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Toeplitz matrices

Basic definitions and facts

(Semi-infinite) Toeplitz matrix:

T (a) =



a0 a−1 a−2

a1 a0 a−1
. . .

a2 a1 a0
. . .

. . .
. . .

. . .

 .

Symbol: the (formal) Laurent series

a(z) =
∑
n∈Z

anzn.

Finite Toeplitz matrix: Tn(a) stands for the upper-left n × n section of T (a).

Recall that if
∑
|an| <∞, then T (a) determines a well-defined bounded operator on `2(N)

and one has [Toeplitz, Wiener]

spec T (a) = a(T) ∪ {z ∈ C \ a(T) | wind(a− z) 6= 0}.

Note that a is real-valued on T, if and only if T (a) = T (a)∗.
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Toeplitz matrices

The limiting set and measure

The limiting set:
Λ(a) = {λ ∈ C | lim inf

n→∞
dist(λ, spec(Tn(a)) = 0},

equivalently

λ ∈ Λ(a) ⇔ ∃nk ∃λk ∈ spec
(
Tnk (a)

)
s.t. lim

k→∞
λk = λ.

The eigenvalue-counting measure:

µn =
1
n

n∑
k=1

δ
λ

(n)
k
,

where λ(n)
1 , . . . , λ

(n)
n are eigenvalues of Tn(a).

If the weak limit, say µ, of µn for n→∞ exists, i.e.,

lim
n→∞

∫
C

f (z)dµn(z) ≡ lim
n→∞

1
n

n∑
k=1

f
(
λ

(n)
k

)
=

∫
C

f (z)dµ(z), ∀f ∈ C0(C),

then µ is called a.e.d./limiting measure/density of states.
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Toeplitz matrices

Three sets

Naturally, there are 3 sets to compare:

spec T (a) vs. Λ(a) vs. suppµ,

(providing that µ exists).

At this point it is essential to distinguish:

self-adjoint case

an = a−n

vs.
non-self-adjoint case

an 6= a−n
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Toeplitz matrices

The self-adjoint case

Here we assume
∑
|an| <∞ and an = a−n for all n ∈ Z.

Szegő:

lim
n→∞

1
n

n∑
k=1

[
λ

(n)
k

]m
=

1
2π

∫ π

−π

[
a(eit )

]m
dt , ∀m ∈ N0.

The Weierstrass approximation theorem implies

lim
n→∞

∫
R

f (x)dµn(x) =

∫
R

f (x)dµ(x), ∀f ∈ C0(R),

i.e., µn
w→ µ, where

µ((α, β]) =
1

2π

∣∣{t ∈ (−π, π] | α < a(eit ) ≤ β}
∣∣.

Clearly, suppµ = [min|z|=1 a(z),max|z|=1 a(z)], and hence

suppµ = spec T (a).

František Štampach (FIT CTU in Prague) 6 / 31



Toeplitz matrices

The self-adjoint case

Here we assume
∑
|an| <∞ and an = a−n for all n ∈ Z.

Szegő:
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Toeplitz matrices

The self-adjoint case

A consequence of Szegő’s result:

lim
n→∞

Nn(α, β)

n
=

1
2π

∣∣{t ∈ (−π, π] | α < a(eit ) < β}
∣∣

where Nn(α, β) = (α, β) ∪ spec Tn(a).

It implies that [min|z|=1 a(z),max|z|=1 a(z)] ⊂ Λ(a).
Since min

/
max a(z) is the lower/upper bound for the Toeplitz form (x ,Tnx), we get

Λ(a) = spec T (a).

Theorem

If
∑
|an| <∞ and an = a−n for all n ∈ Z, then a.e.d. µ exists and

Λ(a) = spec T (a) = suppµ.

Moreover, µ is determined by

µ((α, β]) =
1

2π

∣∣{t ∈ (−π, π] | α < a(eit ) ≤ β}
∣∣.

