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Abstrakt: V této diplomové práci byly zkoumány spektrálních vlastnosti Schrödingerova operá-
toruHα na ℓ2(Z) s komplexním schodovitým potenciálem, kde vazebná konstanta α je volné kom-
plexní číslo. Zkoumáme pseudospektrum tohoto operátoru. Po nalezení spodního a horního od-
hadu normy rezolventního operátoru jsme zkonstruovali nadmnožinu a podmnožinu pseudospek-
tra, navíc jsme také odvodili asymptotické chování pseudospektra. Pomocí Birman–Schwingerova
principu jsme studovali existenci a jednoznačnost slabě vázaných vlastních hodnot za jistých
předpokladů na potenciál V . Operátor H0 + V má jednoznačné vlastní hodnoty. Naproti tomu,
pokud α ̸= 0 a potenciál V je dostatečně malý, potom Hα + V nemá žádné vlastní hodnoty,
neboli vykazuje spektralní stabilitu. Navíc spektrum zůstává čistě spojité.
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dospectrum of this operator. After obtaining the lower and upper estimates of the resolvent
operator’s norm, we construct a superset and a subset of the pseudospectrum, in addition, we
also derive the asymptotic behavior of the pseudospectrum. Utilizing the Birman–Schwinger
principle, we study the existence and uniqueness of weak-coupled eigenvalues under certain as-
sumptions on the potential V . The operator H0+V has unique eigenvalues. On the other hand,
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Introduction

Consider the continuous Laplace operator on the real line. Its domain may be defined as the
space of twice differentiable functions, and its action is given by

∀f ∈ C2(R) : ∆f = −d2f

dx2
.

Derivatives, by their nature, are defined by infinitesimal changes, but they can be approximated
by finitely small changes. Consider a function f on the real line; we can discretize it simply by
restricting its argument to whole numbers. While having at our disposal only the values of f at
whole numbers, we can approximate the value of the Laplace operator applied on f at n by

−∆f(x)
∣∣
n
≈ f(n+ 1)− 2f(n) + f(n− 1).

It is important to note that the continuous Laplacian is highly valuable in theoretical analysis,
mathematical modeling, and certain scientific disciplines, such as classical physics and differential
geometry. It provides a foundation for understanding continuous systems. However, in many
practical applications involving discrete data and numerical computations, the discrete Laplacian
offers distinct advantages and is more directly applicable.

For our purposes, we will define the discrete Laplacian H0 as the sum of the forward trans-
lation and the backward translation

∀x = {xn}n∈Z ⊂ C : (H0x)n := xn+1 + xn−1.

As the title of this thesis suggests, we study the Schrödinger operator with a complex step
potential defined as

∀x = {xn}∞n=1 ∈ ℓ2(Z) : (Hαx)n :=

{
xn−1 + xn+1 n < 0,

xn−1 + αxn + xn+1 n ≥ 0,

where α is a complex parameter. A Schrödinger operator is defined as the Laplace operator with
some potential added, so in our case, the potential can be understood as the discrete Heaviside
function multiplied by the complex coupling constant α. Such an operator is non-self-adjoint for
any α ∈ C \ R.

The study of self-adjoint operators has enjoyed great attention from researchers since the
birth of quantum mechanics. However, the study of non-self-adjoint operators as toy models saw
the light of day only in the past couple of decades. Although self-adjoint operators are indeed
fundamental in quantum mechanics, where they guarantee real spectra, there are many com-
pelling reasons to investigate non-self-adjoint operators. Moreover, from a purely mathematical
perspective, non-self-adjoint operators exhibit intriguing spectral behavior such as non-trivial
pseudospectra that can differ significantly from their self-adjoint counterparts.
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The main motivation for the toy model we investigate is [8]. Therein the authors considered
the operator

H := − d2

dx2
+ isgn (x), Dom(H) = W2,2(R).

The operator Hα is a discrete counterpart of H with a simple generalization that the coupling
constant is a free complex number. In many ways, we discovered similar behavior. A compre-
hensive comparison has been performed in [2]. Later, in [6], this continuous operator has been
generalized in a similar manner with free coupling constants and further studied. In another
relevant publication, [4], the authors consider a similar type of potential and add it to the Dirac
operator.

In the first chapter, we introduce the notation used in this thesis. Then we state several
standard results from functional analysis. Lastly, we introduce the Joukowsky transform which
is a crucial part in the analysis of Hα and state properties of this transform needed for further
analysis.

The aim of the second chapter is to describe spectral properties of unperturbed Hα. Firstly,
we describe the spectrum of Hα and in doing so we obtain the resolvent operator. Next, in the
case that Imα ̸= 0, when Hα is non-self-adjoint, we investigate the pseudospectrum of Hα by
obtaining upper and lower estimates of the resolvent’s norm. We also provide the asymptotic
formulas for the pseudospectrum. This chapter is concluded by describing the spectral measure
of Hα for Imα = 0.

In the third chapter, we investigate how small perturbations of Hα change the spectrum. We
replicate the results obtained by Simon in [16]. Therein the author showed the weak coupling
property of the continuous Schrödinger operator. We do so in a more general manner and allow
complex perturbations for H0. Then we showe that for α ̸= 0 the operator Hα exhibits spectral
stability under some assumptions on the potential.
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Chapter 1

Preliminaries

1.1 Notation

Notation 1.1: Let a, b ∈ C. We define the line segment between these two complex numbers as
the set of all convex combinations:

[a, b] := {at+ b(1− t) | t ∈ [0, 1]}.

Notation 1.2: The linear span of the set S is denoted as span(S).

Notation 1.3: For operators, I will always denote the identity operator. To simplify notation,
we define

A+ a := A+ aI,

where a ∈ C.

Notation 1.4: Let v = {vn}n∈Z be a complex-valued sequence. We define the diagonal matrix
with generating sequence v as

diag(v) := {vnδm,n}m,n∈Z,

where δm,n = 1 if m = n and δm,n = 0 otherwise.

Notation 1.5: Let v = {vn}n∈Z be a complex-valued sequence. We define

V := diag(v),

|v| :=
{
|vn|
}
n∈Z, |V | := diag(|v|),

|v|1/2 :=
{√
|vn|
}
n∈Z, |V |1/2 := diag(|v|1/2),

v1/2 :=
{√
|vn| sgn vn

}
n∈Z, V1/2 := diag(v1/2),

where the signum function for complex arguments is given by

sgn z :=

{
z
|z| z ̸= 0,

0 z = 0.

Notation 1.6: Let v ∈ ℓ1(Z) and k ∈ N. We define the weighted ℓ1 norm of v by

∥v∥ℓ1(Z,mk) := |v0|+
∑
m∈Z
|m|k|vm|.
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We also define subspaces of ℓ1(Z) by

ℓ1(Z,mk) :=
{
v ∈ ℓ1(Z)

∣∣ ∥v∥ℓ1(Z,mk) <∞
}
.

One can verify that ∥ ·∥ℓ1(Z,mk) satisfies the properties of a norm. Moreover, it is straightforward
to observe that ∥v∥ℓ1(Z) ≤ ∥v∥ℓ1(Z,mk) ≤ ∥v∥ℓ1(Z,ml) whenever k ≤ l.

Notation 1.7: Let H be a hilbert space. We denote the space of bounded operators on H as
B(H ) and the space of compact operators on H as K (H ).

Notation 1.8: Let A ∈ B(H ). The algebraic multiplicity of an isolated eigenvalue of A is
defined by

νa(λ) := dim(Ran(Pλ)),

where
Pλ :=

1

2πi

∮
∂B(λ,ε)

(A− z)−1dz.

The radius ε is chosen such that B(λ, ε)∩σ(A) = ∅. The discrete spectrum and essential spectrum
of A as defined by

σd(A) :=
{
λ ∈ σp(A) | λ is isolated and νa(λ) <∞

}
,

σess(A) := σ(A) \ σd(A).

1.2 Standard results from functional analysis

Theorem 1.9 (Riesz–Schauder): Let A ∈ K (H ). Then

1. 0 ∈ σ(A),

2. every non-zero element of the spectrum is an eigenvalue,

3. the set of all eigenvalues is at most countable,

4. every non-zero eigenvalue has a finite multiplicity,

5. the spectrum has at most one accumulation point λ = 0.

Theorem 1.10: Let A ∈ B(H ) and V ∈ K (H ). Assume the following to hold.

• The interior of σ(A) is empty in the topology of C.

• Each connected component of ρ(A) contains a point in ρ(A+ V ).

Then σess(A) = σess(A+ V ).

The proof of Theorem 1.10 can be found in [14].

Lemma 1.11: Let A,B ∈ B(H ). Then the spectra of AB and BA, excluding the point 0, are
identical:

σ(AB) \ {0} = σ(BA) \ {0}.
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Proof. Choose any λ /∈ σ(AB)∪ {0}, then there exists a bounded inverse operator to (AB − λ).
Then set

C :=
1

λ

(
− I +B(AB − λ)−1A

)
,

Clearly, C is a bounded operator. Let us show that C is the inverse to (BA− λ)

(BA− λ)C = − 1

λ
BA+ I +

1

λ
BAB(AB − λ)−1A−B(AB − λ)−1A

= I +
1

λ
B
(
− I +AB(AB − λ)−1 − λ(AB − λ)−1

)
A

= I +
1

λ
B
(
− I + (AB − λ)(AB − λ)−1

)
A = I +

1

λ
BOA = I,

C(BA− λ) = − 1

λ
BA+ I +

1

λ
B(AB − λ)−1ABA−B(AB − λ)−1A

= I +
1

λ
B
(
− I + (AB − λ)−1AB − λ(AB − λ)−1

)
A

= I +
1

λ
B
(
− I + (AB − λ)−1(AB − λ)

)
A = I +

1

λ
BOA = I,

where O denotes the zero operator. We get that ρ(AB)\{0} ⊂ ρ(BA). This inclusion still holds
if we remove zero from the right hand side ρ(AB) \ {0} ⊂ ρ(BA) \ {0}. By interchanging A and
B we get the opposite inclusion. If we take the complement of this set equality we arrive at the
assertion of the lemma.

Theorem 1.12 (Birman–Schwinger principle): Let H,V ∈ B(H ), λ ∈ ρ(H). Let A,B ∈
B(H ) such that V = AB and define the Birman–Schwinger operator by

K(λ) := B(H − λ)−1A.

Then

1. λ ∈ σp(H + V ) =⇒ −1 ∈ σp(K(λ)),

2. V ∈ K (H ) & − 1 ∈ σp(K(λ)) =⇒ λ ∈ σp(H + V ).

Proof. For the first statement:
Suppose λ ∈ σp(H + V ). Then, there exists a non-zero ψ ∈H such that

(H + V )ψ = λψ ⇐⇒ (H − λ)ψ = −V ψ. (1.2.1)

Since λ ∈ ρ(H), the operator (H − λ) has a bounded inverse. Applying (H − λ)−1, we find

−ψ = (H − λ)−1V ψ = (H − λ)−1ABψ.

Next, applying B to both sides and letting ϕ := Bψ, we derive

−ϕ = B(H − λ)−1Aϕ = K(λ)ϕ. (1.2.2)

Since ϕ ̸= 0 (as ϕ = 0 leads to a contradiction with λ ∈ σp(H)), it follows that −1 is an eigenvalue
of K(λ).
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Next, we move to the second statement. If −1 is an eigenvalue of K(λ) and in turn an
element of the spectrum, then by Lemma 1.11 we have that −1 ∈ σ

(
(H − λ)−1AB

)
. Since V is

a compact operator, (H − λ)−1V is also compact. Then by Theorem 1.9 follows that −1 is an
eigenvalue of (H − λ)−1V and so

∃ψ ̸= 0 : (H − λ)−1V ψ = −ψ.

If we apply (H − λ) on the equation from the left, we arrive at

∃ψ ̸= 0 : (H + V )ψ = λψ,

that is λ ∈ σp(H + V ).

In this paper, we specialize Theorem 1.12 to the Hilbert space ℓ2(Z) with additional assump-
tions on the potential V . Specifically, we assume that V is a diagonal operator, enabling the use
of Notation 1.5.

A common choice for decomposing the diagonal operator V in the Birman–Schwinger principle
is to set

A = |V |1/2, B = V1/2.

Additionally, we impose the assumption that the sequence v defining V is summable in
absolute value, i.e., v ∈ ℓ1(Z). This summability condition ensures that limn→±∞ vn = 0. One
easily checks that

V ∈ K (H ) ⇐⇒ lim
n→±∞

vn = 0.

Then it follows that V is a compact operator. Under these assumptions, the Birman–Schwinger
principle establishes an equivalence formulated in the next theorem.

Theorem 1.13: Let H ∈ B(ℓ2(Z)), λ ∈ ρ(H), v ∈ ℓ1(Z). If we denote the Birman–Schwinger
operator

K(λ) = V1/2(H − λ)−1|V |1/2,
then

λ ∈ σp(H + V ) ⇐⇒ −1 ∈ σp(K(λ)).

Theorem 1.14 (Schur test): Let A = (ai,j)i,j∈Z be a doubly infinite matrix of complex entries.
If there exists a positive number pj for all j ∈ Z such that

sup
j∈Z

1

pj

∑
i∈Z
|ai,j |pi =: α <∞ & sup

i∈Z

1

pi

∑
j∈Z
|ai,j |pj =: β <∞,

then A ∈ B(ℓ2(Z)) and ∥A∥ ≤
√
αβ.

Proof. Choose an arbitrary ψ ∈ span{en | n ∈ Z}, then

∥Aψ∥2 =
∑
i∈Z

∣∣∣∑
j∈Z

ai,jψj

∣∣∣2 ≤∑
i∈Z

(∑
j∈Z

√
|ai,j |pj

√
|ai,j|
pj
|ψj |

)2

C.–S.
≤
∑
i∈Z

(∑
j∈Z
|ai,j |pj

)
︸ ︷︷ ︸

≤αpi, ∀i

(∑
j∈Z

|ai,j |
pj
|ψj |2

)
⋆
≤ α

∑
j∈Z

( 1

pj

∑
i∈Z
|ai,j |pi

)
︸ ︷︷ ︸

≤β

|ψ|2i ≤ αβ∥ψ∥2.

C.–S. signifies the Cauchy–Schwarz inequality and after the starred inequality, the interchange
of summation is justified by Tonneli’s theorem.
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Remark. A few observations about this operator norm inequality:

1. If the given doubly infinite matrix A is symmetric in terms of the absolute value of its
entries, then

α = β & ∥A∥ ≤ sup
j∈Z

1

pj

∑
i∈Z
|ai,j |pi.

2. In some cases, we may obtain simpler estimates by setting pj = 1 for all j ∈ Z. While
this approach might yield rougher bounds, it can simplify computations significantly in
practical applications.

Weyl’s criterion can be formulated in various ways. Here, we present the version best suited
for the arguments that will follow. Typically, Weyl’s criterion is stated for normal operators,
where the criterion asserts an equivalence. However, since we intend to apply the theorem to a
non-normal operator, we restrict our statement to a single implication that does not rely on this
assumption.

Theorem 1.15 (Weyl’s criterion): Let A ∈ B(H ) and λ ∈ C. Then

∃{xn}∞n=1 ⊂H \ {0} : lim
n→∞

∥(A− λ)xn∥
∥xn∥

= 0 =⇒ λ ∈ σ(A).

Proof. We shall prove the contrapositive implication,

λ ∈ ρ(A) =⇒ ∃K > 0, ∀{xn}∞n=1 ⊂H \ {0} : lim
n→∞

∥(A− λ)xn∥
∥xn∥

≥ K.

Choose λ ∈ ρ(A) and {xn}∞n=1 ⊂H \ {0} arbitrarily. Then for any n ∈ N, we have

∥xn∥ = ∥(A− λ)−1(A− λ)xn∥ ≤ ∥(A− λ)−1∥∥(A− λ)xn∥.

Since λ ∈ ρ(A), we have ∥(A− λ)−1∥ ∈ (0,∞). This allows us to set

K :=
1

∥(A− λ)−1∥
.

And because ∀n ∈ N : xn ̸= 0 we can estimate

K ≤ ∥(A− λ)xn∥
∥xn∥

.

To conclude the proof, take the limit as n −→∞.

Theorem 1.16 (Theorem XIII.106 in [14]): For any trace class operator A,

det(I +A) =

N(A)∏
j=1

(
1 + λj(A)

)
where

{
λj(A)

}N(A)

j=1
are the eigenvalues of A counted with algebraic multiplicity.
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1.3 The Joukowsky transform

A key mathematical tool in spectral analysis the operator Hα, which will be defined later,
see (2.0.1), is the Joukowsky transform. It relates the spectral parameter λ to a new variable k
through the equation

λ = k + k−1. (1.3.1)

Its inverse of this transform, k = k(λ), will be derived later. When analyzing the operator H0,
we will denote the Joukowsky transform parameter by k to pay homage to [9] and to differentiate
it from the case of Hα, where we use two instances of Joukowsky transform

λ = ξ + ξ−1, λ− α = η + η−1. (1.3.2)

Let us state some properties of this transform.

Proposition 1.17: Joukowsky transform given by (1.3.1) is a bijective map between the sets{
k ∈ C

∣∣ 0 < |k| < 1
}

←→ C \ [−2, 2].

Furthermore, it maps
{
k ∈ C

∣∣ 0 < |k| ≤ 1
}

onto the whole complex plane, though not injectively.

Proof. Let us parameterize the set{
k ∈ C

∣∣ 0 < |k| < 1
}
=
{
k = reiϕ

∣∣ r ∈ (0, 1), ϕ ∈ (−π, π]
}
.

