# (1)n the localigation of freita of comble fambling Facobi matricel ano owen poblemt 

## Jfantilen grampady

Gtadiform Olnibxeritn and

MA ABA
(Q) Muantum circle

## Contents

Introduction

Experiments

Attempts to prove the Conjecture

The case of uniform grid

The story of Toeplitz matrices

The cirle example

Equipotential measures

## Sampling matrices

## Definition:

- Let $a, b \in C([0,1])$ be complex-valued functions.


## Sampling matrices

## Definition:

- Let $a, b \in C([0,1])$ be complex-valued functions.
- Let $\Delta_{n} \in\left\{\left(t_{1}, t_{2}, \ldots, t_{n}\right) \mid 0 \leq t_{1}<t_{2}<\cdots<t_{n} \leq 1\right\}$ be a partition of the interval $[0,1]$.


## Sampling matrices

## Definition:

- Let $a, b \in C([0,1])$ be complex-valued functions.
- Let $\Delta_{n} \in\left\{\left(t_{1}, t_{2}, \ldots, t_{n}\right) \mid 0 \leq t_{1}<t_{2}<\cdots<t_{n} \leq 1\right\}$ be a partition of the interval [0, 1].
- We call the matrix

$$
J_{a, b}\left(\Delta_{n}\right):=\left(\begin{array}{cccccc}
b\left(t_{1}\right) & a\left(t_{1}\right) & & & & \\
a\left(t_{1}\right) & b\left(t_{2}\right) & a\left(t_{2}\right) & & & \\
& a\left(t_{2}\right) & b\left(t_{3}\right) & a\left(t_{3}\right) & & \\
& & \ddots & \ddots & \ddots & \\
& & & a\left(t_{n-2}\right) & b\left(t_{n-1}\right) & a\left(t_{n-1}\right) \\
& & & & a\left(t_{n-1}\right) & b\left(t_{n}\right)
\end{array}\right)
$$

a samling Jacobi matrix.

## Sampling matrices

## Definition:

- Let $a, b \in C([0,1])$ be complex-valued functions.
- Let $\Delta_{n} \in\left\{\left(t_{1}, t_{2}, \ldots, t_{n}\right) \mid 0 \leq t_{1}<t_{2}<\cdots<t_{n} \leq 1\right\}$ be a partition of the interval [0, 1].
- We call the matrix

$$
J_{a, b}\left(\Delta_{n}\right):=\left(\begin{array}{cccccc}
b\left(t_{1}\right) & a\left(t_{1}\right) & & & & \\
a\left(t_{1}\right) & b\left(t_{2}\right) & a\left(t_{2}\right) & & & \\
& a\left(t_{2}\right) & b\left(t_{3}\right) & a\left(t_{3}\right) & & \\
& & \ddots & \ddots & \ddots & \\
& & & a\left(t_{n-2}\right) & b\left(t_{n-1}\right) & a\left(t_{n-1}\right) \\
& & & & a\left(t_{n-1}\right) & b\left(t_{n}\right)
\end{array}\right)
$$

a samling Jacobi matrix.
Where they appear:

## Sampling matrices

## Definition:

- Let $a, b \in C([0,1])$ be complex-valued functions.
- Let $\Delta_{n} \in\left\{\left(t_{1}, t_{2}, \ldots, t_{n}\right) \mid 0 \leq t_{1}<t_{2}<\cdots<t_{n} \leq 1\right\}$ be a partition of the interval [0, 1].
- We call the matrix

$$
J_{a, b}\left(\Delta_{n}\right):=\left(\begin{array}{cccccc}
b\left(t_{1}\right) & a\left(t_{1}\right) & & & & \\
a\left(t_{1}\right) & b\left(t_{2}\right) & a\left(t_{2}\right) & & & \\
& a\left(t_{2}\right) & b\left(t_{3}\right) & a\left(t_{3}\right) & & \\
& & \ddots & \ddots & \ddots & \\
& & & a\left(t_{n-2}\right) & b\left(t_{n-1}\right) & a\left(t_{n-1}\right) \\
& & & & a\left(t_{n-1}\right) & b\left(t_{n}\right)
\end{array}\right)
$$

a samling Jacobi matrix.

## Where they appear:

- Discrete approximations of 1-d BVP (grid, finite difference scheme),


## Sampling matrices

## Definition:

- Let $a, b \in C([0,1])$ be complex-valued functions.
- Let $\Delta_{n} \in\left\{\left(t_{1}, t_{2}, \ldots, t_{n}\right) \mid 0 \leq t_{1}<t_{2}<\cdots<t_{n} \leq 1\right\}$ be a partition of the interval [0, 1].
- We call the matrix

$$
J_{a, b}\left(\Delta_{n}\right):=\left(\begin{array}{cccccc}
b\left(t_{1}\right) & a\left(t_{1}\right) & & & & \\
a\left(t_{1}\right) & b\left(t_{2}\right) & a\left(t_{2}\right) & & & \\
& a\left(t_{2}\right) & b\left(t_{3}\right) & a\left(t_{3}\right) & & \\
& & \ddots & \ddots & \ddots & \\
& & & a\left(t_{n-2}\right) & b\left(t_{n-1}\right) & a\left(t_{n-1}\right) \\
& & & & a\left(t_{n-1}\right) & b\left(t_{n}\right)
\end{array}\right)
$$

a samling Jacobi matrix.

## Where they appear:

- Discrete approximations of 1-d BVP (grid, finite difference scheme),
- random matrices.


## Sampling matrices

## Definition:

- Let $a, b \in C([0,1])$ be complex-valued functions.
- Let $\Delta_{n} \in\left\{\left(t_{1}, t_{2}, \ldots, t_{n}\right) \mid 0 \leq t_{1}<t_{2}<\cdots<t_{n} \leq 1\right\}$ be a partition of the interval [0, 1].
- We call the matrix

$$
J_{a, b}\left(\Delta_{n}\right):=\left(\begin{array}{cccccc}
b\left(t_{1}\right) & a\left(t_{1}\right) & & & & \\
a\left(t_{1}\right) & b\left(t_{2}\right) & a\left(t_{2}\right) & & & \\
& a\left(t_{2}\right) & b\left(t_{3}\right) & a\left(t_{3}\right) & & \\
& & \ddots & \ddots & \ddots & \\
& & & a\left(t_{n-2}\right) & b\left(t_{n-1}\right) & a\left(t_{n-1}\right) \\
& & & & a\left(t_{n-1}\right) & b\left(t_{n}\right)
\end{array}\right)
$$

a samling Jacobi matrix.

