On the asymptotic eigenvalue distribution of Toeplitz matrices and generalizations

Frantisek Štampach

Seminar talk at University of Ostrava

February 13, 2018

Contents

(1) Toeplitz matrices

(2) Generalized Toeplitz matrices - self-adjoint case

3 Generalized Toeplitz matrices - non-self-adjoint case

Basic definitions and facts

- (Semi-infinite) Toeplitz matrix:

$$
T(a)=\left(\begin{array}{cccc}
a_{0} & a_{-1} & a_{-2} & \\
a_{1} & a_{0} & a_{-1} & \ddots \\
a_{2} & a_{1} & a_{0} & \ddots \\
& \ddots & \ddots & \ddots
\end{array}\right)
$$

Basic definitions and facts

- (Semi-infinite) Toeplitz matrix:

$$
T(a)=\left(\begin{array}{cccc}
a_{0} & a_{-1} & a_{-2} & \\
a_{1} & a_{0} & a_{-1} & \ddots \\
a_{2} & a_{1} & a_{0} & \ddots \\
& \ddots & \ddots & \ddots
\end{array}\right)
$$

- Symbol: the (formal) Laurent series

$$
a(z)=\sum_{n \in \mathbb{Z}} a_{n} z^{n}
$$

Basic definitions and facts

- (Semi-infinite) Toeplitz matrix:

$$
T(a)=\left(\begin{array}{cccc}
a_{0} & a_{-1} & a_{-2} & \\
a_{1} & a_{0} & a_{-1} & \ddots \\
a_{2} & a_{1} & a_{0} & \ddots \\
& \ddots & \ddots & \ddots
\end{array}\right)
$$

- Symbol: the (formal) Laurent series

$$
a(z)=\sum_{n \in \mathbb{Z}} a_{n} z^{n} .
$$

- Finite Toeplitz matrix: $T_{n}(a)$ stands for the upper-left $n \times n$ section of $T(a)$.

Basic definitions and facts

- (Semi-infinite) Toeplitz matrix:

$$
T(a)=\left(\begin{array}{cccc}
a_{0} & a_{-1} & a_{-2} & \\
a_{1} & a_{0} & a_{-1} & \ddots \\
a_{2} & a_{1} & a_{0} & \ddots \\
& \ddots & \ddots & \ddots
\end{array}\right)
$$

- Symbol: the (formal) Laurent series

$$
a(z)=\sum_{n \in \mathbb{Z}} a_{n} z^{n} .
$$

- Finite Toeplitz matrix: $T_{n}(a)$ stands for the upper-left $n \times n$ section of $T(a)$.
- Recall that if $\sum\left|a_{n}\right|<\infty$, then $T(a)$ determines a well-defined bounded operator on $\ell^{2}(\mathbb{N})$ and one has [Toeplitz, Wiener]

$$
\operatorname{spec} T(a)=a(\mathbb{T}) \cup\{z \in \mathbb{C} \backslash a(\mathbb{T}) \mid \text { wind }(a-z) \neq 0\}
$$

Basic definitions and facts

- (Semi-infinite) Toeplitz matrix:

$$
T(a)=\left(\begin{array}{cccc}
a_{0} & a_{-1} & a_{-2} & \\
a_{1} & a_{0} & a_{-1} & \ddots \\
a_{2} & a_{1} & a_{0} & \ddots \\
& \ddots & \ddots & \ddots
\end{array}\right)
$$

- Symbol: the (formal) Laurent series

$$
a(z)=\sum_{n \in \mathbb{Z}} a_{n} z^{n} .
$$

- Finite Toeplitz matrix: $T_{n}(a)$ stands for the upper-left $n \times n$ section of $T(a)$.
- Recall that if $\sum\left|a_{n}\right|<\infty$, then $T(a)$ determines a well-defined bounded operator on $\ell^{2}(\mathbb{N})$ and one has [Toeplitz, Wiener]

$$
\operatorname{spec} T(a)=a(\mathbb{T}) \cup\{z \in \mathbb{C} \backslash a(\mathbb{T}) \mid \operatorname{wind}(a-z) \neq 0\}
$$

- Note that a is real-valued on \mathbb{T}, if and only if $T(a)=T(a)^{*}$.

The limiting set and measure

- The limiting set:

$$
\Lambda(a)=\left\{\lambda \in \mathbb{C} \mid \liminf _{n \rightarrow \infty} \operatorname{dist}\left(\lambda, \operatorname{spec}\left(T_{n}(a)\right)=0\right\}\right.
$$

equivalently

$$
\lambda \in \Lambda(a) \Leftrightarrow \exists n_{k} \quad \exists \lambda_{k} \in \operatorname{spec}\left(T_{n_{k}}(a)\right) \quad \text { s.t. } \quad \lim _{k \rightarrow \infty} \lambda_{k}=\lambda .
$$

The limiting set and measure

- The limiting set:

$$
\Lambda(a)=\left\{\lambda \in \mathbb{C} \mid \liminf _{n \rightarrow \infty} \operatorname{dist}\left(\lambda, \operatorname{spec}\left(T_{n}(a)\right)=0\right\}\right.
$$

equivalently

$$
\lambda \in \Lambda(a) \Leftrightarrow \exists n_{k} \quad \exists \lambda_{k} \in \operatorname{spec}\left(T_{n_{k}}(a)\right) \quad \text { s.t. } \quad \lim _{k \rightarrow \infty} \lambda_{k}=\lambda .
$$

- The eigenvalue-counting measure:

$$
\mu_{n}=\frac{1}{n} \sum_{k=1}^{n} \delta_{\lambda_{k}^{(n)}},
$$

where $\lambda_{1}^{(n)}, \ldots, \lambda_{n}^{(n)}$ are eigenvalues of $T_{n}(a)$.

