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The discrete Schrodinger operator

Definitions

@ Let {en}nez stands for the standard basis of £2(Z).
@ The discrete Laplacian:

Hoen = en—1 + eny1, VneZ.
@ To a given complex sequence v € ¢°(Z), 1 < p < oo, we define the potential:

Ve, := vpen, VneZ.

@ The discrete Schrodinger operator:
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The discrete Schrodinger operator

Basic facts

@ One has
U(HO) = O'ess(Ho) = [—2,2].
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The discrete Schrodinger operator

Basic facts

@ One has
U(HO) = O'ess(Ho) = [—2,2].

@ Ifv, — 0,as n— +oo, then V is compact and
cess(Hv) = [-2,2].

@ The resolvent of Hy:

(Fo — ) ; kIm=nl

,;’n: W, Vm,nEZ,

where A = k=" + k.
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The discrete Schrodinger operator

Basic facts

@ One has
U(HO) = O'ess(Ho) = [—2,2].

@ Ifv, — 0,as n— +oo, then V is compact and
cess(Hv) = [-2,2].

@ The resolvent of Hy:

(Fo — ) ; kIm=nl

,;’n: W, Vm,nEZ,

where A = k=" + k.

@ The Joukowski map:
MK) =k +k

is 1—1 mapping of the punctured unit disk 0 < |k| < 1 onto C \ [-2, 2].
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The discrete Schrodinger operator

¢'-potentials

Theorem (¢'-potential)
Letv € £'(Z). Then

on(Hy) € {reC\(-2,2) | =4/ < [olffy }-
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¢'-potentials

Theorem (¢'-potential)

Letv € £'(Z). Then

on(Hy) € {reC\(-2,2) | =4/ < [olffy }-

In addition, the estimate is optimal in the following sense:
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The discrete Schrodinger operator

¢'-potentials

Theorem (¢'-potential)
Letv € £'(Z). Then

on(Hy) € {reC\(-2,2) | =4/ < [olffy }-

In addition, the estimate is optimal in the following sense:

To any boundary point of the spectral enclosure which does not belong to (-2, 2),
there exists an ¢! —potential V so that this boundary point is an eigenvalue of the
corresponding discrete Schrédinger operator Hy .
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The discrete Schrodinger operator

Geometry of the boundary curve

The boundary curve for Q := [|v]|y1(z: N -4 = Q%
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The discrete Schrodinger operator

Proof

@ The goal is to prove:

o) {rec\(-2,2) | =4/ < ol
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The discrete Schrodinger operator

Proof

@ The goal is to prove:

o) {rec\(-2,2) | =4/ < ol

@ Onehasv e ('(Z) = (-2,2)Nop(Hy)=0 (Jostsolution).
@ The points +2 are always included in the spectral enclosure.
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The discrete Schrodinger operator

Proof

@ The goal is to prove:

o) {rec\(-2,2) | =4/ < ol

@ Onehasv e ('(Z) = (-2,2)Nop(Hy)=0 (Jostsolution).
@ The points +2 are always included in the spectral enclosure.
@ For X ¢ [-2,2] = o(Hy), the proof relies on the Birman—Schwinger principle (one

implication):
A€op(Hy) = —1¢€0,p(K(N),
for
K() = V|2 (Ho = A)™" Vaje,
and

V|26, = \/|unlen and  V; pen = sgn(vn)y/|vnlen
with the complex signum function sgnz = z/|z|, if z # 0, and sgn 0 = 0.
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The discrete Schrodinger operator

Proof

@ The goal is to prove:

o) {rec\(-2,2) | =4/ < ol

@ Onehasv e ('(Z) = (-2,2)Nop(Hy)=0 (Jostsolution).
@ The points +2 are always included in the spectral enclosure.
@ For X ¢ [-2,2] = o(Hy), the proof relies on the Birman—Schwinger principle (one

implication):
A€op(Hy) = —1¢€0,p(K(N),
for
K() = V|2 (Ho = A)™" Vaje,
and

V|26, = \/|unlen and  V; pen = sgn(vn)y/|vnlen
with the complex signum function sgnz = z/|z|, if z # 0, and sgn 0 = 0.
@ In particular,