## Where they appear:

- Discrete approximations of 1-d BVP (grid, finite difference scheme),
- random matrices.


## Problem:

Localization of $\operatorname{spec}\left(J_{a, b}\left(\Delta_{n}\right)\right)$ in terms of $a, b$.

## Contents

## Introduction

## Experiments

## Attempts to prove the Conjecture

The case of uniform grid

The story of Toeplitz matrices

The cirle example

Equipotential measures

Square: $a(t)=i / 2, b(t)=1-2 t$.


Circle: $a(t)=i \sqrt{t(1-t)}, b(t)=1-2 t$.


Butterfly: $a(t)=\frac{i}{2}\left(-40320+198971 t^{2}-163647 t^{4}+53837 t^{6}-9488 t^{8}\right)$ $b(t)=40320(1-2 t)$


Fish: $\quad a(t)=4 i t-4 i t^{2}-i t^{3}$
$b(t)=-3-5 t-4 t^{2}-t^{3}-t^{4}+t^{5}-4 t^{6}-3 t^{7}+3 t^{8}+5 t^{9}+3 t^{10}-2 t^{11}-3 t^{13}+4 t^{14}$


Fallen snowman: $\quad a(t)=\ldots$ complicated $\ldots, \quad b(t)=\ldots$ complicated


A random object: $\quad a(t)=(-4-2 i)+(5+5 i) t-(4+3 i) t^{2}+(4+5 i) t^{3}$

$$
b(t)=(-4+i)-2 t-(3+i) t^{2}-(3+2 i) t^{3}
$$



It seems the eigenvalues are somewhat localized ...

## Estimations for the localization domain

- One has

$$
\left\|J\left(\Delta_{n}\right)\right\| \leq\|b\|_{\infty}+2\|a\|_{\infty}, \quad \forall n, \forall \Delta_{n}, \forall a, b \in C([0,1])
$$

## Estimations for the localization domain

- One has

$$
\left\|J\left(\Delta_{n}\right)\right\| \leq\|b\|_{\infty}+2\|a\|_{\infty}, \quad \forall n, \forall \Delta_{n}, \forall a, b \in C([0,1])
$$

- Thus,

$$
\operatorname{spec}\left(J_{a, b}\left(\Delta_{n}\right)\right) \subset D\left(0,\|b\|_{\infty}+2\|a\|_{\infty}\right)
$$

## Estimations for the localization domain

- One has

$$
\left\|J\left(\Delta_{n}\right)\right\| \leq\|b\|_{\infty}+2\|a\|_{\infty}, \quad \forall n, \forall \Delta_{n}, \forall a, b \in C([0,1])
$$

- Thus,

$$
\operatorname{spec}\left(J_{a, b}\left(\Delta_{n}\right)\right) \subset D\left(0,\|b\|_{\infty}+2\|a\|_{\infty}\right)
$$

- This is very rough estimation ... much better job is done by Gerschrogin's theorem:


## Estimations for the localization domain

- One has

$$
\left\|J\left(\Delta_{n}\right)\right\| \leq\|b\|_{\infty}+2\|a\|_{\infty}, \quad \forall n, \forall \Delta_{n}, \forall a, b \in C([0,1])
$$

- Thus,

$$
\operatorname{spec}\left(J_{a, b}\left(\Delta_{n}\right)\right) \subset D\left(0,\|b\|_{\infty}+2\|a\|_{\infty}\right)
$$

- This is very rough estimation ... much better job is done by Gerschrogin's theorem:


## Gerschrogin circle theorem:

Let $A=\left(a_{i, j}\right) \in \mathbb{C}^{n, n}$ and

$$
R_{i}=\sum_{j \neq i}\left|a_{i, j}\right|,
$$

then

$$
\operatorname{spec}(A) \subset \bigcup_{i=1}^{n} D\left(a_{i, i}, R_{i}\right)
$$

## Estimations for the localization domain

- One has

$$
\left\|J\left(\Delta_{n}\right)\right\| \leq\|b\|_{\infty}+2\|a\|_{\infty}, \quad \forall n, \forall \Delta_{n}, \forall a, b \in C([0,1])
$$

- Thus,

$$
\operatorname{spec}\left(J_{a, b}\left(\Delta_{n}\right)\right) \subset D\left(0,\|b\|_{\infty}+2\|a\|_{\infty}\right)
$$

- This is very rough estimation ... much better job is done by Gerschrogin's theorem:


## Gerschrogin circle theorem:

Let $A=\left(a_{i, j}\right) \in \mathbb{C}^{n, n}$ and

$$
R_{i}=\sum_{j \neq i}\left|a_{i, j}\right|,
$$

then

$$
\operatorname{spec}(A) \subset \bigcup_{i=1}^{n} D\left(a_{i, i}, R_{i}\right)
$$

Applying Gerschrogin's theorem we obtain much better localization:

$$
\operatorname{spec}\left(J_{a, b}\left(\Delta_{n}\right)\right) \subset \bigcup_{0 \leq t \leq 1} D(b(t), 2 a(t)) \quad \forall n, \forall \Delta_{n}
$$

## Weaker formulation and the optimal localization

- Let $\Delta=\left\{\Delta_{n}\right\}_{n=1}^{\infty}$ be a sequence of partitions of $[0,1]$. Put

$$
\Lambda_{a, b}(\Delta):=\left\{z \in \mathbb{C} \mid \liminf _{n \rightarrow \infty} \operatorname{dist}\left(z, \operatorname{spec}\left(J_{a, b}\left(\Delta_{n}\right)\right)\right)=0\right\} .
$$

## Weaker formulation and the optimal localization

- Let $\Delta=\left\{\Delta_{n}\right\}_{n=1}^{\infty}$ be a sequence of partitions of $[0,1]$. Put

$$
\Lambda_{a, b}(\Delta):=\left\{z \in \mathbb{C} \mid \liminf _{n \rightarrow \infty} \operatorname{dist}\left(z, \operatorname{spec}\left(J_{a, b}\left(\Delta_{n}\right)\right)\right)=0\right\} .
$$

