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Sampling matrices

Definition:
I Let a, b ∈ C([0, 1]) be complex-valued functions.

I Let ∆n ∈ {(t1, t2, . . . , tn) | 0 ≤ t1 < t2 < · · · < tn ≤ 1} be a partition of the interval
[0, 1].

I We call the matrix

Ja,b(∆n) :=



b (t1) a (t1)
a (t1) b (t2) a (t2)

a (t2) b (t3) a (t3)

. . .
. . .

. . .
a (tn−2) b (tn−1) a (tn−1)

a (tn−1) b (tn)


a samling Jacobi matrix.

Where they appear:
I Discrete approximations of 1-d BVP (grid, finite difference scheme),
I random matrices.

Problem:

Localization of spec(Ja,b(∆n)) in terms of a, b.
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Square: a(t) = i/2, b(t) = 1− 2t .



Circle: a(t) = i
√

t(1− t), b(t) = 1− 2t .



Butterfly: a(t) =
i
2

(
−40320 + 198971t2 − 163647t4 + 53837t6 − 9488t8

)
b(t) = 40320(1− 2t)



Fish: a(t) = 4it − 4it2 − it3

b(t) = −3− 5t − 4t2 − t3 − t4 + t5 − 4t6 − 3t7 + 3t8 + 5t9 + 3t10 − 2t11 − 3t13 + 4t14



Fallen snowman: a(t) = . . . complicated . . . , b(t) = . . . complicated . . .



A random object: a(t) = (−4− 2i) + (5 + 5i)t − (4 + 3i)t2 + (4 + 5i)t3

b(t) = (−4 + i)− 2t − (3 + i)t2 − (3 + 2i)t3



It seems the eigenvalues are somewhat localized ...



Estimations for the localization domain

I One has

‖J(∆n)‖ ≤ ‖b‖∞ + 2‖a‖∞, ∀n, ∀∆n, ∀a, b ∈ C([0, 1]).

I Thus,
spec(Ja,b(∆n)) ⊂ D (0, ‖b‖∞ + 2‖a‖∞) .

I This is very rough estimation ... much better job is done by Gerschrogin’s theorem:

Gerschrogin circle theorem:
Let A = (ai,j ) ∈ Cn,n and

Ri =
∑
j 6=i

|ai,j |,

then

spec(A) ⊂
n⋃

i=1

D(ai,i ,Ri ).

Applying Gerschrogin’s theorem we obtain much better localization:

spec
(
Ja,b(∆n)

)
⊂

⋃
0≤t≤1

D(b(t), 2a(t)) ∀n, ∀∆n



Estimations for the localization domain

I One has

‖J(∆n)‖ ≤ ‖b‖∞ + 2‖a‖∞, ∀n, ∀∆n, ∀a, b ∈ C([0, 1]).

I Thus,
spec(Ja,b(∆n)) ⊂ D (0, ‖b‖∞ + 2‖a‖∞) .

I This is very rough estimation ... much better job is done by Gerschrogin’s theorem:

Gerschrogin circle theorem:
Let A = (ai,j ) ∈ Cn,n and

Ri =
∑
j 6=i

|ai,j |,

then

spec(A) ⊂
n⋃

i=1

D(ai,i ,Ri ).

Applying Gerschrogin’s theorem we obtain much better localization:

spec
(
Ja,b(∆n)

)
⊂

⋃
0≤t≤1

D(b(t), 2a(t)) ∀n, ∀∆n



Estimations for the localization domain

I One has

‖J(∆n)‖ ≤ ‖b‖∞ + 2‖a‖∞, ∀n, ∀∆n, ∀a, b ∈ C([0, 1]).

I Thus,
spec(Ja,b(∆n)) ⊂ D (0, ‖b‖∞ + 2‖a‖∞) .

I This is very rough estimation ... much better job is done by Gerschrogin’s theorem:

Gerschrogin circle theorem:
Let A = (ai,j ) ∈ Cn,n and

Ri =
∑
j 6=i

|ai,j |,

then

spec(A) ⊂
n⋃

i=1

D(ai,i ,Ri ).

Applying Gerschrogin’s theorem we obtain much better localization:

spec
(
Ja,b(∆n)

)
⊂

⋃
0≤t≤1

D(b(t), 2a(t)) ∀n, ∀∆n



Estimations for the localization domain

I One has

‖J(∆n)‖ ≤ ‖b‖∞ + 2‖a‖∞, ∀n, ∀∆n, ∀a, b ∈ C([0, 1]).

I Thus,
spec(Ja,b(∆n)) ⊂ D (0, ‖b‖∞ + 2‖a‖∞) .

I This is very rough estimation ... much better job is done by Gerschrogin’s theorem:

Gerschrogin circle theorem:
Let A = (ai,j ) ∈ Cn,n and

Ri =
∑
j 6=i

|ai,j |,

then

spec(A) ⊂
n⋃

i=1

D(ai,i ,Ri ).

