m + 1) + G(n,m + 2) and all the
powers of k sum to zero. But, in the case of z− there is no shift in the powers of z− in the part(
k2 − 4k + 6− 4k−1 + k−2

)
G(n,m) thus it cannot be subtracted from any power of z− in the

part G(n,m− 2)− 4G(n,m− 1) + 6G(n,m)− 4G(n,m+ 1) +G(n,m+ 2).
Using the same ideas, it is clear that the kernels G1

r,l ful�ll the identity (3.23) and the kernels
G2
r,l do not. In these ideas there is most of all important the shift in the powers. Thus we

have omitted the factor k/(2(k − 1)2) in the de�nitions of some kernels. To get δm,n on the
RHS of the identity (3.23) we can multiply the kernel by any constant after getting the right
shift ofm,n in the powers. Moreover, the kernels Gr,l do not satisfy the property G(n, n+1) = 1.

It is necessary to �nd enough kernels to �nish the generalization for the bilplacian. Even if
we had enough kernels we need to �gure out, how to do the algebraic manipulations in the proof,
which is not easy and I do not know how to do them even with kernels G1

r,l. Finding such a
kernels and the way of �nishing the proof with these kernels will be the goal of my future work.
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Conclusion

In this project we have studied deeper details of the spectrum of the discrete bilaplace operator
with a complex potential. Main result is the proof of the conjecture on the estimate of the green
kernel ∣∣(T 2 − λ)−1

m,n

∣∣ ≤ ∣∣∣(T 2 − λ)−1
0,0

∣∣∣ , ∀m,n ∈ Z.

The conjecture was set earlier using some numerical simulations and now it was proved analyti-
cally. By denoting s := |m− n| the problem turns into a problem with one non-negative integer
parameter. First we have used the bijective transformation of λ which maps the upper half
of the unit circle with interval (0, 1) onto C \ [0, 16]. Then, using the Maximum modulus prin-
ciple, we moved the problem onto the boundary of the unit circle and proved the conjecture there.

In the second chapter, having the proof of the conjecture and thus the optimal spectral
enclosures, we have analyzed the boundary curves of these enclosures using some fundamental
theorems of the complex analysis. We have shown that their topological and analytical properties
are consistent with the results coming from the numerical simulations.

At the end, we have made the the recherche of the proof of the absence of the eigenvalue of
discrete Laplace operator with a complex potential in the interior of its essential spectrum. The
proof is based on the turning the equation for eigenvalues J0u = λu into the discrete Volterra-
type integral equation. Using this, we can conveniently analyze the Jost solutions of this equation
and show that there exist no ℓ2(Z) solution for λ in the interior of the essential spectrum. The
key step of this proof is the de�nition of kernels for iteration, which ful�lls some identity. The
identity was modi�ed according to de�nition of the bilaplacian and enough �tting kernels were
unsuccessfully being searched for.
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