The limiting set and measure

- The limiting set:

$$
\Lambda(a)=\left\{\lambda \in \mathbb{C} \mid \liminf _{n \rightarrow \infty} \operatorname{dist}\left(\lambda, \operatorname{spec}\left(T_{n}(a)\right)=0\right\}\right.
$$

equivalently

$$
\lambda \in \Lambda(a) \Leftrightarrow \exists n_{k} \quad \exists \lambda_{k} \in \operatorname{spec}\left(T_{n_{k}}(a)\right) \quad \text { s.t. } \quad \lim _{k \rightarrow \infty} \lambda_{k}=\lambda .
$$

- The eigenvalue-counting measure:

$$
\mu_{n}=\frac{1}{n} \sum_{k=1}^{n} \delta_{\lambda_{k}^{(n)}}
$$

where $\lambda_{1}^{(n)}, \ldots, \lambda_{n}^{(n)}$ are eigenvalues of $T_{n}(a)$.

- If the weak limit, say μ, of μ_{n} for $n \rightarrow \infty$ exists, i.e.,

$$
\lim _{n \rightarrow \infty} \int_{\mathbb{C}} f(z) \mathrm{d} \mu_{n}(z) \equiv \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} f\left(\lambda_{k}^{(n)}\right)=\int_{\mathbb{C}} f(z) \mathrm{d} \mu(z), \quad \forall f \in C_{0}(\mathbb{C})
$$

then μ is called a.e.d./limiting measure/density of states.

Three sets

- Naturally, there are 3 sets to compare:
$\operatorname{spec} T(a) \quad$ vs. $\quad \Lambda(a) \quad$ vs. $\quad \operatorname{supp} \mu$,
(providing that μ exists).

Three sets

- Naturally, there are 3 sets to compare:

$$
\operatorname{spec} T(a) \quad \text { vs. } \quad \Lambda(a) \quad \text { vs. } \quad \operatorname{supp} \mu
$$

(providing that μ exists).

- At this point it is essential to distinguish:

$$
\begin{array}{lrr}
\text { self-adjoint case } & \text { von-self-adjoint case } \\
a_{n}=\overline{a_{-n}} & a_{n} \neq \overline{a_{-n}}
\end{array}
$$

The self-adjoint case

- Here we assume $\sum\left|a_{n}\right|<\infty$ and $a_{n}=\overline{a_{-n}}$ for all $n \in \mathbb{Z}$.

The self-adjoint case

- Here we assume $\sum\left|a_{n}\right|<\infty$ and $a_{n}=\overline{a_{-n}}$ for all $n \in \mathbb{Z}$.
- Szegő:

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n}\left[\lambda_{k}^{(n)}\right]^{m}=\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left[a\left(e^{\mathrm{i} t}\right)\right]^{m} \mathrm{~d} t, \quad \forall m \in \mathbb{N}_{0}
$$

The self-adjoint case

- Here we assume $\sum\left|a_{n}\right|<\infty$ and $a_{n}=\overline{a_{-n}}$ for all $n \in \mathbb{Z}$.
- Szegő:

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n}\left[\lambda_{k}^{(n)}\right]^{m}=\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left[a\left(e^{\mathrm{it} t}\right)\right]^{m} \mathrm{~d} t, \quad \forall m \in \mathbb{N}_{0}
$$

- The Weierstrass approximation theorem implies

$$
\lim _{n \rightarrow \infty} \int_{\mathbb{R}} f(x) \mathrm{d} \mu_{n}(x)=\int_{\mathbb{R}} f(x) \mathrm{d} \mu(x), \quad \forall f \in C_{0}(\mathbb{R})
$$

i.e., $\mu_{n} \xrightarrow{w} \mu$, where

$$
\mu((\alpha, \beta])=\frac{1}{2 \pi}\left|\left\{t \in(-\pi, \pi] \mid \alpha<a\left(e^{\mathrm{it}}\right) \leq \beta\right\}\right| .
$$

The self-adjoint case

- Here we assume $\sum\left|a_{n}\right|<\infty$ and $a_{n}=\overline{a_{-n}}$ for all $n \in \mathbb{Z}$.
- Szegő:

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n}\left[\lambda_{k}^{(n)}\right]^{m}=\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left[a\left(e^{\mathrm{it}}\right)\right]^{m} \mathrm{~d} t, \quad \forall m \in \mathbb{N}_{0}
$$

- The Weierstrass approximation theorem implies

$$
\lim _{n \rightarrow \infty} \int_{\mathbb{R}} f(x) \mathrm{d} \mu_{n}(x)=\int_{\mathbb{R}} f(x) \mathrm{d} \mu(x), \quad \forall f \in C_{0}(\mathbb{R})
$$

i.e., $\mu_{n} \xrightarrow{w} \mu$, where

$$
\mu((\alpha, \beta])=\frac{1}{2 \pi}\left|\left\{t \in(-\pi, \pi] \mid \alpha<a\left(e^{\mathrm{it}}\right) \leq \beta\right\}\right| .
$$

- Clearly, $\operatorname{supp} \mu=\left[\min _{|z|=1} a(z), \max _{|z|=1} a(z)\right]$, and hence

$$
\operatorname{supp} \mu=\operatorname{spec} T(a)
$$

The self-adjoint case

- A consequence of Szegő's result:

$$
\lim _{n \rightarrow \infty} \frac{N_{n}(\alpha, \beta)}{n}=\frac{1}{2 \pi}\left|\left\{t \in(-\pi, \pi] \mid \alpha<a\left(e^{\mathrm{it}}\right)<\beta\right\}\right|
$$

where $N_{n}(\alpha, \beta)=(\alpha, \beta) \cup \operatorname{spec} T_{n}(a)$.

The self-adjoint case

- A consequence of Szegő's result:

$$
\lim _{n \rightarrow \infty} \frac{N_{n}(\alpha, \beta)}{n}=\frac{1}{2 \pi}\left|\left\{t \in(-\pi, \pi] \mid \alpha<a\left(e^{\mathrm{it}}\right)<\beta\right\}\right|
$$

where $N_{n}(\alpha, \beta)=(\alpha, \beta) \cup \operatorname{spec} T_{n}(a)$.

