Spectral bounds for 1D discrete Schrödinger and Dirac operators with complex potentials

Frantisek Štampach
Joint with: B. Cassano, O. O. Ibrogimov, and D. Krejčirík

The 6th Najman Conference on Spectral Theory and Differential Equations Sveti Martin na Muri, Croatia

September 11, 2019

Contents

(1) The discrete Schrödinger operator
(2) The discrete Dirac operator

Definitions

- Let $\left\{e_{n}\right\}_{n \in \mathbb{Z}}$ stands for the standard basis of $\ell^{2}(\mathbb{Z})$.

Definitions

- Let $\left\{e_{n}\right\}_{n \in \mathbb{Z}}$ stands for the standard basis of $\ell^{2}(\mathbb{Z})$.
- The discrete Laplacian:

$$
H_{0} e_{n}=e_{n-1}+e_{n+1}, \quad \forall n \in \mathbb{Z} .
$$

Definitions

- Let $\left\{e_{n}\right\}_{n \in \mathbb{Z}}$ stands for the standard basis of $\ell^{2}(\mathbb{Z})$.
- The discrete Laplacian:

$$
H_{0} e_{n}=e_{n-1}+e_{n+1}, \quad \forall n \in \mathbb{Z}
$$

- To a given complex sequence $v \in \ell^{p}(\mathbb{Z}), 1 \leq p \leq \infty$, we define the potential:

$$
V e_{n}:=v_{n} e_{n}, \quad \forall n \in \mathbb{Z}
$$

Definitions

- Let $\left\{e_{n}\right\}_{n \in \mathbb{Z}}$ stands for the standard basis of $\ell^{2}(\mathbb{Z})$.
- The discrete Laplacian:

$$
H_{0} e_{n}=e_{n-1}+e_{n+1}, \quad \forall n \in \mathbb{Z}
$$

- To a given complex sequence $v \in \ell^{p}(\mathbb{Z}), 1 \leq p \leq \infty$, we define the potential:

$$
V e_{n}:=v_{n} e_{n}, \quad \forall n \in \mathbb{Z}
$$

- The discrete Schrödinger operator: $H_{V}=H_{0}+V$,

$$
H_{V}=\left(\begin{array}{ccccccc}
\ddots & \ddots & \ddots & & & & \\
& 1 & v_{-1} & 1 & & & \\
& & 1 & v_{0} & 1 & & \\
& & & 1 & v_{1} & 1 & \\
& & & & \ddots & \ddots & \ddots
\end{array}\right)
$$

Basic facts

- One has

$$
\sigma\left(H_{0}\right)=\sigma_{\text {ess }}\left(H_{0}\right)=[-2,2] .
$$

Basic facts

- One has

$$
\sigma\left(H_{0}\right)=\sigma_{\text {ess }}\left(H_{0}\right)=[-2,2] .
$$

- If $v_{n} \rightarrow 0$, as $n \rightarrow \pm \infty$, then V is compact and

$$
\sigma_{e s s}\left(H_{V}\right)=[-2,2] .
$$

Basic facts

- One has

$$
\sigma\left(H_{0}\right)=\sigma_{\text {ess }}\left(H_{0}\right)=[-2,2] .
$$

- If $v_{n} \rightarrow 0$, as $n \rightarrow \pm \infty$, then V is compact and

$$
\sigma_{e s s}\left(H_{v}\right)=[-2,2] .
$$

- The resolvent of H_{0} :

$$
\left(H_{0}-\lambda\right)_{m, n}^{-1}=\frac{k^{|m-n|}}{k-k^{-1}}, \quad \forall m, n \in \mathbb{Z}
$$

where $\lambda=k^{-1}+k$.

Basic facts

- One has

$$
\sigma\left(H_{0}\right)=\sigma_{\text {ess }}\left(H_{0}\right)=[-2,2] .
$$

- If $v_{n} \rightarrow 0$, as $n \rightarrow \pm \infty$, then V is compact and

$$
\sigma_{e s s}\left(H_{V}\right)=[-2,2] .
$$

- The resolvent of H_{0} :

$$
\left(H_{0}-\lambda\right)_{m, n}^{-1}=\frac{k^{|m-n|}}{k-k^{-1}}, \quad \forall m, n \in \mathbb{Z}
$$

where $\lambda=k^{-1}+k$.

- The Joukowski map:

$$
\lambda(k)=k^{-1}+k
$$

is $1-1$ mapping of the punctured unit disk $0<|k|<1$ onto $\mathbb{C} \backslash[-2,2]$.