Aeop(H) = KA >1.]
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The discrete Schrodinger operator

Proof - the part based on the Birman—Schwinger principle

o Let A ¢ [-2,2] = o(Ho).
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The discrete Schrodinger operator

Proof - the part based on the Birman—Schwinger principle

o Let A ¢ [-2,2] = o(Ho).
@ Then A = k=" 4 k with |k| < 1 and one has

L TR
k=& S Tk—k T e a

|(Ho = N

vm,n € 7.
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The discrete Schrodinger operator

Proof - the part based on the Birman—Schwinger principle

o Let A ¢ [-2,2] = o(Ho).
@ Then A = k=" 4 k with |k| < 1 and one has

L R
k=& S Tk—k T~ /e 4

|(Ho = N

, VYm,n¢eZ.

@ For any o € (2(Z), we estimate

KWl <D (Z Vvn| )(Ho — N

meZ \nez

\/an>2

- Wlog [P
< = ap | 2o Vvl MJ a1l

meZ
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The discrete Schrodinger operator

Proof - the part based on the Birman—Schwinger principle

o Let A ¢ [-2,2] = o(Ho).
@ Then A = k=" 4 k with |k| < 1 and one has

L R
k=& S Tk—k T~ /e 4

|(Ho = N

, VYm,n¢eZ.

@ For any o € (2(Z), we estimate

KWl <D (Z Vvn| )(Ho — N

\/an>2

meZ \n€Z
anm < Il
|)\2 ZWWn |)\2 4] ||¢||22(z
meZ
@ In other words, [|lv ||@1
K(X
IKOI® < ot
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The discrete Schrodinger operator

Proof - the part based on the Birman—Schwinger principle

o Let A ¢ [-2,2] = o(Ho).
@ Then A = k=" 4 k with |k| < 1 and one has

L R
k=& S Tk—k T~ /e 4

|(Ho = N

, VYm,n¢eZ.

@ For any o € (2(Z), we estimate

KWl <D (Z Vvn| )(Ho — N

\/an>2

meZ \n€Z
anm < Il
|)\2 ZWWn |)\2 4] ||¢||22(z
meZ
@ In other words, [|lv ||@1
K(X
IKOI® < ot

@ Thus, if X € op(Hy), then| [A* — 4] < [|v][% 4,
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The discrete Schrodinger operator

Many works make use of the Birman—Swinger principle...

Many various spectral bounds (mainly) for differential operators such as Schrédinger
and Dirac operators were obtained by applying the Birman—Schwinger principle.
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The discrete Schrodinger operator

Many works make use of the Birman—Swinger principle...

Many various spectral bounds (mainly) for differential operators such as Schrédinger
and Dirac operators were obtained by applying the Birman—Schwinger principle.

An incomplete list of authors:

Abramov, Aslanyan, Behrndt, Cuenin, Davies, Enblom, Frank, Fanelli, Ibrogimov, Krej—
¢ifik, Langer, Laptev, Lee, Lieb, Lotoreichik, Rohleder, Safronov, Seiringer, Seo, Tretter,
Vega,...
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The optimality

@ Delta potential:
Un 1= wbno, VNELZ,

where w € C is a coupling constant.
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@ Delta potential:
Un 1= wbno, VNELZ,

where w € C is a coupling constant.
@ The operator Hy demonstrates the optimality!
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The optimality

@ Delta potential:
Un 1= wbno, VNELZ,

where w € C is a coupling constant.
@ The operator Hy demonstrates the optimality!

@ Forw e C\ [-2i,2i],
Ao 1= Vw2 +4 € op(Hy).