- It implies that $\left[\min _{|z|=1} a(z), \max _{|z|=1} a(z)\right] \subset \Lambda(a)$.

The self-adjoint case

- A consequence of Szegő's result:

$$
\lim _{n \rightarrow \infty} \frac{N_{n}(\alpha, \beta)}{n}=\frac{1}{2 \pi}\left|\left\{t \in(-\pi, \pi] \mid \alpha<a\left(e^{\mathrm{i} t}\right)<\beta\right\}\right|
$$

where $N_{n}(\alpha, \beta)=(\alpha, \beta) \cup \operatorname{spec} T_{n}(a)$.

- It implies that $\left[\min _{|z|=1} a(z), \max _{|z|=1} a(z)\right] \subset \Lambda(a)$.
- Since $\min / \max a(z)$ is the lower/upper bound for the Toeplitz form $\left(x, T_{n} x\right)$, we get

$$
\Lambda(a)=\operatorname{spec} T(a) .
$$

The self-adjoint case

- A consequence of Szegő's result:

$$
\lim _{n \rightarrow \infty} \frac{N_{n}(\alpha, \beta)}{n}=\frac{1}{2 \pi}\left|\left\{t \in(-\pi, \pi] \mid \alpha<a\left(e^{\mathrm{it}}\right)<\beta\right\}\right|
$$

where $N_{n}(\alpha, \beta)=(\alpha, \beta) \cup \operatorname{spec} T_{n}(a)$.

- It implies that $\left[\min _{|z|=1} a(z), \max _{|z|=1} a(z)\right] \subset \Lambda(a)$.
- Since $\min / \max a(z)$ is the lower/upper bound for the Toeplitz form $\left(x, T_{n} x\right)$, we get

$$
\Lambda(a)=\operatorname{spec} T(a)
$$

Theorem

If $\sum\left|a_{n}\right|<\infty$ and $a_{n}=\overline{a_{-n}}$ for all $n \in \mathbb{Z}$, then a.e.d. μ exists and

$$
\Lambda(a)=\operatorname{spec} T(a)=\operatorname{supp} \mu
$$

The self-adjoint case

- A consequence of Szegő's result:

$$
\lim _{n \rightarrow \infty} \frac{N_{n}(\alpha, \beta)}{n}=\frac{1}{2 \pi}\left|\left\{t \in(-\pi, \pi] \mid \alpha<a\left(e^{\mathrm{it}}\right)<\beta\right\}\right|
$$

where $N_{n}(\alpha, \beta)=(\alpha, \beta) \cup \operatorname{spec} T_{n}(a)$.

- It implies that $\left[\min _{|z|=1} a(z), \max _{|z|=1} a(z)\right] \subset \Lambda(a)$.
- Since $\min / \max a(z)$ is the lower/upper bound for the Toeplitz form $\left(x, T_{n} x\right)$, we get

$$
\Lambda(a)=\operatorname{spec} T(a) .
$$

Theorem

If $\sum\left|a_{n}\right|<\infty$ and $a_{n}=\overline{a_{-n}}$ for all $n \in \mathbb{Z}$, then a.e.d. μ exists and

$$
\Lambda(a)=\operatorname{spec} T(a)=\operatorname{supp} \mu
$$

Moreover, μ is determined by

$$
\mu((\alpha, \beta])=\frac{1}{2 \pi}\left|\left\{t \in(-\pi, \pi] \mid \alpha<a\left(e^{\mathrm{it}}\right) \leq \beta\right\}\right| .
$$

The non-self-adjoint case

Q: What happen if the assumption of self-adjointness of $T(a)$ is relaxed?

The non-self-adjoint case

Q: What happen if the assumption of self-adjointness of $T(a)$ is relaxed?
... a numerical experiment for

$$
a(z)=2 z^{-2}+4 \mathrm{i} z^{-1}+1-2 \mathrm{i} z+5 z^{2}+7 \mathrm{i} z^{3}-z^{4}+19 z^{5}+(\mathrm{i}+2) z^{6}+28 z^{7}
$$

The non-self-adjoint case

- There is no more equality between $\Lambda(a)$ and spec $T(a)$, but one inclusion still holds: $\Lambda(a) \subset \operatorname{spec} T(a)$

The non-self-adjoint case

- There is no more equality between $\Lambda(a)$ and spec $T(a)$, but one inclusion still holds:

$$
\Lambda(a) \subset \operatorname{spec} T(a)
$$

- The understanding of the limiting set $\Lambda(a)$ is very little in the non-self-adjoint case.

The non-self-adjoint case

- There is no more equality between $\Lambda(a)$ and spec $T(a)$, but one inclusion still holds:

$$
\Lambda(a) \subset \operatorname{spec} T(a)
$$

- The understanding of the limiting set $\Lambda(a)$ is very little in the non-self-adjoint case.
- To get some results, we restrict ourself to banded Toeplitz matrices. So the symbol is the Laurent polynomial:

$$
b(z)=\sum_{j=-r}^{s} a_{j} z^{j}, \quad r, s \geq 1, \quad a_{-r} \neq 0, \quad a_{s} \neq 0
$$

(we also exclude lower/upper triangular matrices).