ℓ^{1}-potentials

Theorem (ℓ^{1}-potential)

Let $v \in \ell^{1}(\mathbb{Z})$. Then

$$
\sigma_{\mathrm{p}}\left(H_{V}\right) \subset\left\{\lambda \in \mathbb{C} \backslash(-2,2)| | \lambda^{2}-4 \mid \leq\|v\|_{\ell^{1}(\mathbb{Z})}^{2}\right\}
$$

ℓ^{1}-potentials

Theorem (ℓ^{1}-potential)

Let $v \in \ell^{1}(\mathbb{Z})$. Then

$$
\sigma_{\mathrm{p}}\left(H_{V}\right) \subset\left\{\lambda \in \mathbb{C} \backslash(-2,2)| | \lambda^{2}-4 \mid \leq\|v\|_{\ell^{1}(\mathbb{Z})}^{2}\right\}
$$

In addition, the estimate is optimal in the following sense:

ℓ^{1}-potentials

Theorem (ℓ^{1}-potential)

Let $v \in \ell^{1}(\mathbb{Z})$. Then

$$
\sigma_{\mathrm{p}}\left(H_{V}\right) \subset\left\{\lambda \in \mathbb{C} \backslash(-2,2)| | \lambda^{2}-4 \mid \leq\|v\|_{\ell^{1}(\mathbb{Z})}^{2}\right\}
$$

In addition, the estimate is optimal in the following sense:
To any boundary point of the spectral enclosure which does not belong to $(-2,2)$, there exists an ℓ^{1}-potential V so that this boundary point is an eigenvalue of the corresponding discrete Schrödinger operator H_{V}.

Geometry of the boundary curve

The boundary curve for $Q:=\|v\|_{\ell^{1}(\mathbb{Z})}: \quad\left|\lambda^{2}-4\right|=Q^{2}$.

Proof

- The goal is to prove:

$$
\sigma_{\mathrm{P}}\left(H_{V}\right) \subset\left\{\lambda \in \mathbb{C} \backslash(-2,2)| | \lambda^{2}-4 \mid \leq\|v\|_{\ell^{1}(\mathbb{Z})}^{2}\right\} .
$$

Proof

- The goal is to prove:

$$
\sigma_{\mathrm{P}}\left(H_{V}\right) \subset\left\{\lambda \in \mathbb{C} \backslash(-2,2)| | \lambda^{2}-4 \mid \leq\|v\|_{R^{1}(\mathbb{Z})}^{2}\right\} .
$$

- One has $v \in \ell^{1}(\mathbb{Z}) \quad \Longrightarrow \quad(-2,2) \cap \sigma_{p}\left(H_{v}\right)=\emptyset \quad$ (Jost solution).

Proof

- The goal is to prove:

$$
\sigma_{\mathrm{P}}\left(H_{V}\right) \subset\left\{\lambda \in \mathbb{C} \backslash(-2,2)| | \lambda^{2}-4 \mid \leq\|v\|_{R^{1}(\mathbb{Z})}^{2}\right\} .
$$

- One has $v \in \ell^{1}(\mathbb{Z}) \quad \Longrightarrow \quad(-2,2) \cap \sigma_{p}\left(H_{v}\right)=\emptyset \quad$ (Jost solution).
- The points ± 2 are always included in the spectral enclosure.

Proof

- The goal is to prove:

$$
\sigma_{\mathrm{p}}\left(H_{V}\right) \subset\left\{\lambda \in \mathbb{C} \backslash(-2,2)| | \lambda^{2}-4 \mid \leq\|v\|_{\ell^{1}(\mathbb{Z})}^{2}\right\}
$$

- One has $v \in \ell^{1}(\mathbb{Z}) \quad \Longrightarrow \quad(-2,2) \cap \sigma_{p}\left(H_{v}\right)=\emptyset \quad$ (Jost solution).
- The points ± 2 are always included in the spectral enclosure.
- For $\lambda \notin[-2,2] \equiv \sigma\left(H_{0}\right)$, the proof relies on the Birman-Schwinger principle (one implication):

$$
\lambda \in \sigma_{p}\left(H_{v}\right) \quad \Longrightarrow \quad-1 \in \sigma_{p}(K(\lambda))
$$

for

$$
K(\lambda):=|V|^{1 / 2}\left(H_{0}-\lambda\right)^{-1} V_{1 / 2},
$$

and

$$
|V|^{1 / 2} e_{n}=\sqrt{\left|v_{n}\right|} e_{n} \quad \text { and } \quad V_{1 / 2} e_{n}=\operatorname{sgn}\left(v_{n}\right) \sqrt{\left|v_{n}\right|} e_{n}
$$

with the complex signum function $\operatorname{sgn} z=z /|z|$, if $z \neq 0$, and $\operatorname{sgn} 0=0$.

Proof

- The goal is to prove:

$$
\sigma_{\mathrm{p}}\left(H_{V}\right) \subset\left\{\lambda \in \mathbb{C} \backslash(-2,2)| | \lambda^{2}-4 \mid \leq\|v\|_{\ell^{\prime}(\mathbb{Z})}^{2}\right\}
$$

- One has $v \in \ell^{1}(\mathbb{Z}) \quad \Longrightarrow \quad(-2,2) \cap \sigma_{p}\left(H_{v}\right)=\emptyset \quad$ (Jost solution).
- The points ± 2 are always included in the spectral enclosure.
- For $\lambda \notin[-2,2] \equiv \sigma\left(H_{0}\right)$, the proof relies on the Birman-Schwinger principle (one implication):

$$
\lambda \in \sigma_{p}\left(H_{v}\right) \quad \Longrightarrow \quad-1 \in \sigma_{p}(K(\lambda))
$$

for

$$
K(\lambda):=|V|^{1 / 2}\left(H_{0}-\lambda\right)^{-1} V_{1 / 2},
$$

and

$$
|V|^{1 / 2} e_{n}=\sqrt{\left|v_{n}\right|} e_{n} \quad \text { and } \quad V_{1 / 2} e_{n}=\operatorname{sgn}\left(v_{n}\right) \sqrt{\left|v_{n}\right|} e_{n}
$$

with the complex signum function $\operatorname{sgn} z=z /|z|$, if $z \neq 0$, and $\operatorname{sgn} 0=0$.