- So, $\lambda \in \Lambda_{a, b}(\Delta)$ iff

$$
\left.\exists\left\{n_{k}\right\} \subset \mathbb{N} \quad \exists \lambda_{k} \in \operatorname{spec}\left(J_{a, b}\left(\Delta_{n_{k}}\right)\right)\right) \text { such that } \lim _{k \rightarrow \infty} \lambda_{n_{k}}=\lambda .
$$

## Weaker formulation and the optimal localization

- Let $\Delta=\left\{\Delta_{n}\right\}_{n=1}^{\infty}$ be a sequence of partitions of $[0,1]$. Put

$$
\Lambda_{a, b}(\Delta):=\left\{z \in \mathbb{C} \mid \liminf _{n \rightarrow \infty} \operatorname{dist}\left(z, \operatorname{spec}\left(J_{a, b}\left(\Delta_{n}\right)\right)\right)=0\right\} .
$$

- So, $\lambda \in \Lambda_{a, b}(\Delta)$ iff

$$
\left.\exists\left\{n_{k}\right\} \subset \mathbb{N} \quad \exists \lambda_{k} \in \operatorname{spec}\left(J_{a, b}\left(\Delta_{n_{k}}\right)\right)\right) \text { such that } \lim _{k \rightarrow \infty} \lambda_{n_{k}}=\lambda .
$$

## Conjecture:

For all $a, b \in C([0,1])$ and $\Delta$ a sequence of partitions of $[0,1]$, it holds

$$
\Lambda_{a, b}(\Delta) \subset \mathcal{S}_{a, b}:=\bigcup_{0 \leq t \leq 1}[b(t)-2 a(t), b(t)+2 a(t)]
$$

and this localization is optimal.

## Weaker formulation and the optimal localization

- Let $\Delta=\left\{\Delta_{n}\right\}_{n=1}^{\infty}$ be a sequence of partitions of $[0,1]$. Put

$$
\Lambda_{a, b}(\Delta):=\left\{z \in \mathbb{C} \mid \liminf _{n \rightarrow \infty} \operatorname{dist}\left(z, \operatorname{spec}\left(J_{a, b}\left(\Delta_{n}\right)\right)\right)=0\right\} .
$$

- So, $\lambda \in \Lambda_{a, b}(\Delta)$ iff

$$
\left.\exists\left\{n_{k}\right\} \subset \mathbb{N} \quad \exists \lambda_{k} \in \operatorname{spec}\left(J_{a, b}\left(\Delta_{n_{k}}\right)\right)\right) \text { such that } \lim _{k \rightarrow \infty} \lambda_{n_{k}}=\lambda .
$$

## Conjecture:

For all $a, b \in C([0,1])$ and $\Delta$ a sequence of partitions of $[0,1]$, it holds

$$
\Lambda_{a, b}(\Delta) \subset \mathcal{S}_{a, b}:=\bigcup_{0 \leq t \leq 1}[b(t)-2 a(t), b(t)+2 a(t)]
$$

and this localization is optimal.
Equivalently the statement says: $\forall \epsilon>0, \exists n_{0} \in \mathbb{N}, \forall n \geq n_{0}$, one has

$$
\operatorname{spec}\left(J_{a, b}\left(\Delta_{n}\right)\right) \subset \mathcal{U}_{\epsilon}\left(\mathcal{S}_{a, b}\right)
$$

Let's take a look on pictures...

Square: $a(t)=i / 2, b(t)=1-2 t$.


Square: $a(t)=i / 2, b(t)=1-2 t$.


Circle: $a(t)=i \sqrt{t(1-t)}, b(t)=1-2 t$.


Circle: $a(t)=i \sqrt{t(1-t)}, b(t)=1-2 t$.


Butterfly: $a(t)=\frac{i}{2}\left(-40320+198971 t^{2}-163647 t^{4}+53837 t^{6}-9488 t^{8}\right)$ $b(t)=40320(1-2 t)$


Butterfly: $a(t)=\frac{i}{2}\left(-40320+198971 t^{2}-163647 t^{4}+53837 t^{6}-9488 t^{8}\right)$

$$
b(t)=40320(1-2 t)
$$



Fish: $\quad a(t)=4 i t-4 i t^{2}-i t^{3}$
$b(t)=-3-5 t-4 t^{2}-t^{3}-t^{4}+t^{5}-4 t^{6}-3 t^{7}+3 t^{8}+5 t^{9}+3 t^{10}-2 t^{11}-3 t^{13}+4 t^{14}$


Fish: $\quad a(t)=4 i t-4 i t^{2}-i t^{3}$
$b(t)=-3-5 t-4 t^{2}-t^{3}-t^{4}+t^{5}-4 t^{6}-3 t^{7}+3 t^{8}+5 t^{9}+3 t^{10}-2 t^{11}-3 t^{13}+4 t^{14}$


Fallen snowman: $\quad a(t)=\ldots$ complicated $\ldots, \quad b(t)=\ldots$ complicated


Fallen snowman: $\quad a(t)=\ldots$ complicated $\ldots, \quad b(t)=\ldots$ complicated


A random object: $\quad a(t)=(-4-2 i)+(5+5 i) t-(4+3 i) t^{2}+(4+5 i) t^{3}$

$$
b(t)=(-4+i)-2 t-(3+i) t^{2}-(3+2 i) t^{3}
$$



A random object: $\quad a(t)=(-4-2 i)+(5+5 i) t-(4+3 i) t^{2}+(4+5 i) t^{3}$

$$
b(t)=(-4+i)-2 t-(3+i) t^{2}-(3+2 i) t^{3}
$$

Contents

## Introduction

## Experiments

Attempts to prove the Conjecture

The case of uniform grid

The story of Toeplitz matrices

The cirle example

Equipotential measures

Í

## An attempt to prove the Conjecture

## Idea:

1. To replace $J_{a, b}\left(\Delta_{n}\right)$ by a matrix of "simpler structure" which is close (in norm) to $J_{a, b}\left(\Delta_{n}\right)$ and use some perturbation arguments, but in non-self-adjoint setting!

## An attempt to prove the Conjecture

## Idea:

1. To replace $J_{a, b}\left(\Delta_{n}\right)$ by a matrix of "simpler structure" which is close (in norm) to $J_{a, b}\left(\Delta_{n}\right)$ and use some perturbation arguments, but in non-self-adjoint setting!
2. Similar approach has been successfully used by Tilli in 1998 solving the similar problem for the so called locally Toeplitz matrices. However, all his results concerning eigenvalues are derived under the self-adjointness assumption!