Franti$ek Stampach (FIT CTU in Prague) 1D discrete Schrédinger and Dirac operator 10/24



The optimality

@ Delta potential:
Un 1= wbno, VNELZ,

where w € C is a coupling constant.
@ The operator Hy demonstrates the optimality!

@ Forw e C\ [-2i,2i],
Ao 1= Vw? + 4 € op(Hy).
@ The eigenvalue )\, lies on the boundary curve of the spectral enclosure because

2 2 _ 2
Ao = 4] = |wl” = [[vllo g
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The optimality

@ Delta potential:
Un 1= wbno, VNELZ,

where w € C is a coupling constant.
@ The operator Hy demonstrates the optimality!

@ Forw e C\ [-2i,2i],
Ao 1= Vw? + 4 € op(Hy).

@ The eigenvalue )\, lies on the boundary curve of the spectral enclosure because
NG — 4] = |wl? = [[vlffi 2

@ Moreover, for any Q > 0, one has

Do |lw=Qe", —r<b<a}={reC| |\ -4 =0q".
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The discrete Schrodinger operator

Numerical illustration: the delta potential demonstrates optimality

lwl=2. Arg w = -3.14159

2

-4
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(P-potentials, p > 1

Theorem (¢P-potential)

Let 1 < p < oo and v € ¢P(Z). Denote by g € [1, o) the corresponding Hélder
exponent, i.e.,

Then

1 1) /1= |k7\"?
o(Hy) € Skt | ke T\ {0}, [kl <1 and [k - k) S el |-

Remarks:
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(P-potentials, p > 1

Theorem (¢P-potential)

Let 1 < p < oo and v € ¢P(Z). Denote by g € [1, o) the corresponding Hélder
exponent, i.e.,

Then

1 1) /1= |k7\"?
o(Hy) € Skt | ke T\ {0}, [kl <1 and [k - k) S el |-

Remarks:

@ The proof is based again on Birman—Schwinger principle and uses either the
Schur test or discrete Young'’s inequality.
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(P-potentials, p > 1

Theorem (¢P-potential)

Let 1 < p < oo and v € ¢P(Z). Denote by g € [1, o) the corresponding Hélder
exponent, i.e.,

Then

1 1) /1= |k7\"?
o(Hy) € Skt | ke T\ {0}, [kl <1 and [k - k) S el |-

Remarks:

@ The proof is based again on Birman—Schwinger principle and uses either the
Schur test or discrete Young'’s inequality.

@ No optimality result.
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(P-potentials, p > 1

Theorem (¢°-potential)

Let 1 < p < oo and v € ¢P(Z). Denote by g € [1, o) the corresponding Hélder
exponent, i.e.,

Then

1 1) /1= |k7\"?
o(Hy) € Skt | ke T\ {0}, [kl <1 and [k - k) S el |-

Remarks:

@ The proof is based again on Birman—Schwinger principle and uses either the
Schur test or discrete Young'’s inequality.

@ No optimality result.

@ The interval [-2, 2] always involved in the spectral enclosure = no
consequences for embedded eigenvalues.
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The discrete Schrodinger operator

(P-potentials: plots of the spectral enclosure for p = 2
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The discrete Dirac operator
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The discrete Dirac operator

Definitions

@ Let {en}nez stands for the standard basis of £2(Z).
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The discrete Dirac operator

Definitions
@ Let {en}nez stands for the standard basis of £2(Z).

@ The operator d : £3(Z) — (?(Z):

de,:=en—en1, Vnez.
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The discrete Dirac operator

Definitions

@ Let {en}nez stands for the standard basis of £2(Z).
@ The operator d : £3(Z) — (?(Z):

de,:=en—en1, Vnez.

@ Free discrete Dirac operator Dy:

o3 %)

acting on ¢2(Z) @ (?(Z), where m > 0 and d* is the adjoint operator to d.
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The discrete Dirac operator

Definitions
@ Let {en}nez stands for the standard basis of £2(Z).
@ The operator d : £3(Z) — (?(Z):
de, := e, — ent1, VneZz.