František Štampach (FIT CTU in Prague) 7 / 31



Toeplitz matrices

The self-adjoint case

A consequence of Szegő’s result:
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Toeplitz matrices

The non-self-adjoint case

Q: What happen if the assumption of self-adjointness of T (a) is relaxed?

... a numerical experiment for

a(z) = 2z−2 + 4iz−1 + 1− 2iz + 5z2 + 7iz3 − z4 + 19z5 + (i + 2)z6 + 28z7
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Toeplitz matrices

The non-self-adjoint case

There is no more equality between Λ(a) and spec T (a), but one inclusion still holds:

Λ(a) ⊂ spec T (a)

The understanding of the limiting set Λ(a) is very little in the non-self-adjoint case.

To get some results, we restrict ourself to banded Toeplitz matrices. So the symbol is the
Laurent polynomial:

b(z) =
s∑

j=−r

aj z j , r , s ≥ 1, a−r 6= 0, as 6= 0,

(we also exclude lower/upper triangular matrices).
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Toeplitz matrices

The non-self-adjoint case - the result of Schmidt & Spitzer

Denote z1(λ), . . . , zr+s(λ) the roots of the polynomial z 7→ zr (b(z)− λ) labeled such that

|z1(λ)| ≤ |z2(λ)| ≤ . . . |zr+s(λ)|.

An elegant description of Λ(b) for banded Toeplitz matrices is due to Schmidt & Spitzer:

Λ(b) = {λ ∈ C | |zr (λ)| = |zr+1(λ)|}.

This description allows one to deduce analytical and topological properties of Λ(b):

Theorem (Schmidt, Spitzer, Ullman - 60’s):

Λ(b) is a connected set that equals the union of a finite number of pairwise disjoint open analytic
arcs and a finite number of the so called exceptional points (basically: branching points and end-
points).

Open problem: It is not know for what b the set C \ Λ(b) is connected.

František Štampach (FIT CTU in Prague) 10 / 31
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Toeplitz matrices

The non-self-adjoint case - the result of Hirschman Jr.

Also the problem of a.e.d. has been solved for banded Toeplitz matrices. The limiting
measure µ exists and one has

Λ(b) = suppµ.

Moreover, Hirschman Jr. found “an explicit” description of the density of µ.

Theorem (Hirschman Jr. - 1967)

On each arc Γ of Λ(b), the limiting measure µ is a.c. and its density can be expressed as follows:

dµ
dλ

(λ) =
1

2πi

r∑
j=1

(
z′j (λ+)

zj (λ+)
−

z′j (λ−)

zj (λ−)

)
.

Here dλ is the complex line element on Γ taken with respect to a chosen orientation on Γ and
zj (λ±) are one-side limits of zj (λ

′), as λ′ approaches λ ∈ Γ from the left/right side of Γ deter-
mined by the chosen orientation.

A generalization of the results of Schmidt & Spitzer and Hirschman exists for Toeplitz
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Generalized Toeplitz matrices - self-adjoint case

Kac–Murdock–Szegő matrices

Assume the coefficients of the symbol depend on an additional variable x ∈ [0, 1]:

a(z, x) =
∑
k∈Z

ak (x)zk .

Kac, Murdock, and Szegő (in 1953) introduced the matrices

Tn(a) =

[
ak−l

(
k + l

2n + 2

)]n−1

k,l=0

and called them Generalized Toeplitz matrices (if ak (t) = ak , Tn(a) is a Toeplitz matrix).

An interesting history:
1 Introduced by Kac, Murdock, and Szegő in 1953.
2 After 1958 almost forgotten (no citation in 1958-1999 according to MathSciNet).
3 Tilli rediscovered these matrices in 1998 and called them locally Toeplitz matrices.
4 Kuijlaars and Van Assche (1999) studied the asymptotic distribution of zeros of OG

polynomials with variable coefficients - a special (tridiagonal) case of KMS matrices.
5 After 2000, a renewed interest...
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Assume the coefficients of the symbol depend on an additional variable x ∈ [0, 1]:

a(z, x) =
∑
k∈Z

ak (x)zk .
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Generalized Toeplitz matrices - self-adjoint case

The result of Kac, Murdock, and Szegő

Kac, Murdock, and Szegő derived the so called first Szegő limit theorem for KMS matrices
which yields the a.e.d.