## An attempt to prove the Conjecture

## Idea:

1. To replace $J_{a, b}\left(\Delta_{n}\right)$ by a matrix of "simpler structure" which is close (in norm) to $J_{a, b}\left(\Delta_{n}\right)$ and use some perturbation arguments, but in non-self-adjoint setting!
2. Similar approach has been successfully used by Tilli in 1998 solving the similar problem for the so called locally Toeplitz matrices. However, all his results concerning eigenvalues are derived under the self-adjointness assumption!
3. For instance, one can consider one can divide $[0,1]$ to $m(\leq n)$ subintervals, decompose $n=n_{1}+\cdots+n_{m}$, and introduce the following matrices (the frozen boxes idea):

$$
A_{n}^{(m)}=\bigoplus_{i=1}^{m} J_{n_{i}}\left(a_{i}, b_{i}\right)+\sum_{i=1}^{m-1} x_{i}\left(e_{N_{i}} e_{N_{i}+1}^{T}+e_{N_{i}+1} e_{N_{i}}^{T}\right)
$$

where $N_{i}=n_{1}+\cdots+n_{i}$ and $a_{i}=a\left(t_{n_{i}}\right), b_{i}=b\left(t_{n_{i}}\right)$ and $J_{n_{i}}\left(a_{i}, b_{i}\right)$ is a tridiagonal Toeplitz $n_{i} \times n_{i}$ matrix. Treat the problem for $A_{n}^{(m)}$.

## An attempt to prove the Conjecture

## Idea:

1. To replace $J_{a, b}\left(\Delta_{n}\right)$ by a matrix of "simpler structure" which is close (in norm) to $J_{a, b}\left(\Delta_{n}\right)$ and use some perturbation arguments, but in non-self-adjoint setting!
2. Similar approach has been successfully used by Tilli in 1998 solving the similar problem for the so called locally Toeplitz matrices. However, all his results concerning eigenvalues are derived under the self-adjointness assumption!
3. For instance, one can consider one can divide $[0,1]$ to $m(\leq n)$ subintervals, decompose $n=n_{1}+\cdots+n_{m}$, and introduce the following matrices (the frozen boxes idea):

$$
A_{n}^{(m)}=\bigoplus_{i=1}^{m} J_{n_{i}}\left(a_{i}, b_{i}\right)+\sum_{i=1}^{m-1} x_{i}\left(e_{N_{i}} e_{N_{i}+1}^{T}+e_{N_{i}+1} e_{N_{i}}^{T}\right)
$$

where $N_{i}=n_{1}+\cdots+n_{i}$ and $a_{i}=a\left(t_{n_{i}}\right), b_{i}=b\left(t_{n_{i}}\right)$ and $J_{n_{i}}\left(a_{i}, b_{i}\right)$ is a tridiagonal Toeplitz $n_{i} \times n_{i}$ matrix. Treat the problem for $A_{n}^{(m)}$.
4. However, it is to say that picture is very incomplete now and several pieces are missing!

Asymptotic eigenvalue distribution of $A_{n}^{(m)}$

Here we put $x_{i}=\sqrt{a_{i} a_{i+1}}$.
Theorem:

## Asymptotic eigenvalue distribution of $A_{n}^{(m)}$

Here we put $x_{i}=\sqrt{a_{i} a_{i+1}}$.
Theorem:
Let $m \in \mathbb{N}$ and for all $j \in\{1, \ldots, m\}, n_{j}: \mathbb{N} \rightarrow \mathbb{N}$ be such that $n_{j}(n) \rightarrow \infty$, as $n \rightarrow \infty$, and $N=n_{1}+\cdots+n_{m}$.

## Asymptotic eigenvalue distribution of $A_{n}^{(m)}$

Here we put $x_{i}=\sqrt{a_{i} a_{i+1}}$.

## Theorem:

Let $m \in \mathbb{N}$ and for all $j \in\{1, \ldots, m\}, n_{j}: \mathbb{N} \rightarrow \mathbb{N}$ be such that $n_{j}(n) \rightarrow \infty$, as $n \rightarrow \infty$, and $N=n_{1}+\cdots+n_{m}$. Then

$$
\lim _{n \rightarrow \infty} \frac{\operatorname{det}\left(A_{N(n)}^{(m)}-z\right)}{\prod_{j=1}^{m} a_{j}^{n_{j}(n)} U_{n_{j}(n)}\left(\frac{b_{j}-z}{2 a_{j}}\right)}=\prod_{j=1}^{m-1}\left[1-f\left(\frac{b_{j}-z}{2 a_{j}}\right) f\left(\frac{b_{j+1}-z}{2 a_{j+1}}\right)\right]
$$

where $f(z)=z-\sqrt{z-1} \sqrt{z+1}$ and $U_{n}(\cdot)$ stands for the Chebyshev polynomials of the 2nd kind, and the convergence is local uniform in $z \in \mathbb{C} \backslash \cup_{j=1}^{m}\left[b_{j}-2 a_{j}, b_{j}+2 a_{j}\right]$.

Asymptotic eigenvalue distribution of $A_{n}^{(m)}$
Here we put $x_{i}=\sqrt{a_{i} a_{i+1}}$.

## Theorem:

Let $m \in \mathbb{N}$ and for all $j \in\{1, \ldots, m\}, n_{j}: \mathbb{N} \rightarrow \mathbb{N}$ be such that $n_{j}(n) \rightarrow \infty$, as $n \rightarrow \infty$, and $N=n_{1}+\cdots+n_{m}$. Then

$$
\lim _{n \rightarrow \infty} \frac{\operatorname{det}\left(A_{N(n)}^{(m)}-z\right)}{\prod_{j=1}^{m} a_{j}^{n_{j}(n)} U_{n_{j}(n)}\left(\frac{b_{j}-z}{2 a_{j}}\right)}=\prod_{j=1}^{m-1}\left[1-f\left(\frac{b_{j}-z}{2 a_{j}}\right) f\left(\frac{b_{j+1}-z}{2 a_{j+1}}\right)\right]
$$

where $f(z)=z-\sqrt{z-1} \sqrt{z+1}$ and $U_{n}(\cdot)$ stands for the Chebyshev polynomials of the 2nd kind, and the convergence is local uniform in $z \in \mathbb{C} \backslash \cup_{j=1}^{m}\left[b_{j}-2 a_{j}, b_{j}+2 a_{j}\right]$.