@ Free discrete Dirac operator Dy:

o3 %)

acting on ¢2(Z) @ (?(Z), where m > 0 and d* is the adjoint operator to d.

@ Considered potentials:
V1’1 V1,2
V= <V2,1 V2,2> )

where V' act on ¢2(Z) as diagonal operators determined by doubly infinite
complex sequences.
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The discrete Dirac operator

2 x 2-block Laurent matrix representation of D,

@ By using a suitable orthonormal basis of ¢2(Z) @ ¢2(Z), Dy can be represented by
the 2 x 2-block tridiagonal Laurent matrix:

a
Do = aT b

where
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The discrete Dirac operator

2 x 2-block Laurent matrix representation of D,
@ By using a suitable orthonormal basis of ¢2(Z) @ ¢2(Z), Dy can be represented by
the 2 x 2-block tridiagonal Laurent matrix:

a
Do = aT b

where
-m 1 0 O
b:= < 1 m) and a:= <71 0).

@ The considered perturbation of Dy:

ol 2
V= @Un, where vy = (Ug1 v’z’z) .
n

nez
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The discrete Dirac operator

Facts about Dy

@ The spectrum:

U(DO) = Uess(DO) = [— vV m?+ 4, —m] @] [m, vV m? + 4].
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The discrete Dirac operator

Facts about Dy

@ The spectrum:

U(DO) = Uess(DO) = [— vV m?+ 4, —m] @] [m, vV m? + 4].
@ An important correspondence: The equation
N=mP+2—k—k'

determines a one-to-two mapping A = A(k) from 0 < |k| < 1 onto p(Do).
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The discrete Dirac operator

Facts about Dy

@ The spectrum:
(Do) = oess(Do) = [—/m? +4,—m] U [m,\/m? + 4].
@ An important correspondence: The equation
N=m?+2—k—k'

determines a one-to-two mapping A = A(k) from 0 < |k| < 1 onto p(Do).
@ The 2 x 2-block Laurent matrix representation of the resolvent:

(DO - )\);1,1n - Tnfm(k)u
where
1 A—-m 1-—k
To(k):m<1—k /\+m)’
T K A-m 11—k .
T/(k)—T,j(k)—m 17/(71 /\+m ) 121
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The discrete Dirac operator

¢'-potentials

Theorem (¢'-potential)
Let V € ¢'(z,C?*?). Then

(D) € {Xe T | 1N = mP|IN = mP — 4] < (IA+ m| + |x = m])*| V][ }.
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¢'-potentials

Theorem (¢'-potential)

Let V € ¢'(Z,C?*?). Then

(D) € {Xe T | 1N = mP|IN = mP — 4] < (IA+ m| + |x = m])*| V][ }.

Remark: The Banach space ¢°(Z, C**?) is equipped with the norm

1/p
W= (Tlool) "o #1<p<oo [V =suplun,

nez

where |u,| denotes the operator norm of the matrix v, € C2*2,
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The discrete Dirac operator

Geometry of the boundary curve for m = 1

[IVily = 1.25
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The discrete Dirac operator

Embedded eigenvalues

Corollary:

Let V € £'(Z,C**%). If 2|| V| < (m? 4+ 2 — mV/m? + 4) then the union of two intervals

(=74, —m=) U (7=, 74),

where

re= 2 m - 2IVIE £2)/1— (4 2)IVIE £ VI,

is free of embedded eigenvalues of Hy.
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Optimality

@ The presented bound for ¢'—potentials is not optimal.
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@ A tighter bound exists:
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Optimality

@ The presented bound for ¢'—potentials is not optimal.
@ A tighter bound exists:

Theorem (improved spectral enclosure for £'-potential)
Let V € ¢'(Z,C?*?). Then

ap(Dv) \ o(Do) € {A € C\ a(Do) | max{|To(K)I,|T1(K)[} | VIl1 > 1}7‘

where k is the unique pointin {k € C| 0 < |k| < 1} suchthat > = m* +2 — k — k.
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Optimality

@ The presented bound for ¢'—potentials is not optimal.
@ A tighter bound exists:

Theorem (improved spectral enclosure for £'-potential)
Let V € ¢'(Z,C?*?). Then

ap(Dv) \ o(Do) € {A € C\ a(Do) | max{|To(K)I,|T1(K)[} | VIl1 > 1}7‘

where k is the unique pointin {k € C| 0 < |k| < 1} suchthat > = m* +2 — k — k.