Assumptions: ∑
k∈Z
‖ak‖∞ <∞, ak continuous, a−k (x) = ak (x).

Theorem (Kac, Murdock, Szegő - 1953)

With the assumptions above, one has

lim
n→∞

1
n

n∑
k=1

[
λ

(n)
k

]m
=

1
2π

∫ π

−π

∫ 1

0

[
a(eit , x)

]m
dxdt , ∀m ∈ N0,

where λ(n)
1 , . . . , λ

(n)
n are eigenvalues of Tn(a).

By applying the Weierstrass approximation theorem (and the fact that the eigenvalues remain
in a compact interval for all n), we prove that the a.e.d. of Tn(a), as n→∞, exists and is
given by

µ((α, β]) =
1

2π

∣∣{(t , x) ∈ (−π, π]× [0, 1] | α < a(eit , x) ≤ β}
∣∣.
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Generalized Toeplitz matrices - self-adjoint case

A special case - orthogonal polynomials with variable coefficients

From the special case with the trinomial symbol

a(z, x) = a−1(x)z−1 + a0(x) + a1(x)z,

one can deduce the result of Kuijlaars & Van Assche that can be formulated as follows.

Theorem (Kuijlaars, Van Assche - a special case)

Let a : [0, 1]→ R+ and b : [0, 1]→ R be continuous and p(n)
k be a family of polynomials

generated by the recurrence

p(n)
k+1(z) =

(
z − b

(
k
n

))
p(n)

k (z)−
(

a
(

k − 1
n

))2
p(n)

k−1(z)

with the initial conditions p(n)
−1(z) = 0 and p(n)

0 (z) = 1. Then the zero-counting measure of p(n)
n

converges weakly to

µ =

∫ 1

0
ω[b(t)−2a(t),b(t)+2a(t)]dt ,

where
dω[α,β](x)

dx
=

1

π
√

(β − x)(x − α)
, for α < x < β.
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Generalized Toeplitz matrices - self-adjoint case

An alternative formulation - sampling Jacobi matrix

Alternatively, the previous statement says that the a.e.d. of a self-adjoint sampling Jacobi
matrix

Jn(a, b) =



b
(

1
n

)
a
(

1
n

)
a
(

1
n

)
b
(

2
n

)
a
(

2
n

)
a
(

2
n

)
b
(

3
n

)
a
(

3
n

)
. . .

. . .
. . .

a
(

n−2
n

)
b
(

n−1
n

)
a
(

n−1
n

)
a
(

n−1
n

)
b (1)


,

with a, b ∈ C([0, 1]), exists and equals

µ =

∫ 1

0
ω[b(t)−2a(t),b(t)+2a(t)]dt .

The last formula fails to hold, if the assumption on self-adjointness is relaxed and no
generalization is known.
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,

with a, b ∈ C([0, 1]), exists and equals

µ =

∫ 1

0
ω[b(t)−2a(t),b(t)+2a(t)]dt .

The last formula fails to hold, if the assumption on self-adjointness is relaxed and no
generalization is known.
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Generalized Toeplitz matrices - non-self-adjoint case

In general, very little is known about the a.e.d. of non-self-adjoint KMS matrices.

We restrict ourself to non-self-adjoint sampling Jacobi matrices for simplicity.

Based on numerical experiments and the known a.e.d. for banded Toeplitz matrices, we
formulate the following conjecture.

Conjecture

Let a, b : [0, 1]→ C be continuous. Then the a.e.d. µ exists and it is supported on a set that
equals a finite union of open analytic arcs and finite number of points.

Problem: µ = µ(a, b)?