## Corollary:

$$
\text { "The set of limit points of } \operatorname{spec}\left(A_{N(n)}^{(m)}\right) \text {, as } n \rightarrow \infty "=\bigcup_{j=1}^{m}\left[b_{j}-2 a_{j}, b_{j}+2 a_{j}\right]
$$

The limit of eigenvalue-counting measures of $A_{n}^{(m)}$

- In case of matrices $A_{N(n)}^{(m)}$, we can prove much more.


## The limit of eigenvalue-counting measures of $A_{n}^{(m)}$

- In case of matrices $A_{N(n)}^{(m)}$, we can prove much more.
- Denote $\mu_{n}^{(m)}$ the eigenvalue-counting measure of $A_{N(n)}^{(m)}$, i.e.,

$$
\mu_{n}^{(m)}=\sum_{\lambda} \frac{1}{\nu_{a}(\lambda)} \delta_{\lambda}
$$

where $\nu_{a}(\lambda)$ is the algebraic multiplicity of the eigenvalue $\lambda$.

The limit of eigenvalue-counting measures of $A_{n}^{(m)}$

- In case of matrices $A_{N(n)}^{(m)}$, we can prove much more.
- Denote $\mu_{n}^{(m)}$ the eigenvalue-counting measure of $A_{N(n)}^{(m)}$, i.e.,

$$
\mu_{n}^{(m)}=\sum_{\lambda} \frac{1}{\nu_{a}(\lambda)} \delta_{\lambda}
$$

where $\nu_{a}(\lambda)$ is the algebraic multiplicity of the eigenvalue $\lambda$.

## Theorem:

Let $m \in \mathbb{N}$ and for all $j \in\{1, \ldots, m\}, n_{j}: \mathbb{N} \rightarrow \mathbb{N}$ be such that

$$
\lim _{n \rightarrow \infty} n_{j}(n)=\infty \quad \text { and } \quad \lim _{n \rightarrow \infty} n_{j}(n+1)-n_{j}(n)=\ell_{j} \in \mathbb{N} .
$$

The limit of eigenvalue-counting measures of $A_{n}^{(m)}$

- In case of matrices $A_{N(n)}^{(m)}$, we can prove much more.
- Denote $\mu_{n}^{(m)}$ the eigenvalue-counting measure of $A_{N(n)}^{(m)}$, i.e.,

$$
\mu_{n}^{(m)}=\sum_{\lambda} \frac{1}{\nu_{a}(\lambda)} \delta_{\lambda}
$$

where $\nu_{a}(\lambda)$ is the algebraic multiplicity of the eigenvalue $\lambda$.

## Theorem:

Let $m \in \mathbb{N}$ and for all $j \in\{1, \ldots, m\}, n_{j}: \mathbb{N} \rightarrow \mathbb{N}$ be such that

$$
\lim _{n \rightarrow \infty} n_{j}(n)=\infty \quad \text { and } \quad \lim _{n \rightarrow \infty} n_{j}(n+1)-n_{j}(n)=\ell_{j} \in \mathbb{N} .
$$

Then

$$
w-\lim _{n \rightarrow \infty} \mu_{n}^{(m)}=\sum_{j=1}^{m} \ell_{j} \omega_{a_{j}, b_{j}}
$$

where $\omega_{a, b}$ is the absolutely continuous measure supported on $[b-2 a, b+2 a]$ with density

$$
\frac{\mathrm{d} \omega_{a, b}}{\mathrm{~d} z}(z)=\frac{1}{2 a} \frac{\mathrm{~d} \omega}{\mathrm{~d} x}\left(\frac{b-z}{2 a}\right) \quad \text { and } \quad \frac{\mathrm{d} \omega}{\mathrm{~d} x}(x)=\frac{\chi_{(-1,1)}(x)}{\pi \sqrt{1-x^{2}}} .
$$

## Contents

## Introduction

## Experiments

## Attempts to prove the Conjecture

The case of uniform grid

The story of Toeplitz matrices

The cirle example

Equipotential measures

## The case of uniform grid

- Take the sequence $\Delta$ of uniform partitions of $[0,1]$, i.e.,

$$
t_{j}^{(n)}=\frac{j}{n}, \quad j=1, \ldots, n
$$

## The case of uniform grid

- Take the sequence $\Delta$ of uniform partitions of $[0,1]$, i.e.,

$$
t_{j}^{(n)}=\frac{j}{n}, \quad j=1, \ldots, n
$$

- It seems the spectra of $J_{a, b}\left(\Delta_{n}\right)$ asymptotically approaches to certain curves in $\mathcal{S}_{a, b}$.


## The case of uniform grid

- Take the sequence $\Delta$ of uniform partitions of $[0,1]$, i.e.,

$$
t_{j}^{(n)}=\frac{j}{n}, \quad j=1, \ldots, n
$$

- It seems the spectra of $J_{a, b}\left(\Delta_{n}\right)$ asymptotically approaches to certain curves in $\mathcal{S}_{a, b}$.

See the pictures ...


The square - uniform grid


The circle


## The circle - uniform grid




The butterfly- uniform grid



## The fish - uniform grid




Fallen snowman - uniform grid


## The random object



## The random object - uniform grid



## Open problems

Previous numerical observations give rise to many questions:

## Open problems

Previous numerical observations give rise to many questions:

- Is possible to find a description of the curves in terms of $a$ and $b$ ?


## Open problems

Previous numerical observations give rise to many questions:

- Is possible to find a description of the curves in terms of $a$ and $b$ ?
- What are (topological, analytical,...) properties of these curves?


## Open problems

## Previous numerical observations give rise to many questions:

- Is possible to find a description of the curves in terms of $a$ and $b$ ?
- What are (topological, analytical,...) properties of these curves?
- Does the weak limit of eigenvalue-counting measures exist?


## Open problems

## Previous numerical observations give rise to many questions:

- Is possible to find a description of the curves in terms of $a$ and $b$ ?
- What are (topological, analytical,...) properties of these curves?
- Does the weak limit of eigenvalue-counting measures exist?
- If, so what can be said about the limiting measure?