The non-self-adjoint case - the result of Schmidt \& Spitzer

- Denote $z_{1}(\lambda), \ldots, z_{r+s}(\lambda)$ the roots of the polynomial $z \mapsto z^{r}(b(z)-\lambda)$ labeled such that

$$
\left|z_{1}(\lambda)\right| \leq\left|z_{2}(\lambda)\right| \leq \ldots\left|z_{r+s}(\lambda)\right| .
$$

The non-self-adjoint case - the result of Schmidt \& Spitzer

- Denote $z_{1}(\lambda), \ldots, z_{r+s}(\lambda)$ the roots of the polynomial $z \mapsto z^{r}(b(z)-\lambda)$ labeled such that

$$
\left|z_{1}(\lambda)\right| \leq\left|z_{2}(\lambda)\right| \leq \ldots\left|z_{r+s}(\lambda)\right| .
$$

- An elegant description of $\Lambda(b)$ for banded Toeplitz matrices is due to Schmidt \& Spitzer:

$$
\Lambda(b)=\left\{\lambda \in \mathbb{C}| | z_{r}(\lambda)\left|=\left|z_{r+1}(\lambda)\right|\right\} .\right.
$$

The non-self-adjoint case - the result of Schmidt \& Spitzer

- Denote $z_{1}(\lambda), \ldots, z_{r+s}(\lambda)$ the roots of the polynomial $z \mapsto z^{r}(b(z)-\lambda)$ labeled such that

$$
\left|z_{1}(\lambda)\right| \leq\left|z_{2}(\lambda)\right| \leq \ldots\left|z_{r+s}(\lambda)\right| .
$$

- An elegant description of $\Lambda(b)$ for banded Toeplitz matrices is due to Schmidt \& Spitzer:

$$
\Lambda(b)=\left\{\lambda \in \mathbb{C}| | z_{r}(\lambda)\left|=\left|z_{r+1}(\lambda)\right|\right\}\right.
$$

- This description allows one to deduce analytical and topological properties of $\Lambda(b)$:

The non-self-adjoint case - the result of Schmidt \& Spitzer

- Denote $z_{1}(\lambda), \ldots, z_{r+s}(\lambda)$ the roots of the polynomial $z \mapsto z^{r}(b(z)-\lambda)$ labeled such that

$$
\left|z_{1}(\lambda)\right| \leq\left|z_{2}(\lambda)\right| \leq \ldots\left|z_{r+s}(\lambda)\right| .
$$

- An elegant description of $\Lambda(b)$ for banded Toeplitz matrices is due to Schmidt \& Spitzer:

$$
\Lambda(b)=\left\{\lambda \in \mathbb{C}| | z_{r}(\lambda)\left|=\left|z_{r+1}(\lambda)\right|\right\} .\right.
$$

- This description allows one to deduce analytical and topological properties of $\Lambda(b)$:

Theorem (Schmidt, Spitzer, Ullman - 60's):

$\Lambda(b)$ is a connected set that equals the union of a finite number of pairwise disjoint open analytic arcs and a finite number of the so called exceptional points (basically: branching points and endpoints).

The non-self-adjoint case - the result of Schmidt \& Spitzer

- Denote $z_{1}(\lambda), \ldots, z_{r+s}(\lambda)$ the roots of the polynomial $z \mapsto z^{r}(b(z)-\lambda)$ labeled such that

$$
\left|z_{1}(\lambda)\right| \leq\left|z_{2}(\lambda)\right| \leq \ldots\left|z_{r+s}(\lambda)\right| .
$$

- An elegant description of $\Lambda(b)$ for banded Toeplitz matrices is due to Schmidt \& Spitzer:

$$
\Lambda(b)=\left\{\lambda \in \mathbb{C}| | z_{r}(\lambda)\left|=\left|z_{r+1}(\lambda)\right|\right\} .\right.
$$

- This description allows one to deduce analytical and topological properties of $\Lambda(b)$:

Theorem (Schmidt, Spitzer, Ullman - 60's):

$\Lambda(b)$ is a connected set that equals the union of a finite number of pairwise disjoint open analytic arcs and a finite number of the so called exceptional points (basically: branching points and endpoints).

- Open problem: It is not know for what b the set $\mathbb{C} \backslash \Lambda(b)$ is connected.

The non-self-adjoint case - the result of Hirschman Jr.

- Also the problem of a.e.d. has been solved for banded Toeplitz matrices. The limiting measure μ exists and one has

$$
\Lambda(b)=\operatorname{supp} \mu .
$$

The non-self-adjoint case - the result of Hirschman Jr.

- Also the problem of a.e.d. has been solved for banded Toeplitz matrices. The limiting measure μ exists and one has

$$
\Lambda(b)=\operatorname{supp} \mu .
$$

- Moreover, Hirschman Jr. found "an explicit" description of the density of μ.

The non-self-adjoint case - the result of Hirschman Jr.

- Also the problem of a.e.d. has been solved for banded Toeplitz matrices. The limiting measure μ exists and one has

$$
\Lambda(b)=\operatorname{supp} \mu
$$

- Moreover, Hirschman Jr. found "an explicit" description of the density of μ.

Theorem (Hirschman Jr. - 1967)

On each arc Γ of $\Lambda(b)$, the limiting measure μ is a.c. and its density can be expressed as follows:

$$
\frac{\mathrm{d} \mu}{\mathrm{~d} \lambda}(\lambda)=\frac{1}{2 \pi \mathrm{i}} \sum_{j=1}^{r}\left(\frac{z_{j}^{\prime}(\lambda+)}{z_{j}(\lambda+)}-\frac{z_{j}^{\prime}(\lambda-)}{z_{j}(\lambda-)}\right) .
$$

Here $\mathrm{d} \lambda$ is the complex line element on Γ taken with respect to a chosen orientation on Γ and $z_{j}(\lambda \pm)$ are one-side limits of $z_{j}\left(\lambda^{\prime}\right)$, as λ^{\prime} approaches $\lambda \in \Gamma$ from the left/right side of Γ determined by the chosen orientation.

The non-self-adjoint case - the result of Hirschman Jr.

- Also the problem of a.e.d. has been solved for banded Toeplitz matrices. The limiting measure μ exists and one has

$$
\Lambda(b)=\operatorname{supp} \mu
$$

- Moreover, Hirschman Jr. found "an explicit" description of the density of μ.

