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Abstrakt: Náplní této práce je zkoumání spektrálních vlastností Schrödingerova operátoru Hα na
ℓ2(Z) s komplexním schodovitým potenciálem a komplexní vazebnou konstantou α. Zkoumáme
pseudospektrum tohoto operátoru. Po nalezení spodního a horního odhadu normy rezolventního
operátoru jsme zkonstruovali nadmnožinu a podmnožinu pseudospektra, navíc jsme také odvodili
asymptotické chování pseudospektra. Pomocí Birman–Schwingerova principu jsme studovali exis-
tenci a jednoznačnost slabě vázaných vlastních hodnot za jistých předpokladů na potenciál V .
Operátor H0+V má jednoznačné vlastní hodnoty. Naproti tomu, pokud Imα ̸= 0, potom Hα+V
nemá žádné vlastní hodnoty, neboli vykazuje spektralní stabilitu. Tyto výsledky jsme porovnali
se spojitým nastavením. Práci jsme zakončili představením problému Diracovy interakce.

Klíčová slova: Birmanův-Schwingerův princip, diskrétní Schrödingerův operátor, nesamosdruže-
nost, pseudospektrum, schodovitý potenciál, slabé vazby, spektrální stabilita

Title:
Pseudospectrum of the discrete Schrödinger operator with a complex step potential
and the weak coupling

Author: Bc. Vojtěch Bartoš

Abstract:We study spectral properties of a Schrödinger operator Hα on ℓ2(Z) with a step-like
potential and complex coupling constant α. We investigate the pseudospectrum of this operator.
After obtaining the lower and upper estimates of the resolvent operator’s norm, we construct a
superset and a subset of the pseudospectrum, in addition, we also derive the asymptotic behavior
of the pseudospectrum. Utilizing the Birman–Schwinger principle, we study the existence and
uniqueness of weak-coupled eigenvalues under certain assumptions on the potential V . The
operator H0 + V has unique eigenvalues. On the other hand, if Imα ̸= 0, then Hα + V has no
eigenvalues, i.e. Hα exhibits spectral stability. These results were compared with the continuous
setting. The paper concludes by introducing the Dirac interaction.
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Introduction

Consider the continuous Laplace operator on the real line. Its domain may be defined as the
space of twice differentiable functions, and its action is given by

∀f ∈ C2(R) : −∆f = − d2

dx2
.

Derivatives, by their nature, are defined by infinitesimal changes, but they can be approximated
by finitely small changes. Consider a function f on the real line; we can discretize it simply by
restricting its argument to whole numbers. While having at our disposal only the values of f at
whole numbers, we can approximate the value of the Laplace operator applied on f at n by

−∆f(x)
∣∣
n
≈ f(n+ 1)− 2f(n) + f(n− 1).

It is important to note that the continuous Laplacian is highly valuable in theoretical analysis,
mathematical modeling, and certain scientific disciplines, such as classical physics and differential
geometry. It provides a foundation for understanding continuous systems. However, in many
practical applications involving discrete data and numerical computations, the discrete Laplacian
offers distinct advantages and is more directly applicable.

For our purposes, we will define the discrete Laplacian H0 as the sum of the forward trans-
lation and the backward translation

∀x = {xn}n∈Z ⊂ C : (H0x)n := xn+1 + xn−1.

The difference between this definition and the approximation above is just the identity operator
multiplied by two. From the point of view of spectral analysis, this is an insignificant change, as
it only shifts everything in the complex plane by 2.

As the title of this project suggests, we study the Schrödinger operator with a complex step
potential defined as

∀x = {xn}∞n=1 ∈ ℓ2(Z) : (Hαx)n =

{
xn−1 + xn+1 n < 0,

xn−1 + αxn + xn+1 n ≥ 0,

where α is a complex parameter. A Schrödinger operator is defined as the Laplace operator with
some potential applied, so in our case, the potential can be understood as the discrete Heaviside
function multiplied by the complex coupling constant α. Such an operator is non-self-adjoint for
any α ∈ C \ R.

In the first chapter, we state several standard results from functional analysis and recall
important results we showed in [14]. These were the resolvent operator and the spectrum of Hα,
which is purely continuous and coincides with the two line segments [−2, 2] ∪ [−2 + α, 2 + α] in
the complex plane.
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The aim of the second chapter is to describe ε-pseudospectra of Hα which are nested supersets
of the spectrum where the resolvent operator’s norm is greater than the reciprocal value of ε.
After defining the pseudospectrum, we mention the trivial case, when the operator is self-adjoint.
Next, we introduce theorems for estimating the norm of an operator, or more specifically, the
resolvent operator’s norm, with which we estimate the pseudospectrum.

In the third chapter, we replicated the results obtained by Simon in [8], where he showed the
properties of weakly coupled bound states of the continuous Schrödinger operator, for the discrete
operator H0. Then we showed that Hα exhibits spectral stability under some assumptions on
the potential and compared it to the continuous case from [10]. The last chapter introduces the
problem of the Dirac interaction.
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Chapter 1

Preliminaries

1.1 Standard results from functional analysis

Recall several standard results, see [1], [2].

Definition 1.1 (Bounded operator): Let H be a Hilbert space. An operator A : H → H is
said to be bounded if

∃M > 0, ∀x ∈H : ∥Ax∥ < M∥x∥.

The smallest of these constants M is called the norm of A and may be defined as

∥A∥ := sup
x∈H

∥Ax∥
∥x∥

.

We define the linear space of all linear bounded operators on H by

B(H ) :=
{
A : H →H

∣∣ ∥A∥ <∞}.
Definition 1.2 (Compact operator): An operator A ∈ B(H ) is said to be compact if the image
of a bounded set is precompact. The set of all compact operators is denoted by K (H ).

Definition 1.3: Let A ∈ B(H ). The numerical range Num(A) is the image of the unit sphere
of H under the quadratic form x 7→ ⟨x,Ax⟩ associated with the operator. More precisely,

Num(A) :=
{
⟨x,Ax⟩

∣∣ ∥x∥ = 1
}
.

Theorem 1.4 (Birman–Schwinger principle): Let H,V ∈ B(H ), λ ∈ ρ(H). Let us decompose
operator V such that A,B ∈ B(H ) and V = AB, next we define the Birman–Schwinger operator

K(λ) := B(H − λ)−1A.

Then

1. λ ∈ σp(H + V ) =⇒ −1 ∈ σp(K(λ)),

2. V ∈ K (H ) &− 1 ∈ σp(K(λ)) =⇒ λ ∈ σp(H + V ).

Proof. This theorem was proven in my bachelor’s degree project, see [14].
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Notation 1.5: Assuming v ≡ {vn}n∈Z is a complex-valued sequence. Let us denote

V := diag(v),

|v| :=
{
|vn|
}
n∈Z, |V | := diag(|v|),

|v|1/2 :=
{√
|vn|
}
n∈Z, |V |1/2 := diag(|v|1/2),

v1/2 :=
{√
|vn| sgn vn

}
n∈Z, V1/2 := diag(v1/2),

where the signum function for complex inputs is given by

sgn z :=

{
z
|z| z ̸= 0,

0 z = 0.

For the purposes of this paper, we will formulate Theorem 1.4 with the Hilbert space being
ℓ2(Z) and some extra assumptions on the potential V , namely diagonality so we may use Nota-
tion 1.5. A common choice for decomposing the diagonal operator V in the Birman–Schwinger
principle is to set

A = |V |1/2, B = V1/2.

Apart from diagonality, if we impart the assumption on V that the sequence v is summable in
absolute value, i.e. v ∈ ℓ1(Z), then necessarily limn→±∞ vn = 0. Since

V ∈ K (H ) ⇐⇒ lim
n→±∞

vn = 0,

the potential V is a compact operator. With this assumption, the Birman–Schwinger principle
states an equivalence between −1 being an eigenvalue of K(λ) and λ being an eigenvalue of
H + V .

Theorem 1.6: Let H ∈ B(ℓ2(Z)), λ ∈ ρ(H), v ∈ ℓ1(Z), then

λ ∈ σp(H + V ) ⇐⇒ −1 ∈ σp(K(λ)).

Let us introduce a set of important statements from spectral analysis theory. For reference,
see Chapter XIII.1 in [2].

Definition 1.7 (Bounded from below operator): A densely defined operator A on a Hilbert
space H is said to be bounded from below if

∃c ∈ R, ∀ψ ∈ DomA : ⟨ψ,Aψ⟩ ≥ c∥ψ∥2.

Theorem 1.8 (Min-Max): Let A be a self-adjoint operator on H bounded from below. Define

λn(A) := sup
ψ1,...,ψn−1∈DomA

inf
{
⟨ψ,Aψ⟩

∣∣ ψ ∈ DomA,ψ ⊥ ψ1, . . . , ψn−1, ∥ψ∥ = 1}.

Then for each fixed n, either

(a) there are n eigenvalues(counting degenerate eigenvalues a number of times equal to their
multiplicity) bellow the bottom of the essential spectrum, and λn(A) is the nth eigenvalue
counting multiplicity;

(b) λn is the bottom of the essential spectrum, i.e. λn = inf{λ | λ ∈ σess(A)} an in that case
λn = λn+1 = . . . and there are at mot n− 1 eigenvalues (counting multiplicity) below λn.



CHAPTER 1. PRELIMINARIES 11

Remark. One can define λn(A) equivalently by

λn(A) = inf
ψ1,...,ψn∈DomA

sup
{
⟨ψ,Aψ⟩

∣∣ ψ ∈ span(ψ1, . . . , ψn), ∥ψ∥ = 1
}
.

If we wish to investigate eigenvalues above the essential spectrum, the operator in question
has to be bounded from above and it suffices to set A 7→ −A, since λ ∈ σ(A) if and only if
−λ ∈ σ(−A). Factoring the negative sign out of supremum changes it to infimum, and vice versa.
Let us also state an immediate corollary of the Min-Max theorem which allows us to compare
eigenvalues of different operators. We will formulate this corollary for bounded operators.

Corollary 1.9: Let A,B ∈ B(H ) be self-adjoint operators. Then for eigenvalues either below
the essential spectra of the respective operators holds the implication

A ≤ B =⇒ ∀n ∈ N : λn(A) ≤ λn(B).

Proof. Let us prove only the case, where the eigenvalues are below the essential spectrum; the
other case is analogous. The operator inequality is in the sense of quadratic forms

∀ψ ∈H : ⟨ψ,Aψ⟩ ≤ ⟨ψ,Bψ⟩.

Choose an arbitrary n-tuple of vectors ψ1, . . . , ψn ∈H , then

sup
{
⟨ψ,Aψ⟩

∣∣ ψ ∈ span(ψ1, . . . , ψn), ∥ψ∥ = 1
}
≤ sup

{
⟨ψ,Bψ⟩

∣∣ ψ ∈ span(ψ1, . . . , ψn), ∥ψ∥ = 1
}
.

Taking the infimum over all choices of these n-tuples in the inequality above proves the assertion.

1.2 Main results from bachelor’s degree project

This research project is a direct continuation of my bachelor’s degree project [14]. Let us
reiterate the setting and some of the results which will be used in this text.

We studied the bounded non-self-adjoined operator Hα on the Hilbert space ℓ2(Z) defined as

∀x ≡ {xn}∞n=1 ∈ ℓ2(Z) : (Hαx)n =

{
xn−1 + xn+1 n < 0,

xn−1 + αxn + xn+1 n ≥ 0,

where α is a free complex parameter. The matrix representation of Hα reads

Hα =



. . . . . . . . .
1 0 1

1 α 1
1 α 1

. . . . . . . . .

 .

To find the spectrum of Hα we utilized the Joukowsky transform, more on this topic in Section
1.3, on λ and λ− α separately, i.e.

λ = ξ + ξ−1, λ− α = η + η−1.
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This transformation allowed us to find the solution of the eigenvalue difference equation in a
simple form

λxn = xn−1 + xn+1 n < 0,

(λ− α)xn = xn−1 + xn+1 n ≥ 0.
(1.2.1)

yn =

ξ
−n n < 0,

ξ−η
η−1−ηη

n + ξ−η−1

η−η−1 η
−n n ≥ 0,

(1.2.2)

zn =


η−1−ξ
ξ−1−ξ ξ

n + η−1−ξ−1

ξ−ξ−1 ξ−n n < 0,

ηn n ≥ 0,
(1.2.3)

The spectrum of the operator Hα is purely continuous and coincides with the set

[−2, 2] + α{0, 1}

depicted in Figure 1.1. We have also discovered the numerical range of Hα to be

Num(Hα) = [−2, 2] + [0, α].