## Open problems

## Previous numerical observations give rise to many questions:

- Is possible to find a description of the curves in terms of $a$ and $b$ ?
- What are (topological, analytical,...) properties of these curves?
- Does the weak limit of eigenvalue-counting measures exist?
- If, so what can be said about the limiting measure?

Except few very special examples, all these questions remain open ...

## Contents

## Introduction

## Experiments

## Attempts to prove the Conjecture

The case of uniform grid

The story of Toeplitz matrices

The cirle example

## Equipotential measures

## Band Toeplitz matrices

- History: Schmidt and Spitzer (1960), Hirschman (1967), Ullman (1967) and Widom $(1990,1994)$.


## Band Toeplitz matrices

- History: Schmidt and Spitzer (1960), Hirschman (1967), Ullman (1967) and Widom $(1990,1994)$.
- Let $T(b)$ stands for the banded Toeplitz operator determined by the symbol

$$
b(t)=\sum_{j=-r}^{s} b_{j} t^{j}, \quad r, s \geq 1, \quad b_{-r} \neq 0, \quad b_{s} \neq 0
$$

## Band Toeplitz matrices

- History: Schmidt and Spitzer (1960), Hirschman (1967), Ullman (1967) and Widom $(1990,1994)$.
- Let $T(b)$ stands for the banded Toeplitz operator determined by the symbol

$$
b(t)=\sum_{j=-r}^{s} b_{j} t^{j}, \quad r, s \geq 1, \quad b_{-r} \neq 0, \quad b_{s} \neq 0
$$

i.e.,

$$
T(b)=\left(\begin{array}{ccccccc}
b_{0} & b_{-1} & b_{-2} & & \ldots & b_{-r} & \\
b_{1} & b_{0} & b_{-1} & \ddots & & & \ddots \\
b_{2} & b_{1} & b_{0} & \ddots & & & \\
& \ddots & \ddots & \ddots & & & \\
\vdots & & & & & & \\
b_{s} & & & & & \\
& \ddots & & & &
\end{array}\right)
$$

## Band Toeplitz matrices

- History: Schmidt and Spitzer (1960), Hirschman (1967), Ullman (1967) and Widom $(1990,1994)$.
- Let $T(b)$ stands for the banded Toeplitz operator determined by the symbol

$$
b(t)=\sum_{j=-r}^{s} b_{j} t^{j}, \quad r, s \geq 1, \quad b_{-r} \neq 0, \quad b_{s} \neq 0
$$

i.e.,

$$
T(b)=\left(\begin{array}{ccccccc}
b_{0} & b_{-1} & b_{-2} & & \cdots & b_{-r} & \\
b_{1} & b_{0} & b_{-1} & \ddots & & & \ddots \\
b_{2} & b_{1} & b_{0} & \ddots & & & \\
& \ddots & \ddots & \ddots & & \\
\vdots & & & & & \\
b_{s} & & & & & \\
& \ddots & & & &
\end{array}\right)
$$

- The $n \times n$ principle submatrix of $T(b)$ is denoted by $T_{n}(b)$.


## Towards the limiting set

- The limiting set of spectra $\operatorname{spec}\left(T_{n}(b)\right)$ :

$$
\Lambda(b)=\left\{z \in \mathbb{C} \mid \liminf _{n \rightarrow \infty} \operatorname{dist}\left(z, \operatorname{spec}\left(T_{n}(b)\right)=0\right\}\right.
$$

## Towards the limiting set

- The limiting set of spectra $\operatorname{spec}\left(T_{n}(b)\right)$ :

$$
\Lambda(b)=\left\{z \in \mathbb{C} \mid \liminf _{n \rightarrow \infty} \operatorname{dist}\left(z, \operatorname{spec}\left(T_{n}(b)\right)=0\right\}\right.
$$

- One might think that

$$
\Lambda(b)=\operatorname{spec}(T(b))
$$

## Towards the limiting set

- The limiting set of spectra $\operatorname{spec}\left(T_{n}(b)\right)$ :

$$
\Lambda(b)=\left\{z \in \mathbb{C} \mid \liminf _{n \rightarrow \infty} \operatorname{dist}\left(z, \operatorname{spec}\left(T_{n}(b)\right)=0\right\}\right.
$$

- However, we have only the inclusion:

$$
\Lambda(b) \subset \operatorname{spec}(T(b))
$$

## Towards the limiting set

- The limiting set of spectra $\operatorname{spec}\left(T_{n}(b)\right)$ :

$$
\Lambda(b)=\left\{z \in \mathbb{C} \mid \liminf _{n \rightarrow \infty} \operatorname{dist}\left(z, \operatorname{spec}\left(T_{n}(b)\right)=0\right\}\right.
$$

- However, we have only the inclusion:

$$
\Lambda(b) \subset \operatorname{spec}(T(b))
$$

- If

$$
b_{\rho}(t):=b(\rho t), \quad \rho>0
$$

then $T_{n}(b)$ and $T_{n}\left(b_{\rho}\right)$ are similar matrices since

$$
T_{n}\left(b_{\rho}\right)=\operatorname{diag}\left(\rho, \rho^{2}, \ldots, \rho^{n}\right) T_{n}(b) \operatorname{diag}\left(\rho^{-1}, \rho^{-2}, \ldots, \rho^{-n}\right)
$$

## Towards the limiting set

- The limiting set of spectra $\operatorname{spec}\left(T_{n}(b)\right)$ :

$$
\Lambda(b)=\left\{z \in \mathbb{C} \mid \liminf _{n \rightarrow \infty} \operatorname{dist}\left(z, \operatorname{spec}\left(T_{n}(b)\right)=0\right\}\right.
$$

- However, we have only the inclusion:

$$
\Lambda(b) \subset \operatorname{spec}(T(b))
$$

- If

$$
b_{\rho}(t):=b(\rho t), \quad \rho>0
$$

then $T_{n}(b)$ and $T_{n}\left(b_{\rho}\right)$ are similar matrices since

$$
T_{n}\left(b_{\rho}\right)=\operatorname{diag}\left(\rho, \rho^{2}, \ldots, \rho^{n}\right) T_{n}(b) \operatorname{diag}\left(\rho^{-1}, \rho^{-2}, \ldots, \rho^{-n}\right)
$$