- In particular,

$$
\lambda \in \sigma_{\rho}\left(H_{V}\right) \Longrightarrow \quad\|K(\lambda)\| \geq 1
$$

Proof - the part based on the Birman-Schwinger principle

- Let $\lambda \notin[-2,2] \equiv \sigma\left(H_{0}\right)$.

Proof - the part based on the Birman-Schwinger principle

- Let $\lambda \notin[-2,2] \equiv \sigma\left(H_{0}\right)$.
- Then $\lambda=k^{-1}+k$ with $|k|<1$ and one has

$$
\left|\left(H_{0}-\lambda\right)_{m, n}^{-1}\right|=\frac{|k|^{|m-n|}}{\left|k-k^{-1}\right|} \leq \frac{1}{\left|k-k^{-1}\right|}=\frac{1}{\sqrt{\left|\lambda^{2}-4\right|}}, \quad \forall m, n \in \mathbb{Z} .
$$

Proof - the part based on the Birman-Schwinger principle

- Let $\lambda \notin[-2,2] \equiv \sigma\left(H_{0}\right)$.
- Then $\lambda=k^{-1}+k$ with $|k|<1$ and one has

$$
\left|\left(H_{0}-\lambda\right)_{m, n}^{-1}\right|=\frac{|k|^{|m-n|}}{\left|k-k^{-1}\right|} \leq \frac{1}{\left|k-k^{-1}\right|}=\frac{1}{\sqrt{\left|\lambda^{2}-4\right|}}, \quad \forall m, n \in \mathbb{Z}
$$

- For any $\psi \in \ell^{2}(\mathbb{Z})$, we estimate

$$
\begin{aligned}
\|K(\lambda) \psi\|_{\ell^{2}(\mathbb{Z})}^{2} & \leq \sum_{m \in \mathbb{Z}}\left(\sum_{n \in \mathbb{Z}} \sqrt{\left|v_{m}\right|}\left|\left(H_{0}-\lambda\right)_{m, n}^{-1}\right| \sqrt{\left|v_{n}\right|}\left|\psi_{n}\right|\right)^{2} \\
& \leq \frac{\|v\|_{\ell^{1}(\mathbb{Z})}}{\left|\lambda^{2}-4\right|}\left(\sum_{m \in \mathbb{Z}} \sqrt{\left|v_{n}\right|}\left|\psi_{n}\right|\right)^{2} \leq \frac{\|v\|_{\ell^{1}(\mathbb{Z})}^{2}}{\left|\lambda^{2}-4\right|}\|\psi\|_{\ell^{2}(\mathbb{Z})}^{2}
\end{aligned}
$$

Proof - the part based on the Birman-Schwinger principle

- Let $\lambda \notin[-2,2] \equiv \sigma\left(H_{0}\right)$.
- Then $\lambda=k^{-1}+k$ with $|k|<1$ and one has

$$
\left|\left(H_{0}-\lambda\right)_{m, n}^{-1}\right|=\frac{|k|^{|m-n|}}{\left|k-k^{-1}\right|} \leq \frac{1}{\left|k-k^{-1}\right|}=\frac{1}{\sqrt{\left|\lambda^{2}-4\right|}}, \quad \forall m, n \in \mathbb{Z}
$$

- For any $\psi \in \ell^{2}(\mathbb{Z})$, we estimate

$$
\begin{aligned}
\|K(\lambda) \psi\|_{\ell^{2}(\mathbb{Z})}^{2} & \leq \sum_{m \in \mathbb{Z}}\left(\sum_{n \in \mathbb{Z}} \sqrt{\left|v_{m}\right|}\left|\left(H_{0}-\lambda\right)_{m, n}^{-1}\right| \sqrt{\left|v_{n}\right|}\left|\psi_{n}\right|\right)^{2} \\
& \left.\left.\leq \frac{\|v\|_{\ell^{1}(\mathbb{Z})}}{\left|\lambda^{2}-4\right|} \sum_{m \in \mathbb{Z}} \sqrt{\left|v_{n}\right| \mid} \psi_{n} \right\rvert\,\right)^{2} \leq \frac{\|v\|_{\ell^{1}(\mathbb{Z})}^{2}}{\left|\lambda^{2}-4\right|}\|\psi\|_{\ell^{2}(\mathbb{Z})}^{2}
\end{aligned}
$$

- In other words,

$$
\|K(\lambda)\|^{2} \leq \frac{\|v\|_{\ell^{1}(\mathbb{Z})}^{2}}{\left|\lambda^{2}-4\right|}
$$