Provided that a.e.d. µ exists, a natural question asks whether µ or suppµ can be expressed in
terms of the functions a and b (as it is possible in the self-adjoint case).

Our inability to solve this problem in its generality motivates us to investigate some special
cases - collaboration with O. Turek, work very much in progress.

Typically, the special choices of a and b correspond to well-known families of polynomials
where more properties are available.
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Generalized Toeplitz matrices - non-self-adjoint case

The strategy for the derivation of the limiting measure

Definition:

The Cauchy transform of a Borel measure µ is a function defined by

Cµ(z) :=

∫
C

dµ(x)

z − x
, z ∈ C \ suppµ.

Example: To compute the Cauchy transform of the root-counting measure µn of a monic
polynomial pn is extremely easy. One has

Cµn (z) =
p′n(z)

npn(z)
.

Theorem

Let µn is a sequence of probability measures supported uniformly in a compact set K ⊂ C.
Assume that

lim
n→∞

Cµn (z) = C(z), a.e. z ∈ C.

Then C is the Cauchy transform of a probability measure µ which is a weak limit of µn for n→∞.
Moreover, one has

µ =
1
π
∂zC in the generalized sense.
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Generalized Toeplitz matrices - non-self-adjoint case

The strategy for the derivation of the limiting measure

Although the generalized formula µ = 1
π
∂zCµ is elegant, it can be difficult to deduce µ from it

in cocrete cases.

But if the set of singular points of Cµ is a nice curve (e.g., piecewise analytic) in C, one can
make use the Plemelj–Sokhotski formula.

Plemelj–Sokhotski’s formula

Let γ be an oriented analytic curve, Cµ analytic on C \ γ and can be continuously extended onto γ
from the left(+)/right(-) side. Then one has

dµ
dz

(z) = −
1

2πi
(Cµ(z+)− Cµ(z−))

on γ (details on blackboard).

The main difficultly of the strategy: pn(z) ∼ ? for n→∞.

There are many powerful methods for the asymptotic analysis (Saddle point method,
Riemann–Hilbert problem,...) but it usually requires a more detailed knowledge about pn
(generating functions, integral representations,...).
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Generalized Toeplitz matrices - non-self-adjoint case

An appetizer - one example

a(x) =
√

ax , (a > 0),

b(x) = ix ,
Jn =


b
(

1
n

)
a
(

1
n

)
a
(

1
n

)
b
(

2
n

)
a
(

2
n

)
. . .

. . .
. . .

a
(

n−1
n

)
b (1)

,

Simple estimates on the quadratic form of Jn show that

spec(Jn) ⊂ (−2
√

a, 2
√

a) + i(0, 1], ∀n ∈ N.

Moreover, spec(Jn) is the set of zeros of the polynomial

pn(z) := 2F0

(
−n,−an − inz − 1;−; a−1n−1

)
,

that can be identified with the Charlier polynomials.

Namely,
pn(z) = C(−an)

n (−an − izn − 1) ,

where C(α)
n (x) are the Charlier polynomials.
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Generalized Toeplitz matrices - non-self-adjoint case

An appetizer - asymptotic analysis

From the hypergeometric representation, it follows that pn(z) = pn(−z). Hence, spec(Jn) is
symmetric w.r.t. the imaginary line and we may restrict ourself to the half-plane <z > 0.

Certain nice properties of the Charlier polynomials yields the integral representation

pn(z) =
a−nn−n

2πi

∮
γ0

q(ξ)e−np(ξ,z)dξ,

where
q(ξ) =

1
ξ(1 + ξ)

, p(ξ, z) = (a + iz) log(1 + ξ) + log(ξ)− aξ,

and γ0 is a Jordan curve with 0 ∈ Int(γ0) located in C \ (−∞,−1].