- Therefore $\operatorname{spec}\left(T_{n}(b)\right)=\operatorname{spec}\left(T_{n}\left(b_{\rho}\right)\right)$. Hence,

$$
\Lambda(b) \subset \bigcap_{\rho>0} \operatorname{spec}\left(T\left(b_{\rho}\right)\right)
$$

## Towards the limiting set

- The limiting set of spectra $\operatorname{spec}\left(T_{n}(b)\right)$ :

$$
\Lambda(b)=\left\{z \in \mathbb{C} \mid \liminf _{n \rightarrow \infty} \operatorname{dist}\left(z, \operatorname{spec}\left(T_{n}(b)\right)=0\right\}\right.
$$

- However, we have only the inclusion:

$$
\Lambda(b) \subset \operatorname{spec}(T(b))
$$

- If

$$
b_{\rho}(t):=b(\rho t), \quad \rho>0
$$

then $T_{n}(b)$ and $T_{n}\left(b_{\rho}\right)$ are similar matrices since

$$
T_{n}\left(b_{\rho}\right)=\operatorname{diag}\left(\rho, \rho^{2}, \ldots, \rho^{n}\right) T_{n}(b) \operatorname{diag}\left(\rho^{-1}, \rho^{-2}, \ldots, \rho^{-n}\right)
$$

- Therefore $\operatorname{spec}\left(T_{n}(b)\right)=\operatorname{spec}\left(T_{n}\left(b_{\rho}\right)\right)$. Actually we have

$$
\Lambda(b)=\bigcap_{\rho>0} \operatorname{spec}\left(T\left(b_{\rho}\right)\right)
$$

## Structure of the limiting set

- However, there is a much more useful description of $\Lambda(b)$. Define

$$
Q(z ; \lambda):=z^{r}(b(z)-\lambda)
$$

## Structure of the limiting set

- However, there is a much more useful description of $\Lambda(b)$. Define

$$
Q(z ; \lambda):=z^{r}(b(z)-\lambda)
$$

- $Q(z ; \lambda)$ is polynomial in $z$ of degree $r+s$.


## Structure of the limiting set

- However, there is a much more useful description of $\Lambda(b)$. Define

$$
Q(z ; \lambda):=z^{r}(b(z)-\lambda)
$$

- $Q(z ; \lambda)$ is polynomial in $z$ of degree $r+s$.
- Denote $z_{1}(\lambda), \ldots, z_{r+s}(\lambda)$ the zeros of $Q(\cdot, \lambda)$, repeated according to their multiplicity, labeled such that

$$
\left|z_{1}(\lambda)\right| \leq\left|z_{2}(\lambda)\right| \leq \ldots\left|z_{r+s}(\lambda)\right|
$$

## Structure of the limiting set

- However, there is a much more useful description of $\Lambda(b)$. Define

$$
Q(z ; \lambda):=z^{r}(b(z)-\lambda)
$$

- $Q(z ; \lambda)$ is polynomial in $z$ of degree $r+s$.
- Denote $z_{1}(\lambda), \ldots, z_{r+s}(\lambda)$ the zeros of $Q(\cdot, \lambda)$, repeated according to their multiplicity, labeled such that

$$
\left|z_{1}(\lambda)\right| \leq\left|z_{2}(\lambda)\right| \leq \ldots\left|z_{r+s}(\lambda)\right|
$$

## Theorem (Schmidt and Spitzer):

$$
\Lambda(b)=\left\{\lambda \in \mathbb{C}| | z_{r}(\lambda)\left|=\left|z_{r+1}(\lambda)\right|\right\}\right.
$$

## Structure of the limiting set

- However, there is a much more useful description of $\Lambda(b)$. Define

$$
Q(z ; \lambda):=z^{r}(b(z)-\lambda)
$$

- $Q(z ; \lambda)$ is polynomial in $z$ of degree $r+s$.
- Denote $z_{1}(\lambda), \ldots, z_{r+s}(\lambda)$ the zeros of $Q(\cdot, \lambda)$, repeated according to their multiplicity, labeled such that

$$
\left|z_{1}(\lambda)\right| \leq\left|z_{2}(\lambda)\right| \leq \ldots\left|z_{r+s}(\lambda)\right|
$$

## Theorem (Schmidt and Spitzer):

$$
\Lambda(b)=\left\{\lambda \in \mathbb{C}| | z_{r}(\lambda)\left|=\left|z_{r+1}(\lambda)\right|\right\}\right.
$$

Based on this description of $\Lambda(b)$, it was proved that ...

## Structure of the limiting set

- However, there is a much more useful description of $\Lambda(b)$. Define

$$
Q(z ; \lambda):=z^{r}(b(z)-\lambda)
$$

- $Q(z ; \lambda)$ is polynomial in $z$ of degree $r+s$.
- Denote $z_{1}(\lambda), \ldots, z_{r+s}(\lambda)$ the zeros of $Q(\cdot, \lambda)$, repeated according to their multiplicity, labeled such that

$$
\left|z_{1}(\lambda)\right| \leq\left|z_{2}(\lambda)\right| \leq \ldots\left|z_{r+s}(\lambda)\right|
$$

## Theorem (Schmidt and Spitzer):

$$
\Lambda(b)=\left\{\lambda \in \mathbb{C}| | z_{r}(\lambda)\left|=\left|z_{r+1}(\lambda)\right|\right\}\right.
$$

Based on this description of $\Lambda(b)$, it was proved that $\ldots$

## Theorem (Schmidt, Spitzer, Ullman):

$\Lambda(b)$ is a connected set that equals the union of a finite number of pairwise disjoint open analytic arcs and a finite number of the so called exceptional points (roughly speaking: branching points and endpoints).

## An example (7-diagonal Toeplitz)



## Towards the limiting measure

- If $\lambda \notin \Lambda(b)$ then one can find $\rho>0$ such that

$$
\left|z_{r}(\lambda)\right|<\rho<\left|z_{r+1}(\lambda)\right|
$$

## Towards the limiting measure

- If $\lambda \notin \Lambda(b)$ then one can find $\rho>0$ such that

$$
\left|z_{r}(\lambda)\right|<\rho<\left|z_{r+1}(\lambda)\right|
$$

Define function $g: \mathbb{C} \backslash \Lambda(b) \rightarrow(0, \infty)$ by the formula

$$
g(\lambda)=\exp \left(\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|b\left(\rho e^{\mathrm{i} \theta}\right)-\lambda\right| \mathrm{d} \theta\right)
$$

It can be shown that $g(\lambda)$ does not depend on the specific choice of $\rho$.