The elements k of the punctured unit disk get transformed by the transform as

λ = reiϕ +
1

r
e−iϕ =

(
r +

1

r

)
cosϕ+ i

(
r − 1

r

)
sinϕ. (1.3.3)

If we fix some value of r and consider λ as a function of ϕ, it traces ellipses in the complex plane
with foci at −2 and 2. If we vary the value of r, we clearly see that we arrive at a parametrization
of

C \ [−2, 2] =
{(
r +

1

r

)
cosϕ+ i

(
r − 1

r

)
sinϕ

∣∣∣ r ∈ (0, 1), ϕ ∈ (−π, π)
}
.

Furthermore, if we set r = 1 and vary ϕ we get a parametrization of the interval [−2, 2]. Clearly,
in this case, the bijective nature is no longer present.

Corollary 1.18: remove if not usedLet A ⊂ C \ [−2, 2] be a compact set, then there exist
0 < a < b < 1 such that that the Joukowsky parameters of any λ ∈ A satisfy a ≤ |k| ≤ b.

Equation (1.3.1) clearly shows how λ is dependent on k. Since the bijective nature of the
Joukowsky transform is of great importance, it is useful also to have an explicit formula describing
how k is dependent on λ.

Proposition 1.19: Let λ ∈ C \ [−2, 2]. The inverse Joukowsky transform k = k(λ) is given by

k(λ) =

{(
λ+
√
λ2 − 4

)
/2 Reλ < 0 or Reλ = 0, Imλ ≤ 0,(

λ−
√
λ2 − 4

)
/2 Reλ > 0 or Reλ = 0, Imλ ≥ 0,

where
√
· is assumed to be its principal branch. Furthermore, the reciprocal value of k is given

by (
k(λ)

)−1
=

{(
λ−
√
λ2 − 4

)
/2 Reλ < 0 or Reλ = 0, Imλ ≤ 0,(

λ+
√
λ2 − 4

)
/2 Reλ > 0 or Reλ = 0, Imλ ≥ 0.
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Proof. Let us break down the proof of this proposition into three parts.

1. Form of k:

If we multiply (1.3.1) by a non-zero k, we obtain a quadratic equation k2−λk+1 = 0, the
solutions of which read

k± =
λ±
√
λ2 − 4

2
.

2. Reciprocal value of k:

Since the constant term in a quadratic equation is the product of its roots and the constant
term in the studied equation is 1, we have k+k− = 1; hence,

k−1
± = k∓ =

λ∓
√
λ2 − 4

2
.

From this follows the equivalence

|k+| ≥ 1 ⇐⇒ |k−| ≤ 1.

3. Piece-wise nature of k:

It suffices to show the following

Reλ > 0 or (Reλ = 0 and Imλ ≥ 0) =⇒ |k−| ≤ |k+|. (1.3.4)

• Let Reλ ≥ 0, then one may write λ = x + iy, where x ≥ 0 and y ∈ R. Considering
the principal square root, we know that ∀z ∈ C : Re

√
z ≥ 0. This allows us to write√

λ2 − 4 = u+iv, where also u ≥ 0 and v ∈ R. Let us rewrite the inequality in (1.3.4)

|x+ iy − u− iv| ≤ |x+ iy + u+ iv|,
(x− u)2 + (y − v)2 ≤ (x+ u)2 + (y + v)2,

0 ≤ 4xu+ 4yv.

The assumption above and said property of complex square root implies that 4xu ≥
0. To conclude this proof we need to show that sgn y = sgn v, i.e. sgn Imλ =
sgn Im

√
λ2 − 4. Applying the formula for the square root of a complex number

√
a+ ib =

√√
a2 + b2 + a

2
+ i sgn (b)

√√
a2 + b2 − a

2

on
√
λ2 − 4 we get

Im
√
λ2 − 4 = Im

√
(x2 − y2 − 4) + i(2xy)

= sgn (2xy)

√√
(x2 − y2 − 4)2 + (2xy)2 − x2 + y2 + 4

2
.

From this one easily sees

sgn
(
Im
√
λ2 − 4

)
= sgn

(
2Reλ︸︷︷︸

≥0

Imλ
)
= sgn

(
Imλ

)
.
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• Let Reλ = 0, Imλ ≥ 0, then one may write λ = ic, where c ≥ 0. A simple estimation
yields (1.3.4); we have∣∣λ−√λ2 − 4

∣∣ = ∣∣ic−√−c2 − 4
∣∣ ≤ c+√c2 + 4 =

∣∣ic+√−c2 − 4
∣∣ = ∣∣λ+

√
λ2 − 4

∣∣
Similarly, one would show the other implication

Reλ < 0 or Reλ = 0, Imλ ≤ 0 =⇒ |k−| ≥ |k+|.

When deriving the Green’s kernel in Section 2.1.3 a prominent expression arises, the Wron-
skian, denoted by w = ξ − η−1. A property of the Wronskian of paramount importance is that
for α ̸= 0 it never reaches 0 in absolute value. The following estimate will be used many times.

Lemma 1.20: Let α ̸= 0. Then for the Joukowsky parameters ξ and η of λ given by (1.3.2) we
have

∃K > 0 ∀λ ∈ C : |ξ(λ)− η(λ)−1| > K.

Proof. We will prove this lemma in two steps. First, we show that ∀λ ∈ C : ξ(λ) ̸= η(λ)−1.
After this, we show that limλ→∞ |ξ(λ)− η(λ)−1| ̸= 0. Combining these two statements one can
clearly see that the expression is nowhere zero and also does not approach zero in the limit;
hence, there has to exist a constant K with the desired property.

If we plug in the expressions of ξ and η−1 from Proposition 1.19 into |ξ − η−1| and multiply
by 2, we arrive at

2(ξ − η−1) =


α+
√
λ2 − 4 +

√
(λ− α)2 − 4,

α+
√
λ2 − 4−

√
(λ− α)2 − 4,

α−
√
λ2 − 4 +

√
(λ− α)2 − 4,

α−
√
λ2 − 4−

√
(λ− α)2 − 4,

where the piece-wise nature of the function depends on the real and imaginary parts of λ and
(λ−α) but for finding the root of this function this distinction is inconsequential. As illustrated
below, once we take squares, the piecewise details no longer affect the outcome, so we omit them.
If we take one option, we get

α+
√
λ2 − 4 =

√
(λ− α)2 − 4

α2 + 2α
√
λ2 − 4 + α2 − 4 = λ2 − 2αλ+ α2 − 4√

λ2 − 4 = λ

λ2 − 4 = λ2

−4 = 0.

There is clearly no solution to this equation.
In the limit λ → ∞ both parameters ξ and η approach 0. Therefore, the term ξ + η−1 not

only does not vanish, it blows up.

Remark. The aforementioned estimate works for every non-zero α. In later sections of the text,
we will be mainly using the lower bound for the Wronskian. The aforementioned lemma allows
us to define a constant dependent on α in the following way

∀α ̸= 0 : C(α) := sup
λ∈C

1

|ξ − η−1|
. (1.3.5)
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Lemma 1.20 yields no quantitative information about the value of C(α). However, when α is
real, Lemma 1.21 provides an exact value. For this case, a plot of C(α) is shown in Figure 1.1.

-6 -4 -2 0 2 4 6

1

2

3

4

Figure 1.1: Plot of C(α) for real α.

Lemma 1.21: Let α ∈ R \ {0}, then

C(α) =

(
|α|

(
1 +
|α|
2
−
√
|α|2
4

+ |α|

))− 1
2

.

Proof. Since the problem exhibits symmetry about α = 0, we may assume without loss of
generality that α > 0. The objective is to determine

inf
λ∈C

∣∣ξ − η−1
∣∣ .

The function ξ− η−1 is holomorphic on the domain C \
(
[−2, 2]∪ [−2+α, 2+α]

)
. However, it is

not continuous up to the boundary, as ξ − η−1 may approach different values depending on the
side from which the boundary segments are approached. This arises because the set excludes
two, or in some cases only one, line segment(s) in the complex plane, depending on the parameter
α. Consequently, care must be taken when applying the maximum modulus principle.

To address this, we decompose the complex plane into the upper and lower half-planes,

C+i = {z ∈ C | Imz > 0}, C−i = {z ∈ C | Imz < 0}.

Although these regions are unbounded, we pass to the Joukowsky transform parameters ξ and
η, which map them to the bounded regions

D+i = {z ∈ C | Imz > 0 and |z| < 1}, D−i = {z ∈ C | Imz < 0 and |z| < 1}.

With this established, the maximum modulus principle ensures that the infimum of |ξ − η−1| is
attained on the boundary of D+i or D−i.

As the problem is symmetrical about α = 0, we will assume α > 0. For this proof, we will
go back to the reciprocal value, i.e. our objective is to find

inf
λ∈C
|ξ − η−1|.

The function ξ − η−1 is holomorphic on the set C \
(
[−2, 2] ∪ [−2 + α, 2 + α]

)
. But it is not

continuous up to the boundary. We are removing two, possibly one, line segments from the
17



complex plane. ξ − η−1 can approach different values when approaching the line segment from
either side. Because of this, we need to be careful when applying the maximum modulus principle.
We avoid said problem by diving the complex plane into two half-planes, C+i = {z ∈ C | Imz > 0}
and C−i = {z ∈ C | Imz < 0}. These regions are clearly not bounded but if we transition to
the perspective of the Joukowsky transform parameters ξ and η, we get D+i = {z ∈ C | Imz >
0 & |z| ≤ 1} and D−i = {z ∈ C | Imz < 0 & |z| ≤ 1}. With this established, we can apply the
maximum modulus principle and assert that the infimum is attained on the boundary of D+i or
D−i.

This naturally leads to three, not necessarily mutually exclusive cases, where A: |ξ| = 1, B:
|η| = 1, or C: ξ, η ∈ (−1, 1).

A: Let |η| = 1, then we can write η = eiθ, where θ ∈ (−π, π] and we have

ξ + ξ−1 = η + η−1 + α = 2 cos θ + α

{
∈ [−2, 2] . . .A1

/∈ [−2, 2] . . .A2

Now we discuss these sub-cases.

A1: Under the assumption α > 0 the condition A1 reduces to 2 cos θ + α ≤ 2 and can
occur only if α < 4. Together with condition A both ξ and η are equal to one in
absolute value; hence, there is a function θ 7→ ϕ(θ) such that ξ = eiϕ(θ). Then the
equation relating ξ and η reads

2 cosϕ(θ) = 2 cos θ + α (1.3.6)

and one can easily take the arc-cosine function to describe the function ϕ explicitly,
but there is no need. Let us continue∣∣ξ − η−1

∣∣2 = ∣∣∣eiϕ(θ) − e−iθ
∣∣∣2 = ∣∣∣ei(ϕ(θ)+θ) − 1

∣∣∣2
=
(
cos
(
ϕ(θ) + θ

)
− 1
)2

+ sin2
(
ϕ(θ) + θ

)
= 2− 2 cos

(
ϕ(θ) + θ

)
= 2− 2 cos θ cosϕ+ 2 sin θ sinϕ.

Next, we substitute t = cos θ, we then have cosϕ = t+ α
2 , we express the sine functions

in terms of t, and we arrive at

∣∣ξ − η−1
∣∣2 = 2− 2t

(
t+

α

2

)
+ 2
√
1− t2

√
1−

(
t+

α

2

)2
=: 2f(t).

The substitution we have utilized allows for t ∈ [−1, 1]. The condition A1 restricts
t ≤ 1 − α

2 . The function f is symmetric about t = −α
4 . This point is also the only

critical point of f ; furthermore, it is a global maximum of the function. Hence The
minimum of f is attained at the endpoints. For case A1, we have

min
A1

∣∣ξ − η−1
∣∣2 = 2f(−1) = α.

A2: Under the assumption α > 0 the condition A2 reduces to 2 cos θ + α > 2 and occurs
for any α. In this case, ξ is a real number given by

ξ + ξ−1 = 2 cos θ + α. (1.3.7)
18



The objective function then reads∣∣ξ − η−1
∣∣2 = ∣∣∣ξ − e−iθ

∣∣∣2 = (ξ − cos θ)2 + sin2 θ = ξ2 − 2ξ cos θ + 1 = αξ

Lemma 1.19 yields

ξ = cos θ +
α

2
−
√(

cos θ +
α

2

)2
− 1,

and so

∣∣ξ − η−1
∣∣2 = α

(
cos θ +

α

2
−
√(

cos θ +
α

2

)2
− 1

)

= α

(
t+

α

2
−
√(

t+
α

2

)2
− 1

)
,

where we again substituted t = cos θ ∈ [−1, 1] and the condition A2 restricts t > 1− α
2 .

The function above is decreasing as a function of t, so the minimum is attained at
t = 1. For case A2, we have

min
A2

∣∣ξ − η−1
∣∣2 = α

(
1 +

α

2
−
√(

1 +
α

2

)2
− 1

)
.

Since

(
1 + α

2 −
√(

1 + α
2

)2
− 1

)
is some positive ξ which is less than one, we have

min
A

∣∣ξ − η−1
∣∣2 = min

A2

∣∣ξ − η−1
∣∣2

B: Let |ξ| = 1, then we can write ξ = eiϕ, where ϕ ∈ (−π, π] and we have

η + η−1 = 2 cosϕ− α

{
∈ [−2, 2] . . .B1

/∈ [−2, 2] . . .B2

B1: This case is largely the same as A1. Here we have 2 cosϕ ≥ α − 2. |η| = 1 and so
there is a function ϕ 7→ θ(ϕ) such that η = eiθ(ϕ). With the substitution t = cosϕ, we
get

∣∣ξ − η−1
∣∣2 = . . . = 2− 2t

(
t− α

2

)
+ 2
√

1− t2
√

1−
(
t− α

2

)2
:= 2f(t).

Condition B1 restricts t ≥ α
2 − 1 and the result for this case reads

min
B1

∣∣ξ − η−1
∣∣2 = α.

B2: For α > 0 the condition B2 reads 2 cosϕ < α− 2. η is a real number given by

η + η−1 = 2 cosϕ− α.

19



Then we have∣∣ξ − η−1
∣∣2 = ∣∣∣eiϕ − η−1

∣∣∣2 = (cosϕ− η−1)2 + sin2 ϕ = η2 − 2η cosϕ+ 1 = −αη.

Lemma 1.19 yields

η−1 = cosϕ− α

2
−
√(

cosϕ− α

2

)2
− 1.

After substituting t = cosϕ, we arrive at

∣∣ξ − η−1
∣∣2 = −α(t− α

2
−
√(

t− α

2

)2
− 1

)
=: −αg(t).

From the substitution t ∈ [−1, 1] but the condition B2 restricts t ≤ α
2 − 1 so we have

t ∈

{
[−1, 1] if α ≥ 4,[
−1, α2 − 1

)
if α ∈ (0, 4).

The function g is increasing and has no critical point, so g will attain its maximum
or approach its supremum at the right endpoint. For this final case, we have

inf
B2

∣∣ξ − η−1
∣∣2 = −α sup

t
g(t) =

−αg
(
α
2 − 1

)
= α α ∈ (0, 4),

−αg(1) = −α
(
1− α

2 −
√

α2

4 − α
)

α ≥ 4.

Since
(
1− α

2 −
√

α2

4 − α
)

is some η−1 which is less than -1, we have

min
B

∣∣ξ − η−1
∣∣2 = α.

C: The last case for the discussion to be exhaustive is when both ξ and η ∈ (−1, 1), this
corresponds to λ ∈ R \

(
[−2, 2] ∪ [−2 + α, 2 + α]

)
. Depending on the value of α, there

are two or three connected components of this set. Let us discuss these three sub-cases
separately.

C1: Let λ < −2. Then ξ, η < 0 and we have

2|ξ − η−1| = 2(ξ − η−1) = α+
√
λ2 − 4 +

√
(λ− α)2 − 4

∣∣∣∣
λ=−2

= α+
√

(α+ 2)2 − 4.

C2: Let λ ∈ (2, α− 2), possible only for α > 4. Then ξ > 0 and η < 0. We have

2|ξ − η−1| = 2(ξ − η−1) = α−
√
λ2 − 4 +

√
(λ− α)2 − 4

=

{
α+

√
(2− α)2 − 4 if λ = 2,

α−
√
(2− α)2 − 4 if λ = α− 2.

.

C3: Let λ > α+ 2. Then ξ, η > 0 and

2|ξ−η−1| = 2(ξ−η−1) = −α+
√
λ2 − 4+

√
(λ− α)2 − 4

∣∣∣∣
λ=α+2

= −α+
√

(α+ 2)2 − 4.
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For each of these sub-cases, the following argumentation applies. The Joukowsky inverse
comes from Lemma 1.19. We used the fact that ξ < η−1. None of these functions in terms
of λ have any critical points; thus, we evaluate the functions at the endpoints. A simple
calculation would show that the value for case C3 is minimal. Lastly, if we were to square
this minimal value, divide by 4, and rearrange the terms, we would arrive at the expression
for the minimal value for case A.

If we repeat the same argument that finalized case A, we get

min
∣∣ξ − η−1

∣∣2 = α

(
1 +

α

2
−
√(

1 +
α

2

)2
− 1

)
.

Taking the reciprocal value of the square root of this expression we arrive at C(α).

Lemma 1.22: Let λ ∈ (−2, 2) and λ̃ = λ+ iε. The Joukowsky parameter k and its reciprocal,
associated with λ̃, follow the asymptotic expansions

k = eiϕ
(
1 +

ε

2 sinϕ

)
+O(ε2), k−1 = e−iϕ

(
1− ε

2 sinϕ

)
+O(ε2) as ε→ 0+,

where ϕ = − arccos(λ/2) ∈ (−π, 0).