Theorem (Hirschman Jr. - 1967)

On each arc Γ of $\Lambda(b)$, the limiting measure μ is a.c. and its density can be expressed as follows:

$$
\frac{\mathrm{d} \mu}{\mathrm{~d} \lambda}(\lambda)=\frac{1}{2 \pi \mathrm{i}} \sum_{j=1}^{r}\left(\frac{z_{j}^{\prime}(\lambda+)}{z_{j}(\lambda+)}-\frac{z_{j}^{\prime}(\lambda-)}{z_{j}(\lambda-)}\right) .
$$

Here $\mathrm{d} \lambda$ is the complex line element on Γ taken with respect to a chosen orientation on Γ and $z_{j}(\lambda \pm)$ are one-side limits of $z_{j}\left(\lambda^{\prime}\right)$, as λ^{\prime} approaches $\lambda \in \Gamma$ from the left/right side of Γ determined by the chosen orientation.

- A generalization of the results of Schmidt \& Spitzer and Hirschman exists for Toeplitz matrices with rational symbol, see [Day - 1975].

The non-self-adjoint case - the result of Hirschman Jr.

- Also the problem of a.e.d. has been solved for banded Toeplitz matrices. The limiting measure μ exists and one has

$$
\Lambda(b)=\operatorname{supp} \mu
$$

- Moreover, Hirschman Jr. found "an explicit" description of the density of μ.

Theorem (Hirschman Jr. - 1967)

On each arc Γ of $\Lambda(b)$, the limiting measure μ is a.c. and its density can be expressed as follows:

$$
\frac{\mathrm{d} \mu}{\mathrm{~d} \lambda}(\lambda)=\frac{1}{2 \pi \mathrm{i}} \sum_{j=1}^{r}\left(\frac{z_{j}^{\prime}(\lambda+)}{z_{j}(\lambda+)}-\frac{z_{j}^{\prime}(\lambda-)}{z_{j}(\lambda-)}\right) .
$$

Here $\mathrm{d} \lambda$ is the complex line element on Γ taken with respect to a chosen orientation on Γ and $z_{j}(\lambda \pm)$ are one-side limits of $z_{j}\left(\lambda^{\prime}\right)$, as λ^{\prime} approaches $\lambda \in \Gamma$ from the left/right side of Γ determined by the chosen orientation.

- A generalization of the results of Schmidt \& Spitzer and Hirschman exists for Toeplitz matrices with rational symbol, see [Day - 1975].
- For more general symbols, no similar results are known.

Contents

Toeplitz matrices

2 Generalized Toeplitz matrices - self-adjoint case

(3) Generalized Toeplitz matrices - non-self-adjoint case

Kac-Murdock-Szegő matrices

- Assume the coefficients of the symbol depend on an additional variable $x \in[0,1]$:

$$
a(z, x)=\sum_{k \in \mathbb{Z}} a_{k}(x) z^{k}
$$

Kac-Murdock-Szegő matrices

- Assume the coefficients of the symbol depend on an additional variable $x \in[0,1]$:

$$
a(z, x)=\sum_{k \in \mathbb{Z}} a_{k}(x) z^{k}
$$

- Kac, Murdock, and Szegő (in 1953) introduced the matrices

$$
T_{n}(a)=\left[a_{k-1}\left(\frac{k+l}{2 n+2}\right)\right]_{k, l=0}^{n-1}
$$

and called them Generalized Toeplitz matrices (if $a_{k}(t)=a_{k}, T_{n}(a)$ is a Toeplitz matrix).

Kac-Murdock-Szegő matrices

- Assume the coefficients of the symbol depend on an additional variable $x \in[0,1]$:

$$
a(z, x)=\sum_{k \in \mathbb{Z}} a_{k}(x) z^{k}
$$

- Kac, Murdock, and Szegő (in 1953) introduced the matrices

$$
T_{n}(a)=\left[a_{k-1}\left(\frac{k+l}{2 n+2}\right)\right]_{k, l=0}^{n-1}
$$

and called them Generalized Toeplitz matrices (if $a_{k}(t)=a_{k}, T_{n}(a)$ is a Toeplitz matrix). An interesting history:

Kac-Murdock-Szegő matrices

- Assume the coefficients of the symbol depend on an additional variable $x \in[0,1]$:

$$
a(z, x)=\sum_{k \in \mathbb{Z}} a_{k}(x) z^{k}
$$

- Kac, Murdock, and Szegő (in 1953) introduced the matrices

$$
T_{n}(a)=\left[a_{k-1}\left(\frac{k+l}{2 n+2}\right)\right]_{k, l=0}^{n-1}
$$

and called them Generalized Toeplitz matrices (if $a_{k}(t)=a_{k}, T_{n}(a)$ is a Toeplitz matrix). An interesting history:
© Introduced by Kac, Murdock, and Szegő in 1953.

Kac-Murdock-Szegő matrices

- Assume the coefficients of the symbol depend on an additional variable $x \in[0,1]$:

$$
a(z, x)=\sum_{k \in \mathbb{Z}} a_{k}(x) z^{k}
$$

- Kac, Murdock, and Szegő (in 1953) introduced the matrices

$$
T_{n}(a)=\left[a_{k-1}\left(\frac{k+l}{2 n+2}\right)\right]_{k, l=0}^{n-1}
$$

and called them Generalized Toeplitz matrices (if $a_{k}(t)=a_{k}, T_{n}(a)$ is a Toeplitz matrix).
An interesting history:
(1) Introduced by Kac, Murdock, and Szegő in 1953.
(2) After 1958 almost forgotten (no citation in 1958-1999 according to MathSciNet).

Kac-Murdock-Szegő matrices

- Assume the coefficients of the symbol depend on an additional variable $x \in[0,1]$:

$$
a(z, x)=\sum_{k \in \mathbb{Z}} a_{k}(x) z^{k}
$$

- Kac, Murdock, and Szegő (in 1953) introduced the matrices

$$
T_{n}(a)=\left[a_{k-1}\left(\frac{k+1}{2 n+2}\right)\right]_{k, l=0}^{n-1}
$$

and called them Generalized Toeplitz matrices (if $a_{k}(t)=a_{k}, T_{n}(a)$ is a Toeplitz matrix).
An interesting history:
(1) Introduced by Kac, Murdock, and Szegő in 1953.
(2) After 1958 almost forgotten (no citation in 1958-1999 according to MathSciNet).
(3) Tilli rediscovered these matrices in 1998 and called them locally Toeplitz matrices.