## Towards the limiting measure

- If $\lambda \notin \Lambda(b)$ then one can find $\rho>0$ such that

$$
\left|z_{r}(\lambda)\right|<\rho<\left|z_{r+1}(\lambda)\right|
$$

Define function $g: \mathbb{C} \backslash \Lambda(b) \rightarrow(0, \infty)$ by the formula

$$
g(\lambda)=\exp \left(\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|b\left(\rho e^{\mathrm{i} \theta}\right)-\lambda\right| \mathrm{d} \theta\right)
$$

It can be shown that $g(\lambda)$ does not depend on the specific choice of $\rho$.

## Theorem (Hirschman):

The sequence of eigenvalue-counting measures of $T_{n}(b)$ converges weakly to a measure $\mu$ supported on $\Lambda(b)$. In addition,

$$
\mathrm{d} \mu(\lambda)=\frac{1}{2 \pi} \frac{1}{g(\lambda)}\left|\frac{\partial g(\lambda)}{\partial n_{1}}+\frac{\partial g(\lambda)}{\partial n_{2}}\right| \mathrm{d} s(\lambda)
$$

for $\lambda \in \Lambda(b)$ a nonexceptional point (for such points, the outer normal vector derivatives $\partial g / \partial n_{1}$ and $\partial g / \partial n_{2}$ with respect to the two components separated by the respective arc of $\Lambda(b)$ exist) Here, ds stands for the arc length measure.

## Contents

Introduction

## Experiments

## Attempts to prove the Conjecture

The case of uniform grid

The story of Toeplitz matrices

The cirle example

Equipotential measures

## Unit disk and the Szegö curve

## Contents

```
Introduction
Experiments
Attempts to prove the Conjecture
The case of uniform grid
The story of Toeplitz matrices
The cirle example
```

Equipotential measures

## The logarithmic potential

- Let $\mu$ be a finite positive measure compactly supported in $\mathbb{C}$. The logarithmic potential is defined as

$$
U^{\mu}(z)=\int_{\mathbb{C}} \log |z-\xi| \mathrm{d} \mu(\xi)
$$

( $U^{\mu}$ is harmonic in $\mathbb{C} \backslash \operatorname{supp} \mu$ and subharmonic in $\mathbb{C}$.)

## The logarithmic potential

- Let $\mu$ be a finite positive measure compactly supported in $\mathbb{C}$. The logarithmic potential is defined as

$$
U^{\mu}(z)=\int_{\mathbb{C}} \log |z-\xi| \mathrm{d} \mu(\xi)
$$

( $U^{\mu}$ is harmonic in $\mathbb{C} \backslash \operatorname{supp} \mu$ and subharmonic in $\mathbb{C}$.)

- Two measures $\mu$ and $\nu$ are called equipotential iff

$$
U^{\mu}(z)=U^{\nu}(z), \quad \forall z \in \mathbb{C} \backslash(\operatorname{supp} \mu \cup \operatorname{supp} \nu)
$$

## Equipotential measures

## Theorem

Let $\mu_{n}$ be the eigenvalue-counting measures of $J_{a, b}\left(\Delta_{n}\right)$ with uniform partitions $\Delta_{n}$. Then there is a neighborhood $U$ of $\infty$ such that

$$
\lim _{n \rightarrow \infty} U^{\mu_{n}}(z)=U^{\sigma}(z), \quad \forall z \in U
$$

## Equipotential measures

## Theorem

Let $\mu_{n}$ be the eigenvalue-counting measures of $J_{a, b}\left(\Delta_{n}\right)$ with uniform partitions $\Delta_{n}$. Then there is a neighborhood $U$ of $\infty$ such that

$$
\lim _{n \rightarrow \infty} U^{\mu_{n}}(z)=U^{\sigma}(z), \quad \forall z \in U
$$

where

$$
\sigma=\int_{0}^{1} \omega_{a(t), b(t)} \mathrm{d} t
$$

## Equipotential measures

## Theorem

Let $\mu_{n}$ be the eigenvalue-counting measures of $J_{a, b}\left(\Delta_{n}\right)$ with uniform partitions $\Delta_{n}$. Then there is a neighborhood $U$ of $\infty$ such that

$$
\lim _{n \rightarrow \infty} U^{\mu_{n}}(z)=U^{\sigma}(z), \quad \forall z \in U
$$

where

$$
\sigma=\int_{0}^{1} \omega_{a(t), b(t)} \mathrm{d} t
$$

and

$$
\frac{\mathrm{d} \omega_{a, b}}{\mathrm{~d} z}(z)=\frac{1}{2 a} \frac{\mathrm{~d} \omega}{\mathrm{~d} x}\left(\frac{b-z}{2 a}\right) \quad \text { and } \quad \frac{\mathrm{d} \omega}{\mathrm{~d} x}(x)=\frac{\chi_{(-1,1)}(x)}{\pi \sqrt{1-x^{2}}}
$$

## Equipotential measures

## Theorem

Let $\mu_{n}$ be the eigenvalue-counting measures of $J_{a, b}\left(\Delta_{n}\right)$ with uniform partitions $\Delta_{n}$. Then there is a neighborhood $U$ of $\infty$ such that

$$
\lim _{n \rightarrow \infty} U^{\mu_{n}}(z)=U^{\sigma}(z), \quad \forall z \in U
$$

where

$$
\sigma=\int_{0}^{1} \omega_{a(t), b(t)} \mathrm{d} t
$$

and

$$
\frac{\mathrm{d} \omega_{a, b}}{\mathrm{~d} z}(z)=\frac{1}{2 a} \frac{\mathrm{~d} \omega}{\mathrm{~d} x}\left(\frac{b-z}{2 a}\right) \quad \text { and } \quad \frac{\mathrm{d} \omega}{\mathrm{~d} x}(x)=\frac{\chi_{(-1,1)}(x)}{\pi \sqrt{1-x^{2}}} .
$$

## Corollary

If the Conjecture stating $\Lambda_{a, b}(\Delta) \subset \mathcal{S}_{a, b}$ holds true and the weak* limit $\mu$ of measures $\mu_{n}$ exists. Then the measures $\mu$ and $\sigma$ are equipotential.


## Ferelé Telifinace