Proof. The unit circle {eiϕ | ϕ ∈ (−π, π]} is mapped non-injectively onto the interval [−2, 2] by
the Joukowsky transform. This is clear if we plug this parametrization into (1.3.1); moreover,
we have λ = 2 cosϕ and we can express ϕ in terms of λ. There are two options to do so,
ϕ = ± arccos(λ/2); this follows from the non-injective nature of the mapping. We chose the
negative sign because the lower half of the punctured unit disk is mapped onto the upper complex
half-plane, where λ̃ resides, by the Joukowsky transform. One can easily see this in (1.3.3). By
this choice and the assumption λ ∈ (−2, 2), we have ϕ ∈ (−π, 0). We obtain the exact expression
for the Joukowsky parameter of λ̃ = 2 cosϕ+ iε from Lemma 1.19, which prescribes which of ±
we need to choose

k =
2 cosϕ+ iε±

√
(2 cosϕ+ iε)2 − 4

2
.

But the assumption of the lemma is that λ /∈ [−2, 2]. Since this assumption is not met for ε = 0,
choosing the negative branch ensures k at ε = 0 maps correctly under the transform:

k
∣∣∣
ε=0

=
2 cosϕ−

√
(2 cosϕ)2 − 4

2
= cosϕ−

√
− sin2 ϕ = cosϕ− i| sinϕ| = eiϕ,

where for ϕ ∈ (−π, 0) we have sinϕ < 0. To capture the first-order behavior in ε, we differentiate
k with respect to ε and then evaluate at ε = 0:

dk

dε
=

i

2

(
1− iε+ 2 cosϕ√

(2 cosϕ+ iε)2 − 4

)
,

dk

dε

∣∣∣
ε=0

=
i

2

(
1− 2 cosϕ√

(2 cosϕ)2 − 4

)
=

i

2

(
1 +

cosϕ

i sinϕ

)
=

1

2 sinϕ
eiϕ.

Combining these two calculations we get

k = eiϕ
(
1 +

ε

2 sinϕ

)
+O(ε2).
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To check the expansion for the reciprocal value we multiply the known expansion for k with the
proposed expansion for k−1 and arrive at kk−1 = 1 +O(ε).

Remark. The asymptotic expansions of k when approaching λ from the other side is similar. One
needs to take ϕ = arccos(λ/2) and replace ε with −ε in the asymptotic expression.

Corollary 1.23: Let λ ∈ (−2, 2) and λ̃ = λ+ iε. Then

|k|2 = 1 +
ε

sinϕ
+O(ε2), |k| = 1 +

ε

2 sinϕ
+O(ε2), as ε→ 0+,

|k − k−1|2 = 4 sin2 ϕ+O(ε2), |k − k−1| = −2 sinϕ+O(ε2), as ε→ 0+,

where ϕ = − arccos(λ/2) ∈ (−π, 0).

Proof. If we take the asymptotic expansion for k and k−1 from the previous lemma, a simple
calculation yields

|k|2 =
(
1 +

ε

2 sinϕ
+O(ε2)

)2

= 1 +
ε

sinϕ
+O(ε2),

|k − k−1|2 =
∣∣∣∣ eiϕ − e−iϕ +

ε

2 sinϕ

(
eiϕ + e−iϕ

)
+O(ε2)

∣∣∣∣2 = 4 sin2 ϕ+O(ε2).

as ε→ 0+. If we apply the asymptotic expansion
√
1 + x = 1+ x

2 +O(ε2) as x→ 0+, we arrive
at the asymptotic expansions for the absolute values of the desired expression. Note that since
ϕ ∈ (−π, 0) we have | sinϕ| = − sinϕ.

Lemma 1.24: Let λ̃ = 2 + iε. Then the Joukowsky parameter k and its reciprocal, associated
with λ̃, follow the asymptotic expansions

k = 1−
√
iε+O(ε), k−1 = 1 +

√
iε+O(ε), as ε→ 0+.

Similarly, for λ = −2 + iε, we have

k = −1 +
√
−iε+O(ε), k−1 = −1−

√
−iε+O(ε), as ε→ 0+.

Proof. We will show proof only for λ̃ = 2 + iε as the other case is analogous. Since ∀ε > 0 :
Reλ̃ > 0, Lemma 1.19 states that

k =
2 + iε−

√
(2 + iε)2 − 4

2
.

Then after some manipulation of the expression we apply the Taylor expansion
√
1− x = 1 +

O(x), as x→ 0+, and arrive at the desired asymptotic formula

k = 1+
i

2
ε−
√
iε

√
1− ε

4i
= 1+

i

2
ε−
√
iε
(
1+O(ε)

)
= 1−

√
iε+

i

2
ε+O(ε3/2) = 1−

√
iε+O(ε),

as ε→ 0+. To check the expansion for the reciprocal value we multiply the known expansion for
k with the proposed expansion for k−1 and arrive at kk−1 = 1 +O(ε), as ε→ 0+.
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Corollary 1.25: Let λ ∈ {−2, 2} and λ̃ = λ+ iε. Then

|k|2 = 1−
√
2ε+O (ε) , |k| = 1−

√
ε√
2
+O (ε) ,

|k − k−1|2 = 4ε+O
(
ε3/2

)
, |k − k−1| = 2

√
ε+O (ε) , as ε→ 0+.

Proof. Again, let us provide the calculations for λ = 2 as the other case is analogous. Take the
asymptotic expansion for k from the previous lemma and calculate

|k|2 =
∣∣∣1−√iε+O(ε)∣∣∣2 = (1− 1√

2

√
ε

)2

+

(
1√
2

√
ε

)2

+O
(
ε2
)
= 1−

√
2ε+O (ε) ,

|k − k−1|2 =
∣∣∣1−√iε− 1−

√
iε+O(ε)

∣∣∣2 = ∣∣∣−√2ε− i
√
2ε+O(ε)

∣∣∣2 = 4ε+O
(
ε3/2

)
,

as ε → 0+. As was done previously, if we apply the asymptotic expansion
√
1 + x = 1 + x

2 +
O(ε2) as x → 0+, we arrive at the asymptotic expansions for the absolute values of the desired
expressions.
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Chapter 2

Spectral properties of Hα

The discrete nature of the operator arises from the underlying Hilbert space. It is the space
of square summable doubly infinite sequences

ℓ2(Z) =
{
{xn}∞n=−∞

∣∣ ∞∑
n=−∞

|xn|2 <∞
}
.

In this space we define an orthogonal basis

∀n ∈ Z : en := {δk,n}∞k=−∞.

We now formally introduce the operator under study. The discrete Schrödinger operator with
complex step potential will be denoted by Hα. It is dependent on one free complex parameter α.
Thus, we are considering a single-parameter class of operators {Hα}α∈C. The operator is defined
by its action on ∀x ≡ {xn}∞n=1 ∈ ℓ2(Z) by

(Hαx)n =

{
xn−1 + xn+1 n < 0,

xn−1 + αxn + xn+1 n ≥ 0.
(2.0.1)

The matrix representation of Hα reads

Hα =



. . . . . . . . .
1 0 1

1 α 1
1 α 1

. . . . . . . . .

 .

Since H∗
α = Hα, the operator Hα is not self-adjoint if Imα ̸= 0. Furthermore, with this

restriction on the parameter α Hα is not normal as is evident by(
HαH

∗
α

)
−1,0

= α,
(
H∗

αHα

)
−1,0

= α.

The operator Hα is bounded. To show this we decompose

Hα = S + αD + S∗, (2.0.2)

where
∀n ∈ Z : Sen := en−1, S∗en = en+1,
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∀n ≥ 0 : Den := en, ∀n < 0 : Den := 0.

The following clearly holds,

∥S∥ = ∥D∥ = ∥S∗∥ = 1 =⇒ ∥Hα∥ ≤ ∥S∥+ |α|∥D∥+ ∥S∗∥ = 2 + |α|.

2.1 Spectral analysis of Hα

The spectrum of Hα is purely continuous and coincides with [−2, 2] ∪ [−2 + α, 2 + α].
While we originally proved this result in [1], we include a detailed derivation here for the sake of
completeness. It is well known that the spectrum of H0 is purely continuous and coincides with
the interval [−2, 2]. For this reason, we assume α ̸= 0. The proof is organized into four distinct
steps.

1. Prove that the point spectrum is empty.

2. Prove that the residual spectrum is empty.

3. Identify a suitable subset of the resolvent set of Hα, denoted by X.

4. Demonstrate that the complement of X is a subset of the spectrum.

2.1.1 Point spectrum

A complex number λ is an eigenvalue of Hα if and only if there exists a non-zero vector
x ∈ ℓ2(Z) such that it satisfies the eigenvalue equation Hαx = λx. In its expanded form the
equation reads

λxn = xn−1 + xn+1 n < 0,

(λ− α)xn = xn−1 + xn+1 n ≥ 0.

If we define the sequence

κn :=

{
λ n < 0,

λ− α n ≥ 0,

we can rewrite the equation above in a more concise form

∀n ∈ Z : κnxn = xn+1 + xn−1. (2.1.1)

This is a difference equation of second order with a two-dimensional set of solutions. To find the
solution, we apply the two Joukowsky transforms

λ = ξ + ξ−1, λ− α = η + η−1.

This transformation of λ enables us to express the solution in a simple form. Assume that ξ ̸= ±1
and η ̸= ±1, as these special cases will be addressed later. For n ≤ −2, the solutions to (2.1.1)
are given by xn = ξn and xn = ξ−n, while for n ≥ 1, the solutions are xn = η−n and xn = ηn.
Indeed,

λxn = (ξ + ξ−1)ξn = ξn+1 + ξn−1 = xn+1 + xn−1

λxn = (ξ + ξ−1)ξ−n = ξ−n+1 + ξ−n−1 = xn+1 + xn−1

n ≤ −2,

(λ− α)xn = (η + η−1)ηn = ηn+1 + ηn−1 = xn+1 + xn−1

(λ− α)xn = (η + η−1)η−n = η−n+1 + η−n−1 = xn+1 + xn−1

n ≥ 1.
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The general solution to (2.1.1) takes the form

xn = Aξn +Bξ−n n < 0,

xn = Cηn +Dη−n n ≥ 0.
(2.1.2)

Since the space of solutions has dimension two, two out of the four constants A,B,C,D are
dependent on the other two. We can determine them by plugging (2.1.2) into the difference
equation (2.1.1) at the indices n ∈ {−1, 0}

n = −1 : Aξ−2 +Bξ2 + C +D = (ξ + ξ−1)(Aξ−1 +Bξ)

A+B = C +D, (2.1.3)

n = 0 : Aξ−1 +Bξ + Cη +Dη−1 = (η + η−1)(C +D)

Aξ−1 +Bξ = Cη−1 +Dη. (2.1.4)

Under the standing assumption that ξ ̸= ±1 and η ̸= ±1 we can derive

A = C
η−1 − ξ
ξ−1 − ξ

+D
η − ξ
ξ−1 − ξ

, B = C
η−1 − ξ−1

ξ − ξ−1
+D

ξ − η−1

ξ − ξ−1
,

C = A
ξ−1 − η
η−1 − η

+B
ξ − η
η−1 − η

, D = A
ξ−1 − η−1

η − η−1
+B

ξ − η−1

η − η−1
.

Let us define two auxiliary sets of doubly infinite sequences

ℓ2(+∞) : =
{
{xn}n∈Z ⊂ C

∣∣∣ +∞∑
n=0

|xn|2 <∞
}
,

ℓ2(−∞) : =
{
{xn}n∈Z ⊂ C

∣∣∣ 0∑
n=−∞

|xn|2 <∞
}
.

By choosing the values of two independent constants we get two specific solutions to the eigen-
value equation, let us denote them y and z

yn =

∣∣∣∣A = 0
B = 1

∣∣∣∣ =
ξ

−n n < 0,

ξ−η
η−1−η

ηn + ξ−η−1

η−η−1 η
−n n ≥ 0,

(2.1.5)

zn =

∣∣∣∣C = 1
D = 0

∣∣∣∣ =


η−1−ξ
ξ−1−ξ

ξn + η−1−ξ−1

ξ−ξ−1 ξ−n n < 0,

ηn n ≥ 0.
(2.1.6)

One can clearly see that

|ξ| < 1⇐⇒ y ∈ ℓ2(−∞),

|η| < 1⇐⇒ z ∈ ℓ2(+∞).
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Let us verify that they are linearly independent,

∣∣∣∣ y0 z0
y1 z1

∣∣∣∣ =
∣∣∣∣∣∣

ξ−η
η−1−η

+ ξ−η−1

η−η−1 1

ξ−η
η−1−η

η + ξ−η−1

η−η−1 η
−1 η

∣∣∣∣∣∣
=

ξ − η
η−1 − η

η +
ξ − η−1

η − η−1
η − ξ − η

η−1 − η
η − ξ − η−1

η − η−1
η−1 = ξ − η−1 ̸= 0.

Vectors y and z are linearly independent if and only if η−1 ̸= ξ which holds as long as α ̸= 0. One
can easily verify this from (1.3.2). A general solution to the eigenvalue equation can be written
as a linear combination of y and z. The last step is to show that no such linear combination is
an element of ℓ2(Z).

Choose any a, b ∈ C and set x = ay + bz. Then

xn =

aξ
−n + b

(
η−1−ξ
ξ−1−ξ

ξn + η−1−ξ−1

ξ−ξ−1 ξ−n
)

n < 0,

a
(

ξ−η
η−1−η

ηn + ξ−η−1

η−η−1 η
−n
)
+ bηn n ≥ 0,

Suppose x ∈ ℓ2(Z) and from the definition of the Joukowsky transform we assert that |ξ| ≤
1, |η| ≤ 1. Then

x ∈ ℓ2(Z) =⇒ x ∈ ℓ2(−∞) & x ∈ ℓ2(+∞).

For |ξ| = 1 or |η| = 1 and a, b ̸= 0, the necessary condition for series convergence is not met for

∞∑
n=0

|xn|2, or
−1∑

n=−∞
|xn|2,

respectively. This leads to a contradiction with x ∈ ℓ2(Z). Assuming |ξ| < 1 and |η| < 1, the
term ξn diverges for negative indices. To satisfy the condition x ∈ ℓ2(−∞), this term must
vanish. For this to hold, one of the following must be true:

b = 0, or
η−1 − ξ
ξ−1 − ξ

= 0.

The latter condition necessitates that η−1 = ξ, which is not possible under the assumption α ̸= 0.
Thus, we conclude that b = 0.

In the sum spanning the positive indices, there is a divergent term η−n. For this term to
vanish, one of the following conditions must be satisfied:

a = 0, or
ξ − η−1

η − η−1
= 0.

Once again, we disregard the latter condition.
Consequently, we arrive at:

x ∈ ℓ2(Z) ⇐⇒ a = 0 & b = 0 ⇐⇒ ∀n ∈ Z : xn = 0.

Let us finally discuss the special cases ξ = ±1, η = ±1 and their combinations. First we
choose ξ = −1 and η ̸= ±1. Then for indices n ≤ −2 the solutions to (2.1.1) read xn = (−1)n
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and xn = n(−1)n as is evident by

λxn = −2(−1)n = (−1)n+1 + (−1)n−1 = xn+1 + xn−1

λxn = −2n(−1)−n = −(2n− 1 + 1)(−1)n

= (n+ 1)(−1)n+1 + (n− 1)(−1)n−1 = xn+1 + xn−1

n ≤ −2.

If we consider n ≥ 1 the solutions read xn = η−n and xn = ηn. The general solution is in the
form

xn = A(−1)n +Bn(−1)−n n < 0,

xn = Cηn +Dη−n n ≥ 0.
(2.1.7)

To assert x ∈ ℓ2(Z) we assume A,B = 0. If |η| = 1 and C,D ̸= 0, then the necessary condition
of series convergence is not met for positive indices. If |η| < 1 and x is a non-zero element of
ℓ2(Z), then A,B,D = 0 and C ̸= 0. This results in a contradiction with a condition posed upon
A,B,C,D, which we get by plugging (2.1.7) in (2.1.1) for n = −1

A− 2B + Cη0 +Dη0 = −2(A−B)

A− 4B + C +D = 0.

Now we choose ξ = −1 and η = 1. Then the solution to the eigenvalue equation reads

xn = A(−1)n +Bn(−1)−n n < 0,

xn = C +Dn n ≥ 0.

If x ∈ ℓ2(Z), the form of x necessitates that it is a trivial solution. The other special cases and
their combination would be shown analogously.

Proposition 2.1: Let α ∈ C, then
σp(Hα) = ∅.

Proof. If α ̸= 0, the discussion above showed that there is no non-trivial solution to the eigenvalue
equation that would lie in ℓ2(Z). In the case of α = 0, the lack of eigenvalues is well known.

2.1.2 Residual spectrum

We first establish a general result that connects the absence of a point spectrum to the absence
of a residual spectrum under certain assumptions. This foundational theorem, presented below,
will subsequently enable us to demonstrate that the residual spectrum of Hα is indeed empty.

Theorem 2.2: Let A ∈ B(ℓ2(Z)) be self-adjoint and B ∈ B(ℓ2(Z)) a diagonal operator. Then

σp(A+B) = ∅ =⇒ σr(A+B) = ∅.