@ The 2 x 2 complex matrices To(k) and Ti(k) appear in the formula for the
resolvent (Dp — \)~".
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Optimality

@ The presented bound for ¢'—potentials is not optimal.
@ A tighter bound exists:

Theorem (improved spectral enclosure for ¢'-potential)
Let V € ¢'(Z,C?*?). Then

ap(Dv) \ o(Do) € {A € C\ a(Do) | max{|To(K)I,|T1(K)[} | VIl1 > 1}7‘

where k is the unique pointin {k € C| 0 < |k| < 1} suchthat > = m* +2 — k — k.

@ The 2 x 2 complex matrices To(k) and Ti(k) appear in the formula for the
resolvent (Do — \)~".

@ Their spectral norms can be expressed explicitly but lead to complicated
expressions:

2 A+ m + A= mf + ([k| + [k|")N° — |
|A2 — m2||\2 — m? — 4] ’

| To(K)|? = “...even more complicated :(”

T (K)I? = |K|
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The discrete Dirac operator

Optimality of the improved spectral enclosure for ¢!-potential

@ We were able to prove only a “partial” optimality, i.e., only a part of the boundary
of the spectral enclosure ca be approached by an eigenvalue of Dy for some V €
£1 (Z, C2><2).
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The discrete Dirac operator

Optimality of the improved spectral enclosure for ¢!-potential

@ We were able to prove only a “partial” optimality, i.e., only a part of the boundary

of the spectral enclosure ca be approached by an eigenvalue of Dy for some V €
61 (Z, C2X2).

Re
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The discrete Dirac operator

Optimality of the improved spectral enclosure for ¢!-potential

@ We were able to prove only a “partial” optimality, i.e., only a part of the boundary

of the spectral enclosure ca be approached by an eigenvalue of Dy for some V €
€1 (Z7 C2><2)'

2
Re
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Optimality of the improved spectral enclosure for ¢!-potential

@ We were able to prove only a “partial” optimality, i.e., only a part of the boundary

of the spectral enclosure ca be approached by an eigenvalue of Dy for some V €
£'(z,C??).
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The discrete Dirac operator

Spectral enclosures for ¢P—potentials, p > 1

Theorem (spectral enclosures for /°—potentials)

Let 1 < p < oo, g the Holder dual index to p, and assume V € (P(Z,C**?). Then
a(Dv) \ o(Dy) is a subset of:
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The discrete Dirac operator

Spectral enclosures for ¢P—potentials, p > 1

Theorem (spectral enclosures for /°—potentials)

Let 1 < p < oo, g the Holder dual index to p, and assume V € (P(Z,C**?). Then
a(Dv) \ o(Dy) is a subset of:

@ A simpler bound:

{)\ € C\ a(Dv)

_ a\'a
Rl (R ) ||V||p21}.

k= — K| 1— [k|a
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The discrete Dirac operator

Spectral enclosures for ¢P—potentials, p > 1

Theorem (spectral enclosures for /°—potentials)

Let 1 < p < oo, g the Holder dual index to p, and assume V € (P(Z,C**?). Then

a(Dv) \ o(Dy) is a subset of:

@ A simpler bound:

{)\ € C\ a(Dv)

A —m[+ A+ m| (1 2/ k|9

kT — K|

— |k|9

1/q
) WVp=1Y.

@ A tighter bound:

{A € C\ o(Ds) ’ (|To(k)|"

1/q
T ||vnp>1}.
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The discrete Dirac operator
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