α

−3 −2 −1 1 2 3

i

−i

2i

−2i

Figure 1.1: Spektrum operátoru Hα

We have also managed to get an explicit description of the resolvent operator using the Green
Kernel theorem, thus denoted G(λ) := (Hα − λ)−1, which reads for λ ∈ ρ(Hα)

Gm,n(λ) =
1

w



ξ−η
η−1−ηη

m+n + ξ−η−1

η−η−1 η
|m−n| m,n ≥ 0,

ηmξ−n m ≥ 0, n < 0,

η−1−ξ
ξ−1−ξ ξ

|m−n| + η−1−ξ−1

ξ−ξ−1 ξ−m−n m,n < 0,

ηnξ−m m < 0, n ≥ 0,

(1.2.4)

where w = ξ − η−1.
For ease of notation, it is useful to set

A :=
ξ − η
η−1 − η

, B :=
ξ − η−1

η − η−1
, C :=

η−1 − ξ
ξ−1 − ξ

, D :=
η−1 − ξ−1

ξ − ξ−1
. (1.2.5)
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Thus, writing

Gm,n(λ) =



Aηm+n+Bη|m−n|

w m,n ≥ 0,

ηmξ−n

w m ≥ 0, n < 0,

Cξ|m−n|+Dξ−m−n

w m,n < 0,

ηnξ−m

w m < 0, n ≥ 0,

. (1.2.6)

By direct calculation

A

w
=

1

η−1 − η
+

1

w
,

B

w
=

1

η − η−1
,

C

w
=

1

ξ − ξ−1
,

D

w
=

1

ξ−1 − ξ
+

1

w
. (1.2.7)

In some cases, it will be more useful to formulate the Green kernel as such

Gm,n(λ) =



ηm+n−η|m−n|

η−1−η + ηm+n

w m,n ≥ 0,

1
wη

mξ−n m ≥ 0, n < 0,

ξ|m−n|−ξ−m−n

ξ−ξ−1 + ξ−m−n

w m,n < 0,

1
wη

nξ−m m < 0, n ≥ 0.

(1.2.8)

1.3 Joukowsky transform

Definition 1.10: Joukowsky transform is a bijective map between the sets

C \ [−2, 2] ←→
{
ξ ∈ C

∣∣ 0 < |ξ| < 1
}

given by the equation
λ = ξ + ξ−1. (1.3.1)

Furthermore, (1.3.1) maps
{
ξ ∈ C

∣∣ 0 < |ξ| ≤ 1
}

onto the whole complex plane, though not
injectively.

Remark. Given the two Joukowsky transforms λ = ξ + ξ−1 and λ − α = η + η−1, for any
λ ∈ C \

(
[−2, 2] ∪ [−2 + α, 2 + α]

)
there exist unique Joukowsky parameters ξ and η such that

0 < |ξ| < 1 and 0 < |η| < 1.

Proposition 1.11: Let λ ∈ C \ [−2, 2]. The inverse to the Joukowsky transform λ = ξ + ξ−1 is
given by

ξ(λ) =

{(
λ+
√
λ2 − 4

)
/2 Reλ < 0 or Reλ = 0, Imλ ≤ 0,(

λ−
√
λ2 − 4

)
/2 Reλ > 0 or Reλ = 0, Imλ ≥ 0,

where
√
· assumes its principal branch. Furthermore, the reciprocal value of ξ is given by

(
ξ(λ)

)−1
=

{(
λ−
√
λ2 − 4

)
/2 Reλ < 0 or Reλ = 0, Imλ ≤ 0,(

λ+
√
λ2 − 4

)
/2 Reλ > 0 or Reλ = 0, Imλ ≥ 0.

Proof. Let us break down the proof of this proposition into three parts.
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1. Form of ξ:

If we multiply the definitory equation of the Joukowsky transform by a non-zero ξ, we
obtain a quadratic equation ξ2 − λξ + 1 = 0, the solutions of which read

ξ± =
λ±
√
λ2 − 4

2
.

2. Reciprocal value of ξ:

Since the constant term in a quadratic equation is the product of its roots and the constant
term in the studied equation is 1, we have ξ+ξ− = 1; hence,

ξ−1
± = ξ∓ =

λ∓
√
λ2 − 4

2
.

From this follows the equivalence

|ξ+| ≥ 1 ⇐⇒ |ξ−| ≤ 1.

3. Piece-wise nature of ξ:

It suffices to show the following

Reλ > 0 or Reλ = 0, Imλ ≥ 0 =⇒
∣∣∣∣λ−

√
λ2 − 4

2

∣∣∣∣ ≤ ∣∣∣∣λ+
√
λ2 − 4

2

∣∣∣∣. (1.3.2)

• Let Reλ ≥ 0, then one may write λ = x + iy, where x ≥ 0 and y ∈ R. Considering
the principal square root, we know that ∀z ∈ C : Re

√
z ≥ 0. This allows us to write√

λ2 − 4 = u+iv, where also u ≥ 0 and v ∈ R. Let us rewrite the inequality in (1.3.2)∣∣∣∣x+ iy − u− iv

2

∣∣∣∣ ≤ ∣∣∣∣x+ iy + u+ iv

2

∣∣∣∣,
(x− u)2 + (y − v)2 ≤ (x+ u)2 + (y + v)2,

0 ≤ 4xu+ 4yv.

The assumption above and said property of complex square root implies that 4xu ≥
0. To conclude this proof we need to show that sgn y = sgn v, i.e. sgn Imλ =
sgn Im

√
λ2 − 4. Applying the formula for the square root of a complex number

√
a+ ib =

√√
a2 + b2 + a

2
+ i sgn (b)

√√
a2 + b2 − a

2

on
√
λ2 − 4 we get

Im
√
λ2 − 4 = Im

√
(x2 − y2 − 4) + i(2xy)

= sgn (2xy)

√√
(x2 − y2 − 4)2 + (2xy)2 − x2 + y2 + 4

2
.

From this one easily sees

sgn
(
Im
√
λ2 − 4

)
= sgn

(
2Reλ︸︷︷︸

≥0

Imλ
)
= sgn

(
Imλ

)
.
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• Let Reλ = 0, Imλ ≥ 0, then one may write λ = ic, where c ≥ 0. A simple estimation
yields (1.3.2); we have∣∣λ−√λ2 − 4

∣∣ = ∣∣ic−√−c2 − 4
∣∣ ≤ c+√c2 + 4 =

∣∣ic+√−c2 − 4
∣∣ = ∣∣λ+

√
λ2 − 4

∣∣
Similarly, one would show the other implication

Reλ < 0 or Reλ = 0, Imλ ≤ 0 =⇒
∣∣∣∣λ−

√
λ2 − 4

2

∣∣∣∣ ≥ ∣∣∣∣λ+
√
λ2 − 4

2

∣∣∣∣.

Proposition 1.12: Assuming the bijective relation between λ ∼ ξ given by the Joukowsky
transform λ = ξ + ξ−1, the following statements hold:

Imλ ̸= 0 =⇒ ∃δ < 1 : |ξ(λ)| ≤ δ,

λ ∈ C =⇒ ∃ρ > 0 : |ξ(λ)| ≥ ρ.

Proof. Clearly, the function R : R+ → (0, 1) : t 7→ 1
2

(√
t2 + 4− t

)
is continuous and monotonic.

The limits of R at the boundary of its domain are R(0+) = 1 and R(+∞) = 0; therefore, it is
also decreasing. Let us describe ξ in polar form ξ = reiϕ, where ϕ ∈ (−π, π] and r ∈ (0, 1]. For
the first statement, we estimate

a := |Im(λ)| = |Im(ξ + ξ−1)| =
∣∣∣(r − 1

r

)
sinϕ

∣∣∣ ≤ 1

r
− r. (1.3.3)

This leads to the quadratic inequality

r2 + ra− 1 ≤ 0.

The solution of its boundary equation is r = R(a) = 1
2

(√
a2 + 4 − a

)
. We ignore the other

quadratic solution because we assume r to be positive; hence, the solution of the inequality with
this assumption is 0 < r ≤ 1

2

(√
a2 + 4− a

)
. Therefore, we may set

δ :=
1

2

(√
|Im(λ)|2 + 4− |Im(λ)|

)
.

For the second statement, we estimate

b := |λ| = |ξ + ξ−1| =
∣∣∣reiϕ + 1

r
re−iϕ

∣∣∣ ≥ ∣∣∣1
r
re−iϕ

∣∣∣− ∣∣∣reiϕ∣∣∣ = 1

r
− r.

This leads to a quadratic inequality

r2 + rb− 1 ≥ 0,

the boundary equation of which is similar to the case above. Its solution of the boundary equation
is r = R(b) = 1

2

(√
b2 + 4 − b

)
. Hence, for any fixed b > 0 the value r(b) is also positive. The

solution of the inequality is 1
2

(√
b2 + 4− b

)
≤ r ≤ 1. Therefore,

ρ :=
1

2

(√
|λ|2 + 4− |λ|

)
.
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Remark. Considering the other Joukowsky transform λ− α = η + η−1 we get

Im(λ− α) ̸= 0 =⇒ ∃δ < 1 : |η(λ)| ≤ δ,

λ ∈ C =⇒ ∃ρ > 0 : |η(λ)| ≥ ρ.

Proposition 1.13: Let Imα ̸= 0 and consider the two Joukowsky transforms λ = ξ + ξ−1 and
λ− α = η + η−1, then

(a) |ξ| > 1
2

(√
|Imα|2 + 4− |Imα|

)
=⇒ ∃δ2 < 1, ∃ρ2 > 0 : ρ2 ≤ |η| ≤ δ2.

(b) |η| > 1
2

(√
|Imα|2 + 4− |Imα|

)
=⇒ ∃δ1 < 1, ∃ρ1 > 0 : ρ1 ≤ |ξ| ≤ δ1,

Proof. Since the two statements are analogous to each other, we shall prove only one; let us
choose (a). Consider ξ in polar form ξ = reiϕ, where ϕ ∈ (−π, π] and r ∈ (0, 1]. Let us show a
series of implications and justify them individually

|ξ| > 1

2

(√
|Imα|2 + 4− |Imα|

)
=⇒ 1

r
− r < |Imα| =⇒ |Imλ| < |Imα|

=⇒ |Im(λ− α)| ≠ 0 =⇒ ∃δ2 < 1, ∃ρ2 > 0 : ρ2 ≤ |η| ≤ δ2.

If we denote c := |Imα|, the first implication follows from the fact that the right side of the
implication is equivalent to r2 + cr − 1 > 0. Similarly to the proof above, the solution is
1
2

(√
c2 + 4− c

)
< r ≤ 1. The second implication follows from the inequality (1.3.3), and the last

implication follows from Proposition 1.12.

Lemma 1.14: Let Imα ̸= 0. Then there exists ŵ > 0 such that

∀λ ∈ C : w(λ) ≥ ŵ,

where w = ξ − η−1 is the Wronskian.

Proof. Let us decompose the complex plane into two sets Uη and U ξ. If Imα > 0, we set

Uη :=
{
λ ∈ C

∣∣ |Imλ| > |Imα|/2} and U ξ :=
{
λ ∈ C

∣∣ |Imλ| ≤ |Imα|/2}.
Notice that {

λ ∈ C
∣∣ |η| = 1

}
⊂ Uη and

{
λ ∈ C

∣∣ |ξ| = 1
}
⊂ U ξ.

This decomposition is useful because we can use the proof of Proposition 1.12 for all ξ corre-
sponding to λ ∈ Uη

|ξ| ≤ 1

2

(√
|Imλ|2 + 4− |Imλ|

)
≤ 1

2

(√
|Imα|2

4
+ 4− |Imα|

2

)
=: δ,

where the second inequality follows from the fact that the function t 7→
(√
t2 + 4 − t

)
/2 is

decreasing and the definitory property of the set Uη. Similarly, we get the same estimate for all
η corresponding to λ ∈ U ξ. For the Joukowsky parameter η the proof of Proposition 1.12 we
have

Im(λ− α) ̸= 0 =⇒ |η| ≤ 1

2

(√
|Im(λ− α)|2 + 4− |Im(λ− α)|

)
. (1.3.4)
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With the inequality defining the set U ξ in mind let us estimate∣∣Im(λ− α)
∣∣ = ∣∣Imλ− Imα

∣∣ ≥ |Imα| − |Imλ| ≥ |Imα| − 1

2
|Imα| = 1

2
|Imα|.

Plugging this estimate into (1.3.4) we get |η| ≤ δ. With these estimates established, we may
move to estimate the Wronskian w = ξ − η−1 itself

|w| = |ξ − η−1| = |ξη − 1|
|η|

≥ 1− |η||ξ|
1

≥

{
1− δ|ξ| ≥ 1− δ on U ξ

1− δ|η| ≥ 1− δ on Uη
≥ 1− δ =: ŵ



Chapter 2

Pseudospectrum

In this chapter, we will almost solely rely on the book Spectra and pseudospectra by Lloyd
Nicholas Trefethen and Mark Embree, see [5]. We will define what pseudospectra are and state
their basic properties before we commence pseudospectral analysis of the studied operator Hα.
Since these properties are not crucial for this paper and serve only the purpose to familiarize us
with this new notion, we will not be providing proofs; one may find them in [5].

Definition 2.1: Let A ∈ B(H ) and ε > 0 be arbitrary. The ε-pseudospectrum of operator A
is defined as the set

σε(A) := σ(A) ∪
{
λ ∈ C \ σ(A)

∣∣ ∥(A− λ)−1∥ ≥ ε−1
}
.

Theorem 2.2: Given A ∈ B(H ), the pseudospectra
{
σε(A)

}
ε>0

have the following properties.

• Each σε(A) is a nonempty subset of C.

• Any bounded connected component of σε(A) has a nonempty intersection with σ(A).

• The pseudospectra are strictly nested supersets of the spectrum.

Describing the pseudospectra of self-adjoint operators is a relatively trivial endeavor because
we can describe the norm of the resolvent in terms of the distance between its spectral parameter
and the spectrum of the operator.

Theorem 2.3: Let A ∈ B(H ) be a self-adjoint operator and λ ∈ ϱ(A), then

∥(A− λ)−1∥ = 1

dist(σ(A), λ)
.