Kac-Murdock-Szegő matrices

- Assume the coefficients of the symbol depend on an additional variable $x \in[0,1]$:

$$
a(z, x)=\sum_{k \in \mathbb{Z}} a_{k}(x) z^{k}
$$

- Kac, Murdock, and Szegő (in 1953) introduced the matrices

$$
T_{n}(a)=\left[a_{k-1}\left(\frac{k+l}{2 n+2}\right)\right]_{k, l=0}^{n-1}
$$

and called them Generalized Toeplitz matrices (if $a_{k}(t)=a_{k}, T_{n}(a)$ is a Toeplitz matrix).
An interesting history:
(1) Introduced by Kac, Murdock, and Szegő in 1953.
(2) After 1958 almost forgotten (no citation in 1958-1999 according to MathSciNet).
(3) Tilli rediscovered these matrices in 1998 and called them locally Toeplitz matrices.
(4) Kuijlaars and Van Assche (1999) studied the asymptotic distribution of zeros of OG polynomials with variable coefficients - a special (tridiagonal) case of KMS matrices.

Kac-Murdock-Szegő matrices

- Assume the coefficients of the symbol depend on an additional variable $x \in[0,1]$:

$$
a(z, x)=\sum_{k \in \mathbb{Z}} a_{k}(x) z^{k}
$$

- Kac, Murdock, and Szegő (in 1953) introduced the matrices

$$
T_{n}(a)=\left[a_{k-1}\left(\frac{k+l}{2 n+2}\right)\right]_{k, l=0}^{n-1}
$$

and called them Generalized Toeplitz matrices (if $a_{k}(t)=a_{k}, T_{n}(a)$ is a Toeplitz matrix).
An interesting history:
(1) Introduced by Kac, Murdock, and Szegő in 1953.
(2) After 1958 almost forgotten (no citation in 1958-1999 according to MathSciNet).
(3) Tilli rediscovered these matrices in 1998 and called them locally Toeplitz matrices.
(4) Kuijlaars and Van Assche (1999) studied the asymptotic distribution of zeros of OG polynomials with variable coefficients - a special (tridiagonal) case of KMS matrices.
(5) After 2000, a renewed interest...

The result of Kac, Murdock, and Szegő

- Kac, Murdock, and Szegő derived the so called first Szegő limit theorem for KMS matrices which yields the a.e.d.

The result of Kac, Murdock, and Szegő

- Kac, Murdock, and Szegő derived the so called first Szegő limit theorem for KMS matrices which yields the a.e.d.
- Assumptions:

$$
\sum_{k \in \mathbb{Z}}\left\|a_{k}\right\|_{\infty}<\infty, \quad a_{k} \text { continuous, } \quad a_{-k}(x)=\overline{a_{k}(x)}
$$

The result of Kac, Murdock, and Szegő

- Kac, Murdock, and Szegő derived the so called first Szegő limit theorem for KMS matrices which yields the a.e.d.
- Assumptions:

$$
\sum_{k \in \mathbb{Z}}\left\|a_{k}\right\|_{\infty}<\infty, \quad a_{k} \text { continuous, } \quad a_{-k}(x)=\overline{a_{k}(x)}
$$

Theorem (Kac, Murdock, Szegő - 1953)

With the assumptions above, one has

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n}\left[\lambda_{k}^{(n)}\right]^{m}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \int_{0}^{1}\left[a\left(e^{\mathrm{i} t}, x\right)\right]^{m} \mathrm{~d} x \mathrm{~d} t, \quad \forall m \in \mathbb{N}_{0}
$$

where $\lambda_{1}^{(n)}, \ldots, \lambda_{n}^{(n)}$ are eigenvalues of $T_{n}(a)$.

The result of Kac, Murdock, and Szegő

- Kac, Murdock, and Szegő derived the so called first Szegő limit theorem for KMS matrices which yields the a.e.d.
- Assumptions:

$$
\sum_{k \in \mathbb{Z}}\left\|a_{k}\right\|_{\infty}<\infty, \quad a_{k} \text { continuous, } \quad a_{-k}(x)=\overline{a_{k}(x)}
$$

Theorem (Kac, Murdock, Szegő - 1953)

With the assumptions above, one has

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n}\left[\lambda_{k}^{(n)}\right]^{m}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \int_{0}^{1}\left[a\left(e^{\mathrm{i} t}, x\right)\right]^{m} \mathrm{~d} x \mathrm{~d} t, \quad \forall m \in \mathbb{N}_{0},
$$

where $\lambda_{1}^{(n)}, \ldots, \lambda_{n}^{(n)}$ are eigenvalues of $T_{n}(a)$.

- By applying the Weierstrass approximation theorem (and the fact that the eigenvalues remain in a compact interval for all n), we prove that the a.e.d. of $T_{n}(a)$, as $n \rightarrow \infty$, exists and is given by

$$
\mu((\alpha, \beta])=\frac{1}{2 \pi}\left|\left\{(t, x) \in(-\pi, \pi] \times[0,1] \mid \alpha<a\left(e^{\mathrm{i} t}, x\right) \leq \beta\right\}\right| .
$$

A special case - orthogonal polynomials with variable coefficients

- From the special case with the trinomial symbol

$$
a(z, x)=a_{-1}(x) z^{-1}+a_{0}(x)+a_{1}(x) z
$$

one can deduce the result of Kuijlaars \& Van Assche that can be formulated as follows.