Proof. A general characterization of the residual spectrum states that

σr(H) =
{
λ /∈ σp(H) | λ ∈ σp(H∗)

}
,

where H is some general operator. A proof of this general characterization can be found in
Chapter 5 of [12]. If substitute H = A + B and apply the assumptions, the expression reduces
to

σr(A+B) =
{
λ ∈ C | λ ∈ σp(A+B)

}
.
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Now, let λ ∈ σp(A+B). By definition, there exists a non-zero ψ ∈ ℓ2(Z) such that (A+B)ψ = λψ.
Applying element-wise complex conjugation on this equation yields

(A+B)ψ = λψ.

This implies that λ ∈ σp(A+B). However, this contradicts the assumption that σp(A+B) = ∅.
Therefore, σp(A+B) = ∅. By the characterization of the residual spectrum, this directly implies
that σr(A+B) = ∅ as well.

Proposition 2.3: Let α ∈ C, then
σr(Hα) = ∅.

Proof. In Theorem 2.2 we set A = H0 and B = αD, recall the decomposition (2.0.2). The
operator H0 is self-adjoint and its point spectrum is empty as was shown in Proposition 2.1.
The operator αD is diagonal. Thus, by Theorem 2.2 we get that the residual spectrum of Hα is
empty.

2.1.3 Continuous spectrum

This section is more extensive than the previous one; hence, it is imperative to first discuss
our approach. In those sections we proved that the point and residual parts of the spectrum
are empty, i.e. the spectrum of Hα is purely continuous. The remaining question is what the
spectrum is. First, we will define a suitable set, denoted by X. Then we will show that X is
a subset of the resolvent set using Green’s kernel approach. Lastly, we will show the opposite
inclusion utilizing Weyl’s criterion.

Definition of the set X

Let us recall the solution of the eigenvalue difference equation y (2.1.5) and z (2.1.6), which
depend on ξ and η. If both ξ and η are within absolute values less than 1, we can uniquely assign
them to λ according to Proposition 1.17. Furthermore, we know that

|ξ| < 1⇐⇒ y ∈ ℓ2(−∞),

|η| < 1⇐⇒ z ∈ ℓ2(+∞).

If both conditions |ξ| < 1 and |η| < 1 are satisfied, we will have two vectors suitable for use in
Green’s kernel theorem. Ensuring these two conditions are met defines the set X, a candidate
for the resolvent set of Hα. We have

|ξ| < 1 =⇒ λ = ξ + ξ−1 ∈ C \ [−2, 2],
|η| < 1 =⇒ λ = η + η−1 + α ∈ C \ [−2 + α, 2 + α].

We define
X := C \

(
[−2, 2] ∪ [−2 + α, 2 + α]

)
. (2.1.8)

Green’s kernel

In this section, we draw upon insights from [11]. This reference discusses the spectral prop-
erties of Jacobi operators, i.e., operators with tridiagonal matrix representations. Here, Hα
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represents a Jacobi operator. The Green’s kernel theorem as stated in [11] assumes the self-
adjointness of the operator. However, it is evident that for a choice of parameter α /∈ R, the
operator Hα does not satisfy this assumption. We will proceed by adapting the construction of
the Green’s kernel and show that it indeed is the resolvent operator of Hα in our specific case.
This requires demonstrating that it is a bounded operator and is the inverse of (Hα − λ). In
doing so, we will establish that X ⊂ ρ(Hα). This construction depends on the vectors y and z,
see (2.1.5). and (2.1.6), respectively. The Green’s kernel G(λ) takes values for indices m,n ∈ Z
as follows

Gm,n(λ) =
1

wk(y, z)

{
znym m ≤ n,
zmyn m > n,

where w ≡ wk(y, z) = zk+1yk − zkyk+1, k ∈ Z. Here, w is known as the Wronskian, and
is non-zero if and only if y and z are linearly independent. This condition has already been
verified. Notably, we denote G as dependent on λ; this is indeed the case, but this dependency is
embedded within the vectors y and z, which are themselves defined in terms of ξ and η, uniquely
determined by λ ∈ X. The Wronskian also depends on λ.

An important property of the Wronskian wk(y, z) is that it is independent of k. To see this,
choose arbitrary k ∈ Z and recall the eigenvalue equation (2.1.1), from which we derive the
relation xn+1 = κnxn − xn−1, then

wk(y, z) = zk+1yk − zkyk+1 = (κkzk − zk−1)yk − zk(κkyk − yk−1)

= κkzkyk − zk−1yk − zkκkyk + zkyk−1 = zkyk−1 − zk−1yk = wk−1(y, z).

This allows us to omit the subscript on the Wronskian. For clarity in subsequent discussions, let
us define

G̃ := wG. (2.1.9)

We provide two equivalent matrix representations of G(λ). One of these formulations may
be less cumbersome to work with in certain scenarios than the other and vice versa. The matrix
representations of G(λ) read

Gm,n(λ) =
1

w



ξ−η
η−1−η

ηm+n + ξ−η−1

η−η−1 η
|m−n| m,n ≥ 0,

ηmξ−n m ≥ 0, n < 0,

η−1−ξ
ξ−1−ξ

ξ|m−n| + η−1−ξ−1

ξ−ξ−1 ξ−m−n m,n < 0,

ηnξ−m m < 0, n ≥ 0,

(2.1.10)

Gm,n(λ) =



ηm+n−η|m−n|

η−1−η
+ ηm+n

w m,n ≥ 0,

1
wη

mξ−n m ≥ 0, n < 0,

ξ|m−n|−ξ−m−n

ξ−ξ−1 + ξ−m−n

w m,n < 0,

1
wη

nξ−m m < 0, n ≥ 0.

(2.1.11)
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Boundedness of G(λ)

Schur test, Theorem 1.14, will be used to obtain the upper bound. We set pj = 1 for all
j ∈ Z. This way we get a readily available, albeit possibly rough, estimate. Let λ ∈ X be
arbitrary. In this setting, the Schur test implies

∥G(λ)∥ ≤ sup
m∈Z

∑
n∈Z

∣∣Gm,n(λ)
∣∣.

Finding the actual supremum proves to be quite difficult; therefore, we will be taking an estimate
of
∑

n∈Z
∣∣Gm,n(λ)

∣∣ from above while ridding it of the dependence on m. Recall the definition of
C(α) from (1.3.5). Due to the form that G(λ) takes, we need to investigate two branches:

• Let m ≥ 0. Then

∞∑
n=0

|Gm,n(λ)| =
1

|w|

∞∑
n=0

∣∣∣∣ ξ − ηη−1 − η
ηm+n +

ξ − η−1

η − η−1
η|m−n|

∣∣∣∣+ |η|m|w|
∞∑
n=1

|ξ|n

≤ 1

|η−1 − η|

(
|ξ − η|
|w|

|η|m
∞∑
n=0

|η|n +

∞∑
n=−m

|η||n|
)

+
|η|m

|w|

∞∑
n=1

|ξ|n

=
1

|η−1 − η|
1

1− |η|

(
|ξ − η|
|w|

|η|m + 1 + |η| − |η|m+1

)
+

|η|m|ξ|
|w|(1− |ξ|)

≤ 1

|η−1 − η|
1

1− |η|

(
|ξ − η|
|w|

+ 1 + |η|
)
+

|ξ|
|w|(1− |ξ|)

=: Ũ1(λ)

≤ 1

|η−1 − η|
1

1− |η|
(2C(α) + 2) +

C(α)

1− |ξ|
=: U1(λ).

• Let m < 0. Then∑
n∈Z
|Gm,n(λ)| =

1

|w|

∞∑
n=1

∣∣∣∣η−1 − ξ
ξ−1 − ξ

ξ|m−n| +
η−1 − ξ−1

ξ − ξ−1
ξm+n

∣∣∣∣+ |ξ|m|w|
∞∑
n=0

|η|n

≤ 1

|ξ−1 − ξ|

( ∞∑
n=−m+1

|ξ||n| + |ξ
−1 − η−1|
|w|

|ξ|m
∞∑
n=1

|ξ|n
)

+
|ξ|m

|w|

∞∑
n=0

|η|n

=
1

|ξ−1 − ξ|
1

1− |ξ|

(
1 + |ξ| − |ξ|m +

|ξ−1 − η−1|
|w|

|ξ|m
)
+

|η|m

|w|(1− |η|)

≤ 1

|ξ−1 − ξ|
1

1− |ξ|

(
1 + |ξ|+ |ξ

−1 − η−1|
|w|

|ξ|
)
+

|η|
|w|(1− |η|)

=: Ũ2(λ)

≤ 1

|ξ−1 − ξ|
1

1− |ξ|
(
(|ξ|−1 + |η|−1)C(α) + 2

)
+

C(α)

1− |η|
=: U2(λ).

In the analysis of both branches, the second-to-last estimate

Ũ(λ) := max{Ũ1(λ), Ũ2(λ)} (2.1.12)

is somewhat less crude and will be utilized in the study of the pseudospectra. To demonstrate
the boundedness of the resolvent operator, we employ the estimate

U(λ) := max
{
U1(λ), U2(λ)

}
.

While this estimate is rougher, it provides a clearer argument for boundedness.
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Proposition 2.4: Let α ̸= 0. Then

∀λ ∈ X : ∥(Hα − λ)−1∥ ≤ max
{
U1(λ), U2(λ)

}
=: U(λ)

Proposition 2.5: Let α ∈ C. Then

∀λ ∈ X : G(λ) ∈ B(ℓ2(Z)).

Proof. For α = 0, we have X = C \ [−2, 2], and the boundedness of the resolvent operator is
well known. On the other hand, if α ̸= 0 and we utilize the upper bound from Proposition 2.5,
it follows that for λ ∈ X, the upper bound U(λ) is a finite number since |ξ|, |η| ∈ (0, 1).

G(λ) is an inverse of (Hα − λ)

As one may expect, here we need to show (Hα − λ)G = G(Hα − λ) = I. We will prove this
by showing ∀x ∈ ℓ2(Z) : (Hα − λ)Gx = x. Recall that wG = G̃ where w is the aforementioned
Wronskian. If we use the notation from (2.1.1), we have

w
(
(Hα − λ)Gx

)
m

=

∞∑
n=−∞

G̃m,n−1xn − κnG̃m,nxn + G̃m,n+1xn

=
m−1∑

n=−∞
zm (yn−1 − κnyn + yn+1)︸ ︷︷ ︸

=0

xn +
∞∑

n=m+1

ym (zn−1 − κnzn + zn+1)︸ ︷︷ ︸
=0

xn

+ (zmym−1 − κmzmym + zm+1ym)xm
⋆
= (zmym−1 − ym−1zm − zmym+1 + zm+1ym)xm

= (zm+1ym − zmym+1)xm = wm(y, z)xm = wxm.

Then we divide the equation by the non-zero w and arrive at the desired equation. When
calculating, we used the fact that y and z are solutions of (2.1.1). If we were to interchange
(Hα − λ) and G, we would arrive at the same result.

Proposition 2.6: Let α ∈ C. Then

∀λ ∈ X : (Hα − λ)G = G(Hα − λ) = I.

Proposition 2.7: Let α ∈ C. Then

σ(Hα) ⊂ [−2, 2] ∪ [−2 + α, 2 + α]

Proof. By Proposition 2.5 and by Proposition 2.6 we have

λ ∈ X =⇒ λ ∈ ρ(Hα),

in other words
X ⊂ ρ(Hα).

Transitioning to the complement we get the asserted inclusion.
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The inclusion ρ(Hα) ⊂ X

In this section, we use one implication of Weyl’s criterion as stated in Theorem 1.15. This
particular formulation was chosen deliberately, as it addresses the needs of our analysis. The op-
erator Hα is generally non-normal, and the specific implication that holds under these conditions
suffices for our purposes.

For a given λ ∈ C, suppose there exists a sequence {ψ(n)}∞n=1 ⊂ ℓ2(Z) \ {0} such that

lim
n→∞

∥(Hα − λ)ψ(n)∥
∥ψ(n)∥

= 0.

Then λ ∈ σ(Hα). Since it is already established that X ⊂ ρ(Hα), we need not test this condition
for all λ ∈ C. Instead, we restrict λ to Xc and demonstrate that λ ∈ σ(Hα). This proves the
inclusion ρ(Hα) ⊂ X. Taking λ ∈ Xc we need to consider two cases |ξ| = 1 and |η| = 1, see
(2.1.8).

For λ ∈ Xc such that |η| = 1 we define ∀n ∈ N

(ζ(n))k :=

{
ηk k ∈ {0, 1, . . . , n},
0 otherwise.

In fact, ∀n ∈ N : ζ(n) ∈ ℓ2(Z) since
∥∥ζ(n)∥∥ =

√
n. A simple calculation yields

(
(Hα − λ)ζ(n)

)
m

=



1 m = −1,
−η−1 m = 0,

−ηn+1 m = n,

ηn m = n+ 1,

0 otherwise.

This allows us to take the norm,
∥∥(Hα − λ)ζ(n)

∥∥ = 2, and evaluate the limit

∥(Hα − λ)ζ(n)∥
∥ζ(n)∥

=
2√
n
−−−→
n→∞

0.

The set {η | |η| = 1} corresponds with [−2 + α, 2 + α] in the λ-plane. By applying Weyl’s
criterion we get [−2 + α, 2 + α] ⊂ σ(Hα)

For λ ∈ Xc such that |ξ| = 1 we define ∀n ∈ N

(χ(n))k :=

{
ξ−k k ∈ {−n, . . . , 1, 0},
0 otherwise.

Similar reasoning as above yields that [−2, 2] ⊂ σ(Hα).

Proposition 2.8: Let α ∈ C. Then

σ(Hα) ⊂ [−2, 2] ∪ [−2 + α, 2 + α].

Theorem 2.9: Let α ∈ C and consider the operator Hα as given by (2.0.1). Then the spectrum
of Hα is purely continuous and coincides with two line segments in the complex plane. More
precisely

σ(Hα) = σc(Hα) = [−2, 2] ∪ [−2 + α, 2 + α] = [−2, 2] + α{0, 1}.
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Proof. In Proposition 2.1 we showed that the point spectrum is empty and similarly in Propo-
sition 2.3 we showed that the residual spectrum is empty. Hence, the spectrum of Hα is purely
continuous. In Propositions 2.7 and 2.8 were shown the two inclusions implying the set equality
of spectrum in the theorem.

The spectrum of Hα is depicted in Figure 2.1.

α

−3 −2 −1 1 2 3

i

−i
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−2i

Figure 2.1: Spectrum of the operator Hα.

To conclude this section, we derive the numerical range of the operator Hα. Numerical range
of an operator A is a subset of the complex plane C given by

Num(A) =
{
⟨x,Ax⟩ | x ∈ ℓ2(Z), ∥x∥ = 1

}
.

The numerical range is always a convex subset of C and the spectrum of A is contained in its
closure.

Theorem 2.10: Let α ∈ C. Then the numerical range of Hα is given by

Num(Hα) = (−2, 2) + α[0, 1].

Proof. Let us define a two-parameter class of vectors from ℓ2(Z) by

x̃n(q, t) :=


√
t qn n > 0,

0 n = 0,
√
1− t q−n n < 0,

where t ∈ [0, 1] and q ∈ (−1, 1). Clearly, x̃(q, t) is an ℓ2(Z) sequence. Its squared norm is given
by

∥x̃(q, t)∥2 = q2

1− q2
.

To construct a unit vector we define x(q, t) as x̃(q, t) normalized by its norm. Recall the decom-
position of Hα (2.0.2) and plug it into ⟨x,Hαx⟩. A simple calculation yields

⟨x,Hαx⟩ = 2Re⟨x, Sx⟩+ α⟨x,Dx⟩ = 2q + αt. (2.1.13)

Thus, it follows that {
2q + αt | q ∈ (−1, 1), t ∈ [0, 1]

}
⊂ Num(Hα). (2.1.14)
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In the remainder of the proof, we show that no other complex number may be in Num(Hα).
Now, let x ∈ ℓ2(Z) be an arbitrary unit vector. The inner product, ⟨x,Dx⟩ =

∑∞
n=0 |xn|2,

represents the squared norm of ℓ2(N0) part of x. Since x is a unit vector in ℓ2(Z) and norms are
non-negative, it follows that ⟨x,Dx⟩ ∈ [0, 1]. Consequently, we have

Im⟨x,Hαx⟩ = ⟨x,Dx⟩Imα ∈ Imα[0, 1].

Thus, it follows that {
2q + αt | q ∈ R, t /∈ [0, 1]

}
∩Num(Hα) = ∅. (2.1.15)

Suppose there exists x ∈ ℓ2(Z), ∥x∥ = 1, such that Re⟨x, Sx⟩ = ±1. The Cauchy–Schwarz
inequality yields

1 = |Re⟨x, Sx⟩| ≤ |⟨x, Sx⟩| ≤ ∥x∥ ∥Sx∥ = ∥x∥2 = 1. (2.1.16)

Since equality holds throughout, it follows that x and Sx are linearly dependent, i.e., Sx = βx
for some β ∈ C. Furthermore, the equality Re⟨x, Sx⟩ = ±1 implies ⟨x, Sx⟩ = ±1. From this, we
determine β = ±1, leading to Sx = ±x. The operator S shifts the indices of x by 1. Therefore,
all elements of x must be equal in absolute value. However, such a sequence cannot lie in ℓ2(Z),
as it would violate the square-summability condition unless it is a trivial sequence, in which case
∥x∥ = 1 does not hold. Thus, ∀x ∈ ℓ2(Z), ∥x∥ = 1 : Re⟨x, Sx⟩ ≠ ±1.