Therefore, given a bounded self-adjoint operator with a known spectrum, one can explicitly
describe the ε-pseudospectra as the ε-neighborhood of σ(A).

Corollary 2.4: Let A ∈ B(H ) be a self-adjoint operator, then

ε > 0 : σε(A) = σ(A) ∪ {λ ∈ C \ σ(A)
∣∣ dist(σ(A), λ) ≤ ε} = σ(A) +D(ε),

where D(ε) denotes a centered disc in the complex plane with radius ε.

Let us now apply these results to operator Hα. The following proposition immediately follows
from the corollary above.

18
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Proposition 2.5: Let α be a real number. Then

ε > 0 : σε(Hα) = [−2, 2] ∪ [−2 + α, 2 + α] + D(ε).

Visualizations of the ε-pseudospectra of the self-adjoint operatorH0 are in Fig. 2.1 for various
values of ε.

Setting aside the trivial case for a real parameter α, we will discuss the general case of α being
any complex number. Describing the pseudospectra of non-self-adjoint operators is no more a
trivial endeavor. Still, we can get an explicit expression for the pseudospectrum intersected with
a certain set. This is justified by the following propositions.

Proposition 2.6: Let A ∈ B(H ) and λ ∈ ρ(A). Then

1

dist
(
λ, σ(A)

) ≤ ∥∥(A− λ)−1
∥∥.

A lower bound can also be obtained simply from the definition of operator norm. Let A be
a bounded operator on a Hilbert space H , then

∀y ∈H , ∥y∥ = 1 : ∥A∥ = sup
∥x∥=1

∥Ax∥ ≥ ∥Ay∥. (2.0.1)

We shall refer to such a vector y as a test vector. However, in our case a more suitable lower
bound is given by the proposition above.

Proposition 2.7 ([6, Proposition 2.8]): Let A be a closed operator on H . Let U be a connected
open subset of C \ Num(A). If there exists a number λ0 ∈ U which is contained in ρ(A), then
U ⊂ ρ(A). Moreover,

∀λ ∈ U :
∥∥(A− λ)−1

∥∥ ≤ 1

dist
(
λ,Num(A)

) .



CHAPTER 2. PSEUDOSPECTRUM 20

Lemma 2.8: Let K ⊂ C be bounded closed convex set, then its complement C\K is connected.

Proof. Let us establish notation for lines, rays, and line segments:

⟨a, b⟩ :=
{
(1− t)a+ tb

∣∣ t ∈ R
}

(a, b⟩ :=
{
(1− t)a+ tb

∣∣ t ∈ (0,+∞)
}

[a, b] :=
{
(1− t)a+ tb

∣∣ t ∈ [0, 1]
}

[a, b) :=
{
(1− t)a+ tb

∣∣ t ∈ [0, 1)
}

We will show that C \K is path-connected since it implies connectedness. We need to construct
a path connecting any two different points v1, v2 ∈ C \ K. The set K is bounded; therefore,
we can find r > 0 such that K ⊂ B(0, r). If ⟨v1, v2⟩ ∩ K = ∅, we connect v1 and v2 with the
line segment [v1, v2]. If the line ⟨v1, v2⟩ has a non-empty intersection with K, then we denote
⟨v1, v2⟩ ∩K = {k1, k2}, where k1 and k2 may equal each other if the intersection is a singleton.
Moreover, ⟨v1, v2⟩ ∩K is necessarily a convex set. Therefore, the line ⟨v1, v2⟩ decomposes into
exactly three disjoint parts which read

⟨v1, v2⟩ = ⟨v1, k1) ∪ [k1, k2] ∪ (k2, v2⟩.

Let us denote {b1} = ∂B(0, r) ∩ [k1, v1⟩ and {b2} = ∂B(0, r) ∩ [k2, v2⟩. Now we can connect
v1, v2 ∈ C \K with either one of the paths given by the set [v1, b1) ∪ ∂B(0, r) ∪ (b1, v2].

If an operator is bounded the closure of its numerical range is convex; therefore C \Num(A)
is connected. The restriction to bounded operators simplifies Proposition 2.7 in such a way that
the inequality holds for all λ ∈ C \Num(A).

Let us define

Ω(α) :=
{
z ∈ C

∣∣ dist(λ,Num(Hα)
)
= dist

(
λ, σ(Hα)

)}
.

In Fig. 2.2, we have depicted the set Ω(α) for certain values of α. For all λ ∈ Ω(α) the upper
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(b) α = 2i + 1

Figure 2.2: Depictions of the set Ω(α) for certain choices of α.

and lower estimate of
∥∥(A−λ)−1

∥∥ equal each other on; therefore, we can describe the ε-spectrum
explicitly as

Ω(α) ∩ σε(Hα) = Ω(α) ∩
(
σ(Hα) +D(ε)

)
.

To our knowledge, there is no way to describe the pseudospectra of Hα explicitly outside of
Ω(α); therefore, our task is to obtain a superset and a subset of each ε-pseudospectrum. This
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way we get a region where the boundary of the ε-pseudospectrum must reside; this region is
the set difference of the superset and the subset. We will obtain these supersets and subsets
by estimating the norm of the resolvent above and below. As stated above we obtain a lower
bound by virtue of Proposition 2.6. These lower bounds are depicted in Figures 2.3. The tool
we will use for obtaining upper estimates of an operator’s norm is the Schur test, though it is
usually formulated for continuous operators, i.e. operators on the Hilbert space L2. A discrete
formulation (for ℓ2(N)) can be found in [7] as an exercise. Let us now present a formulation of
the Schur test for an operator on ℓ2(Z).

Theorem 2.9 (Schur test): Let A = (ai,j)i,j∈Z be a doubly infinite matrix of complex entries.
If there exists a positive number pj for all j ∈ Z such that

sup
j∈Z

1

pj

∑
i∈Z
|ai,j |pi =: α <∞ & sup

i∈Z

1

pi

∑
j∈Z
|ai,j |pj =: β <∞,

then A ∈ B(ℓ2(Z)) and ∥A∥ ≤
√
αβ.

Proof. Choose an arbitrary ψ ∈ span{en | n ∈ Z}, then

∥Aψ∥2 =
∑
i∈Z

∣∣∣∑
j∈Z

ai,jψj

∣∣∣2 ≤∑
i∈Z

(∑
j∈Z

√
|ai,j |pj

√
|ai,j|
pj
|ψj |

)2

C.–S.
≤
∑
i∈Z

(∑
j∈Z
|ai,j |pj

)
︸ ︷︷ ︸

≤αpi, ∀i

(∑
j∈Z

|ai,j |
pj
|ψj |2

)
⋆
≤ α

∑
j∈Z

( 1

pj

∑
i∈Z
|ai,j |pi

)
︸ ︷︷ ︸

≤β

|ψ|2i ≤ αβ∥ψ∥2.

C.–S. signifies the Cauchy–Schwarz inequality and after starred inequality, the interchange of
summation is justified by Tonneli’s theorem.

Remark. Let us state a couple of notes on this operator norm inequality theorem:

1. If the given doubly infinite matrix A is symmetric in terms of the absolute value of its
entries, then

α = β & ∥A∥ ≤ sup
j∈Z

1

pj

∑
i∈Z
|ai,j |pi.
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2. In some cases we may get estimates in a simple form using pj = 1 for all j ∈ Z. However,
these estimates may be rougher than ones using carefully optimized weights pj .

2.1 Global behavior

As we have indicated before, to obtain an upper bound we will use the Schur test, Theorem
2.9. We set pj = 1 for all j ∈ Z. This way we get a readily available, albeit possibly rough,
estimate. In this setting, the Schur test implies

∥(Hα − λ)−1∥ ≤ sup
m∈Z

∑
n∈Z

∣∣Gm,n(λ)∣∣.
Finding the actual supremum proves to be quite difficult; therefore, we will be taking an esti-
mate of

∑
n∈Z

∣∣Gm,n(λ)∣∣ from above while ridding it of dependence on m. Recall the constants
A,B,C,D from (1.2.5). Due to the form that G(λ) takes, we need to investigate two branches:

m ≥ 0 :
∑
n∈Z

∣∣Gm,n(λ)∣∣ = |η|m|w|
−1∑

n=−∞
|ξ|−n+ |η|

m

|w|

m−1∑
n=0

∣∣Aηn+Bη−n∣∣+ ∣∣Aηm +Bη−m
∣∣

|w|

∞∑
n=m

|η|n

≤ |η|m|ξ|
|w|(1− |ξ|)

+
|η|m

|w|

(
|A|

m−1∑
n=0

|η|n︸ ︷︷ ︸
=

1−|η|m
1−|η|

+|B|
m−1∑
n=0

|η−1|n︸ ︷︷ ︸
|η| |η|

−m−1
1−|η|

)
+

∣∣Aηm +Bη−m
∣∣

|w|
|η|m

1− |η|

=
|η|m|ξ|
|w|(1− |ξ|)

+
1

|w|(1− |η|)

(
|A||η|m − |A||η|2m + |B||η| − |B||η|1+m + |A||η|2m + |B|

)
≤ |ξ|
|w|(1− |ξ|)

+
1

|w|(1− |η|)
(
|A|+ (1 + |η|)|B|

)
=: U1(λ),

m < 0 :
∑
n∈Z

∣∣Gm,n(λ)∣∣ = |ξ|−m|w|
∞∑
n=1

|η|n+ |ξ|
−m

|w|

0∑
n=m+1

∣∣Cξn+Dξ−n∣∣+ ∣∣Cξm +Dξ−m
∣∣

|w|

m∑
n=−∞

|ξ|−n

≤ |ξ|−m|η|
|w|(1− |η|)

+
|ξ|−m

|w|

(
|C|

−m−1∑
n=0

|ξ|−n︸ ︷︷ ︸
=|ξ| |ξ|

m−1
1−|ξ|

+|D|
−m−1∑
n=0

|ξ|n︸ ︷︷ ︸
1−|ξ|−m

1−|ξ|

)
+

∣∣Cξm +Dξ−m
∣∣

|w|
|ξ|−m

1− |ξ|

≤ |ξ|−m|η|
|w|(1− |η|)

+
1

|w|(1− |ξ|)

(
|C||ξ| − |C||ξ|−m+1 + |D||ξ|−m − |D||ξ|−2m + |C|+ |D||ξ|−2m

)
≤ |ξη|
|w|(1− |η|)

+
1

|w|(1− |ξ|)
(
|D||ξ|+ (1 + |ξ|)|C|

)
=: U2(λ).

Proposition 2.10: An upper bound of the norm of the resolvent operator takes the form

∀λ ∈ ρ(Hα) : ∥(Hα − λ)−1∥ ≤ max
{
U1(λ), U2(λ)

}
=: U(λ)

For illustrations, see Figures 2.4.
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Theorem 2.11: Let Imα ̸= 0. Then the ε-pseudospectra of Hα follow these inclusions:{
λ ∈ C

∣∣∣ 1

dist
(
λ, σ(Hα)

) ≥ ε−1
}
⊂ σε(Hα) ⊂

{
λ ∈ C

∣∣ U(λ) ≥ ε−1
}
.

These estimates are used when we do not have an explicit expression for the resolvent oper-
ator’s norm, i.e. on C \ Ω(α). In Fig. 2.5 we ilustrate our findings.

(a) α = 2i (b) α = 2i + 1

Figure 2.5: In these pictures ε = 1/3. The green line is given by U(λ) = ε−1. The blue line
is given by dist

(
λ, σ(Hα)

)
= ε. The purple line is the boundary of the ε-pseudospectrum of a

finite-dimensional approximation of Hα. The light blue region is the set Ω(α) on which we can
describe the pseudospectrum exactly by the blue line.

2.2 Asymptotic behavior

In this section we will try to describe the behavior of pseudospectra near the spectrum of Hα.
Since the global estimates of ∥(Hα − λ)−1∥ are quite cumbersome, it may be helpful to derive
asymptotic formulas for these estimates. We will be heavily using big O notation so let us first
define it for the sake of clarity.
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Definition 2.12 (Big O notation): We say

f(x) = O(g(x)) as x→ a if ∃δ,M > 0; ∀x ∈ (a− δ, a) ∪ (a, a+ δ) : |f(x)| ≤Mg(x).

Because there are two connected components of σ(Hα) (assuming Imα ̸= 0), we will be
showing asymptotic behavior around each of them. The component (−2, 2] corresponds to |ξ| = 1
and the component [−2+α, 2+α] corresponds to |η| = 1. Let us quickly note that the previous
sentence implies that if one of the parameters ξ or η is equal to 1 in absolute value, then the
other is strictly less than 1 in absolute value; this is discussed in greater detail in Proposition
1.13. Assuming ϕ ∈ [−π, π], we will denote these two cases as such

|ξ| −→ 1 : ε→ 0+, where ξ = (1− ε)eiϕ,
|η| −→ 1 : ε→ 0+, where η = (1− ε)eiϕ.

The number ϕ describes which point in a particular component are we approaching and from
which side. E.g. if ϕ = 0, ξ or η is approaching 1; therefore, λ is approaching 2 or 2 + α,
respectively.

For easier readability we will divide this section into three parts; in the first part, we will
prepare the upper and lower bounds of ∥(Hα−λ)−1∥ in a way that is more suitable for asymptotic
analysis than bounds derived in the previous section. Next, we shall derive asymptotic formulas
for each of the expressions in the upper and lower bounds. In the last part, we will put it all
together and evaluate the result.