A special case - orthogonal polynomials with variable coefficients

- From the special case with the trinomial symbol

$$
a(z, x)=a_{-1}(x) z^{-1}+a_{0}(x)+a_{1}(x) z
$$

one can deduce the result of Kuijlaars \& Van Assche that can be formulated as follows.
Theorem (Kuijlaars, Van Assche - a special case)

A special case - orthogonal polynomials with variable coefficients

- From the special case with the trinomial symbol

$$
a(z, x)=a_{-1}(x) z^{-1}+a_{0}(x)+a_{1}(x) z
$$

one can deduce the result of Kuijlaars \& Van Assche that can be formulated as follows.

Theorem (Kuijlaars, Van Assche - a special case)

Let $a:[0,1] \rightarrow \mathbb{R}_{+}$and $b:[0,1] \rightarrow \mathbb{R}$ be continuous and $p_{k}^{(n)}$ be a family of polynomials generated by the recurrence

$$
p_{k+1}^{(n)}(z)=\left(z-b\left(\frac{k}{n}\right)\right) p_{k}^{(n)}(z)-\left(a\left(\frac{k-1}{n}\right)\right)^{2} p_{k-1}^{(n)}(z)
$$

with the initial conditions $p_{-1}^{(n)}(z)=0$ and $p_{0}^{(n)}(z)=1$.

A special case - orthogonal polynomials with variable coefficients

- From the special case with the trinomial symbol

$$
a(z, x)=a_{-1}(x) z^{-1}+a_{0}(x)+a_{1}(x) z
$$

one can deduce the result of Kuijlaars \& Van Assche that can be formulated as follows.

Theorem (Kuijlaars, Van Assche - a special case)

Let $a:[0,1] \rightarrow \mathbb{R}_{+}$and $b:[0,1] \rightarrow \mathbb{R}$ be continuous and $p_{k}^{(n)}$ be a family of polynomials generated by the recurrence

$$
p_{k+1}^{(n)}(z)=\left(z-b\left(\frac{k}{n}\right)\right) p_{k}^{(n)}(z)-\left(a\left(\frac{k-1}{n}\right)\right)^{2} p_{k-1}^{(n)}(z)
$$

with the initial conditions $p_{-1}^{(n)}(z)=0$ and $p_{0}^{(n)}(z)=1$. Then the zero-counting measure of $p_{n}^{(n)}$ converges weakly to

$$
\mu=\int_{0}^{1} \omega_{[b(t)-2 a(t), b(t)+2 a(t)]} \mathrm{d} t
$$

A special case - orthogonal polynomials with variable coefficients

- From the special case with the trinomial symbol

$$
a(z, x)=a_{-1}(x) z^{-1}+a_{0}(x)+a_{1}(x) z
$$

one can deduce the result of Kuijlaars \& Van Assche that can be formulated as follows.

Theorem (Kuijlaars, Van Assche - a special case)

Let $a:[0,1] \rightarrow \mathbb{R}_{+}$and $b:[0,1] \rightarrow \mathbb{R}$ be continuous and $p_{k}^{(n)}$ be a family of polynomials generated by the recurrence

$$
p_{k+1}^{(n)}(z)=\left(z-b\left(\frac{k}{n}\right)\right) p_{k}^{(n)}(z)-\left(a\left(\frac{k-1}{n}\right)\right)^{2} p_{k-1}^{(n)}(z)
$$

with the initial conditions $p_{-1}^{(n)}(z)=0$ and $p_{0}^{(n)}(z)=1$. Then the zero-counting measure of $p_{n}^{(n)}$ converges weakly to

$$
\mu=\int_{0}^{1} \omega_{[b(t)-2 a(t), b(t)+2 a(t)]} \mathrm{d} t
$$

where

$$
\frac{\mathrm{d} \omega_{[\alpha, \beta]}(x)}{\mathrm{d} x}=\frac{1}{\pi \sqrt{(\beta-x)(x-\alpha)}}, \quad \text { for } \quad \alpha<x<\beta
$$

An alternative formulation - sampling Jacobi matrix

- Alternatively, the previous statement says that the a.e.d. of a self-adjoint sampling Jacobi matrix

$$
J_{n}(a, b)=\left(\begin{array}{cccccc}
b\left(\frac{1}{n}\right) & a\left(\frac{1}{n}\right) & & & & \\
a\left(\frac{1}{n}\right) & b\left(\frac{2}{n}\right) & a\left(\frac{2}{n}\right) & & & \\
& a\left(\frac{2}{n}\right) & b\left(\frac{3}{n}\right) & a\left(\frac{3}{n}\right) & & \\
& & \ddots & \ddots & \ddots & \\
& & & a\left(\frac{n-2}{n}\right) & b\left(\frac{n-1}{n}\right) & a\left(\frac{n-1}{n}\right) \\
& & & & a\left(\frac{n-1}{n}\right) & b(1)
\end{array}\right),
$$

with $a, b \in C([0,1])$, exists and equals

$$
\mu=\int_{0}^{1} \omega_{[b(t)-2 a(t), b(t)+2 a(t)]} \mathrm{d} t
$$

An alternative formulation - sampling Jacobi matrix

- Alternatively, the previous statement says that the a.e.d. of a self-adjoint sampling Jacobi matrix

$$
J_{n}(a, b)=\left(\begin{array}{cccccc}
b\left(\frac{1}{n}\right) & a\left(\frac{1}{n}\right) & & & \\
a\left(\frac{1}{n}\right) & b\left(\frac{2}{n}\right) & a\left(\frac{2}{n}\right) & & & \\
& a\left(\frac{2}{n}\right) & b\left(\frac{3}{n}\right) & a\left(\frac{3}{n}\right) & & \\
& & \ddots & \ddots & \ddots & \\
& & & a\left(\frac{n-2}{n}\right) & b\left(\frac{n-1}{n}\right) & a\left(\frac{n-1}{n}\right) \\
& & & & a\left(\frac{n-1}{n}\right) & b(1)
\end{array}\right)
$$

with $a, b \in C([0,1])$, exists and equals

$$
\mu=\int_{0}^{1} \omega_{[b(t)-2 a(t), b(t)+2 a(t)]} \mathrm{d} t
$$

- The last formula fails to hold, if the assumption on self-adjointness is relaxed and no generalization is known.