This is a suitable form for the application of the Saddle point method:

pn(z) ∼ An(z)e−np(ξ±,z), if < p(ξ+, z) ≶ < p(ξ−, z).

where ξ± = ξ±(z, a) are two stationary points of p(·, z), i.e., the solutions of

aξ2 − (1 + iz)ξ − 1 = 0.
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Generalized Toeplitz matrices - non-self-adjoint case

An appetizer - the Cauchy transform

Ω± :=
{

z ∈ (0, 2
√

a) + i(0, 1)
∣∣ < p(ξ+, z) ≶ < p(ξ−, z)

}

Cµ(z) =

{
i log(1 + ξ+), z ∈ Ω+,

i log(1 + ξ−), z ∈ Ω−,

Cµ is discontinuous on the curve given
implicitly by

< p(ξ+, z) = < p(ξ−, z),

for z ∈ (0, 2
√

a) + i(0, 1).

If the curve is parametrized by the real part of the variable:

γ(x) := x + iy(x), x ∈ (0, 2
√

a),

then one can show that

y ′(x) = −
= log ((1 + ξ+)/(1 + ξ−))

< log ((1 + ξ+)/(1 + ξ−))
.
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{

z ∈ (0, 2
√

a) + i(0, 1)
∣∣ < p(ξ+, z) ≶ < p(ξ−, z)

}

Cµ(z) =

{
i log(1 + ξ+), z ∈ Ω+,

i log(1 + ξ−), z ∈ Ω−,

Cµ is discontinuous on the curve given
implicitly by

< p(ξ+, z) = < p(ξ−, z),

for z ∈ (0, 2
√

a) + i(0, 1).

If the curve is parametrized by the real part of the variable:

γ(x) := x + iy(x), x ∈ (0, 2
√

a),

then one can show that
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Generalized Toeplitz matrices - non-self-adjoint case

An appetizer - the limiting measure on Arc 1

The application of Plemelj–Sokhotski’s formula yields

dµ
dx

(x) =
1

2π
|log ((1 + ξ+)/(1 + ξ−))|2

< log ((1 + ξ+)/(1 + ξ−))
, x ∈ (0, 2

√
a).
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Generalized Toeplitz matrices - non-self-adjoint case

An appetizer - threshold

Since pn(z) = pn(−z), one has Cµ(z) = −Cµ(−z)

which allows us to extend the Cauchy transform to the left half-plane <z < 0.
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An appetizer - threshold

Since pn(z) = pn(−z), one has Cµ(z) = −Cµ(−z)

which allows us to extend the Cauchy transform to the left half-plane <z < 0.

Denote by y0(a) the imaginary part of the point where the curve γ intersects the imaginary line.

If a > y0(a), Cµ is analytic everywhere but on the curve γ.
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which allows us to extend the Cauchy transform to the left half-plane <z < 0.

Denote by y0(a) the imaginary part of the point where the curve γ intersects the imaginary line.

If a < y0(a), Cµ has an additional branch cut on the line segment i(a, y0(a)).

Plemelj–Sokhotski
implies

dµ
dy

(y) = 1, y ∈ (a, y0(a)).
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Generalized Toeplitz matrices - non-self-adjoint case

An appetizer - summary

There are two regimes according to the value of a:

The threshold a = y0(a) occurs for a > 0 the unique solution of the equation

ae1+a = 1

i.e, a = 0.278465....
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Generalized Toeplitz matrices - non-self-adjoint case

An appetizer - numerical demonstrations

The histogram of eigenvalues of J1000 compared with the limiting density in <z > 0.
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Generalized Toeplitz matrices - non-self-adjoint case

An appetizer - numerical demonstrations
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Generalized Toeplitz matrices - non-self-adjoint case

An appetizer - numerical demonstrations

The distribution of eigenvalues in Regime 1: a = 1 > y0(a) = 0.32.
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Generalized Toeplitz matrices - non-self-adjoint case

An appetizer - numerical demonstrations

The distribution of eigenvalues in Regime 2: a = 0.08 < y0(a) = 0.4.
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Generalized Toeplitz matrices - non-self-adjoint case

Thank you!
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