Applying Gerschrogin’s theorem we obtain much better localization:

spec
(
Ja,b(∆n)

)
⊂

⋃
0≤t≤1

D(b(t), 2a(t)) ∀n, ∀∆n



Estimations for the localization domain

I One has

‖J(∆n)‖ ≤ ‖b‖∞ + 2‖a‖∞, ∀n, ∀∆n, ∀a, b ∈ C([0, 1]).

I Thus,
spec(Ja,b(∆n)) ⊂ D (0, ‖b‖∞ + 2‖a‖∞) .

I This is very rough estimation ... much better job is done by Gerschrogin’s theorem:

Gerschrogin circle theorem:
Let A = (ai,j ) ∈ Cn,n and

Ri =
∑
j 6=i

|ai,j |,

then

spec(A) ⊂
n⋃

i=1

D(ai,i ,Ri ).

Applying Gerschrogin’s theorem we obtain much better localization:

spec
(
Ja,b(∆n)

)
⊂

⋃
0≤t≤1

D(b(t), 2a(t)) ∀n, ∀∆n



Weaker formulation and the optimal localization

I Let ∆ = {∆n}∞n=1 be a sequence of partitions of [0, 1]. Put

Λa,b(∆) := {z ∈ C | lim inf
n→∞

dist(z, spec(Ja,b(∆n))) = 0}.

I So, λ ∈ Λa,b(∆) iff

∃{nk} ⊂ N ∃λk ∈ spec(Ja,b(∆nk ))) such that lim
k→∞

λnk = λ.

Conjecture:
For all a, b ∈ C([0, 1]) and ∆ a sequence of partitions of [0, 1], it holds

Λa,b(∆) ⊂ Sa,b :=
⋃

0≤t≤1

[b(t)− 2a(t), b(t) + 2a(t)]

and this localization is optimal.

Equivalently the statement says: ∀ε > 0, ∃n0 ∈ N, ∀n ≥ n0, one has

spec(Ja,b(∆n)) ⊂ Uε(Sa,b).
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An attempt to prove the Conjecture

Idea:
1. To replace Ja,b(∆n) by a matrix of “simpler structure” which is close (in norm) to

Ja,b(∆n) and use some perturbation arguments, but in non-self-adjoint setting!

2. Similar approach has been successfully used by Tilli in 1998 solving the similar
problem for the so called locally Toeplitz matrices. However, all his results
concerning eigenvalues are derived under the self-adjointness assumption!

3. For instance, one can consider one can divide [0, 1] to m(≤ n) subintervals,
decompose n = n1 + · · ·+ nm, and introduce the following matrices (the frozen
boxes idea):

A(m)
n =

m⊕
i=1

Jni (ai , bi ) +

m−1∑
i=1

xi

(
eNi e

T
Ni +1 + eNi +1eT

Ni

)

where Ni = n1 + · · ·+ ni and ai = a(tni ), bi = b(tni ) and Jni (ai , bi ) is a tridiagonal
Toeplitz ni × ni matrix. Treat the problem for A(m)

n .

4. However, it is to say that picture is very incomplete now and several pieces are
missing!
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Asymptotic eigenvalue distribution of A(m)
n

Here we put xi =
√

ai ai+1.

Theorem:

Let m ∈ N and for all j ∈ {1, . . . ,m}, nj : N→ N be such that nj (n)→∞, as n→∞,
and N = n1 + · · ·+ nm. Then

lim
n→∞

det
(

A(m)
N(n)
− z
)

∏m
j=1 a

nj (n)

j Unj (n)

(
bj−z
2aj

) =

m−1∏
j=1

[
1− f

(
bj − z

2aj

)
f

(
bj+1 − z

2aj+1

)]

where f (z) = z −
√

z − 1
√

z + 1 and Un(·) stands for the Chebyshev polynomials of
the 2nd kind, and the convergence is local uniform in z ∈ C \ ∪m

j=1[bj − 2aj , bj + 2aj ].

Corollary:

“The set of limit points of spec
(

A(m)
N(n)

)
, as n→∞” =

m⋃
j=1

[bj − 2aj , bj + 2aj ]
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I In case of matrices A(m)
N(n)
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µ
(m)
n =
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where νa(λ) is the algebraic multiplicity of the eigenvalue λ.
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The case of uniform grid

I Take the sequence ∆ of uniform partitions of [0, 1], i.e.,

t(n)
j =

j
n
, j = 1, . . . , n.

I It seems the spectra of Ja,b(∆n) asymptotically approaches to certain curves in
Sa,b .