Proof - the part based on the Birman-Schwinger principle

- Let $\lambda \notin[-2,2] \equiv \sigma\left(H_{0}\right)$.
- Then $\lambda=k^{-1}+k$ with $|k|<1$ and one has

$$
\left|\left(H_{0}-\lambda\right)_{m, n}^{-1}\right|=\frac{|k|^{|m-n|}}{\left|k-k^{-1}\right|} \leq \frac{1}{\left|k-k^{-1}\right|}=\frac{1}{\sqrt{\left|\lambda^{2}-4\right|}}, \quad \forall m, n \in \mathbb{Z}
$$

- For any $\psi \in \ell^{2}(\mathbb{Z})$, we estimate

$$
\begin{aligned}
\|K(\lambda) \psi\|_{\ell^{2}(\mathbb{Z})}^{2} & \leq \sum_{m \in \mathbb{Z}}\left(\sum_{n \in \mathbb{Z}} \sqrt{\left|v_{m}\right|}\left|\left(H_{0}-\lambda\right)_{m, n}^{-1}\right| \sqrt{\left|v_{n}\right|\left|\psi_{n}\right|}\right)^{2} \\
& \left.\left.\leq \frac{\|v\|_{\ell^{1}(\mathbb{Z})}}{\left|\lambda^{2}-4\right|} \sum_{m \in \mathbb{Z}} \sqrt{\left|v_{n}\right| \mid} \psi_{n} \right\rvert\,\right)^{2} \leq \frac{\|v\|_{\ell^{1}(\mathbb{Z})}^{2}}{\left|\lambda^{2}-4\right|}\|\psi\|_{\ell^{2}(\mathbb{Z})}^{2}
\end{aligned}
$$

- In other words,

$$
\|K(\lambda)\|^{2} \leq \frac{\|v\|_{\ell^{1}(\mathbb{Z})}^{2}}{\left|\lambda^{2}-4\right|}
$$

- Thus, if $\lambda \in \sigma_{p}\left(H_{V}\right)$, then $\left|\lambda^{2}-4\right| \leq\|v\|_{\ell^{1}(\mathbb{Z})}^{2}$.

Many works make use of the Birman-Swinger principle...

Many various spectral bounds (mainly) for differential operators such as Schrödinger and Dirac operators were obtained by applying the Birman-Schwinger principle.

Many works make use of the Birman-Swinger principle...

Many various spectral bounds (mainly) for differential operators such as Schrödinger and Dirac operators were obtained by applying the Birman-Schwinger principle.

An incomplete list of authors:
Abramov, Aslanyan, Behrndt, Cuenin, Davies, Enblom, Frank, Fanelli, Ibrogimov, Krejčiríík, Langer, Laptev, Lee, Lieb, Lotoreichik, Rohleder, Safronov, Seiringer, Seo, Tretter, Vega,...

The optimality

- Delta potential:

$$
v_{n}:=\omega \delta_{n, 0}, \quad \forall n \in \mathbb{Z}
$$

where $\omega \in \mathbb{C}$ is a coupling constant.

The optimality

- Delta potential:

$$
v_{n}:=\omega \delta_{n, 0}, \quad \forall n \in \mathbb{Z}
$$

where $\omega \in \mathbb{C}$ is a coupling constant.

- The operator H_{V} demonstrates the optimality!

The optimality

- Delta potential:

$$
v_{n}:=\omega \delta_{n, 0}, \quad \forall n \in \mathbb{Z}
$$

where $\omega \in \mathbb{C}$ is a coupling constant.

- The operator H_{v} demonstrates the optimality!
- For $\omega \in \mathbb{C} \backslash[-2 \mathrm{i}, 2 \mathrm{i}]$,

$$
\lambda_{\omega}:=\sqrt{\omega^{2}+4} \in \sigma_{p}\left(H_{V}\right)
$$

The optimality

- Delta potential:

$$
v_{n}:=\omega \delta_{n, 0}, \quad \forall n \in \mathbb{Z}
$$

where $\omega \in \mathbb{C}$ is a coupling constant.

- The operator H_{V} demonstrates the optimality!
- For $\omega \in \mathbb{C} \backslash[-2 \mathrm{i}, 2 \mathrm{i}]$,

$$
\lambda_{\omega}:=\sqrt{\omega^{2}+4} \in \sigma_{p}\left(H_{V}\right)
$$

- The eigenvalue λ_{ω} lies on the boundary curve of the spectral enclosure because

$$
\left|\lambda_{\omega}^{2}-4\right|=|\omega|^{2} \equiv\|v\|_{\ell^{1}(\mathbb{Z})}^{2} .
$$

The optimality

- Delta potential:

$$
v_{n}:=\omega \delta_{n, 0}, \quad \forall n \in \mathbb{Z}
$$

where $\omega \in \mathbb{C}$ is a coupling constant.