Moreover, from (2.1.16) immediately follows that ∀x ∈ ℓ2(Z), ∥x∥ = 1 : Re⟨x, Sx⟩ ∈
[−1, 1].Thus, from two arguments it follows that{

2q + αt | q /∈ (−1, 1), t ∈ [0, 1]
}
∩Num(Hα) = ∅. (2.1.17)

The union of the sets on the left-hand sides of (2.1.14), (2.1.15), and (2.1.17) covers the entire
complex plane. Therefore, the subset relation in (2.1.14) is, in fact, an equality:

Num(Hα) =
{
2q + αt | q ∈ (−1, 1), t ∈ [0, 1]

}
= (−2, 2) + α[0, 1].

The numerical range of Hα is depicted in Figure 2.2.

α

−3 −2 −1 1 2 3

i

−i

2i

−2i

Figure 2.2: Numerical range of the operator Hα.
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2.2 Pseudospectrum

In this chapter, we will almost solely rely on the book Spectra and pseudospectra by Lloyd
Nicholas Trefethen and Mark Embree, see [17]. We will define what pseudospectra are and state
their basic properties before we commence pseudospectral analysis of the studied operator Hα.
Since these properties are not crucial for this paper and serve only to familiarize us with this
new notion, we will not provide proofs; one may find them in [17].

Definition 2.11: Let A ∈ B(H ) and ε > 0 be arbitrary. The ε-pseudospectrum of operator A
is defined as the set

σε(A) := σ(A) ∪
{
λ ∈ C \ σ(A)

∣∣ ∥(A− λ)−1∥ ≥ ε−1
}
.

Theorem 2.12: Given A ∈ B(H ), the pseudospectra
{
σε(A)

}
ε>0

have the following properties.

• Each σε(A) is a nonempty subset of C.

• Any bounded connected component of σε(A) has a nonempty intersection with σ(A).

• The pseudospectra are strictly nested supersets of the spectrum.

Describing the pseudospectra of self-adjoint operators is a relatively trivial endeavor because
we can describe the norm of the resolvent in terms of the distance between its spectral parameter
and the spectrum of the operator.

Theorem 2.13: Let A ∈ B(H ) be a self-adjoint operator and λ ∈ ϱ(A), then

∥(A− λ)−1∥ = 1

dist(σ(A), λ)
.

Therefore, given a bounded self-adjoint operator with a known spectrum, one can explicitly
describe the ε-pseudospectra as the ε-neighborhood of σ(A).

Corollary 2.14: Let A ∈ B(H ) be a self-adjoint operator, then

ε > 0 : σε(A) = σ(A) ∪ {λ ∈ C \ σ(A)
∣∣ dist(σ(A), λ) ≤ ε} = σ(A) +D(ε),

where D(ε) denotes a disc in the complex plane centered at the origin with radius ε.

Let us now apply these results to operator Hα. The following proposition immediately follows
from the corollary above.

Proposition 2.15: Let α be a real number. Then

ε > 0 : σε(Hα) = [−2, 2] ∪ [−2 + α, 2 + α] + D(ε).

For the choice of α = 0, the pseudospectrum of Hα is depicted in figure 2.3.
Setting aside the trivial case for a real parameter α, we will discuss the general case of α being

any complex number. Describing the pseudospectra of non-self-adjoint operators is no more a
trivial endeavor. Still, we can get an explicit expression for the pseudospectrum intersected with
a certain set. This is justified by the following propositions, which is a standard result from
functional analysis.
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Figure 2.3: Pseudospectrum of H0.

Proposition 2.16: Let A ∈ B(H ) and λ ∈ ρ(A). Then

1

dist
(
λ, σ(A)

) ≤ ∥∥(A− λ)−1
∥∥.

A lower bound can also be obtained simply from the definition of operator norm.
Let A ∈ B(H ), then

∀y ∈H , ∥y∥ = 1 : ∥A∥ = sup
∥x∥=1

∥Ax∥ ≥ ∥Ay∥. (2.2.1)

We shall refer to such a vector y as a test vector. However, in our case, Proposition 2.16 gives a
more suitable lower bound.

Proposition 2.17 ([15, Proposition 2.8]): Let A be a closed operator on H . Let U be a
connected open subset of C \ Num(A). If there exists a number λ0 ∈ U which is contained in
ρ(A), then U ⊂ ρ(A). Moreover,

∀λ ∈ U :
∥∥(A− λ)−1

∥∥ ≤ 1

dist
(
λ,Num(A)

) .
Lemma 2.18: Let K ⊂ C be bounded closed convex set, then its complement, C \ K, is
connected.

Proof. Let us establish notation for lines, rays, and line segments:

⟨a, b⟩ :=
{
(1− t)a+ tb

∣∣ t ∈ R
}

(a, b⟩ :=
{
(1− t)a+ tb

∣∣ t ∈ (0,+∞)
}

[a, b] :=
{
(1− t)a+ tb

∣∣ t ∈ [0, 1]
}

[a, b) :=
{
(1− t)a+ tb

∣∣ t ∈ [0, 1)
}

We will show that C \ K is path-connected; hence, connected. We need to construct a path
connecting any two different points v1, v2 ∈ C \K. The set K is bounded; therefore, we can find
r > 0 such that K ⊂ B(0, r). If ⟨v1, v2⟩ ∩K = ∅, we connect v1 and v2 with the line segment
[v1, v2]. If the line ⟨v1, v2⟩ has a non-empty intersection with K, then we denote ⟨v1, v2⟩ ∩K =
[k1, k2], where k1 and k2 may equal each other if the intersection is a singleton. Moreover,
⟨v1, v2⟩∩K is necessarily a convex set. Therefore, the line ⟨v1, v2⟩ decomposes into exactly three
disjoint parts which read

⟨v1, v2⟩ = ⟨v1, k1) ∪ [k1, k2] ∪ (k2, v2⟩.
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Let us denote {b1} = ∂B(0, r) ∩ [k1, v1⟩ and {b2} = ∂B(0, r) ∩ [k2, v2⟩. Now we can connect
v1, v2 ∈ C \K with either one of the paths given by the set [v1, b1) ∪ ∂B(0, r) ∪ (b1, v2].

If an operator is bounded the closure of its numerical range is convex; therefore C \Num(A)
is connected. The restriction to bounded operators simplifies Proposition 2.17 in such a way that
the inequality holds for all λ ∈ C \Num(A).

Recall the numeric range of Hα is given by Num(Hα) = (−2, 2) + α[0, 1], see Theorem 2.10.
Let us define

Ω(α) :=
{
z ∈ C

∣∣ dist(λ,Num(Hα)
)
= dist

(
λ, σ(Hα)

)}
.
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Figure 2.4: Depictions of the set Ω(α) for certain choices of α.

In Fig. 2.4, we have depicted the set Ω(α) for certain values of α. For all λ ∈ Ω(α) the
upper and lower estimate of

∥∥(A − λ)−1
∥∥ equal each other on; therefore, we can describe the

ε-spectrum explicitly as

Ω(α) ∩ σε(Hα) = Ω(α) ∩
(
σ(Hα) +D(ε)

)
.

To our knowledge, there is no way to describe the pseudospectra of Hα explicitly outside of
Ω(α); therefore, our task is to obtain a superset and a subset of each ε-pseudospectrum. This
way we get a region where the boundary of the ε-pseudospectrum must reside. We will obtain
these supersets and subsets by estimating the norm of the resolvent above and below. As stated
above we obtain a lower bound by virtue of Proposition 2.16. These lower bounds are depicted
in Figure 2.5. The tool we will use for obtaining upper estimates of an operator’s norm is the
Schur test, see Theorem 1.14. The Schur test has already been applied in Proposition 2.4, as
already stated before, we shall be using the estimate as given by (2.1.12), i.e.

∀λ ∈ ρ(Hα) : ∥(Hα − λ)−1∥ ≤ Ũ(λ).

These upper bounds are shown in Figure 2.6.

Theorem 2.19: Let Imα ̸= 0. Then the ε-pseudospectra of Hα follow these inclusions:{
λ ∈ C

∣∣∣ 1

dist
(
λ, σ(Hα)

) ≥ ε−1
}
⊂ σε(Hα) ⊂

{
λ ∈ C

∣∣ Ũ(λ) ≥ ε−1
}
.

These estimates are used when we do not have an explicit expression for the resolvent oper-
ator’s norm, i.e. on C \ Ω(α).
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Figure 2.5: Depictions of dist(λ, σ(Hα)) = ε for certain values of ε.
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Figure 2.6: Depictions of Ũ(λ) = ε for certain values of ε.

2.2.1 Asymptotic behavior

In this section we describe the behavior of pseudospectra near the spectrum of Hα. For
λ ∈ σ(Hα) we derive asymptotic expansions of the upper and lower bounds of ∥(Hα−λ− iε)−1∥
as ε→ 0+.

As stated above, if Imα = 0 the pseudospectrum is trivially described. We assume the
opposite, i.e. Imα ̸= 0. In this case, the spectrum is comprised of two connected components.
To ensure λ+ iε is not an element of the other connected component of the spectrum we assume
ε < |Imα|.

A trick we can use while evaluating asymptotic pseudospectra is to separate the quadrants
of the matrix representation of the resolvent operator

G(λ) =

(
G−− G−+

G+− G++

)
=

(
G−− 0
0 0

)
+

(
0 G−+

0 0

)
+

(
0 0

G+− 0

)
+

(
0 0
0 G++

)
. (2.2.2)

Taking the norm of the resolvent operator and estimating it with triangle inequality may be too
rough of an estimate for global estimation but if we show that all but one term are asymptotically
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insignificant, we can make the asymptotic formula simpler. The quadrants are separated as in
(2.1.10).

Since it is not ideal to work with matrices whose indices are on the negative half-line, we
define matrices Ĝ−−

m,n := G−−
−m,−n, Ĝ+−

m,n := G+−
m,−n, and Ĝ−+

m,n := G−+
−m,n.

In [1] we showed that∥∥∥∥(G−− 0
0 0

)∥∥∥∥
ℓ2(Z)

= ∥Ĝ−−∥ℓ2(N),
∥∥∥∥(0 G−+

0 0

)∥∥∥∥
ℓ2(Z)

= ∥Ĝ−+∥ℓ2(N),

∥∥∥∥( 0 0
G+− 0

)∥∥∥∥
ℓ2(Z)

= ∥Ĝ+−∥ℓ2(N),
∥∥∥∥(0 0

0 G++

)∥∥∥∥
ℓ2(Z)

= ∥G++∥ℓ2(N0).

With this established let us evaluate or estimate the norm of these operators.
The norms of G+− and G−+ can be evaluated exactly by applying the following lemma.

Lemma 2.20: Let p, q ∈ C, |p|, |q| < 1. We define an operator A = A(p, q) on ℓ2(N) whose
matrix representation reads

∀m,n ∈ N : Am,n := pmqn.

Then A ∈ B
(
ℓ2(N)

)
. Moreover, we can calculate its norm

∥A∥ =

√
|p|2

1− |p|2
|q|2

1− |q|2
.

Proof. Choose an arbitrary vector ψ ∈ ℓ2(N), then the mth element of Aψ reads

(Aψ)m =
∞∑
n=1

Am,nψn =
∞∑
n=1

pmqnψn = pm
∞∑
n=1

qnψn.

Next, we estimate the square of its norm

∥Aψ∥2 =
∞∑

m=1

|(Aψ)m|2 =
∞∑

m=1

|p|2m
∣∣∣ ∞∑
n=1

qnψn

∣∣∣2 ≤ ∞∑
m=1

|p|2m
( ∞∑

n=1

|q|n|ψn|
)2

C.−S.
≤

∞∑
m=1

|p|2m
∞∑
n=1

|q|2n
∞∑
k=1

|ψk|2 =
|p|2

1− |p|2
|q|2

1− |q|2
∥ψ∥2,

where the marked inequality denotes the Cauchy–Schwarz inequality. This calculation proves
the assertion that A is a bounded operator on ℓ2(N) and provides an upper bound for the norm
of A. For the lower bound estimation let us choose a test vector ψn := (q)n, then

∥Aψ∥2 =
∞∑

m=1

|(Aψ)m|2 =
∞∑

m=1

|p|2m
∣∣∣ ∞∑
n=1

qn(q)n
∣∣∣2 = ∞∑

m=1

|p|2m
( ∞∑

n=1

|q|2n
)2

=
∞∑

m=1

|p|2m
∞∑
n=1

|q|2n
∞∑
k=1

|q|2k =

∞∑
m=1

|p|2m
∞∑
n=1

|q|2n
∞∑
k=1

|ψk|2 =
|p|2

1− |p|2
|q|2

1− |q|2
∥ψ∥2.

Since these two estimates are equal, we know it is the norm of A itself.
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As a result of Lemma 2.20 we get

∥Ĝ+−∥ = ∥Ĝ−+∥ = 1

|w|
1√

1− |η|2
|ξ|√

1− |ξ|2
. (2.2.3)

The norms of the other quadrants are more complicated. We were not able to evaluate them
exactly; hence, we give estimates. Multiple estimation techniques were used to take the upper
bound, though not one yielded a better asymptotic formula than the others; therefore, we will
show the most conspicuous one – the Schur test. We will get the lower bound by choosing suitable
test vectors.

Proposition 2.21: Let λ ∈ ρ(Hα). If we denote

U−(λ) :=
1

|ξ−1 − ξ|
1

1− |ξ|
(
(|ξ|−1 + |η|−1)C(α) + 2

)
,

L−(λ) :=

√
(1− |ξ|2)2|ξ|+ 2Re(−ξ−1w)|ξ|(1− |ξ|2) + |w|2(1 + |ξ|2)

|w| |ξ−1 − ξ| (1− |ξ|2)
,

U+(λ) :=
1

|η−1 − η|
1

1− |η|
(2C(α) + 2) ,

L+(λ) :=

√
(1− |η|2)2 + 2Re(−ηw)|η|2(1− |η|2) + |η|4|w|2(1 + |η|2)

|w| |η| |η−1 − η| (1− |η|2)
.

The upper and lower bounds of the norm of Ĝ−− and G++ take the forms

U− ≥ ∥Ĝ−−∥ ≥ L−, U+ ≥ ∥G++∥ ≥ L+,

where C(α) is the uniform upper bound of |w|−1 = |ξ − η−1|−1 from (1.3.5).

Proof. We utilize the formulation of G as given by (2.1.10). First, we establish the upper bounds
for the norms using the Schur test. Let m ≥ 0, then

∞∑
n=0

|G++
m,n(λ)| =

1

|w|

∞∑
n=0

∣∣∣∣ ξ − ηη−1 − η
ηm+n +

ξ − η−1

η − η−1
η|m−n|

∣∣∣∣
≤ 1

|η−1 − η|

(
|ξ − η|
|w|

|η|m
∞∑
n=0

|η|n +

∞∑
n=−m

|η||n|
)

=
1

|η−1 − η|
1

1− |η|

(
|ξ − η|
|w|

|η|m + 1 + |η| − |η|m+1

)
≤ 1

|η−1 − η|
1

1− |η|
(2C(α) + 2)

Since the dependence on m has been eliminated from the expression, the last estimate serves as
an upper bound for ∥G++(λ)∥. A comparable method is applied to analyze G−−.
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∞∑
n=1

|G−−
m,n(λ)| =

1

|w|

∞∑
n=1

∣∣∣∣η−1 − ξ
ξ−1 − ξ

ξ|m−n| +
η−1 − ξ−1

ξ − ξ−1
ξm+n

∣∣∣∣
≤ 1

|ξ−1 − ξ|

( ∞∑
n=−m+1

|ξ||n| + |ξ
−1 − η−1|
|w|

|ξ|m
∞∑
n=1

|ξ|n
)

=
1

|ξ−1 − ξ|
1

1− |ξ|

(
1 + |ξ| − |ξ|m +

|ξ−1 − η−1|
|w|

|ξ|m
)

≤ 1

|ξ−1 − ξ|
1

1− |ξ|
(
(|ξ|−1 + |η|−1)C(α) + 2

)
.

For the lower bound we will be using estimation by a test vector, see (2.2.1). For G++(λ)
and Ĝ−−(λ) we define test vectors

ψ =
{
ηn
}
n∈N0

and φ =
{
ξn
}
n∈N,

respectively. Their norms are

∥ψ∥ = 1√
1− |η|2

and ∥φ∥ = |ξ|√
1− |ξ|2

.

Let us calculate the m element of G++(λ)ψ. Let m ∈ N0, then

(
G++(λ)ψ

)
m

=
1

w

∞∑
n=0

(
ξ − η
η−1 − η

ηm+n +
ξ − η−1

η − η−1
η|m−n|

)
ηn

=
1

η−1 − η

(
ξ − η
w

ηm
∞∑
n=0

η2n +

∞∑
n=0

η|m−n|+n

)

=
1

η−1 − η

((
ξ − η
w

+ 1

)
1

1− η2
+m

)
=

ηm

w(1− η2)
(
1−mηw

)
.

If we calculate

|1−mηw|2 =
(
1−mRe(ηw)

)2
+
(
mIm(ηw)

)2
= 1− 2mRe(ηw) +m2|ηw|2,

then the squared absolute value of
(
G++(λ)ψ

)
m

reads∣∣∣(G++(λ)ψ
)
m

∣∣∣2 = 1

|w|2|1− η2|2
(
|η|2m −m|η|2m2Re(ηw) +m2|η|2m|ηw|2

)
. (2.2.4)

In order to calculate the sum over indices m of the expression above, let us show special power
series, so-called low-order polylogarithms, a special case of which is the geometric series. Let
z ∈ (0, 1), then

∞∑
n=0

zn =
1

1− z
,

∞∑
n=1

nzn =
z

(1− z)2
,

∞∑
n=1

n2zn =
z(1 + z)

(1− z)3
.