2.2.1 Preparation of bounds

A trick we can use while evaluating asymptotic pseudospectra is to separate the quadrants
of the matrix representation of the resolvent operator

G(λ) =

(
G−− G−+

G+− G++

)
=

(
G−− 0
0 0

)
+

(
0 G−+

0 0

)
+

(
0 0

G+− 0

)
+

(
0 0
0 G++

)
. (2.2.1)

Taking the norm of the resolvent operator and estimating it with triangle inequality may be too
rough of an estimate for global estimation but if we show that all but one term are asymptotically
insignificant, we can make the asymptotic formula simpler. To make the quadrant separation
more clear, let us read them out individually

G++
m,n(λ) =

1

w

(
Aηm+n +Bη|m−n|

)
m,n ≥ 0,

G+−
m,n(λ) =

1

w
ηmξ−n m ≥ 0, n < 0,

G−−
m,n(λ) =

1

w

(
Cξ|m−n| +Dξ−m−n

)
m,n < 0,

G−+
m,n(λ) =

1

w
ηnξ−m m < 0, n ≥ 0.
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Since it is not ideal to work with matrices whose indices are on the negative half-line, let us
rearrange them appropriately

G̃+−
m,n(λ) =

1

ηw
ηmξn m,n ≥ 1,

G̃−−
m,n(λ) =

1

w

(
Cξ|m−n| +Dξm+n

)
m,n ≥ 1,

G̃−+
m,n(λ) =

1

ηw
ηnξm m,n ≥ 1.

In [14] we showed that∥∥∥∥(G−− 0
0 0

)∥∥∥∥
ℓ2(Z)

= ∥G̃−−∥ℓ2(N),
∥∥∥∥(0 G−+

0 0

)∥∥∥∥
ℓ2(Z)

= ∥G̃−+∥ℓ2(N),∥∥∥∥( 0 0
G+− 0

)∥∥∥∥
ℓ2(Z)

= ∥G̃+−∥ℓ2(N),
∥∥∥∥(0 0

0 G++

)∥∥∥∥
ℓ2(Z)

= ∥G++∥ℓ2(N0).

With this established let us evaluate or estimate the norm of these operators.
The norms of G+− and G−+ can be evaluated exactly by applying the following lemma.

Lemma 2.13: Let p, q ∈ C, |p|, |q| < 1. We define an operator A = A(p, q) on ℓ2(N) whose
matrix representation reads

∀m,n ∈ N : Am,n := pmqn.

Then A ∈ B
(
ℓ2(N)

)
. Moreover, we can calculate its norm

∥A∥ =

√
|p|2

1− |p|2
|q|2

1− |q|2
.

Proof. Choose an arbitrary vector ψ ∈ ℓ2(N), then the mth element of Aψ reads

(Aψ)m =

∞∑
n=1

Am,nψn =
∞∑
n=1

pmqnψn = pm
∞∑
n=1

qnψn.

Next, we estimate the square of its norm

∥Aψ∥2 =
∞∑
m=1

|(Aψ)m|2 =
∞∑
m=1

|p|2m
∣∣∣ ∞∑
n=1

qnψn

∣∣∣2 ≤ ∞∑
m=1

|p|2m
( ∞∑
n=1

|q|n|ψn|
)2

C.−S.
≤

∞∑
m=1

|p|2m
∞∑
n=1

|q|2n
∞∑
k=1

|ψk|2 =
|p|2

1− |p|2
|q|2

1− |q|2
∥ψ∥2,

where the marked inequality denotes the Cauchy–Schwarz inequality. This calculation proves
the assertion that A is a bounded operator on ℓ2(N) and provides an upper bound for the norm
of A. For the lower bound estimation let us choose a test vector ψn := (q)n, then

∥Aψ∥2 =
∞∑
m=1

|(Aψ)m|2 =
∞∑
m=1

|p|2m
∣∣∣ ∞∑
n=1

qn(q)n
∣∣∣2 = ∞∑

m=1

|p|2m
( ∞∑
n=1

|q|2n
)2

=

∞∑
m=1

|p|2m
∞∑
n=1

|q|2n
∞∑
k=1

|q|2k =
∞∑
m=1

|p|2m
∞∑
n=1

|q|2n
∞∑
k=1

|ψk|2 =
|p|2

1− |p|2
|q|2

1− |q|2
∥ψ∥2.
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Since these two estimates are equal, we know it is the norm of A itself.

Moreover, as it turns out they are equal to each other

∥G̃+−∥ = ∥G̃−+∥ = 1

|w|
1√

1− |η|2
|ξ|√

1− |ξ|2
.

The norms of the other quadrants are more complicated. We were not able to evaluate them
exactly; hence, we give estimates. Multiple estimation techniques were used to take the upper
bound, though not one yielded a better asymptotic formula than the others; therefore, we will
show the most conspicuous one – the Schur test. We will get the lower bound by choosing suitable
test vectors.

Proposition 2.14: Let us denote

Uξ :=
1

1− |ξ|

(
1

ŵ
+

3

|ξ − ξ−1|

)
,

Lξ :=

√
(1− |ξ|2)2|ξ|+ 2Re(−ξ−1w)|ξ|(1− |ξ|2) + |w|2(1 + |ξ|2)

|w| |ξ−1 − ξ| (1− |ξ|2)
,

Uη :=
1

1− |η|

(
1

ŵ
+

3

|η − η−1|

)
,

Lη :=

√
(1− |η|2)2 + 2Re(−ηw)|η|2(1− |η|2) + |η|4|w|2(1 + |η|2)

|w| |η| |η−1 − η| (1− |η|2)
.

The upper and lower bounds of the norm of G̃−− and G++ take the forms

Uξ ≥ ∥G̃−−∥ ≥ Lξ, Uη ≥ ∥G++∥ ≥ Lη,

where ŵ is the uniform lower bound of w = ξ − η−1 from Proposition 1.14.

Proof. Upper bounds Uξ and Uη were obtained in a similar fashion as the upper bound for the
global estimate in Proposition 2.10 using the Schur test. Hence, we omit the details of this
calculation. For the lower bound we will be using estimation by a test vector, see (2.0.1). For
G++(λ) and G̃−−(λ) we define test vectors

ψ =
{
ηn
}
n∈N0

and φ =
{
ξn
}
n∈N,

respectively. Their norms are

∥ψ∥ = 1√
1− |η|2

and ∥φ∥ = |ξ|√
1− |ξ|2

.

Let us calculate the m element of G++(λ)ψ. Let m ∈ N0, then

(
G++(λ)ψ

)
m

= ηm
m−1∑
n=0

(Aη2n −B) + (Aηm +Bη−m)
∞∑
n=m

η2n =
ηm

w(1− η2)
(
1−mηw

)
,



CHAPTER 2. PSEUDOSPECTRUM 27

where we substituted for A and B from (1.2.5); from these formulas it is easy to see that A+B = 1
and (1− η2)B = −wη. If we calculate

|1−mηw|2 =
(
1−mRe(ηw)

)2
+
(
mIm(ηw)

)2
= 1− 2mRe(ηw) +m2|ηw|2.

then the squared absolute value of
(
G++(λ)ψ

)
m

reads∣∣∣(G++(λ)ψ
)
m

∣∣∣2 = 1

|w|2|1− η2|2
(
|η|2m −m|η|2m2Re(ηw) +m2|η|2m|ηw|2

)
. (2.2.2)

In order to calculate the sum over indices m of the expression above, let us show special power
series, so-called low-order polylogarithms, a special case of which is the geometric series. Let
z ∈ (0, 1), then

∞∑
n=0

zn =
1

1− z
,

∞∑
n=1

nzn =
z

(1− z)2
,

∞∑
n=1

n2zn =
z(1 + z)

(1− z)3
.

After we take the square root of the sum of (2.2.2) and divide it by the norm of ψ we get Lη
after simple manipulations. The calculation of the lower bound of ∥G̃−−(λ)∥ denoted by Lξ is
analogous and we also omit details.

2.2.2 Asymptotic formulas

As this section heavily relies on Proposition 1.13, let us reiterate it in a more intuitive though
less precise way. Because we are studying the immediate neighborhood of the spectrum, the left
side of the implication will always hold.

Let Imα ̸= 0. If λ is sufficiently close to

(a) [−2, 2] =⇒ ∃δ1 < 1 : ≤ |η| ≤ δ1.

(b) [−2 + α, 2 + α] =⇒ ∃δ2 < 1 : ≤ |ξ| ≤ δ2,

and if λ is close to either connected component of the spectrum, there exists ρ > 0 such that
|ξ|, |η| > ρ.

In Table 2.1 we provide asymptotic formulas for the expressions inside Proposition 2.14. Let
us prove them for the case |ξ| −→ 1; the other case is analogous. Let us write ξ = (1− ε)eiϕ.

• From Proposition 1.13 directly follows that the absolute value of η is inside a closed interval,
subset of (0, 1), when λ is sufficiently close to the interval [−2, 2]. Therefore,

|η| = O(1) as |ξ| → 1.

• The absolute value of w can be written as

|w| = |ξ − η−1| = |1− ξη|
|η|

.

This expression can be easily estimated from above and below in the following way

1 + δ1
ρ
≥ 1 + |ξ||η|

|η|
≥ |1− ξη|

|η|
≥ 1− |ξ||η|

|η|
≥ 1− δ1

δ1
.
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As we can see |w| has values inside a compact interval; therefore,

|w| = O(1) as |ξ| → 1.

Since the estimation above shows that |w| can never be 0, we can take its reciprocal value

1

|w|
= O(1) as |ξ| → 1.

Moreover, this reciprocal value can be uniformly estimated from above by 1/ŵ as was
already used in Proposition 2.14 for its reciprocal value.

• For the next expression let us assume that ϕ ̸= 0, π, then

1

|ξ − ξ−1|
=

1∣∣(1− ε)eiϕ − 1
1−εe

−iϕ
∣∣ ε−→0−−−→ 1∣∣eiϕ − e−iϕ

∣∣ = 1

2| sin(ϕ)|
.

If ϕ = 0, π, then eiϕ = e−iϕ = ±1. With this assumption, we have

1

|ξ − ξ−1|
=

1∣∣1− ε− 1
1−ε
∣∣ = 1

2ε
+O(1) as |ξ| → 1

• We have
1

|η − η−1|
= O(1) as |ξ| → 1.

Indeed, one can estimate

ρ

1 + δ1ρ
=

1

δ1 +
1
ρ

≤ 1

|η|+ |η|−1
≤ 1

|η − η−1|
≤ 1

|η|−1 − |η|
≤ 1

1
δ1
− δ1

=
δ1

1− δ21
.

• If we estimate

δ1 − 1 ≤ |ξ||η| − 1 ≤ −|η||w| ≤ Re(−ηw) ≤ |w||η| = |1− ξη| ≤ 1 + |ξ||η| ≤ 1 + δ1,

we can conclude that
Re(−ηw) = O(1) as |ξ| → 1.

• Similarly,

−1 + δ1
ρ
≤ −|w| = −|ξ−1w||ξ| ≤ Re(−ξ−1w)|ξ| ≤ |ξ−1w||ξ| = |w| ≤ 1 + δ1

ρ
.

Hence,
Re(−ξ−1w)|ξ| = O(1) as |ξ| → 1.
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|ξ| −→ 1 : ξ = (1− ε)eiϕ |η| −→ 1 : η = (1− ε)eiϕ

|ξ| 1− ε O(1)

|η| O(1) 1− ε

1
|w| O(1) O(1)

1
|ξ−ξ−1|

1
2| sin(ϕ)| +O(ε) O(1)

1
2ε +O(1), ϕ = ±π, 0

1
|η−η−1| O(1) 1

2| sin(ϕ)| +O(ε)

1
2ε +O(1), ϕ = ±π, 0

Re(ηw) O(1) O(1)

Re(ξ−1w)|ξ| O(1) O(1)

Table 2.1: Table of asymptotic formulas

2.2.3 Asymptotic pseudospectrum

We will calculate asymptotic behavior for each quadrant of G(λ) individually.

Lemma 2.15:
∥G+−∥ = ∥G−+∥ = O(ε−

1
2 ) as |ξ|, |η| → 1

Proof. From the calculation it will be clearly visible that is the same in both cases |ξ| → 1 and
|η| → 1. Let us show it only for |ξ| → 1. It suffices to show

1− ε√
1− (1− ε)2

= O(ε−
1
2 ) as ε→ 0 (2.2.3)

because

∥G+−∥ = 1

|w|
1√

1− |η|2
|ξ|√

1− |ξ|2
= O(1) 1√

1−
(
O(1)

)2 1− ε√
1− (1− ε)2

= O(1) 1− ε√
1− (1− ε)2

.

If we calculate √
ε(1− ε)√

1− (1− ε)2
=

√
ε(1− ε)√
2ε− ε2

=
(1− ε)√
2− ε

ε→0−−−→ 1√
2
,

we prove (2.2.3) as well as the lemma itself.
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Lemma 2.16: The asymptotic behavior of upper bounds from Proposition 2.14 reads

Uξ = O(1) as |η| → 1, Uξ = O(1) as |ξ| → 1.