- The operator H_{v} demonstrates the optimality!
- For $\omega \in \mathbb{C} \backslash[-2 i, 2 i]$,

$$
\lambda_{\omega}:=\sqrt{\omega^{2}+4} \in \sigma_{p}\left(H_{V}\right) .
$$

- The eigenvalue λ_{ω} lies on the boundary curve of the spectral enclosure because

$$
\left|\lambda_{\omega}^{2}-4\right|=|\omega|^{2} \equiv\|v\|_{\ell^{1}(\mathbb{Z})}^{2} .
$$

- Moreover, for any $Q>0$, one has

$$
\left\{\lambda_{\omega} \mid \omega=Q e^{\mathrm{i} \theta},-\pi<\theta \leq \pi\right\}=\left\{\lambda \in \mathbb{C}| | \lambda^{2}-4 \mid=Q^{2}\right\} .
$$

Numerical illustration: the delta potential demonstrates optimality

ℓ^{p}-potentials, $p>1$

Theorem (ℓ^{ρ}-potential)

Let $1<p \leq \infty$ and $v \in \ell^{p}(\mathbb{Z})$. Denote by $q \in[1, \infty)$ the corresponding Hölder exponent, i.e.,

$$
\frac{1}{p}+\frac{1}{q}=1
$$

Then

$$
\sigma\left(H_{V}\right) \subset\left\{\left.k+\frac{1}{k}|k \in \mathbb{C} \backslash\{0\},|k| \leq 1 \text { and }| k-\frac{1}{k} \right\rvert\,\left(\frac{1-|k|^{q}}{1+|k|^{q}}\right)^{1 / q} \leq\|v\|_{\ell \rho(\mathbb{Z})}\right\}
$$

Remarks:

ℓ^{p}-potentials, $p>1$

Theorem (ℓ^{ρ}-potential)

Let $1<p \leq \infty$ and $v \in \ell^{p}(\mathbb{Z})$. Denote by $q \in[1, \infty)$ the corresponding Hölder exponent, i.e.,

$$
\frac{1}{p}+\frac{1}{q}=1 .
$$

Then

$$
\sigma\left(H_{V}\right) \subset\left\{\left.k+\frac{1}{k}|k \in \mathbb{C} \backslash\{0\},|k| \leq 1 \text { and }| k-\frac{1}{k} \right\rvert\,\left(\frac{1-|k|^{q}}{1+|k|^{q}}\right)^{1 / q} \leq\|v\|_{\ell \rho(\mathbb{Z})}\right\}
$$

Remarks:

- The proof is based again on Birman-Schwinger principle and uses either the Schur test or discrete Young's inequality.

ℓ^{p}-potentials, $p>1$

Theorem (ℓ^{ρ}-potential)

Let $1<p \leq \infty$ and $v \in \ell^{p}(\mathbb{Z})$. Denote by $q \in[1, \infty)$ the corresponding Hölder exponent, i.e.,

$$
\frac{1}{p}+\frac{1}{q}=1 .
$$

Then

$$
\sigma\left(H_{V}\right) \subset\left\{\left.k+\frac{1}{k}|k \in \mathbb{C} \backslash\{0\},|k| \leq 1 \text { and }| k-\frac{1}{k} \right\rvert\,\left(\frac{1-|k|^{q}}{1+|k|^{q}}\right)^{1 / q} \leq\|v\|_{\ell \rho(\mathbb{Z})}\right\}
$$

Remarks:

- The proof is based again on Birman-Schwinger principle and uses either the Schur test or discrete Young's inequality.
- No optimality result.

ℓ^{p}-potentials, $p>1$

Theorem (ℓ^{ρ}-potential)

Let $1<p \leq \infty$ and $v \in \ell^{p}(\mathbb{Z})$. Denote by $q \in[1, \infty)$ the corresponding Hölder exponent, i.e.,

$$
\frac{1}{p}+\frac{1}{q}=1 .
$$

Then

$$
\sigma\left(H_{v}\right) \subset\left\{k+\frac{1}{k}|k \in \mathbb{C} \backslash\{0\},|k| \leq 1 \text { and }| k-\frac{1}{k} \left\lvert\,\left(\frac{1-\left.|k|^{q}\right|^{1 / q}}{1+|k|^{q}}\right)^{1 / q} \leq\|v\|_{\operatorname{\rho \rho (z)}}\right.\right\} \text {. }
$$

Remarks:

- The proof is based again on Birman-Schwinger principle and uses either the Schur test or discrete Young's inequality.
- No optimality result.
- The interval $[-2,2]$ always involved in the spectral enclosure \Rightarrow no consequences for embedded eigenvalues.
ℓ^{ρ}-potentials: plots of the spectral enclosure for $p=2$

Contents

(The discrete Schrödinger operator

(2) The discrete Dirac operator

Definitions

- Let $\left\{e_{n}\right\}_{n \in \mathbb{Z}}$ stands for the standard basis of $\ell^{2}(\mathbb{Z})$.

Definitions

- Let $\left\{e_{n}\right\}_{n \in \mathbb{Z}}$ stands for the standard basis of $\ell^{2}(\mathbb{Z})$.
- The operator $d: \ell^{2}(\mathbb{Z}) \rightarrow \ell^{2}(\mathbb{Z})$:

$$
d e_{n}:=e_{n}-e_{n+1}, \quad \forall n \in \mathbb{Z}
$$

Definitions

- Let $\left\{e_{n}\right\}_{n \in \mathbb{Z}}$ stands for the standard basis of $\ell^{2}(\mathbb{Z})$.
- The operator $d: \ell^{2}(\mathbb{Z}) \rightarrow \ell^{2}(\mathbb{Z})$:

$$
d e_{n}:=e_{n}-e_{n+1}, \quad \forall n \in \mathbb{Z}
$$

- Free discrete Dirac operator D_{0} :

$$
D_{0}:=\left(\begin{array}{cc}
m & d \\
d^{*} & -m
\end{array}\right)
$$

acting on $\ell^{2}(\mathbb{Z}) \oplus \ell^{2}(\mathbb{Z})$, where $m \geq 0$ and d^{*} is the adjoint operator to d.