After we take the square root of the sum of (2.2.4) and divide it by the norm of ψ we get L+

after simple manipulations. The calculation of the lower bound of ∥Ĝ−−(λ)∥ denoted by L− is
analogous and we also omit details.
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With the estimates or the exact formulas for the norms, we can evaluate their asymptotic
expansions. The asymptotic formulas are properly derived in proof of Proposition 3.9 from
Lemmas 1.22 and 1.24. There are less cases to consider in this setting than in the later part;
therefore, we leave most of the calculations for later. Here, we need to differentiate two cases,
whether λ is an endpoint of either connected component of the spectrum or not as the asymptotic
formulas differ significantly.

• Let us denote λ ∈ int(σ(Hα)) if λ ∈ (−2, 2) ∪ (−2 + α, 2 + α).

• Let us denote λ ∈ cl(σ(Hα)) if λ ∈ {−2, 2,−2 + α, 2 + α}.

We will calculate asymptotic behavior for each quadrant of G(λ) individually.

Lemma 2.22: Assume α ̸= 0. Let λ ∈ σ(Hα). Then

∥G+−(λ+ iε)∥ = ∥G−+(λ+ iε)∥ = O
(
ε−1/2

)
as ε→ 0+.

Proof. The norms of G+− and G−+ are equal, see (2.2.3); hence, we are to derive aymptotic
expansion of

1

|w|
1√

1− |η|2
|ξ|√

1− |ξ|2
.

As the approach for λ from either connected component of the spectrum is similar, we show only
the case λ ∈ [−2, 2]. Since we assume Imα ̸= 0, we have |η| → c ∈ (0, 1). We need to further
differentiate two cases.

λ ∈ cl([−2, 2]), i.e. λ ∈ {−2, 2}. In this case we obtain the asymptotic expansion of |ξ|2 from
Corollary 1.25. Then

∥G+−(λ+ iε)∥ = 1

|w|ε=0

1√
1− c2

1 +O
(
ε1/2

)√√
2ε+O(ε)

= O
(
ε−1/4

)
= O

(
ε−1/2

)
, as ε→ 0+

since w = O (1) as ε→ 0+.
λ ∈ int([−2, 2]), i.e. λ ∈ (−2, 2). In this case we obtain the asymptotic expansion of |ξ|2

from Corollary 1.23. Then

∥G+−(λ+ iε)∥ = 1

|w|ε=0

1√
1− c2

1 +O (ε)√
ε

sinϕ +O (ε2)
= O

(
ε−1/2

)
, as ε→ 0+

where ϕ = − arccos(λ/2).

Lemma 2.23: Assume α ̸= 0. Let λ ∈ [−2, 2]. Then

U+(λ+ iε) =
2

ε
(C(α) + 1) +O (1) U−(λ+ iε) = O (1) as ε→ 0+,

L+(λ+ iε) =
1√
2 ε

+O (1) L−(λ+ iε) = O (1) as ε→ 0+.

Let λ ∈ [−2 + α, 2 + α]. Then

U+(λ+ iε) = O (1) U−(λ+ iε) =
2

ε
(C(α) + 1) +O (1) as ε→ 0+,

L+(λ+ iε) = O (1) L−(λ+ iε) =
1√
2 ε

+O (1) as ε→ 0+.
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Proof. FINISH PROOF

Theorem 2.24: Let α ̸= 0 and λ ∈ σ(Hα). Then the asymptotic behavior of the resolvent
operator’s norm reads

1√
2 ε

+O
(
ε−1/2

)
≤ ∥(Hα − λ)−1∥ ≤ 2

ε
(C(α) + 1) +O

(
ε−1/2

)
as ε→ 0+.

Proof. Taking the triangle inequality of the decomposed resolvent operator, see (2.2.2), we esti-
mate ∥(Hα − λ)−1∥ from above and below. If we then estimate further using Proposition 2.21,
we get

∥(Hα − λ)−1∥ ≤ ∥Ĝ−−∥+ ∥Ĝ+−∥+ ∥Ĝ−+∥+ ∥G++∥ ≤ U− + 2∥Ĝ−+∥+ U+, (2.2.5)

∥(Hα − λ)−1∥ ≥ ∥Ĝ−−∥ − ∥Ĝ+−∥ − ∥Ĝ−+∥ − ∥G++∥ ≥ L− − 2∥Ĝ−+∥ − U+, (2.2.6)

∥(Hα − λ)−1∥ ≥ ∥G++∥ − ∥Ĝ+−∥ − ∥Ĝ−+∥ − ∥Ĝ−−∥ ≥ L+ − 2∥Ĝ−+∥ − U−. (2.2.7)

These estimates allowed us to separate asymptotically insignificant terms. We get the assertion
of the theorem simply by plugging in the asymptotic expressions from Lemmas 2.22 and 2.23.

2.3 Spectral measure

In this section, we derive the spectral measure associated with the operatorHα, more precisely
we derive the Radon–Nikodym derivative of the spectral measure with respect to the Lebesgue
measure, the spectral density. To ensure the spectral measure is well-defined, we restrict our
analysis to α ∈ R, in which case Hα is a self-adjoint operator. The spectral density of the
discrete operator Hα is matrix-valued, and its entries are determined by the Stone’s formula

dµm,n

dλ
(λ) =

1

2πi
lim
ε→0+

(Gm,n(λ+ iε)−Gm,n(λ− iε)) ,

where λ ∈ σ(Hα). If need be, we denote the spectral density as dµm,n.
Let z = λ + iε. To calculate the spectral density one must take the limit as z approaches

λ ∈ σ(A) from each side. By using the Joukowsky transform, the analysis of the spectral density
simplifies significantly. Instead of taking limits as z → λ ∈ (−2, 2) from either side of the cut in
the λ-plane, we exploit the fact that the interval (−2, 2) is the image of the unit circle ∂D under
the transform. Specifically, each point λ ∈ (−2, 2) corresponds to two distinct pre-images on ∂D:

k1 = eiθ, k2 = e−iθ = k1, ϕ ∈ (−π, 0).

One can easily see this in Lemma 1.22. Thus, the discontinuity of the Green’s kernel at λ ∈ (−2, 2)
is captured by evaluating G at these two pre-images in the k-plane. This approach avoids the
need to compute explicit limits in the λ-plane, providing a more direct and elegant analysis.

This applies directly to analyzing H0. When using this argument on Hα one must take into
account the to parameters ξ and η.

2.3.1 Spectral measure of H0

If we set α = 0, the analysis is quite straightforward. The resolvent operator for H0 reads

Gm,n(λ) =
k|m−n|

k − k−1
.
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For λ ∈ (−2, 2) we have corresponding θ ∈ (0, π) by λ = 2 cos θ. Due to the argument above, we
have k = eiθ and

lim
z→2 cos θ
Imz>0

(Gm,n(z)−Gm,n(z)) = Gm,n(k)−Gm,n(k).

We abuse the notation by writing G(λ) = G(k), where the dependence on λ is implicit through
the Joukowsky transform.

We set N = |m− n| and evaluate

kn

k − k−1
− k

n

k − k−1 =
e−inθ

e−iθ − eiθ
− einθ

eiθ − e−iθ
=
einθ + e−inθ

eiθ − e−iθ
=

i cos(nθ)

sin θ
.

This results in the spectral density of H0 taking the form

dµm,n

dλ
=

1

2π

cos
(
|m− n|θ

)
sin θ

.
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Figure 2.7: Spectral density of H0.

2.3.2 Spectral measure of Hα

When considering α ̸= 0 real, the situation becomes quite tedious. There is one or two
connected components of the spectrum. We need to differentiate which connected component,
or line segment, we are approaching and whether we are approaching their intersection. In this
section, we will be using the (2.1.11) formulation of the resolvent operator.

• Let λ ∈ (2, 2) ∩ (−2 + α, 2 + α). Of course, this set is non-empty if and only if λ ∈
(−4, 4). Since λ resides in both line segments simultaneously, both Joukowsky parameters
ξ and η are equal to 1 in absolute value; therefore, we can write ξ = eiϕ and η = eiθ,
where ϕ(θ) = arccos

(
cos θ + α

2

)
from (1.3.6). Once again we abuse the notation and write

G(λ) = G(ξ, η). For each quadrant of the matrix G(λ) we calculate the spectral density
separately.
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– Let m ≥ 0 and n < 0. Then

Gm,n(ξ, η)−Gm,n(ξ, η) =
ηmξn

ξ − η−1
− ηmξ

n

ξ − η−1
=
eimθe−inϕ

eiϕ − e−iθ
− e−imθeinϕ

e−iϕ − eiθ

= i
sin
(
mθ − nϕ− ϕ

)
− sin

(
mθ − nϕ+ θ

)
1− cos

(
ϕ+ θ

) ,

dµm,n

dλ
=

1

2π

sin
(
mθ − (n+ 1)ϕ

)
− sin

(
(m+ 1)θ − nϕ

)
1− cos

(
ϕ+ θ

) .

– Let m < 0 and n ≥ 0. Then similarly we have

dµm,n

dλ
=

1

2π

sin
(
nθ − (m+ 1)ϕ

)
− sin

(
(n+ 1)θ −mϕ

)
1− cos

(
ϕ+ θ

) .

– Let m ≥ 0 and n ≥ 0. Then

dµm,n

dλ
=

1

2π

cos
(
(m+ n)θ

)
− cos

(
|m− n|θ

)
sin θ

+
1

2π

sin
(
(m+ n)θ − ϕ

)
− sin

(
(m+ n+ 1)θ

)
1− cos(ϕ+ θ)

.

– Let m < 0 and n < 0. Then

dµm,n

dλ
=

1

2π

cos
(
(m+ n)ϕ− cos

(
|m− n|ϕ

))
sinϕ

+
1

2π

sin
(
(m+ n)ϕ− θ

)
− sin

(
(m+ n+ 1)ϕ

)
1− cos(ϕ+ θ)

.

• Let λ ∈ (−2, 2) and λ /∈ (−2 + α, 2 + α). In this case, we again have |ξ| = 1 so ξ = eiϕ.
The parameter η is no longer equal to 1 in absolute value and so it is uniquely determined
by λ. Since α ∈ R, η ∈ (−1, 1).

– Let m ≥ 0 and n < 0. Then

Gm,n(ξ, η)−Gm,n(ξ, η) =
ηme−inϕ

einϕ − η−1
− ηme+inϕ

e−inϕ − η−1

= 2iηm
sin(nϕ)η−1 − sin

(
(n+ 1)ϕ

)
1− 2η−1 cosϕ+ η−2

,

dµm,n

dλ
=
ηm

π

sin(nϕ)η−1 − sin
(
(n+ 1)ϕ

)
1− 2η−1 cosϕ+ η−2

.

– Let m < 0 and n ≥ 0. Then

dµm,n

dλ
=
ηn

π

sin(mϕ)η−1 − sin
(
(m+ 1)ϕ

)
1− 2η−1 cosϕ+ η−2

.

– Let m ≥ 0 and n ≥ 0. Then

dµm,n

dλ
= −η

m+n

π

sin(ϕ)

1− 2η−1 cosϕ+ η−2
.

– Let m < 0 and n < 0. Then

dµm,n

dλ
=

1

2π

cos
(
(m+ n)ϕ− cos

(
|m− n|ϕ

))
sinϕ

+
1

π

η−1 sin
(
(m+ n)ϕ

)
− sin

(
(m+ n+ 1)ϕ

)
1− 2η−1 cosϕ+ η−2

.
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• Let λ /∈ (−2, 2) and λ ∈ (−2 + α, 2 + α). In this case, we again have |η| = 1 so η = eiθ.
This time the parameter ξ is no longer equal to 1 in absolute value and so it is uniquely
determined by λ.

– Let m ≥ 0 and n < 0. Then

dµm,n

dλ
=
ξ−n

π

ξ sin(mθ)− sin
(
(m+ 1)θ

)
ξ2 − 2ξ cos θ + 1

.

– Let m < 0 and n ≥ 0. Then

dµm,n

dλ
=
ξ−m

π

ξ sin(nθ)− sin
(
(n+ 1)θ

)
ξ2 − 2ξ cos θ + 1

.

– Let m ≥ 0 and n ≥ 0. Then

dµm,n

dλ
=

1

2π

cos
(
(m+ n)θ

)
− cos

(
|m− n|θ

)
sin θ

+
1

π

ξ sin
(
(m+ n)θ

)
− sin

(
(m+ n+ 1)θ

)
ξ2 − 2ξ cos θ + 1

.

– Let m < 0 and n < 0. Then

dµm,n

dλ
= −ξ

−m−n

π

sin(θ)

ξ2 − 2ξ cos θ + 1
.
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Figure 2.8: Spectral density of Hα for two values of α.
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Chapter 3

Spectral properties of Hα under small
complex perturbations

In this section, we demonstrate the existence, possibly uniqueness, and asymptotic behavior
of eigenvalues, while a small potential V is added. If an operator emits eigenvalues under these
small perturbations, we say that the operator exhibits weak coupling. Some operators do not
emit eigenvalues when a small potential is added, the spectrum remains the same, when this is
the case we say that the operator exhibits spectral stability.

3.1 Weak coupling of H0

In this section, we work out a discrete analog to some results from [16], see also [13] for a
pedagogical text. The article showed that under some assumptions posed upon the potential V ,
there exists a unique negative bound state of the Schrödinger operator −d2/dx2 + V on L2(R).

Consider the discrete Laplace operator, i.e. discrete Schrödinger operator with zero potential,
or H0. Let us first describe some basic properties of this operator, since they do not immediately
arise from the case of the Schrödinger operator with complex step potential. Though our notation
Hα is consistent with this case, we denote the Laplace operator H0. Its action on x ≡ {xn}n∈Z ∈
ℓ2(Z) is given by

(H0x)n = xn−1 + xn+1 n ∈ Z.

As discussed in Section 1.3, the Joukowsky transform of the spectral parameter λ will be
denoted by k, i.e. λ = k + k−1. The operator H0 is self-adjoint. As a well-known fact, we state
that the spectrum of H0 coincides with the interval [−2, 2]. The matrix representation of the
resolvent operator which reads

(H0 − λ)−1
m,n = (H0 − k − k1)−1

m,n =
k|m−n|

k − k−1
, m, n ∈ Z, 0 < |k| < 1,

is consistent with (2.1.11), if we set α = 0.
Since the discrete version of the Laplacian is bounded, there arises a significant difference

to the continuous version. The spectrum of the continuous Laplacian is [0,∞); therefore, one
needs to consider only the left neighborhood of zero when looking for bound states. In the case
of the discrete Laplace operator, we need to investigate both the neighborhood of 2 and the
neighborhood of −2. However, the following proposition allows us to investigate, in fact, only
one of these cases because the behavior is equivalent.
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Proposition 3.1: Consider the Laplace operator H0 and let V = diag
({
vn}n∈Z

)
be a bounded

potential. Then the spectrum of the Schrödinger operator HV := H0 + V satisfies

σ(HV ) = −σ(H−V ).

Proof. Let x = {xn}n∈Z ∈ ℓ2(Z) and consider the unitary operator U given by (Ux)n = (−1)nxn.
Then

U−1HV Ux = UHV Ux = UHV Ux = UHV U{xn} = UHV {(−1)nxn}
= U{(−1)n−1xn−1 + (−1)nvnxn + (−1)n−1xn−1} = {−xn−1 + vnxn − xn+1} = −H−V x.

Since this operation does not change the spectrum and scaling the operator by −1 also scales
the spectrum as a subset of C by −1 we have

σ(HV ) = σ(−H−V ) = −σ(H−V ).

Before we move further, let us reiterate the Birman–Schwinger principle (Theorem 1.13) which
states that, whenever v ∈ ℓ1(Z), any λ ∈ ρ(H0) is an eigenvalue of H0 + V if and only if −1 is
an eigenvalue of the Birman–Schwinger operator K(λ). The entries of its matrix representation
read

Km,n(λ) =
√
|vm|

k|m−n|

k − k−1

√
|vn| sgn vn, m, n ∈ Z.

Later, we will be scaling the potential V by some small ε > 0, for this purpose, we will denote
Hε := H0+εV . The Birman–Schwinger principle still holds in the following sense. Any λ ∈ ρ(H0)
is an eigenvalue of Hε if and only if −1 is an eigenvalue of εK(λ).

The trick is to decompose the Birman–Schwinger operator into the sum of a well-behaved
operator and a rank-one operator as follows

K(λ) = L(λ) +M(λ),

where the matrix entries of these operators read

Lm,n(λ) :=
√
|vm|

1

k − k−1

√
|vn| sgn vn,

Mm,n(λ) :=
√
|vm|

k|m−n| − 1

k − k−1

√
|vn| sgn vn.

The operator L(λ) is rank-one. Indeed, if we take ψ ∈ ℓ2(Z), we have for m ∈ Z

(
L(λ)ψ

)
m

=
∑
n∈Z

Lm,n(λ)ψn =
∑
n∈Z

√
|vm|

1

k − k−1

√
|vn| sgn vnψn

=
1

k − k−1

(∑
n∈Z

√
|vn| sgn vnψn

)√
|vm| =

1

k − k−1
⟨v1/2, ψ⟩

√
|vm|.