See the pictures . . .
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The square



The square - uniform grid



The circle



The circle - uniform grid



The butterfly



The butterfly- uniform grid



The fish



The fish - uniform grid



Fallen snowman



Fallen snowman - uniform grid



The random object



The random object - uniform grid



Open problems

Previous numerical observations give rise to many questions:

I Is possible to find a description of the curves in terms of a and b?
I What are (topological, analytical,...) properties of these curves?
I Does the weak limit of eigenvalue-counting measures exist?
I If, so what can be said about the limiting measure?

Except few very special examples, all these questions remain open . . .
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Band Toeplitz matrices

I History: Schmidt and Spitzer (1960), Hirschman (1967), Ullman (1967) and
Widom (1990,1994).

I Let T (b) stands for the banded Toeplitz operator determined by the symbol

b(t) =
s∑

j=−r

bj t j , r , s ≥ 1, b−r 6= 0, bs 6= 0,

i.e.,

T (b) =



b0 b−1 b−2 . . . b−r

b1 b0 b−1
. . .

. . .

b2 b1 b0
. . .

. . .
. . .

. . .
...

bs

. . .


.

I The n × n principle submatrix of T (b) is denoted by Tn(b).
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Towards the limiting set

I The limiting set of spectra spec(Tn(b)):

Λ(b) = {z ∈ C | lim inf
n→∞

dist(z, spec(Tn(b)) = 0}.

I However, we have only the inclusion:

Λ(b)⊂ spec(T (b)).

I If
bρ(t) := b(ρt), ρ > 0,

then Tn(b) and Tn(bρ) are similar matrices since

Tn(bρ) = diag(ρ, ρ2, . . . , ρn)Tn(b) diag(ρ−1, ρ−2, . . . , ρ−n)

I Therefore spec(Tn(b)) = spec(Tn(bρ)).

Actually we have

Λ(b) =
⋂
ρ>0

spec(T (bρ)).
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Structure of the limiting set

I However, there is a much more useful description of Λ(b). Define

Q(z;λ) := zr (b(z)− λ) .

I Q(z;λ) is polynomial in z of degree r + s.
I Denote z1(λ), . . . , zr+s(λ) the zeros of Q(·, λ), repeated according to their

multiplicity, labeled such that

|z1(λ)| ≤ |z2(λ)| ≤ . . . |zr+s(λ)|.

Theorem (Schmidt and Spitzer):

Λ(b) = {λ ∈ C | |zr (λ)| = |zr+1(λ)|}

Based on this description of Λ(b), it was proved that . . .

Theorem (Schmidt, Spitzer, Ullman):
Λ(b) is a connected set that equals the union of a finite number of pairwise disjoint
open analytic arcs and a finite number of the so called exceptional points (roughly
speaking: branching points and endpoints).
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An example (7-diagonal Toeplitz)



Towards the limiting measure

I If λ /∈ Λ(b) then one can find ρ > 0 such that

|zr (λ)| < ρ < |zr+1(λ)|

Define function g : C \ Λ(b)→ (0,∞) by the formula

g(λ) = exp

(
1

2π

∫ 2π

0
log
∣∣∣b(ρeiθ)− λ

∣∣∣ dθ

)
.

It can be shown that g(λ) does not depend on the specific choice of ρ.

Theorem (Hirschman):
The sequence of eigenvalue-counting measures of Tn(b) converges weakly to a
measure µ supported on Λ(b). In addition,

dµ(λ) =
1

2π
1

g(λ)

∣∣∣∣∂g(λ)

∂n1
+
∂g(λ)

∂n2

∣∣∣∣ ds(λ),

for λ ∈ Λ(b) a nonexceptional point (for such points, the outer normal vector
derivatives ∂g/∂n1 and ∂g/∂n2 with respect to the two components separated by the
respective arc of Λ(b) exist) Here, ds stands for the arc length measure.
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The logarithmic potential

I Let µ be a finite positive measure compactly supported in C. The logarithmic
potential is defined as

Uµ(z) =

∫
C

log |z − ξ|dµ(ξ).

(Uµ is harmonic in C \ suppµ and subharmonic in C.)

I Two measures µ and ν are called equipotential iff

Uµ(z) = Uν(z), ∀z ∈ C \ (suppµ ∪ supp ν) .
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Equipotential measures

Theorem
Let µn be the eigenvalue-counting measures of Ja,b(∆n) with uniform partitions ∆n.
Then there is a neighborhood U of∞ such that

lim
n→∞

Uµn (z) = Uσ(z), ∀z ∈ U

where

σ =

∫ 1

0
ωa(t),b(t)dt .

and
dωa,b

dz
(z) =

1
2a

dω
dx

(
b − z

2a

)
and

dω
dx

(x) =
χ(−1,1)(x)

π
√

1− x2
.

Corollary
If the Conjecture stating Λa,b(∆) ⊂ Sa,b holds true and the weak∗ limit µ of measures
µn exists. Then the measures µ and σ are equipotential.
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