Definitions

- Let $\left\{e_{n}\right\}_{n \in \mathbb{Z}}$ stands for the standard basis of $\ell^{2}(\mathbb{Z})$.
- The operator $d: \ell^{2}(\mathbb{Z}) \rightarrow \ell^{2}(\mathbb{Z})$:

$$
d e_{n}:=e_{n}-e_{n+1}, \quad \forall n \in \mathbb{Z}
$$

- Free discrete Dirac operator D_{0} :

$$
D_{0}:=\left(\begin{array}{cc}
m & d \\
d^{*} & -m
\end{array}\right)
$$

acting on $\ell^{2}(\mathbb{Z}) \oplus \ell^{2}(\mathbb{Z})$, where $m \geq 0$ and d^{*} is the adjoint operator to d.

- Considered potentials:

$$
V=\left(\begin{array}{ll}
V^{1,1} & V^{1,2} \\
V^{2,1} & V^{2,2}
\end{array}\right)
$$

where $V^{i, j}$ act on $\ell^{2}(\mathbb{Z})$ as diagonal operators determined by doubly infinite complex sequences.

2×2-block Laurent matrix representation of D_{0}

- By using a suitable orthonormal basis of $\ell^{2}(\mathbb{Z}) \oplus \ell^{2}(\mathbb{Z}), D_{0}$ can be represented by the 2×2-block tridiagonal Laurent matrix:

$$
D_{0}=\left(\begin{array}{ccccccc}
\ddots & \ddots & \ddots & & & & \\
& a^{T} & b & a & & & \\
& & a^{T} & b & a & & \\
& & & a^{T} & b & a & \\
& & & & \ddots & \ddots & \ddots
\end{array}\right)
$$

where

$$
b:=\left(\begin{array}{cc}
-m & 1 \\
1 & m
\end{array}\right) \quad \text { and } \quad a:=\left(\begin{array}{cc}
0 & 0 \\
-1 & 0
\end{array}\right) .
$$

2×2-block Laurent matrix representation of D_{0}

- By using a suitable orthonormal basis of $\ell^{2}(\mathbb{Z}) \oplus \ell^{2}(\mathbb{Z}), D_{0}$ can be represented by the 2×2-block tridiagonal Laurent matrix:

$$
D_{0}=\left(\begin{array}{ccccccc}
\ddots & \ddots & \ddots & & & & \\
& a^{T} & b & a & & & \\
& & a^{T} & b & a & & \\
& & & a^{T} & b & a & \\
& & & & \ddots & \ddots & \ddots
\end{array}\right)
$$

where

$$
b:=\left(\begin{array}{cc}
-m & 1 \\
1 & m
\end{array}\right) \quad \text { and } \quad a:=\left(\begin{array}{cc}
0 & 0 \\
-1 & 0
\end{array}\right) .
$$

- The considered perturbation of D_{0} :

$$
V=\bigoplus_{n \in \mathbb{Z}} v_{n}, \quad \text { where } \quad v_{n}:=\left(\begin{array}{ll}
v_{n}^{11} & v_{n}^{12} \\
v_{n}^{21} & v_{n}^{22}
\end{array}\right) .
$$

Facts about D_{0}

- The spectrum:

$$
\sigma\left(D_{0}\right)=\sigma_{\text {ess }}\left(D_{0}\right)=\left[-\sqrt{m^{2}+4},-m\right] \cup\left[m, \sqrt{m^{2}+4}\right] .
$$

Facts about D_{0}

- The spectrum:

$$
\sigma\left(D_{0}\right)=\sigma_{\text {ess }}\left(D_{0}\right)=\left[-\sqrt{m^{2}+4},-m\right] \cup\left[m, \sqrt{m^{2}+4}\right] .
$$

- An important correspondence: The equation

$$
\lambda^{2}=m^{2}+2-k-k^{-1}
$$

determines a one-to-two mapping $\lambda=\lambda(k)$ from $0<|k|<1$ onto $\rho\left(D_{0}\right)$.

Facts about D_{0}

- The spectrum:

$$
\sigma\left(D_{0}\right)=\sigma_{\text {ess }}\left(D_{0}\right)=\left[-\sqrt{m^{2}+4},-m\right] \cup\left[m, \sqrt{m^{2}+4}\right] .
$$

- An important correspondence: The equation

$$
\lambda^{2}=m^{2}+2-k-k^{-1}
$$

determines a one-to-two mapping $\lambda=\lambda(k)$ from $0<|k|<1$ onto $\rho\left(D_{0}\right)$.