If ϕ ̸= π, 0, then

Uξ =
1

ε

( 1

ŵ
+

3

2| sinϕ|

)
+O(1) = O(ε−1) as |ξ| → 1,

Uη =
1

ε

( 1

ŵ
+

3

2| sinϕ|

)
+O(1) = O(ε−1) as |η| → 1,

If ϕ ̸= π, 0, then

Uξ =
3

2ε2
+O(ε−1) = O(ε−2) as |ξ| → 1,

Uη =
3

2ε2
+O(ε−1) = O(ε−2) as |η| → 1.

Proof. We get these formulas simply by plugging in asymptotic formulas from Table 2.1 into the
expressions in Proposition 2.14.

Lemma 2.17: The asymptotic behavior of lower bounds from Proposition 2.14 reads

Lξ = O(1) as |η| → 1, Lξ = O(1) as |ξ| → 1.

If ϕ ̸= π, 0, then

Lξ =
1

ε

√
2

4| sinϕ|
+O(1) = O(ε−1) as |ξ| → 1,

Lη =
1

ε

√
2

4| sinϕ|
+O(1) = O(ε−1) as |η| → 1.

If ϕ ̸= π, 0, then

Lξ =

√
2

4ε2
+O(ε−1) = O(ε−2) as |ξ| → 1,

Lη =

√
2

4ε2
+O(ε−1) = O(ε−2) as |η| → 1.

Proof. Again, we get these formulas by plugging in asymptotic formulas from Table 2.1 into the
expressions in Proposition 2.14.

We may conclude this section by stating the following theorem.

Theorem 2.18: The asymptotic behavior of the resolvent operator’s norm reads

1

ε

√
2

4| sinϕ|
+O

(
ε−

1
2
)
≤ ∥(Hα − λ)−1∥ ≤ 1

ε

( 1

ŵ
+

3

2| sinϕ|

)
+O

(
ε−

1
2
)

as |ξ|, |η| → 1,

if it does not approach the spectrum along the line on which a given connected component
resides, i.e. ϕ ̸= π, 0. Otherwise, the norm follows

√
2

4ε2
+O(ε−1) ≤ ∥(Hα − λ)−1∥ ≤ 3

2ε2
+O(ε−1) as |ξ|, |η| → 1.
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Proof. Taking the triangle inequality of the decomposed resolvent operator, see (2.2.1), we esti-
mate ∥(Hα − λ)−1∥ from above and below. If we then estimate further using Proposition 2.14,
we get

∥(Hα − λ)−1∥ ≤ ∥G̃−−∥+ ∥G̃+−∥+ ∥G̃−+∥+ ∥G++∥ ≤ Uξ + 2∥G̃−+∥+ Uη, (2.2.4)

∥(Hα − λ)−1∥ ≥ ∥G̃−−∥ − ∥G̃+−∥ − ∥G̃−+∥ − ∥G++∥ ≥ Lξ − 2∥G̃−+∥ − Uη, (2.2.5)

∥(Hα − λ)−1∥ ≥ ∥G++∥ − ∥G̃+−∥ − ∥G̃−+∥ − ∥G̃−−∥ ≥ Lη − 2∥G̃−+∥ − Uξ. (2.2.6)

These estimates allowed us to separate asymptotically insignificant terms. We get the assertion
of the theorem simply by plugging in the asymptotic expressions from Lemmas 2.15, 2.16, and
2.17. For all upper estimates, we use (2.2.4). If we are evaluating the lower bound as |ξ| → 1,
we use the inequality 2.2.5. Similarly, if we are evaluating the lower bound as |η| → 1, we use
the inequality 2.2.6. We also need to separate the case when ϕ = 0, π.



Chapter 3

Weak-coupling & spectral stability

The weak-coupling analysis consists of showing the existence, uniqueness, and asymptotic
behavior of bound states, i.e. eigenvalues, while a small potential V is applied.

3.1 Weak-coupling of the discrete Laplace operator

In this section we work out e a discrete analog to some results from [8], see also [9]. The
article showed that under some assumptions posed upon the potential V , there exists a unique
negative bound state of −d/dx+ V on L2(R).

Consider the discrete Laplace operator, i.e. discrete Schrödinger operator with zero potential.
Let us first describe some basic properties of this operator, since they do not immediately arise
from the case of the Schrödinger operator with complex step potential. Though our notationHα is
consistent with this case, we denote the Laplace operator H0. Its action on x ≡ {xn}n∈Z ∈ ℓ2(Z)
is given by

(H0x)n = xn−1 + xn+1 n ∈ Z.

Honoring the notation from [3], we denote the Joukowsky transform of the spectral parameter
λ by the letter k, i.e. λ = k+ k−1. The operator H0 is self-adjoint. Furthermore, in this section,
we will consider only real-valued potential V . Hence, the spectrum of the operator H + V is
purely real and we will be looking for bound states only on the real line. As a well-known fact,
we state that the spectrum of H0 coincides with the interval [−2, 2]. From this and the Definition
1.10, it is easy to see that the Joukowsky transform bijectively maps the resolvent set ρ(H0) to
the set {k ∈ C | 0 < |k| < 1}. If we set α = 0 in (1.2.8), we get the matrix representation of the
resolvent operator which reads

(H0 − λ)−1
m,n = (H0 − k − k1)−1

m,n =
k|m−n|

k − k−1
, m, n ∈ Z, 0 < |k| < 1.

Since the discrete version of the Laplacian is bounded, there arises a significant difference to
the continuous version. The spectrum of the continuous Laplacian is [0,∞); therefore, one needs
to consider only the left neighborhood of zero while looking for bound states. In the case of the
discrete Laplace operator, we need to investigate both the right neighborhood of 2 and the left
neighborhood of −2. Though, the following proposition allows us to investigate, in fact, only
one of these cases because the behavior is equivalent.

32
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Proposition 3.1: Consider the Laplace operator H0 and let V = diag
({
vn}n∈Z

)
be a bounded

potential. Then the spectrum of the Schrödinger operator HV := H0 + V satisfies

σ(HV ) = −σ(H−V ).

Proof. Let x = {xn}n∈Z ∈ ℓ2(Z) and consider the unitary operator U given by (Ux)n = (−1)nxn.
Then

U−1HV Ux = UHV Ux = UHV Ux = UHV U{xn} = UHV {(−1)−1xn}
= U{(−1)n−1xn−1 + (−1)nvnxn + (−1)n−1xn−1} = {−xn−1 + vnxn − xn+1} = −H−V x.

Since this operation does not change the spectrum and scaling the operator by −1 also scales
the spectrum as a subset of C by −1 we have

σ(HV ) = σ(−H−V ) = −σ(H−V ).

More specifically, the equality holds for point spectra as well.

Let us restrict ourselves to investigating the right neighborhood of 2 when looking for bound
states. Considering the Joukowsky transform λ = k + k−1, one can easily see that

λ −→ 2+ ⇐⇒ k −→ 1−.

Before we move further, let us reiterate the Birman–Schwinger principle (Theorem 1.6) which
says that, whenever v ∈ ℓ1(Z), any λ ∈ ρ(H0) is an eigenvalue of H0 + V if and only if −1 is an
eigenvalue of the Birman–Schwinger operator K(λ). Its matrix entries read

Km,n(λ) =
√
|vm|

k|m−n|

k − k−1

√
|vn| sgn vn, m, n ∈ Z.

Later, we will be scaling the potential V by some small ε > 0, for this purpose, we will denote
Hε := H0+εV . The Birman–Schwinger principle still holds in the following sense. Any λ ∈ ρ(H0)
is an eigenvalue of Hε if and only if −1 is an eigenvalue of εK(λ).

The trick is to decompose the Birman–Schwinger operator into the sum of a well-behaved
operator and a rank-one operator as λ −→ 2+ as follows

K(λ) = L(λ) +M(λ),

where the matrix entries of these operators read

Lm,n(λ) :=
√
|vm|

1

k − k−1

√
|vn| sgn vn,

Mm,n(λ) :=
√
|vm|

k|m−n| − 1

k − k−1

√
|vn| sgn vn.

The operator L(λ) is rank-one. Indeed, if we take ψ ∈ ℓ2(Z), we have for m ∈ Z

(
L(λ)ψ

)
m

=
∑
n∈Z

Lm,n(λ)ψn =
∑
n∈Z

√
|vm|

1

k − k−1

√
|vn| sgn vnψn

=
1

k − k−1

(∑
n∈Z

√
|vn| sgn vnψn

)√
|vm| =

1

k − k−1
⟨v1/2, ψ⟩

√
|vm|.
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From this, one can easily notice that RanL(λ) = span(|v|1/2), i.e. L(λ) is rank-one. This
operator removes the singular expression (k− k−1)−1 from the operator K(λ). Now let us prove
that M(λ) is well-behaved as λ −→ 2+, and state what exactly we mean by that.

The matrix entries operator M(λ) converge to

∀m,n ∈ Z : Mm,n(2) :=
√
|vm|

|m− n|
2

√
|vn| sgn vn.

k|m−n| − 1

k − k−1
=

(1− ε)|m−n| − 1

1− ε− 1
1−ε

=
1− |m− n|ε+O(ε2)− 1

1− ε− 1− ε+O(ε2)
=
−|m− n|ε+O(ε2)
−2ε+O(ε2)

=
ε

ε

|m− n|+O(ε)
2 +O(ε)

=
|m− n|

2

1 +O(ε)
1 +O(ε)

=
|m− n|

2
+O(ε).

Lemma 3.2:
∀λ ≥ 2, ∀m,n ∈ Z : |Mm,n(λ)| ≤ |Mm,n(2)|.

Proof. Since λ ≥ 2, we have k ∈ (0, 1] Let us set N := |m− n| and prove that

kN − 1

k − k−1
≤ N

2
.

The inequality is equivalent to kN+1 − k ≥ N(k2 − 1)/2; therefore, it suffices to show that the
function g(k) := kN+1− k+N(1− k2)/2 is greater than or equal to 0 for k ∈ (0, 1). Let us take
the derivative of g

g′(k) = (N + 1)kN − 1−Nk = Nk (kN−1 − 1︸ ︷︷ ︸
<0

+(k2 − 1)︸ ︷︷ ︸
<0

< 0.

We can see that g is decreasing and clearly g(k) k→1−−−→ 0; this proves the inequality above and we
can write

|Mm,n(λ)| =
√
|vm|

∣∣∣k|m−n| − 1

k − k−1

∣∣∣ √|vn| ≤√|vm| |m− n|
2

√
|vn| = |Mm,n(2)|

Remark. Numerical calculation showed that this inequality may hold more generally for Reλ ≥ 2.
This would simplify one argument later, though it is not necessary. One could surely use the
maximum modulus principle to prove the more general inequality, but expressing the region
Reλ ≥ 2 and its boundary in terms of the Joukowsky parameter k is quite complicated.

Notation 3.3: Let v ∈ ℓ1(Z) and k ∈ N. We define the weighted ℓ1 norm of v by

∥v∥ℓ1(Z,mk) :=
∑
m∈Z
|m|k|vm|+ |v0|.

We also define subspaces of ℓ1(Z) by

ℓ1(Z,mk) :=
{
v ∈ ℓ1(Z)

∣∣ ∥v∥ℓ1(Z,mk) <∞
}
.

It is easy to see that ∥ · ∥ℓ1(Z,mk) is, in fact, a norm. Also, one can easily notice that ∥v∥ℓ1(Z) ≤
∥v∥ℓ1(Z,mk) ≤ ∥v∥ℓ1(Z,ml) whenever k ≤ l.
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If we pose some extra assumption upon the potential V , M(λ) converges to M(2) in the
operator norm.

Proposition 3.4: Let the sequence v ∈ ℓ1(Z,m2), then

lim
λ→2+

∥M(λ)−M(2)∥,

where ∥ · ∥ denotes the operator norm on ℓ2(Z). Moreover,

∀λ ∈ C,Reλ ≥ 0 : ∥M(λ)∥ ≤ ∥v∥ℓ1(Z,m2).

Proof. The convergence in the space of Hilbert–Schmidt operators implies the standard operator
convergence because ∥A∥ ≤ ∥A∥HS for any Hilbert–Schmidt operator A, it suffices to show that
limλ→2+ ∥M(λ)−M(2)∥HS . Under the stated assumption on potential V , the operator M(2) is,
in fact, a Hilbert–Schmidt operator. Indeed,

∥M(2)∥2HS =
∑
m,n∈Z

|Mm,n(2)|2 =
∑
m,n∈Z

|vm|
(
|m− n|

2

)2

|vn|

≤ 1

2

∑
m,n∈Z

|vm|(m2 + n2)|vn| =
1

2

∑
m,n∈Z

m2|vm||vn|+
1

2

∑
m,n∈Z

n2|vm||vn|

=
∑
m,n∈Z

m2|vm||vn| =
∑
m∈Z

m2|vm|
∑
n∈Z
|vn| ≤

(∑
n∈Z
|vn|n2 + |v0|

)2

= ∥v∥2ℓ1(Z,m2).

We have already discussed two important properties of the relation between M(λ) and M(2);
these being

• inequality of matrix entries ∀λ > 2, ∀m,n ∈ Z : |Mm,n(λ)| ≤ |Mm,n(2)|,

• pointwise convergence ∀m,n ∈ Z : Mm,n(λ)
λ→2+−−−−→Mm,n(2).

This satisfies the assumptions of Dominated convergence theorem; therefore

∥M(λ)−M(2)∥ ≤ ∥M(λ)−M(2)∥HS
λ→2+−−−−→ 0.