Lemma 3.2: Let N ≥ 0. The complex function f given by

f(z) :=
zN − 1

z−1 − z
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satisfies
sup
z∈D+

|f(z)| ≤ N√
2
,

where D+ := {z ∈ C | |z| ≤ 1, Rez > 0}.

Proof. Let N be an even number, then there is some k such that N = 2k. Then we rewrite

f(z) = −z 1− (z2)k

1− z2
= −z

k−1∑
i=0

z2i

and estimate its absolute value on the unit disk

|f(z)| ≤ |z|
k−1∑
i=0

|z|2i ≤ k =
N

2
≤ N√

2
.

Though the last estimate is unnecessarily crude, we still take it since it leads to a consistent
result with N being odd.

If, on the other hand, N is an odd number the situation is more complex. We writeN = 2k+1.
The function f then takes the form

f(z) = −z 1− z
2k+1

1− z2
= − z

1 + z

1− z2k+1

1− z
= − z

1 + z

2k∑
i=0

zi.

Let us define
g(z) :=

z

1 + z
.

Since g is holomorphic on D+ and continuous up to the boundary, we shall use the maximum
modulus principle to determine

sup
z∈D+

|g(z)|.

We need only to evaluate the supremum on the boundary, which we decompose into a line
segment and a half circle.

A Let z = it, where t ∈ (−1, 1). Then we have

g(it) =
it

1 + it
= t

i + t

1 + t2
,

|g(it)|2 = t2
1 + t2

(1 + t2)2
=

t2

1 + t2
,

d

dt
|g(it)|2 = 2t

(1 + t2)2
.

The only root of the derivative is at t = t where a minimum is attained. Thus, this yields

sup
t∈(−1,1)

|g(it)| = |g(i)| = 1√
2
.
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B Let z = eiθ, where θ ∈ (−π
2 ,

π
2 ). Then we have

g(eiθ) =
eiθ

1 + eiθ
,

|g(eiθ)|2 = (cos2 θ + cos θ − sin2 θ)2 + (sin θ + 2 cos θ sin θ)2

(2 + 2 cos θ)2
=

1

2 + 2 cos θ
,

d

dt
|g(eiθ)|2 = sin θ

2(1 + cos θ)
.

Again the only root of the derivative is at θ = 0 where the minimum is attained. Thus,
the supremum is at the endpoint

sup
θ∈(−π/2,π/2)

|g(eiθ)| = |g(e
iπ
2 )| = 1√

2
.

With this established, we can estimate the absolute value of f on the set D+

|f(z)| = |g(z)|

∣∣∣∣∣
2k∑
i=0

zi

∣∣∣∣∣ ≤ 1√
2

2k∑
i=0

|z|i ≤ 1√
2

2k∑
i=0

1 =
1√
2
(2k + 1) =

N√
2
.

Remark. The matrix entries of M(λ) as functions of λ are not defined at λ = 0, 2, corresponding
to k = 0, 1, as was shown in the proof of Lemma 3.2, these are, in fact, removable singularities.
By continuous extensions, we may consider M to be defined on C+ := {z ∈ C | Rez ≥ 0}.

Proposition 3.3: Let v ∈ ℓ1(Z,m2), then

∀λ ∈ C,Reλ ≥ 0 : ∥M(λ)∥ ≤
√
2∥v∥ℓ1(Z,m2).

Proof. We estimate the standard operator norm by the Hilbert–Schmidt norm, then we estimate
using Lemma 3.2:

∥M(λ)∥2 ≤ ∥M(λ)∥2HS =
∑

m,n∈Z
|Mm,n(λ)|2 =

∑
m,n∈Z

|vm|
(
k|m−n| − 1

k − k−1

)2

|vn|

≤
∑

m,n∈Z
|vm|
|m− n|2

2
|vn| ≤

∑
m,n∈Z

|vm|(m2 + n2)|vn|

=
∑

m,n∈Z
m2|vm||vn|+

∑
m,n∈Z

n2|vm||vn| = 2
∑

m,n∈Z
m2|vm||vn|

= 2
∑
m∈Z

m2|vm|
∑
n∈Z
|vn| ≤ 2

(
|v0|+

∑
n∈Z
|vn|n2

)2

= 2∥v∥2ℓ1(Z,m2).

Lemma 3.4: Let v ∈ ℓ1(Z,m2). Then there exists ε1 for which all ε ∈ (0, ε1) satisfy

λ = k + k−1 ∈ σp(Hε) ⇐⇒ k − k−1 + ε
〈
v1/2,

(
I + εM(λ)

)−1|v|1/2
〉
= 0,

where Hε := H0 + εV .
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Proof. To ensure the invertibility of
(
I+εM(λ)

)
we use Lemma 3.3 and choose ε1 > 0 such that

any ε < ε1 satisfies ε
√
2∥v∥ℓ1(Z,m2) < 1. Then we can write

I + εK(λ) =
(
I + εM(λ)

)(
I +

(
I + εM(λ)

)−1
εL(λ)

)
.

With all of this stated, we arrive at three equivalent statements

−1 ∈ σp
(
εK(λ)

)
⇐⇒ λ ∈ σd(Hε) ⇐⇒ det

(
I +

(
I + εM(λ)

)−1
εL(λ)

)
= 0.

If we denote

Xm : =
∑
n∈Z

(
I +M(λ)

)−1

m,n
|vn|1/2

Ym : = (v1/2)m,

we can write (
I +M(λ)

)−1
εL(λ) =

ε

k − k−1
XY T

and easily find the spectrum of this rank-one operator

σ
( ε

k − k−1
XY T

)
=
{ ε

k − k−1
XTY, 0

}
.

Since a rank-one operator is a trace class operator, we can use Theorem 1.16,

det(I +A) =
∏

λ∈σ(A)

(1 + λ),

to get

det
(
I +

(
I + εM(λ)

)−1
εL(λ)

)
= 1+

ε

k − k−1
XTY = 1+

ε

k − k−1

〈
v1/2,

(
I + εM(λ)

)−1|v|1/2
〉
.

From this, the assertion of the lemma clearly follows.

Theorem 3.5: Let v ∈ ℓ1(Z,m2) and denote U :=
∑

n∈Z vn. Then ∃ε0 > 0 such that ∀ε ∈ (0, ε0)
we have

ReU > 0 : σd(Hε) ∩Bε0(2) = {λε},
ReU < 0 : σd(Hε) ∩Bε0(−2) = {λε},

and the following asymptotic formula holds

λε = 2sgn (ReU) +
ε2U2

4
+ o(ε2) as ε→ 0+.

Proof. Unless stated otherwise, the proof will show only the case ReU > 0 as the other case is
analogous. Choose ε1 > 0 such that any ε < ε1 satisfies ε

√
2∥v∥ℓ1(Z,m2) < 1 and apply Lemma

3.4. Then we need only show that the equation

k − k−1 + ε
〈
v1/2,

(
I + εM(λ)

)−1|v|1/2
〉
= 0 (3.1.1)
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has a solution. Let us investigate the inner product more closely

〈
v1/2,

(
I + εM(λ)

)−1|v|1/2
〉
=

∞∑
n=0

(−1)nεn
〈
v1/2, M

n(λ)|v|1/2
〉

= U +
∞∑
n=1

(−1)nεn
〈
v1/2, M

n(λ)|v|1/2
〉

= U + Ũ ,

where Ũ is dependent on λ and ε. Now let us estimate the absolute value of Ũ and in doing so
evaluate its asymptotic behavior as ε→ 0+,

|Ũ | ≤ ∥v∥ℓ1
∞∑
n=1

εn∥M(λ)∥n = ∥v∥ℓ1
ε
√
2∥v∥ℓ1(Z,m2)

1− ε
√
2∥v∥ℓ1(Z,m2)

≤ Cε = O(ε) as ε→ 0+,

where C > 0 is a constant independent on λ and ε. Now let us reparametrize k in term of a new
variable z, i.e. z 7→ k(z), like so

k − k−1 = −εU(1 + z).

This reparametrization is a bijective map between

D \ {0} ←→ C \
[ 2i
εU
− 1, − 2i

εU
− 1
]
.

By taking the convex combination of the two endpoints of the line segment we can easily show
that 0 is not an element of the line segment if and only if ReU ̸= 0 and so z may be 0. This
parametrization greatly simplifies equation (3.1.1) like so

−εU(1 + z) + ε(U + Ũ) = 0

−zU + Ũ = 0.

For later use of Rouché’s theorem, we define two function

f(z) := −zU + Ũ ,

g(z) := −zU.

These are clearly holomorphic functions on the domain of z. Let us estimate the absolute value
of their difference

|f(z)− g(z)| = |Ũ | < εC = δ|U | = |g(z)|

for z ∈ ∂Bδ(0) where δ := εC
|U | . To ensure the holomorphic property of f and g, Bδ(0) needs to

lie within the domain of z, i.e. [ 2i
εU
− 1, − 2i

εU
− 1
]
∩Bδ(0) = ∅.

To achieve this, we further need to restrict ε such that

δ < dist
(
0,
[ 2i
εU
− 1, − 2i

εU
− 1
])
.

This is possible since the interval does not intersect the origin whenever ReU ̸= 0. From Rouché’s
theorem then follows that ∀ε ∈ (0, ε1) the functions f and g have the same number of zeros
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including multiplicity in Bδ(0). Clearly the function g has exactly one zero in this set and that
is the origin. Let us denote the unique simple zero of the function f as z0 = z0(ε). Clearly as
ε approaches zero, δ also approaches zero, and so z0(ε) = o(1) as ε → 0+. From the bijective
nature of the reparametrization we get a unique k0 such that

k0 − k−1
0 = −εU

(
1 + z0(ε)

)
.

The right-hand side of the equation tends to zero as ε → 0+ and so k0 = k0(ε) ∈ D \ {0} is
either in some neighborhood of 1, H1, or some neighborhood of -1, H−1, depending on the sign
of ReU . Taking the real part of the equation

Re
(
k0 − k−1

0

)
= −εReU + o(ε) as ε→ 0+,

we can clearly see the dependence on the sign of ReU

ReU > 0 : k0(ε) ∈ D ∩H1

ReU < 0 : k0(ε) ∈ D ∩H−1.

Let us finish the proof by deriving the asymptotic formula. Again we assume that ReU > 0
the other case is analogous. Under this assumption k0(ε) is in some neighborhood of 1 and so

λε = k0(ε) + k−1
0 (ε) ∈ H2 \ [−2, 2].

The asymptotic formula then follows from

k0(ε)− k−1
0 (ε) = −εU(1 + o(ε))

λ2ε = 4 + ε2U2 + o(ε2)

λε = 2 +
ε2U2

4
+ o(ε2),

where we squared the first equation and expressed λε from k0(ε) as λ2− 4 = (k−k−1)2, then we
took the square root of the second equation and expanded the square root to the first degree.

Remark. The approach using the Rouché’s theorem allows us to assert only the local uniqueness
of the eigenvalue. For a given potential with a positive sum, there exists a neighborhood of
2 within which there is exactly one eigenvalue. This approach is weaker in its assertion when
compared to [16] but relaxes the assumption on the potential V which is no longer restricted to
real values. The reason is the lack of variational min-max principle for non-self-adjoint operators.

3.2 Spectral stability of Hα

In this section, we prove that the operator Hα exhibits spectral stability for all α ̸= 0. This
means that if we apply a V , under certain assumptions the spectrum remains the same. Moreover,
there are no eigenvalues embedded in the essential spectrum, i.e. the purely continuous spectrum
of Hα remains purely continuous for Hα + V .

First, we need to establish some auxiliary results.
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Lemma 3.6: Let m,n ≥ 0. The complex function f given by

f(z) :=
zm+n − z|m−n|

z−1 − z

satisfies
sup
|z|≤1
|f(z)| = m+ n− |m− n|

2
.

Proof. The expression defining the function f is not well defined at z ∈ {0,±1}, where removable
singularities exist. We can rewrite f as

zm+n − z|m−n|

z−1 − z
= −z|m−n|+1 1− zm+n−|m−n|

1− z2
⋆
= −z|m−n|+1 1− z2k

1− z2
= −z|m−n|+1

k−1∑
j=0

z2j .

The marked equality holds because (m + n) and |m − n| have the same parity, meaning their
difference is even. Thus, we can write 2k = m + n − |m − n| for some integer k. Taking the
absolute value of f in this form and applying the triangle inequality, we obtain |f(z)| ≤ k, for
|z| ≤ 1. Finally, we confirm that this bound is achieved at z = 1. Substituting z = 1 into the
expression for f(z) yields

f(1) =
m+ n− |m− n|

2
.

Next, we use this lemma to derive a global estimate for the absolute values of the Green’s
kernel of Hα. Recall the global estimate |w|−1 ≤ C(α), see (1.3.5).

Lemma 3.7: Let us define a doubly infinite matrix M by setting

Mm,n :=



m+n−|m−n|
2 + C(α) if m,n ≥ 0,

C(α) if m ≥ 0, n < 0,

−m−n−|m−n|
2 + C(α) if m,n < 0,

C(α) if m < 0, n ≥ 0.

Then
∀λ ∈ ρ(Hα), ∀m,n ∈ Z : |Gm,n(λ)| ≤Mm,n.

Proof. If we estimate the absolute value of the entries of G(λ) as expressed in (2.1.11) by applying
triangle inequality, using Lemmas 3.6 and 1.20, we obtain the matrix M as an upper bound.

With the estimate of the Green’s kernel established, we can estimate the norm of the Birman–
Schwinger operator. Recall the notation for weighted ℓ1-spaces, see Notation 1.6.

Proposition 3.8: Let α ̸= 0 and v ∈ ℓ1(Z,m2). Then the following estimate holds

∀λ ∈ ρ(Hα) : ∥K(λ)∥ ≤ (1 + C(α)) ∥v∥ℓ1(Z,m2).
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Proof. Before we move to the calculation itself, let us first show some estimates that we will be
using. For m,n ≥ 0 we have

m+ n− |m− n| ≤ m+ n and
(m+ n− |m− n|)2

4
≤ (m+ n)2

4
≤ m2 + n2

2
.

Similarly, for m,n < 0 we estimate

−m− n− |m− n| ≤ −m− n and
(−m− n− |m− n|)2

4
≤ (−m− n)2

4
≤ m2 + n2

2
.

We will be calculating the Hilbert–Schmidt norm as it dominates the operator norm and it is
easier to calculate. Further on, we will use the matrix M from Lemma 3.7 to estimate the
absolute value of matrix entries of G(λ). With this established, we calculate

∥K(λ)∥2 ≤ ∥K(λ)∥2HS =
∑

m,n∈Z

∣∣∣√|vm| Gm,n(λ)
√
|vn| sgn vn

∣∣∣2
=
∑

m,n∈Z
|vm|

∣∣Gm,n

∣∣2|vn| ≤ ∑
m,n∈Z

|vm|M2
m,n|vn| =:

∑
m,n∈Z

M̃m,n

∥K(λ)∥2 ≤
∑
m≥0
n≥0

M̃m,n

︸ ︷︷ ︸
A

+
∑
m≥0
n<0

M̃m,n

︸ ︷︷ ︸
B

+
∑
m<0
n<0

M̃m,n

︸ ︷︷ ︸
C

+
∑
m<0
n≥0

M̃m,n

︸ ︷︷ ︸
D

.

We estimate each of the sums separately:

A =
∑
m≥0
n≥0

|vm|
(
m+ n− |m− n|

2
+ C(α)

)2

|vn|

=
∑
m≥0
n≥0

(m+ n− |m− n|)2

4
|vm||vn|

︸ ︷︷ ︸
A1

+
∑
m≥0
n≥0

C(α)
(
m+ n− |m− n|

)
|vm||vn|

︸ ︷︷ ︸
A2

+C(α)2
∑
m≥0

|vm|
∑
n≥0

|vn|︸ ︷︷ ︸
A3

A1 ≤
1

2

∑
m≥0
n≥0

(
m2 + n2

)
|vm||vn| =

1

2

(∑
m≥0

m2|vm|
∑
n≥0

|vn|+
∑
m≥0

|vm|
∑
n≥0

n2|vn|
)

=
∑
m≥0

m2|vm|
∑
n≥0

|vn|

A2 ≤ C(α)
∑
m≥0
n≥0

(
m+ n

)
|vm||vn| = C(α)

(∑
m≥0

m|vm|
∑
n≥0

|vn|+
∑
m≥0

|vm|
∑
n≥0

n|vn|
)

= 2C(α)
∑
m≥0

m|vm|
∑
m≥0

|vn|
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C =
∑
m<0
n<0

|vm|
(
−m− n− |m− n|

2
+ C(α)

)2

|vm| =
∑
m<0
n<0

(−m− n+ |m− n|)2

4
|vm||vn|

︸ ︷︷ ︸
C1

+
∑
m<0
n<0

C(α)
(
−m− n− |m− n|

)
|vm||vn|

︸ ︷︷ ︸
C2

+C(α)2
∑
m<0

|vm|
∑
n<0

|vn|︸ ︷︷ ︸
C3

C1 ≤
1

2

∑
m<0
n<0

(
m2 + n2

)
|vm||vn| =

1

2

(∑
m<0

m2|vm|
∑
n<0

|vn|+
∑
m<0

|vm|
∑
n<0

n2|vn|
)

=
∑
m<0

m2|vm|
∑
n<0

|vn|

C2 ≤ C(α)
∑
m<0
n<0

(
−m− n

)
|vm||vn| = C(α)

(∑
m<0

|m||vm|
∑
n<0

|vn|+
∑
m<0

|vm|
∑
n<0

|n||vn|
)

= 2C(α)
∑
m<0

|m||vm|
∑
n<0

|vn|

B =
∑
m≥0
n<0

|vm|C(α)2|vn| = C(α)2
∑
m≥0

|vm|
∑
n<0

|vn| D =
∑
m<0
n≥0

|vm|C(α)2|vn| = C(α)2
∑
m<0

|vm|
∑
n≥0

|vn|.