- The 2×2-block Laurent matrix representation of the resolvent:

$$
\left(D_{0}-\lambda\right)_{m, n}^{-1}=T_{n-m}(k)
$$

where

$$
\begin{aligned}
T_{0}(k) & =\frac{1}{k^{-1}-k}\left(\begin{array}{cc}
\lambda-m & 1-k \\
1-k & \lambda+m
\end{array}\right), \\
T_{j}(k)=T_{-j}^{T}(k) & =\frac{k^{j}}{k^{-1}-k}\left(\begin{array}{cc}
\lambda-m & 1-k \\
1-k^{-1} & \lambda+m
\end{array}\right), \quad j \geq 1 .
\end{aligned}
$$

ℓ^{1}-potentials

Theorem (ℓ^{1}-potential)

Let $V \in \ell^{1}\left(\mathbb{Z}, \mathbb{C}^{2 \times 2}\right)$. Then

$$
\sigma_{\mathrm{p}}\left(D_{V}\right) \subset\left\{\lambda \in \mathbb{C}| | \lambda^{2}-m^{2}| | \lambda^{2}-m^{2}-4 \mid \leq(|\lambda+m|+|\lambda-m|)^{2}\|V\|_{1}^{2}\right\} .
$$

ℓ^{1}-potentials

Theorem (ℓ^{1}-potential)

Let $V \in \ell^{1}\left(\mathbb{Z}, \mathbb{C}^{2 \times 2}\right)$. Then

$$
\sigma_{\mathrm{p}}\left(D_{V}\right) \subset\left\{\lambda \in \mathbb{C}| | \lambda^{2}-m^{2}| | \lambda^{2}-m^{2}-4 \mid \leq(|\lambda+m|+|\lambda-m|)^{2}\|V\|_{1}^{2}\right\}
$$

Remark: The Banach space $\ell^{p}\left(\mathbb{Z}, \mathbb{C}^{2 \times 2}\right)$ is equipped with the norm

$$
\|V\|_{p}=\left(\sum_{n \in \mathbb{Z}}\left|v_{n}\right|^{p}\right)^{1 / p}, \quad \text { if } 1 \leq p<\infty, \quad\|V\|_{\infty}=\sup _{n \in \mathbb{Z}}\left|v_{n}\right|
$$

where $\left|v_{n}\right|$ denotes the operator norm of the matrix $v_{n} \in \mathbb{C}^{2 \times 2}$.

Geometry of the boundary curve for $m=1$

Embedded eigenvalues

Corollary:
Let $V \in \ell^{1}\left(\mathbb{Z}, \mathbb{C}^{2 \times 2}\right)$. If $2\|V\|_{1}^{2}<\left(m^{2}+2-m \sqrt{m^{2}+4}\right)$ then the union of two intervals

$$
\left(-\tau_{+},-\tau_{-}\right) \cup\left(\tau_{-}, \tau_{+}\right),
$$

where

$$
\tau_{ \pm}=\sqrt{2+m^{2}-2\|V\|_{1}^{2} \pm 2 \sqrt{1-\left(m^{2}+2\right)\|V\|_{1}^{2}+\|V\|_{1}^{4}}}
$$

is free of embedded eigenvalues of H_{v}.

Optimality

- The presented bound for ℓ^{1}-potentials is not optimal.

Optimality

- The presented bound for ℓ^{1}-potentials is not optimal.
- A tighter bound exists:

Optimality

- The presented bound for ℓ^{1}-potentials is not optimal.
- A tighter bound exists:

Theorem (improved spectral enclosure for ℓ^{1}-potential)

Let $V \in \ell^{1}\left(\mathbb{Z}, \mathbb{C}^{2 \times 2}\right)$. Then

$$
\sigma_{p}\left(D_{V}\right) \backslash \sigma\left(D_{0}\right) \subset\left\{\lambda \in \mathbb{C} \backslash \sigma\left(D_{0}\right) \mid \max \left\{\left|T_{0}(k)\right|,\left|T_{1}(k)\right|\right\}\|V\|_{1} \geq 1\right\}
$$

where k is the unique point in $\left\{k \in \mathbb{C}|0<|k|<1\}\right.$ such that $\lambda^{2}=m^{2}+2-k-k^{-1}$.

Optimality

- The presented bound for $\ell^{1}-$ potentials is not optimal.
- A tighter bound exists:

Theorem (improved spectral enclosure for ℓ^{1}-potential)

Let $V \in \ell^{1}\left(\mathbb{Z}, \mathbb{C}^{2 \times 2}\right)$. Then

$$
\sigma_{p}\left(D_{V}\right) \backslash \sigma\left(D_{0}\right) \subset\left\{\lambda \in \mathbb{C} \backslash \sigma\left(D_{0}\right) \mid \max \left\{\left|T_{0}(k)\right|,\left|T_{1}(k)\right|\right\}\|V\|_{1} \geq 1\right\}
$$

where k is the unique point in $\left\{k \in \mathbb{C}|0<|k|<1\}\right.$ such that $\lambda^{2}=m^{2}+2-k-k^{-1}$.

- The 2×2 complex matrices $T_{0}(k)$ and $T_{1}(k)$ appear in the formula for the resolvent $\left(D_{0}-\lambda\right)^{-1}$.