Proposition 3.5 (Basic criterion for the existence of a bound state): Let v ∈ ℓ1(Z,m2) and let
ε > 0 satisfy ε∥v∥ℓ1(Z,m2) < 1. Then any k + k−1 = λ ∈ {z ∈ ρ(H0) | Rez ≥ 0} is an eigenvalue
of Hε if and only if

k − k−1 = −ε⟨v1/2, (I + εM(λ))−1|v|1/2⟩. (3.1.1)

Proof. From Proposition 3.4 we have ∥M(λ)∥ ≤ ∥v∥ℓ1(Z,m2) < ∞. The assumed choice of ε
implies invertibility of I + εM(λ). If we write

(I − εK(λ))−1 =
(
(I + εM(λ))

(
I + (I + εM(λ))−1εL(λ)

))−1

=
(
I + (I + εM(λ))−1εL(λ)

)−1
(I + εM(λ))−1,
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we see that −1 is an eigenvalue of εK(λ) if and only if −1 is an eigenvalue of (I+εM(λ))−1εL(λ).
The latter operator is rank-one because L(λ) is rank-one. Hence, the action of this operator may
be written using the inner product

∀x ∈ ℓ2(Z) : (I + εM(λ))−1εL(λ)x = ⟨ψ, x⟩ϕ,

where
ψ :=

ε

k − k−1
v1/2, ϕ := (I + εM(λ))−1|v|1/2.

Since it is a rank one operator, it has only one eigenvalue, namely ⟨ψ, ϕ⟩. If we set it equal to
−1, the Birman–Schwinger principle concludes the proof.

Lemma 3.6: Let λ > 2, i.e. k ∈ (0, 1). Then for all m,n ∈ Z∣∣∣∣(∂M(λ)

∂λ

)
m,n

∣∣∣∣ ≤√|vn| |m− n|2k−1 − k
√
|vm|.

Proof. If we denote N := |m− n|, it suffices to show∣∣∣∣ ∂∂λ( kN − 1

k−1 − k

)∣∣∣∣ ≤ N2

k−1 − k
.

Let us first evaluate the derivative above,

∂

∂λ

(
k + k−1

)
=

∂

∂λ
λ,

∂k

∂λ
− 1

k2
∂k

∂λ
= 1,

∂k

∂λ
=

k

k − k−1
,

∂

∂λ

( kN − 1

k−1 − k

)
=

∂

∂k

( kN − 1

k−1 − k

)
· ∂k
∂λ

=
NkN+2 − kN+2 −NkN − kN + k2 + 1

(k−1 − k)2
· k

k − k−1

=
NkN

(k−1 − k)2
− k + k−1

(k−1 − k)2
· 1− k

N

k−1 − k
.

Using mathematical induction and the inequality k + k−1 ≥ 2, one can show that

NkN

(k−1 − k)2
≤ k + k−1

(k−1 − k)2
· 1− k

N

k−1 − k
.

Below we verify that the following inequality holds true∣∣∣∣ ∂∂λ( kN − 1

k−1 − k

)∣∣∣∣ = k + k−1

(k−1 − k)2
· 1− k

N

k−1 − k
− NkN

(k−1 − k)2
≤ N2

k−1 − k
.

Multiplying the inequality by the positive number (k−1 − k)3 we get(
k + k−1

)(
1− kN

)
−NkN

(
k−1 − k

)
≤ N2

(
k−1 − k

)2
. (3.1.2)

Let us show the inequality
k + k−1 − 2 ≤ (k−1 − k)2. (3.1.3)

If we rearrange its term, we get an equivalent inequality k2− k− k−1+ k−2 ≥ 0. This inequality
may be obtained by the following estimation

0 ≤ (k − 1)2 = k(k − 1) + 1− k ≤ k(k − 1) + k−1(k−1 − 1) = k2 − k − k−1 + k−2.

We shall prove the inequality (3.1.2) using mathematical induction
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• N = 0 :
(
k + k−1

)(
1− k0

)
− 0k0

(
k−1 − k

)
= 0 ≤ 0 = 02

(
k−1 − k

)2.
• N 7→ N + 1 : We want to prove(

k + k−1
)(
1− kN+1

)
− (N + 1)kN+1

(
k−1 − k

)
≤ (N + 1)2

(
k−1 − k

)2
.

Expanding the terms we get

k + k−1 − 2 + 2− kN+2 − kN −NkN +NkN+2 − kN + kN+2

≤ N2
(
k−1 − k

)2
+ 2N

(
k−1 − k

)2
+
(
k−1 − k

)2
.

If we remove the underlined terms, then because of (3.1.3) it suffices to show that

2
(
1− kN

)
− kNkN

(
k−1 − k

)
≤ N2

(
k−1 − k

)2
+ 2N

(
k−1 − k

)2
.

If we use the inequality k−1 + k ≥ 2 and add zero, we get the inequality below(
k−1 + k

)(
1− kN

)
−NkN

(
k−1 − k

)
+NkN

(
k−1 − k

)
− kNkN

(
k−1 − k

)
≤ N2

(
k−1 − k

)2
+ 2N

(
k−1 − k

)2
.

Here, the underlined terms reduce because of the induction hypothesis (3.1.2); we get

NkN
(
k−1 − k

)(
1− k

)
≤ 2N

(
k−1 − k

)2
kN
(
1− k

)
≤ 2
(
k−1 − k

)
kN ≤ 2

k−1 − k
1− k

= 2(1 + k−1).

The last inequality clearly holds.

This proves the inequality (3.1.2) and by extension the whole lemma.

Proposition 3.7: Let v ∈ ℓ1(Z,m2) be a real-valued sequence and let ε > 0. If∑
n∈Z

vn > 0,

then Hε has an eigenvalue greater than 2. If there is such an eigenvalue, it follows√
λ2 − 4 = ε

∑
n∈Z

vn +O(ε2) as ε→ 0.

Proof. Suppose that ε∥v∥ℓ1(Z,m2) < 1. Plugging into (3.1.1) the following identity

(I + εM(λ))−1 = I − εM(λ)(I + εM(λ))−1 (3.1.4)

we get
k−1 − k = ε

∑
n∈Z

vn +O(ε2) as ε→ 0. (3.1.5)
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To prove the asymptotic formula it suffices to substitute for k and k−1 from Proposition 1.11.
From the assumption

∑
n∈Z vn > 0 follows that for ε sufficiently small the right-hand side of

(3.1.1) is positive; therefore there exists k ∈ (0, 1) which solves the equation since k−1 − k is
strictly positive. Since the relation between k ∈ (0, 1) and x ∈ (0,∞) given by x = k−1 − k is
bijective as is the relation between k ∈ (0, 1) and λ ∈ (2,∞) given by λ = k−1 + k, Proposition
3.5 states that there is a one-one correspondence between eigenvalues of Hε greater than 2 and
solutions of (3.1.1). So for all ε < ε0 there is an eigenvalue of Hε greater than 2. Let µ ≥ ε, then
H0 + µV ≥ H0 + εV . We conclude this proof by showing that H0 + µV also has an eigenvalue
greater than 2. By virtue of Corollary 1.9 we have

λ1(H0 + µV ) ≥ λ1(H0 + εV ) > 2.

Proposition 3.8: Let v ∈ ℓ1(Z,m2) be a real-valued non-zero sequence and let ε > 0 be
sufficiently small. Then Hε has at most one eigenvalue greater than 2.

Proof. We are looking for eigenvalues λ ∈ (2,∞), i.e. k ∈ (0, 1). One can easily see that
H0 + εV ≤ H0 + ε|V | in the sense of quadratic forms. Suppose that H0 + ε|V | has at most one
eigenvalue greater than 2, then from Theorem 1.8 we have

∀l ≥ 2 : λ1(H0 + ε|V |) ≥ λl(H0 + ε|V |) = supσess(H0 + ε|V |) = 2.

Then by virtue of the Corollary 1.9 we have

∀l ≥ 2 : 2 = λl(H0 + ε|V |) ≥ λl(H0 + εV ) = supσess(H0 + εV ) = 2.

And so H0 + εV has also at most one eigenvalue greater than 2. Without loss of generality, this
allows us to restrict V to have only non-negative entries.

So that we can use Proposition 3.5 assume that ε∥v∥ℓ1(Z,m2) < 1. Let us define the function
F as the right-hand side of (3.1.1) and take its derivative w.r.t. λ

F (λ, ε) := ε
〈
v
1/2, (I + εM(λ))−1v

1/2
〉
,

∂F

∂λ
= ε
〈
v
1/2, (I + εM(λ))−1ε

∂M(λ)

∂λ
(I + εM(λ))−1v

1/2
〉
.

Next, we will plugging in (3.1.4) and estimate its absolute value:∣∣∣∣∂F∂λ
∣∣∣∣ = ε

∣∣∣∣〈v1/2, ε
∂M(λ)

∂λ
v
1/2
〉
−
〈
v
1/2, ε2

∂M(λ)

∂λ
M(λ)(I + εM(λ))−1v

1/2
〉

−
〈
v
1/2, ε2M(λ)(I + εM(λ))−1∂M(λ)

∂λ
v
1/2
〉

+
〈
v
1/2, ε3M(λ)(I + εM(λ))−1∂M(λ)

∂λ
M(λ)(I + εM(λ))−1v

1/2
〉∣∣∣∣

≤ ε2
∣∣∣〈v1/2,

∂M(λ)

∂λ
v
1/2
〉∣∣∣+ 2ε3∥v1/2∥2

∥∥∥∂M(λ)

∂λ

∥∥∥∥∥M(λ)
∥∥∥∥(I + εM(λ))−1

∥∥
+ ε4∥v1/2∥2

∥∥∥∂M(λ)

∂λ

∥∥∥∥∥M(λ)
∥∥2∥∥(I + εM(λ))−1

∥∥2
Let us now estimate or in other ways investigate all the terms in this expression.



CHAPTER 3. WEAK-COUPLING & SPECTRAL STABILITY 39

• From Proposition 3.4 we have ∥M(λ)∥ ≤ ∥v∥ℓ1(Z,m2) =: C1. In this notation, ε < 1/C1.

• Having in mind the upper bound on ε we can independently on λ and ε estimate∥∥(I + εM(λ)
)−1∥∥ =

∥∥∥ ∞∑
j=0

(−ε)jM j(λ)
∥∥∥ ≤ ∞∑

j=0

εj∥M(λ)∥j ≤
∞∑
j=0

εjCj1 =
1

1− εC1
=: C2.

• There is a certain relation between ℓ1 and ℓ2 norms (note that we are restricting ourselves
to non-negative entries in the sequence v):

∥v1/2∥2ℓ2 = ⟨v1/2, v
1/2⟩ℓ2 =

∑
n∈Z

√
vn
√
vn =

∑
n∈Z

vn = ∥v∥ℓ1 .

• Because v is a non-zero sequence with non-negative entries,
∑
vn > 0; therefore, (2.14)

allows us to estimate for ε sufficiently small (k−1 − k)−1 ≤ C3ε
−1.

• We employed Lemma 3.6 and estimate∣∣∣〈v1/2,
∂M(λ)

∂λ
v
1/2
〉∣∣∣ ≤ ∣∣∣ ∑

m∈Z
vm
∑
m∈Z

vn
|m− n|2

k−1 − k

∣∣∣ = 1

k−1 − k
∑
m,n∈Z

|vn||vm||m− n|2

≤ 2

k−1 − k
∑
m,n∈Z

|vn||vm|(m2 + n2) ≤
2∥v∥2ℓ1(Z,m2)

k−1 − k
≤ 2C2

1C3

ε
.

• There exist C4 > 0 such that ∀k ∈ [1/2, 1) : (λ − 2)−1 ≤ C4ε
−2. Indeed, if we estimate

for k ∈ [1/2, 1)(
k

1/2 − k−1/2
)(√

2 + 1/
√
2
)
≥
(
k

1/2 − k−1/2
)(
k

1/2 + k−
1/2
)
= k−1 − k ≥ ε

C3
,

we get

λ− 2 = k + k−1 − 2 =
(
k

1/2 − k−1/2
)2 ≥ ε2

C2
3 (
√
2 + 1/

√
2)2

=
ε2

C4

• The operator-valued function z 7→M(z) is easily seen to be analytic in the region Rez > 2.
Moreover, the function z 7→ ∥M(z)∥ is continuous, and since any contour in the region
Rez > 0 is compact, ∥M(z)∥ may be estimated from above by a constant K1. The remark
below Lemma 3.2 indicates that this constant may turn out to be C1. The Cauchy formula
states that

M(λ) =
1

2πi

∮
|z−λ|=δ

M(z)

z − λ
dz, where 0 < δ < λ− 2.

The derivative of M(λ) with respect to λ reads

∂M(λ)

∂λ
=

1

2πi

∮
|z−λ|=δ

M(z)

(z − λ)2
dz.