A3 +B + C3 +D

= C(α)2
(∑

m≥0

|vm|
∑
n≥0

|vn|+
∑
m≥0

|vm|
∑
n<0

|vn|+
∑
m<0

|vm|
∑
n<0

|vn|+
∑
m<0

|vm|
∑
n≥0

|vn|
)

= C(α)2
(∑

m≥0

|vm|
∑
n∈Z
|vn|+

∑
m<0

|vm|
∑
n∈Z
|vn|
)
= C(α)2

∑
n∈Z
|vn|

∑
m∈Z
|vm| = C(α)2∥v∥2ℓ1(Z),

A1 + C1 ≤
∑
m≥0

m2|vm|
∑
n≥0

|vn|+
∑
m<0

m2|vm|
∑
n<0

|vn|

≤
∑
m≥0

m2|vm|
∑
n∈Z
|vn|+

∑
m<0

m2|vm|
∑
n∈Z
|vn| =

∑
m∈Z

m2|vm|
∑
n∈Z
|vn| = ∥v∥ℓ1(Z,m2)∥v∥ℓ1(Z),

A2 + C2 ≤ 2C(α)
(∑

m≥0

m|vm|
∑
n≥0

|vn|+
∑
m<0

|m||vm|
∑
n<0

|vn|
)

≤ 2C(α)
(∑

m≥0

m|vm|
∑
n∈Z
|vn|+

∑
m<0

|m||vm|
∑
n∈Z
|vn|
)

= 2C(α)
∑
m∈Z
|m||vm|

∑
n∈Z
|vn| = 2C(α)∥v∥ℓ1(Z,m1)∥v∥ℓ1(Z).
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Adding everything together we get the assertion of the proposition.

∥K(λ)∥2 ≤ C(α)2∥v∥2ℓ1(Z) + ∥v∥ℓ1(Z,m2)∥v∥ℓ1(Z) + 2C(α)∥v∥ℓ1(Z,m1)∥v∥ℓ1(Z)

= ∥v∥ℓ1(Z)
(
C(α)2∥v∥ℓ1(Z) + ∥v∥ℓ1(Z,m2) + 2C(α)∥v∥ℓ1(Z,m1)

)
≤ ∥v∥ℓ1(Z,m2)

(
C(α)2∥v∥ℓ1(Z,m2) + ∥v∥ℓ1(Z,m2) + 2C(α)∥v∥ℓ1(Z,m1)

)
= (1 + C(α))2 ∥v∥2ℓ1(Z,m2)

The last estimate is unnecessarily rough but as we have mentioned above our objective here is
not optimality. At this point, we prefer simpler expressions to finer though more complicated
upper bounds.

The following result will be used to prove that there are no embedded eigenvalues in the
essential spectrum.

Proposition 3.9: Assume α ̸= 0 and v ∈ ℓ1(Z). Let λ ∈ σ(Hα) be an eigenvalue of Hα + V ,
i.e. there exists a non-zero vector u ∈ ℓ2(Z) satisfying (Hα + V )u = λu. Then

∀m ∈ Z :
((
I +K(λ+ iε)

)
V1/2u

)
m
−→ 0 as ε→ 0+.

Proof. Choose an m ∈ Z fixed. The eigenvalue equation implies vmum = λum − (Hαu)m. Then
we have(

K(λ+ iε)V1/2u
)
m

=
(
V1/2(Hα − λ− iε)−1V u

)
m

= sgn vm
√
|vm|

∑
n∈Z

Gm,n(λ+ iε)vnun

= sgn vm
√
|vm|

∑
n∈Z

Gm,n(λ+ iε)
(
λum − (Hαu)m

)
.

Let us investigate only a part of the previous expression∑
n∈Z

Gm,n(λ+ iε)vnun =
∑
n∈Z

Gm,n(λ+ iε)
(
λum + iεum − (Hαu)m

)
− iε

∑
n∈Z

Gm,n(λ+ iε)um

=
〈
Gm,·(λ+ iε), (λ+ iε−Hα)u

〉
− iε

∑
n∈Z

Gm,n(λ+ iε)um

=
〈
(Hα − λ− iε)Gm,·(λ+ iε), u

〉
− iε

∑
n∈Z

Gm,n(λ+ iε)um

= −⟨em, u⟩ − iε
∑
n∈Z

Gm,n(λ+ iε)um

= −um − iε
〈
Gm,·(λ+ iε), u

〉
.

Now we plug this result back into the previous expression and obtain((
I +K(λ+ iε)

)
V1/2u

)
m

= −iε sgn vm
√
|vm|

〈
Gm,·(λ+ iε), u

〉
.

If we show that the right hand side approaches vanishes as ε→ 0+, the proof will be complete.
To this end we estimate the absolute value of the right hand side of the expression above using
the Cauchy–Schwarz inequality∣∣∣−iε sgn vm√|vm| ⟨Gm,·(λ+ iε), u⟩

∣∣∣ ≤ ε√|vm|∥Gm,·(λ+ iε)∥∥u∥.
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The proof is complete if we show that

ε∥Gm,·(λ+ iε)∥ → 0 as ε→ 0+. (3.2.1)

Recall that we denoted G̃ = wG and that from (1.3.5) we have |w|−1 ≤ C(α). For the
calculation of the norm ∥Gm,·(λ+ iε)∥ the formulation (2.1.10) is the most suitable. ξ and η are
the Joukowsky parameters of λ + iε. To ensure that λ + iε is always in the resolvent set of Hα

we assume that ε < |Imα|. This assumption necessitates that ξ and η are unique and less than
1 in absolute value. We have

∥G̃m,·(λ+ iε)∥2 =
∑
n∈Z

∣∣G̃m,n(λ+ iε)
∣∣2

=


∑∞

n=0

∣∣∣ ξ−η
η−1−η

ηm+n − ξ−η−1

η−η−1 η
|m−n|

∣∣∣2 +∑∞
n=1 |ηmξn|

2 m ≥ 0∑∞
n=1 |ηnξ−m|2 +

∑∞
n=1

∣∣∣η−1−ξ
ξ−1−ξ

ξ|m+n| − η−1−ξ−1

ξ−ξ−1 ηn−m
∣∣∣2 m < 0.

Let us estimate both expressions from above. For m ≥ 0 we have

∥G̃m,·(λ+ iε)∥2 ≤ 2|η|2m |ξ − η|2

|η−1 − η|2
∞∑
n=0

|η|2n + 2
|ξ − η−1|2

|η − η−1|2
∞∑

n=−m

|η|2|n| + |η|2m
∞∑
n=1

|ξ|2n

≤ 2
4

|η−1 − η|2
1

1− |η|2
+ 2

2 + 2|η|−2

|η − η−1|2
2

1− |η|2
+

1

1− |ξ|2
. (3.2.2)

And for m < 0 we estimate

∥G̃m,·(λ+ iε)∥2 ≤ |ξ|−2m
∞∑
n=1

|η|2n + 2
|η−1 − ξ|2

|ξ−1 − ξ|2
∞∑

n=1+m

ξ2|n| + 2|η|−2m |η−1 − ξ−1|2

|ξ − ξ−1|2
∞∑
n=1

|η|2n

≤ 1

1− |η|2
+ 2

2|η|−2 + 2

|ξ−1 − ξ|2
2

1− |ξ|2
+ 2

2|η|−2 + 2|ξ|−2

|ξ − ξ−1|2
1

1− |ξ|2
. (3.2.3)

For the remaining expression we need to derive asymptotic formulas as ε→ 0+.
Recall the asymptotic expansion of the Joukowsky parameter from Lemmas 1.22 and 1.24.

Corollaries 1.23 and 1.25 that followed yielded the asymptotic expansions for |k|2 and |k−k−1|2.
We apply these corollaries separately on ξ and η.

Let λ ∈ (−2, 2), then

|ξ|−2 = O(1), 1

1− |ξ|2
= O

(
ε−1
)
,

1

|ξ − ξ−1|2
= O(1) as ε→ 0+.

Let λ ∈ (−2 + α, 2 + α), then

|η|−2 = O(1), 1

1− |η|2
= O

(
ε−1
)
,

1

|η − η−1|2
= O(1) as ε→ 0+.

For the endpoints we have

λ ∈ {2,−2} : |ξ|−2= O(1), 1

1− |ξ|2
= O

(
ε−1/2

)
,

1

|ξ − ξ−1|2
= O

(
ε−1
)
,

λ ∈ {2 + α, 2 + α} : |η|−2= O(1), 1

1− |η|2
= O

(
ε−1/2

)
,

1

|η − η−1|2
= O

(
ε−1
)
.

60



as ε→ 0+. The remaining cases obey

λ /∈ [−2, 2] : ξ → c1 as ε→ 0+, where |c1| ∈ (0, 1),

λ /∈ [−2 + α, 2 + α] : η → c2 as ε→ 0+, where |c2| ∈ (0, 1).

The desired expressions follow

λ /∈ [−2, 2] : |ξ|−2 = O(1), 1

1− |ξ|2
= O (1) ,

1

|ξ − ξ−1|2
= O(1),

λ /∈ [−2 + α, 2 + α] : |η|−2 = O(1), 1

1− |η|2
= O (1) ,

1

|η − η−1|2
= O(1)

as ε→ 0+.
Recall that wG = G̃, and so ∥G(λ+ iε)∥ ≤ C(α)∥G̃(λ+ iε)∥ = O (1) ∥G̃(λ+ iε)∥ as ε→ 0+.

By line segments we mean the two line segments [−2, 2] and [−2 + α, 2 + α]. Even though that
in the case that α ∈ [−4, 4] they combine into one large line segment, it is useful to view them
as two separate line segments. In the remaining part of the proof, we break down every case
we need to properly apply the asymptotic expansions and evaluate the asymptotic behavior of
∥Gm,·(λ+ iε)∥. For m ∈ Z we have

A : ∥Gm,·(λ+ iε)∥ = O
(
ε−1/2

)
,

B : ∥Gm,·(λ+ iε)∥ = O
(
ε−3/4

)
,

(3.2.4)

where

A: λ is not an endpoint of either line segment. We need to identify three distinct sub-cases

λ ∈ (−2, 2) ∪ (−2 + α, 2 + α),

λ ∈ (−2, 2) \ [−2 + α, 2 + α],

λ ∈ (−2 + α, 2 + α) \ [−2, 2].

B: λ is an endpoint of at least on of the line segments. Again we identify certain sub-cases

λ ∈ {2,−2 + α} for α ∈ (0, 4),

λ ∈ {−2,+2 + α} for α ∈ (−4, 0),
λ = ±4 for α = ±4,
λ ∈ {−2, 2,−2 + α, 2 + α} for α /∈ [−4, 4].

Each of these sub-cases corresponds with a certain set of asymptotic formulas for the expressions.
We plug them into (3.2.3) and (3.2.2) and obtain (3.2.4) regardless of m. This concludes the
proof because it implies (3.2.1).

Now we have everything necessary established to formulate and prove the main result of this
section.

Theorem 3.10: Let α ̸= 0 and v ∈ ℓ1(Z,m2). If we take the sequence v such that

(1 + C(α)) ∥v∥ℓ1(Z,m2) < 1,

then the potential V does not change the spectrum and there are no embedded eigenvalues, i.e.

σ(Hα) = σ(Hα + V ) = σc(Hα + V ).
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Proof. The interior of σ(Hα) is clearly empty in the topology of C and ρ(Hα) has one connected
component which has a non-empty intersection with ρ(Hα + V ) since Hα + V is bounded. The
operator V is compact. This satisfies the assumptions of Theorem 1.10 and is states that

σess(Hα) = σess(Hα + V ). (3.2.5)

Denote
(
1 + C(α)

)
∥v∥ℓ1(Z,m2) =: q < 1. If we estimate the norm of the Birman–Schwinger

operator K(λ) for λ ∈ ρ(Hα) according to Lemma 3.8, we get

∥K(λ)∥ ≤ q < 1. (3.2.6)

This rules out the possibility of −1 being an eigenvalue of K(λ). Let us reiterate the Birman–
Schwinger principle (Theorem 1.13): For λ ∈ ρ(Hα) we have

λ ∈ σp(Hα + V ) ⇐⇒ −1 ∈ σp(K(λ)).

Therefore, λ ∈ ρ(Hα) =⇒ λ /∈ σp(Hα + V ). From (3.2.5) follows that in ρ(Hα) the operator
Hα + V can have only eigenvalues. We then conclude that

σ(Hα + V ) ∩ ρ(Hα) = ∅.

Thus σ(Hα) = σ(Hα + V ) since the essential spectra are the same.
To show that the spectrum of Hα+V remain purely continuous, we use Proposition 3.9. Let

λ ∈ σ(Hα). Assume V ̸= 0 as the theorem clearly holds for V = 0. For a contradiction, suppose
λ ∈ σp(Hα + V ). By the definition of an eigenvalue, there exists a non-zero vector u ∈ ℓ2(Z)
such that (Hα + V )u = λu. Then Proposition 3.9 states that

∀m ∈ Z :
〈
en, (I +K(λ+ iε))V1/2u

〉
−→ 0 as ε→ 0+.

Hence,

∀x ∈ ℓ2(Z) :
〈
x, K(λ+ iε)V1/2u

〉
−→ −

〈
x, V1/2u

〉
as ε→ 0+.

Notice that V1/2u ̸= 0 otherwise λ ∈ σp(Hα) = ∅. If we plug in x = V1/2u and take the absolute
value, we get

lim
ε→0+

∣∣〈V1/2u, K(λ+ iε)V1/2u
〉∣∣ = ∥∥V1/2u∥∥2 .

On the other hand, if we take the Cauchy–Schwarz inequality first and then plug in the estimate
(3.2.6), we arrive at

lim
ε→0+

∣∣〈V1/2u, K(λ+ iε)V1/2u
〉∣∣ ≤ lim

ε→0+
∥K(λ+ iε)∥

∥∥V1/2u∥∥2 ≤ q ∥∥V1/2u∥∥2 .
This is a contradiction since q < 1. Therefore, λ ∈ σ(Hα) =⇒ λ /∈ σp(Hα + V ). Hence,
the point spectrum of Hα + V is empty. From (3.2.5) it follows that λ ∈ σ(Hα) =⇒ λ ∈
σc(Hα + V ) ∪ σr(Hα + V ).

Recall the decomposition (2.0.2). Since the point spectrum of Hα + V is empty, Theorem
2.2 asserts that the residual spectrum of Hα + V is empty. In Theorem 2.2, we set A = H0 and
B = αD + V which satisfy the assumptions of the theorem.

In conclusion, the potential V introduces no eigenvalues and the essential spectrum remains
the same and purely continuous.
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Conclusion

This master’s thesis is a direct continuation of the author’s Bachelor’s degree project, see [1],
and Research project, see [2]. We built upon the results obtained in those works. We introduced
the Joukowsky transform and further extended and proved additional assertions. The content
of the first chapter consisted also of some standard results from functional analysis and spectral
theory.

In the second chapter, we reiterated the basic spectral analysis of Hα found in [1]. The
bulk of this chapter was devoted to the pseudospectral analysis of Hα. The ε-pseudospectra are
strictly nested supersets of the spectrum where the resolvent operator’s norm is large. After
we mentioned the trivial case of self-adjoint operators, we showed estimates for ∥(Hα − λ)−1∥
from above and below. The Schur test served as the primary tool for obtaining upper bounds,
for which we provided a formulation in ℓ2(Z). The lower estimate was obtained by a general
estimation technique utilizing the distance from the numerical range. Using these estimates we
constructed a subset and a superset of the ε-pseudospectrum on the region of the complex plane
where we do not have general mathematical tools to describe it exactly. Asymptotic formulas
for the estimates of the resolvent operator’s norm were also given. We have also described the
spectral measure of Hα for Imα = 0.

The last chapter contains the main result. In [16], the existence and uniqueness of weakly-
coupled bound states were described for the operator −d2/dx2+ εV . The authors demonstrated
that if V is integrable with the weight (1 + x2)dx and ε is sufficiently small, the aforementioned
operator has at most one eigenvalue. Furthermore, this eigenvalue corresponds to a solution of a
specific algebraic equation. For all values of ε, an eigenvalue exists if and only if the mean value
of V is non-positive. We demonstrated that similar assertions hold true in the discrete setting.
Specifically, the operator H0 + εV has at most one eigenvalue in small neighborhoods of 2 or -2
depending on the sign of the sum of V when the potential is summable with quadratic weight
and ε is sufficiently small. However, the approach used, which asserts only local uniqueness of
the eigenvalue, allowed us to generalize the result to complex potentials.

We showed a similar behavior regarding spectral stability between the continuous Schrödinger
operator with a complex step potential, as described in [8], and its discrete counterpart that we
studied. When the complex step potential added to Hα is summable with quadratic weight and
sufficiently small, we provided proof that it does not generate any eigenvalues. Moreover, the
spectrum remains purely continuous. In other words, the operator Hα exhibits complete spectral
stability. The authors of [8], under similar assumptions imposed on the potential, showed that
the continuous operator H may not have eigenvalues outside the closure of the numerical range.
Furthermore, the smaller the potential, the greater the distance any eigenvalues must be from
the origin. The primary tool for these results in weak-coupling analysis and spectral stability
was the Birman–Schwinger principle.
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