Optimality

- The presented bound for $\ell^{1}-$ potentials is not optimal.
- A tighter bound exists:

Theorem (improved spectral enclosure for ℓ^{1}-potential)

Let $V \in \ell^{1}\left(\mathbb{Z}, \mathbb{C}^{2 \times 2}\right)$. Then

$$
\sigma_{p}\left(D_{V}\right) \backslash \sigma\left(D_{0}\right) \subset\left\{\lambda \in \mathbb{C} \backslash \sigma\left(D_{0}\right) \mid \max \left\{\left|T_{0}(k)\right|,\left|T_{1}(k)\right|\right\}\|V\|_{1} \geq 1\right\}
$$

where k is the unique point in $\left\{k \in \mathbb{C}|0<|k|<1\}\right.$ such that $\lambda^{2}=m^{2}+2-k-k^{-1}$.

- The 2×2 complex matrices $T_{0}(k)$ and $T_{1}(k)$ appear in the formula for the resolvent $\left(D_{0}-\lambda\right)^{-1}$.
- Their spectral norms can be expressed explicitly but lead to complicated expressions:

$$
\begin{aligned}
& \left|T_{1}(k)\right|^{2}=|k|^{2} \frac{|\lambda+m|^{2}+|\lambda-m|^{2}+\left(|k|+|k|^{-1}\right)\left|\lambda^{2}-m^{2}\right|}{\left|\lambda^{2}-m^{2}\right|\left|\lambda^{2}-m^{2}-4\right|} \\
& \left|T_{0}(k)\right|^{2}=\quad \text { "..even more complicated }:(. "
\end{aligned}
$$

Optimality of the improved spectral enclosure for ℓ^{1}-potential

- We were able to prove only a "partial" optimality, i.e., only a part of the boundary of the spectral enclosure ca be approached by an eigenvalue of D_{V} for some $V \in$ $\ell^{1}\left(\mathbb{Z}, \mathbb{C}^{2 \times 2}\right)$.

Optimality of the improved spectral enclosure for ℓ^{1}-potential

- We were able to prove only a "partial" optimality, i.e., only a part of the boundary of the spectral enclosure ca be approached by an eigenvalue of D_{V} for some $V \in$ $\ell^{1}\left(\mathbb{Z}, \mathbb{C}^{2 \times 2}\right)$.

Re

Optimality of the improved spectral enclosure for ℓ^{1}-potential

- We were able to prove only a "partial" optimality, i.e., only a part of the boundary of the spectral enclosure ca be approached by an eigenvalue of D_{V} for some $V \in$ $\ell^{1}\left(\mathbb{Z}, \mathbb{C}^{2 \times 2}\right)$.

Re

Optimality of the improved spectral enclosure for ℓ^{1}-potential

- We were able to prove only a "partial" optimality, i.e., only a part of the boundary of the spectral enclosure ca be approached by an eigenvalue of D_{V} for some $V \in$ $\ell^{1}\left(\mathbb{Z}, \mathbb{C}^{2 \times 2}\right)$.

Spectral enclosures for $\ell^{p}-$ potentials, $p>1$

Theorem (spectral enclosures for ℓ^{p}-potentials)

Let $1<p \leq \infty, q$ the Hölder dual index to p, and assume $V \in \ell^{p}\left(\mathbb{Z}, \mathbb{C}^{2 \times 2}\right)$. Then $\sigma\left(D_{v}\right) \backslash \sigma\left(D_{0}\right)$ is a subset of:

Spectral enclosures for $\ell^{p}-$ potentials, $p>1$

Theorem (spectral enclosures for ℓ^{p}-potentials)

Let $1<p \leq \infty, q$ the Hölder dual index to p, and assume $V \in \ell^{p}\left(\mathbb{Z}, \mathbb{C}^{2 \times 2}\right)$. Then $\sigma\left(D_{v}\right) \backslash \sigma\left(D_{0}\right)$ is a subset of:
(1) A simpler bound:

$$
\left\{\lambda \in \mathbb{C} \backslash \sigma\left(D_{0}\right) \left\lvert\, \frac{|\lambda-m|+|\lambda+m|}{\left|k^{-1}-k\right|}\left(1+\frac{2 \sqrt{|k|^{q}}}{1-|k|^{q}}\right)^{1 / q}\|V\|_{p} \geq 1\right.\right\} .
$$

Spectral enclosures for $\ell^{p}-$ potentials, $p>1$

Theorem (spectral enclosures for ℓ^{p}-potentials)

Let $1<p \leq \infty, q$ the Hölder dual index to p, and assume $V \in \ell^{p}\left(\mathbb{Z}, \mathbb{C}^{2 \times 2}\right)$. Then $\sigma\left(D_{V}\right) \backslash \sigma\left(D_{0}\right)$ is a subset of:
(1) A simpler bound:

$$
\left\{\lambda \in \mathbb{C} \backslash \sigma\left(D_{0}\right) \left\lvert\, \frac{|\lambda-m|+|\lambda+m|}{\left|k^{-1}-k\right|}\left(1+\frac{2 \sqrt{|k|^{q}}}{1-|k|^{q}}\right)^{1 / q}\|V\|_{p} \geq 1\right.\right\}
$$

(2) A tighter bound:

$$
\left\{\lambda \in \mathbb{C} \backslash \sigma\left(D_{0}\right) \left\lvert\,\left(\left|T_{0}(k)\right|^{q}+\frac{2}{1-|k|^{q}}\left|T_{1}(k)\right|^{q}\right)^{1 / q}\|V\|_{p} \geq 1\right.\right\}
$$

Thank you!