Taking its norm we obtain the estimate∥∥∥∥∂M(λ)

∂λ

∥∥∥∥ =

∥∥∥∥ 1

2πi

∮
|z−λ|=δ

M(z)

(z − λ)2
dz

∥∥∥∥ ≤ 1

2π

∮
|z−λ|=δ

∥M(z)∥
δ2

|dz|

≤ K1

2πδ2

∮
|z−λ|=δ

|dz|︸ ︷︷ ︸
=2πδ

=
K1

δ

δ→λ−2−−−−→ K1

λ− 2
≤ K1C4

ε2
=
C5

ε2
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Putting all these estimates together, we get∣∣∣∣∂F∂λ
∣∣∣∣ ≤ ε2 2C1C3

ε
+ 2ε3∥v∥ℓ1

C5

ε2
C1C2 + ε4∥v∥ℓ1

C5

ε2
C2
1C2

≤ ε
(
2C1C2 + 2∥v∥ℓ1C5C1C2 + ∥v∥ℓ1C5C1C2

)
= Cε (3.1.6)

As stated before, the relation between k ∈ (0, 1) and x ∈ (0,∞) given by x = k−1 − k
is bijective and the relation between k ∈ (0, 1) and λ ∈ (2,∞) given by λ = k−1 + k is also
bijective. Hence, there is a one-one correspondence λ ∼ x. Suppose there are two different
eigenvalues greater than 2, denote them λ1 ∼ x1 and λ2 ∼ x2, taking their difference yields

x1 − x2 = F (λ1, ε)− F (λ2, ε) =
∫ x2

x1

∂F

∂λ
dλ

The estimation (3.1.6) allows us to find ε > 0 so small that
∣∣∣∂F∂λ ∣∣∣ < 1

2 ; this yields the following
argument

|x2 − x1| =
∣∣∣ ∫ x2

x1

∂F

∂λ
dλ
∣∣∣ ≤ 1

2
|x2 − x1| =⇒ x2 = x1.

And therefore, λ1 = λ2.

Theorem 3.9: Let v ∈ ℓ1(Z,m2). Then for all ε > 0∑
vn > 0 =⇒ H0 + εV has an eigenvalue > 2,∑
vn < 0 =⇒ H0 + εV has an eigenvalue < −2.

Moreover, if ε is small enough, the eigenvalue is unique and follows

sgn
(∑

vn

)√
λ2 − 4 = ε

∑
vn +O(ε2) as ε→ 0.

Proof. This theorem follows clearly from Propositions 3.7, 3.8, and 3.1.

In [11], they studied bound states of a large class of discrete Schrödinger-type operators in
one and two dimensions. A special case of which is the operator H0 in one dimension. In their
paper, a different technique from ours was utilized; nevertheless, what we showed is in accordance
with their results, though our result is not as general.

3.1.1 A comparison to the continuous setting

In [8] they study the bound states of weakly coupled continuous Schrödinger operator. In
the previous section, we used similar steps that Simon used to give a sufficient and necessary
condition for the existence of a bound state. Let us present two theorems from this paper that
describe this behavior.

Theorem 3.10: Suppose that V ∈ L1(R, (1 + x2)dx). Then, for ε > 0 sufficiently small,
−d2/dx2 + εV has at most one negative eigenvalue. There is such an eigenvalue λ if and only if

√
−λ = −ε

2

〈
V

1/2, (1 + εMλ)
−1|V |1/2

〉
.
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The operatorMλ is the well-behaved part of the Birman–Schwinger operator, it is an analogue
to the operator M(λ) from the section above; Mλ is defined by its kernel

Mλ(x, y) := |V (x)|1/2 e
−
√
−λ|x−y| − 1

2
√
−λ

V
1/2(y).

Theorem 3.11: Let V ∈ L1(R, (1+x2)dx), V not a.e. zero. Then −d2/dx2+εV has a negative
eigenvalue for all ε > 0 if and only if ∫

V (x)dx ≤ 0.

If it does have an eigenvalue λ, then it is unique and simple and obeys

√
−λ = −ε

2

∫
V (x)dx− ε2

4

∫
V (x)|x− y|V (y)d(x, y) +O(ε2) as ε→ 0.

3.2 Spectral stability of the discrete Schrödinger operator with
complex step potential

In [10] it was shown that the continuous Schrödinger operator with complex step potential
possesses some sort of spectral stability, though not complete. Later in this text, we will describe
exactly what is meant by this when we compare the discrete and continuous settings. We show
that the discrete version of the discrete Schrödinger operator with complex step potential exhibits
similar behavior.

In this section, we consider only the case where Imα ̸= 0. If we pose certain assumptions on
the potential V , we can rule out the existence of bound states, i.e. we show that Hα+V possesses
spectral stability. Note that our aim is to demonstrate spectral stability but some assumptions
may be too restricting and some estimates may be rougher than needed.

The main tool we use in this section is the Birman–Schwinger principle, see Theorem 1.6.
We will take the upper bound of the Hilbert–Schmidt norm of the Birman–Schwinger operator
K(λ) which scales proportionally to the norm of the potential V . Then we set the norm of V
such that the norm of K(λ) is strictly less than 1. From this follows the fact that λ is not an
eigenvalue of Hα + V .

The first step is to find the upper bound of the resolvent operator matrix entries uniform in
λ ∈ ρ(Hα). In order to do so, let u first show some preliminary results.

Lemma 3.12: Let m,n ≥ 0. A function given

f(z) :=
zm+n − z|m−n|

z−1 − z

can be continuously to the closed unit disc and it satisfies

max
|z|≤1

|f(z)| = m+ n− |m− n|
2

.

Proof. Clearly, the definitory expression of the function f is not well defined at z = 0,±1. Let
us first show that in these points it can be continuously defined, i.e. there exist limits of f at
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these points. Let us consider the limit as z → 1. For this purpose we parameterize z = (1− ε),
and analyzing the limit as ε→ 0 we get the asymptotic expression

zm+n − z|m−n|

z−1 − z
=

(1− ε)m+n − (1− ε)|m−n|

(1− ε)−1 − (1− ε)
=

1− (m+ n)ε− 1 + |m− n|ε+O(ε2)
1 + ε+O(ε2)− 1 + ε

=
|m− n| −m− n

2
+O(ε),

which shows us that f has a limit at z → 1. Similarly, let us show that there exists a limit of f
as z → −1, we parameterize z = −(1− ε). Notice that |m− n| and m+ n have the same parity;
therefore, we can factor out (−1)m+n = (−1)|m−n| in

zm+n − z|m−n|

z−1 − z
=

(−1)m+n(1− ε)m+n − (−1)|m−n|(1− ε)|m−n|

(1− ε)−1 − (1− ε)

= (−1)m+n (1− ε)m+n − (1− ε)|m−n|

(1− ε)−1 − (1− ε)
= (−1)m+n |m− n| −m− n

2
+O(ε).

To show there exists a limit of f as z → 0 let us rewrite

zm+n − z|m−n|

z−1 − z
= −z|m−n|+1 1− zm+n−|m−n|

1− z2
⋆
= −z|m−n|+1 1− z2k

1− z2
= −z|m−n|+1

k−1∑
j=0

z2j .

The marked equality follows from the fact that (m+n) and |m−n| have the same parity; hence,
their difference is necessarily even and one may write 2k = m + n − |m − n|, where k is some
natural number. By rewriting the function f in such a way we have also rid it of any issues when
z = 0. Furthermore, if we take the absolute value of f written in such a way, we can estimate it
from above by triangle inequality and get the assertion of this lemma.

This lemma and Lemma 1.14 allow us to find a uniform upper bound of all matrix entries of
G(λ).

Lemma 3.13: Let us define a doubly infinite matrix M by setting

Mm,n :=



m+n−|m−n|
2 + 1

ŵ m,n ≥ 0,

1
ŵ m ≥ 0, n < 0,

−m−n−|m−n|
2 + 1

ŵ m,n < 0,

1
ŵ m < 0, n ≥ 0.

Then
∀λ ∈ C, ∀m,n ∈ Z : |Gm,n(λ)| ≤Mm,n.

Proof. The Green Kernel theorem used to derive the resolvent operator does not define G(λ) for
λ ∈ σ(Hα). A byproduct of Lemma 3.12 is that we can continuously extend G(λ) to the whole
complex plane. If we estimate entries of G(λ), see (1.2.8), with triangle inequality and further
with Lemmas 3.12 and 1.14, we get the matrix M .

Finally, let us estimate the norm of the Birman–Schwinger operator K(λ).
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Proposition 3.14: Let Imα ̸= 0 and v ∈ ℓ1(Z,m2). Then the following estimate holds

∀λ ∈ ρ(Hα) : ∥K(λ)∥ ≤ 2

ŵ
∥v∥ℓ1(Z,m2).

Proof. Before we move to the calculation itself, let us first show some estimates that we will be
using. For m,n ≥ 0 we have

m+ n− |m− n| ≤ m+ n and
(m+ n− |m− n|)2

4
≤ (m+ n)2

4
≤ m2 + n2

2
.

Similarly, for m,n < 0 we estimate

−m− n− |m− n| ≤ −m− n and
(−m− n− |m− n|)2

4
≤ (−m− n)2

4
≤ m2 + n2

2
.

In fact, we will be calculating the Hilbert–Schmidt norm as it dominates the standard operator
norm and it is easier to calculate. Further on, we will use the matrix M from Lemma 3.13 to
estimate the absolute value of matrix entries of G(λ). With this established, we calculate

∥K(λ)∥2 ≤ ∥K(λ)∥2HS =
∑
m,n∈Z

∣∣∣√|vm| Gm,n(λ)√|vn| sgn vn∣∣∣2
=
∑
m,n∈Z

|vm|
∣∣Gm,n∣∣2|vn| ≤ ∑

m,n∈Z
|vm|M2

m,n|vn| =:
∑
m,n∈Z

M̃m,n

∥K(λ)∥2 ≤
∑
m≥0
n≥0

M̃m,n

︸ ︷︷ ︸
A

+
∑
m≥0
n<0

M̃m,n

︸ ︷︷ ︸
B

+
∑
m<0
n<0

M̃m,n

︸ ︷︷ ︸
C

+
∑
m<0
n≥0

M̃m,n

︸ ︷︷ ︸
D

.

We estimate each of the sums separately:

A =
∑
m≥0
n≥0

|vm|
(
m+ n− |m− n|

2
+

1

ŵ

)2

|vn|

=
∑
m≥0
n≥0

(m+ n− |m− n|)2

4
|vm||vn|

︸ ︷︷ ︸
A1

+
∑
m≥0
n≥0

m+ n− |m− n|
ŵ

|vm||vn|

︸ ︷︷ ︸
A2

+
1

ŵ2

∑
m≥0

|vm|
∑
n≥0

|vn|︸ ︷︷ ︸
A3

A1 ≤
1

2

∑
m≥0
n≥0

(
m2 + n2

)
|vm||vn| =

1

2

(∑
m≥0

m2|vm|
∑
n≥0

|vn|+
∑
m≥0

|vm|
∑
n≥0

n2|vn|
)

=
∑
m≥0

m2|vm|
∑
n≥0

|vn|

A2 ≤
1

ŵ

∑
m≥0
n≥0

(
m+ n

)
|vm||vn| =

1

ŵ

(∑
m≥0

m|vm|
∑
n≥0

|vn|+
∑
m≥0

|vm|
∑
n≥0

n|vn|
)

=
2

ŵ

∑
m≥0

m|vm|
∑
m≥0

|vn|
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C =
∑
m<0
n<0

|vm|
(
−m− n− |m− n|

2
+

1

ŵ

)2

|vm| =
∑
m<0
n<0

(−m− n+ |m− n|)2

4
|vm||vn|

︸ ︷︷ ︸
C1

+
∑
m<0
n<0

−m− n− |m− n|
ŵ

|vm||vn|

︸ ︷︷ ︸
C2

+
1

ŵ2

∑
m<0

|vm|
∑
n<0

|vn|︸ ︷︷ ︸
C3

C1 ≤
1

2

∑
m<0
n<0

(
m2 + n2

)
|vm||vn| =

1

2

(∑
m<0

m2|vm|
∑
n<0

|vn|+
∑
m<0

|vm|
∑
n<0

n2|vn|
)

=
∑
m<0

m2|vm|
∑
n<0

|vn|

C2 ≤
1

ŵ

∑
m<0
n<0

(
−m− n

)
|vm||vn| =

1

ŵ

(∑
m<0

|m||vm|
∑
n<0

|vn|+
∑
m<0

|vm|
∑
n<0

|n||vn|
)

=
2

ŵ

∑
m<0

|m||vm|
∑
n<0

|vn|

B =
∑
m≥0
n<0

|vm|
1

ŵ2
|vn| =

1

ŵ2

∑
m≥0

|vm|
∑
n<0

|vn| D =
∑
m<0
n≥0

|vm|
1

ŵ2
|vn| =

1

ŵ2

∑
m<0

|vm|
∑
n≥0

|vn|.

A3 +B + C3 +D

=
1

ŵ2

(∑
m≥0

|vm|
∑
n≥0

|vn|+
∑
m≥0

|vm|
∑
n<0

|vn|+
∑
m<0

|vm|
∑
n<0

|vn|+
∑
m<0

|vm|
∑
n≥0

|vn|
)

=
1

ŵ2

(∑
m≥0

|vm|
∑
n∈Z
|vn|+

∑
m<0

|vm|
∑
n∈Z
|vn|
)
=

1

ŵ2

∑
n∈Z
|vn|

∑
m∈Z
|vm| =

∥v∥2ℓ1(Z)
ŵ2

,

A1 + C1 ≤
∑
m≥0

m2|vm|
∑
n≥0

|vn|+
∑
m<0

m2|vm|
∑
n<0

|vn|

≤
∑
m≥0

m2|vm|
∑
n∈Z
|vn|+

∑
m<0

m2|vm|
∑
n∈Z
|vn| =

∑
m∈Z

m2|vm|
∑
n∈Z
|vn| = ∥v∥ℓ1(Z,m2)∥v∥ℓ1(Z),

A2 + C2 ≤
2

ŵ

(∑
m≥0

m|vm|
∑
n≥0

|vn|+
∑
m<0

|m||vm|
∑
n<0

|vn|
)

≤ 2

ŵ

(∑
m≥0

m|vm|
∑
n∈Z
|vn|+

∑
m<0

|m||vm|
∑
n∈Z
|vn|
)

=
2

ŵ

∑
m∈Z
|m||vm|

∑
n∈Z
|vn| =

2

ŵ
∥v∥ℓ1(Z,m1)∥v∥ℓ1(Z).
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Adding everything together we get the assertion of the proposition.

∥K(λ)∥2 ≤
∥v∥2ℓ1(Z)
ŵ2

+ ∥v∥ℓ1(Z,m2)∥v∥ℓ1(Z) +
2

ŵ
∥v∥ℓ1(Z,m1)∥v∥ℓ1(Z)

= ∥v∥ℓ1(Z)
( 1

ŵ2
∥v∥ℓ1(Z) + ∥v∥ℓ1(Z,m2) +

2

ŵ
∥v∥ℓ1(Z,m1)

)
≤ 4

ŵ2
∥v∥2ℓ1(Z,m2)

The last estimate is unnecessarily rough but as we have mentioned above our objective here is
not optimality. At this point, we prefer simpler expressions to finer though more complicated
upper bounds.

Let us conclude this section with the culmination of these results.

Theorem 3.15: Let Imα ̸= 0 and v ∈ ℓ1(Z,m2). If we take ε > 0 so small that 2ε∥v∥ℓ1(Z,m2) < ŵ
then the potential εV does not change the spectrum, i.e.

σ(Hα) = σ(Hα + εV ).

Proof. If we estimate the norm of the Birman–Schwinger operator εK(λ) for the operatorHα+εV
according to Lemma 3.14 we get

ε∥K(λ)∥ ≤ ε 2
ŵ
∥v∥ℓ1(Z,m2) < 1.

This rules out the possibility of −1 being an eigenvalue of Kε(λ). To finish the proof let us
reiterate the Birman–Schwinger principle (Theorem 1.6):

λ ∈ σp(Hα + εV ) ⇐⇒ −1 ∈ σp(Kε(λ)).

Therefore, σp(Hα + εV ) = ∅. Since V is a compact operator, the perturbation does not change
the essential spectrum, i.e. σess(Hα + εV ) = σess(Hα), and so the assertion holds.

Under similar assumptions on the potential V , the operator Hα+V exhibits spectral stability
while the operator H0 + V has an eigenvalue no matter how small the potential is.

3.2.1 A comparison to the continuous setting

In this section we will compare our results to the result in [10]. The operator studied in this
paper is the Schrödinger operator on L2(R) defined by

H := − d2

dx2
+ isgn (x), Dom(H) :=W 2,2(R).

The spectrum of H is shown to be purely essential and takes the form

σ(H) = σess(H) = [0,+∞) + i{−1, 1}.

In order to get a more precise analogue to the continuous operator H, we define the discrete
operator H̃ on ℓ2(Z) by

H̃ := H2i − iI = H0 + isgn (n).

In [14] we showed that the spectrum of H̃ is also purely essential and coincides with the line
segments [−2, 2]± i, i.e.

σ(H̃) = σess(H̃) = [−2, 2] + i{−1, 1}.
The main result of weak coupling analysis of H in [10] is the following theorem.
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Theorem 3.16: Let V ∈ L1(R, (1 + x2)dx) and denote the closed half-strip S := [0,+∞) +
i[−1, 1]. There exists a positive constant C (independent of V and ε) such that, whenever

ε

∫
R
V (x)(1 + x2)dx ≤ 1

C
,

we have
σp(H + εV ) ⊂ S ∩

{
z ∈ C

∣∣∣∣ Rez ≥ C

ε2∥V ∥2
L1(R)

}
.

A more intuitive, albeit less precise, interpretation of this theorem is that the continuous
operator H exhibits spectral stability outside the half-strip S, while any eigenvalue inside it is
further from the origin of the complex plane, the smaller the perturbation; while the assumptions
from the theorem above are satisfied.

If we adjust Theorem 3.15 from the preceding section to resemble Theorem 3.16 more closely,
we get the following theorem.

Theorem 3.17: Let v ∈ ℓ1(Z,m2). Then the point spectrum of H̃ + εV is empty whenever

ε∥v∥ℓ1(Z,m2) <
1

2φ2
,

where φ = 1+
√
5

2 is the golden ratio.

Proof. In [14] we set the two Joukowsky transforms to be

λ = ξ + ξ−1, λ− α = η + η−1.

This allowed us to find the matrix representation of (Hα − λ)−1 in the form (1.2.4). One can
easily notice that if we set the two Joukowsky transforms to be

λ+ i = ξ + ξ−1, λ− i = η + η−1,

we get the matrix representation of (H̃ −λ)−1 in the exact same form. Therefore, Theorem 3.15
still holds. Since the point spectrum of H̃ is empty, the point spectrum of H̃ + εV is empty as
well. In order to evaluate the constant ŵ from Lemma 1.14, we need to slightly modify the proof
of the lemma. Let us define two sets, Uη and U ξ, and state basic inequalities on these sets

Uη =
{
λ ∈ C

∣∣ Imλ > 0
}

|η| ≤ 1,
∣∣Im(λ+ i)

∣∣ ≥ 1,

U ξ =
{
λ ∈ C

∣∣ Imλ ≤ 0
}

|ξ| ≤ 1,
∣∣Im(λ− i)

∣∣ ≥ 1.

From Proposition 1.12 we get

Im(λ− i) ̸= 0 =⇒ |η| ≤ 1

2

(√
|Im(λ− i)|2 + 4− |Im(λ− i)|

)
,

Im(λ+ i) ̸= 0 =⇒ |ξ| ≤ 1

2

(√
|Im(λ+ i)|2 + 4− |Im(λ+ i)|

)
.

If we set δ := (
√
5 − 1)/2, we get |η| ≤ δ on U ξ and |ξ| ≤ δ on Uη by the same argument as in

Lemma 1.14. So, as before, we have ∀λ ∈ C : w(λ) ≥ ŵ := 1 − δ. One can notice that the
constant δ is the reciprocal value of the golden ratio φ. A straightforward calculation shows that
1− δ = φ−2.

So in contrast with the continuous operator H, the discrete operator H̃ exhibits complete
spectral stability under similar assumptions on the potential V .



Chapter 4

Dirac interaction

The Dirac interaction is a special case of diagonal perturbation, where we take V = cδ0. The
coupling constant c of the Dirac interaction is an arbitrary complex number and δ0 considered
as an operator on ℓ2(Z) is defined on x ≡ {xn}n∈Z ∈ ℓ2(Z) as

(δ0x)n = x0δn,0.

Our aim in this chapter is to find eigenvalues of Hα + cδ0 given a coupling constant c. The tool
we will be using for this is the Birman–Schwinger principle, see Theorem 1.6.

The operator δ0 is a projection, i.e. δ20 = δ0. Therefore, for purposes of the Birman–Schwinger
principle we may decompose cδ0 = (cδ0) · (δ0). The matrix entries of the Birman–Schwinger
operator K(λ) in this setting read

Km,n(λ) =
(
cδ0(Hα − λ)−1δ0

)
m,n

{
c(Hα − λ)−1

0,0 =
c

ξ−η−1 m,n = 0,

0 m,n ̸= 0.

Theorem 1.6 states that λ is an eigenvalue of Hα + cδ0 if and only if −1 is an eigenvalue of
K(λ). Since the operator K(λ) takes in this setting a rather simple form, spectral analysis of
the operator Hα+ cδ0 reduces to solving the algebraic equation c

ξ−η−1 = −1 and if we rearrange
it, it reads

c = η−1 − ξ. (4.0.1)

In the previous chapter, we showed that Hα exhibits spectral stability if the perturbation is
small enough. Let us illustrate that result in this more specific setting.

Proposition 4.1: Let α have a non-zero imaginary part. Then whenever |c| < 1−δ, the spectra
of Hα and Hα + cδ0 are identical, where δ is a constant dependent only on the parameter α.

Proof. There is no solution to (4.0.1) if the absolute value of c − ξ + η−1 is strictly above zero.
Let us estimate ∣∣c− ξ + η−1

∣∣ ≥ ∣∣ξ − η−1
∣∣− |c| ≥ 1− δ − |c|,

where the last inequality follows from Lemma 1.14. If we set 1− δ − |c| > 0, we get a sufficient
condition for the absence of eigenvalues.

For a more careful analysis of the equation (4.0.1), we need to express the parameters ξ and
η in terms of λ. Proposition 1.11 states

ξ =

{
λ+

√
λ2−4
2 Reλ ≤ 0,

λ−
√
λ2−4
2 Reλ ≥ 0,

η−1 =


λ−α−

√
(λ−α)2−4

2 Re(λ− α) ≤ 0,
λ−α+

√
(λ−α)2−4

2 Re(λ− α) ≥ 0.
47
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If we plug this into the equation (4.0.1), we get a more explicit, albeit piece-wise formulation
that is dependent on the real part of α

• Reα ≤ 0 :

Reλ ∈ (−∞,Reα] =⇒ 2c+ α = −
√
λ2 − 4−

√
(λ− α)2 − 4

Reλ ∈ (Reα, 0] =⇒ 2c+ α = −
√
λ2 − 4 +

√
(λ− α)2 − 4

Reλ ∈ (0,∞) =⇒ 2c+ α = +
√
λ2 − 4 +

√
(λ− α)2 − 4

• Reα = 0 :

Reλ ∈ (−∞, 0] =⇒ 2c+ α = −
√
λ2 − 4−

√
(λ− α)2 − 4

Reλ ∈ (0,∞) =⇒ 2c+ α = +
√
λ2 − 4 +

√
(λ− α)2 − 4

• Reα ≥ 0 :

Reλ ∈ (−∞, 0] =⇒ 2c+ α = −
√
λ2 − 4−

√
(λ− α)2 − 4

Reλ ∈ (0,Reα] =⇒ 2c+ α = +
√
λ2 − 4−

√
(λ− α)2 − 4

Reλ ∈ (Reα,∞) =⇒ 2c+ α = +
√
λ2 − 4 +

√
(λ− α)2 − 4

Any solution to these equations within the respective regions is an eigenvalue ofHα+cδ0. Finding
these solutions proved, however, to be quite difficult. They can surely be obtained analytically
because by carefully squaring the equation, we get quartic polynomial equations in terms of
λ which have solutions in radicals; however, these are difficult to work with. A more careful
analysis of these equations may be the subject of further research projects.



Conclusion

Since this research project is a direct continuation of my Bachelor’s degree project, see [14], we
built upon the results obtained in that project. We incorporated elementary findings regarding
the Joukowsky transform from the previous project and further extended and proved additional
assertions. Moreover, we began this paper with the knowledge of the spectrum of Hα and its
resolvent operator. The content of the first chapter consisted also of some standard results from
functional analysis and spectral theory.

The second chapter was devoted to the pseudospectral analysis of Hα. The ε-pseudospectra
are strictly nested supersets of the spectrum where the resolvent operator’s norm is large. After
we mentioned the trivial case of self-adjoint operators we showed several techniques for esti-
mating ∥(Hα − λ)−1∥ from above and below. The Schur test served as the primary tool for
obtaining upper bounds, for which we provided a formulation in ℓ2(Z). Using these estimates we
constructed a subset and a superset of the ε-pseudospectrum on the region of the complex plane
where we do not have general mathematical tools to describe it exactly. Asymptotic formulas
for the estimates of the resolvent operator’s norm were also given.

In [8], the existence and uniqueness of weakly-coupled bound states were described for the
operator −d2/dx2 + εV . The authors demonstrated that if V is integrable with the weight
(1 + x2)dx and ε is sufficiently small, the aforementioned operator has at most one eigenvalue.
Furthermore, this eigenvalue corresponds to a solution of a specific algebraic equation. For
all values of ε, an eigenvalue exists if and only if the mean value of V is non-positive. We
demonstrated that similar assertions hold true in the discrete setting. Specifically, the operator
H0 + εV has at most one eigenvalue when the potential is summable with quadratic weight and
ε is sufficiently small. However, the other assertion made in the continuous case is slightly more
intricate for H0 due to its bounded nature. We proved that if the mean value of the potential is
positive, there exists an eigenvalue greater than 2. Similarly, if the mean value of the potential
is negative, there exists an eigenvalue less than −2.

We showed a similar behavior regarding spectral stability between the continuous Schrödinger
operator with a complex step potential, as described in [10], and its discrete counterpart that we
studied. When the potential applied to Hα is summable with quadratic weight and sufficiently
small, we provided proof that it does not generate any eigenvalues. In other words, the operator
Hα exhibits complete spectral stability. They, under similar assumptions imposed on the poten-
tial, showed that the continuous operator H may not have eigenvalues outside the closure of the
numerical range. Furthermore, the smaller the potential, the greater the distance any eigenval-
ues must be from the origin. The primary tool for these results in weak-coupling analysis and
spectral stability was the Birman–Schwinger principle.

The last chapter introduced the Dirac interaction and formulated the problem. Moreover,
we demonstrated the spectral stability property of Hα stated in the previous chapter.
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