Contents

(1) Toeplitz matrices

(2) Generalized Toeplitz matrices - self-adjoint case

(3) Generalized Toeplitz matrices - non-self-adjoint case

- In general, very little is known about the a.e.d. of non-self-adjoint KMS matrices.
- In general, very little is known about the a.e.d. of non-self-adjoint KMS matrices.
- We restrict ourself to non-self-adjoint sampling Jacobi matrices for simplicity.
- In general, very little is known about the a.e.d. of non-self-adjoint KMS matrices.
- We restrict ourself to non-self-adjoint sampling Jacobi matrices for simplicity.
- Based on numerical experiments and the known a.e.d. for banded Toeplitz matrices, we formulate the following conjecture.
- In general, very little is known about the a.e.d. of non-self-adjoint KMS matrices.
- We restrict ourself to non-self-adjoint sampling Jacobi matrices for simplicity.
- Based on numerical experiments and the known a.e.d. for banded Toeplitz matrices, we formulate the following conjecture.

Conjecture

Let $a, b:[0,1] \rightarrow \mathbb{C}$ be continuous. Then the a.e.d. μ exists and it is supported on a set that equals a finite union of open analytic arcs and finite number of points.

- In general, very little is known about the a.e.d. of non-self-adjoint KMS matrices.
- We restrict ourself to non-self-adjoint sampling Jacobi matrices for simplicity.
- Based on numerical experiments and the known a.e.d. for banded Toeplitz matrices, we formulate the following conjecture.

Conjecture

Let $a, b:[0,1] \rightarrow \mathbb{C}$ be continuous. Then the a.e.d. μ exists and it is supported on a set that equals a finite union of open analytic arcs and finite number of points.

Problem: $\mu=\mu(a, b)$?

Provided that a.e.d. μ exists, a natural question asks whether μ or supp μ can be expressed in terms of the functions a and b (as it is possible in the self-adjoint case).

- In general, very little is known about the a.e.d. of non-self-adjoint KMS matrices.
- We restrict ourself to non-self-adjoint sampling Jacobi matrices for simplicity.
- Based on numerical experiments and the known a.e.d. for banded Toeplitz matrices, we formulate the following conjecture.

Conjecture

Let $a, b:[0,1] \rightarrow \mathbb{C}$ be continuous. Then the a.e.d. μ exists and it is supported on a set that equals a finite union of open analytic arcs and finite number of points.

Problem: $\mu=\mu(a, b)$?

Provided that a.e.d. μ exists, a natural question asks whether μ or supp μ can be expressed in terms of the functions a and b (as it is possible in the self-adjoint case).

- Our inability to solve this problem in its generality motivates us to investigate some special cases - collaboration with O. Turek, work very much in progress.
- In general, very little is known about the a.e.d. of non-self-adjoint KMS matrices.
- We restrict ourself to non-self-adjoint sampling Jacobi matrices for simplicity.
- Based on numerical experiments and the known a.e.d. for banded Toeplitz matrices, we formulate the following conjecture.

Conjecture

Let $a, b:[0,1] \rightarrow \mathbb{C}$ be continuous. Then the a.e.d. μ exists and it is supported on a set that equals a finite union of open analytic arcs and finite number of points.

Problem: $\mu=\mu(a, b)$?

Provided that a.e.d. μ exists, a natural question asks whether μ or supp μ can be expressed in terms of the functions a and b (as it is possible in the self-adjoint case).

- Our inability to solve this problem in its generality motivates us to investigate some special cases - collaboration with O. Turek, work very much in progress.
- Typically, the special choices of a and b correspond to well-known families of polynomials where more properties are available.

The strategy for the derivation of the limiting measure

Definition:

The Cauchy transform of a Borel measure μ is a function defined by

$$
C_{\mu}(z):=\int_{\mathbb{C}} \frac{\mathrm{d} \mu(x)}{z-x}, \quad z \in \mathbb{C} \backslash \operatorname{supp} \mu
$$

The strategy for the derivation of the limiting measure

Definition:

The Cauchy transform of a Borel measure μ is a function defined by

$$
C_{\mu}(z):=\int_{\mathbb{C}} \frac{\mathrm{d} \mu(x)}{z-x}, \quad z \in \mathbb{C} \backslash \operatorname{supp} \mu .
$$

Example: To compute the Cauchy transform of the root-counting measure μ_{n} of a monic polynomial p_{n} is extremely easy. One has

$$
C_{\mu_{n}}(z)=\frac{p_{n}^{\prime}(z)}{n p_{n}(z)}
$$

The strategy for the derivation of the limiting measure

Definition:

The Cauchy transform of a Borel measure μ is a function defined by

$$
C_{\mu}(z):=\int_{\mathbb{C}} \frac{\mathrm{d} \mu(x)}{z-x}, \quad z \in \mathbb{C} \backslash \operatorname{supp} \mu
$$

Example: To compute the Cauchy transform of the root-counting measure μ_{n} of a monic polynomial p_{n} is extremely easy. One has

$$
C_{\mu_{n}}(z)=\frac{p_{n}^{\prime}(z)}{n p_{n}(z)}
$$

Theorem

Let μ_{n} is a sequence of probability measures supported uniformly in a compact set $K \subset \mathbb{C}$. Assume that

$$
\lim _{n \rightarrow \infty} C_{\mu_{n}}(z)=C(z), \quad \text { a.e. } z \in \mathbb{C} .
$$

Then C is the Cauchy transform of a probability measure μ which is a weak limit of μ_{n} for $n \rightarrow \infty$. Moreover, one has

$$
\mu=\frac{1}{\pi} \partial_{\bar{z}} C \quad \text { in the generalized sense. }
$$

The strategy for the derivation of the limiting measure

- Although the generalized formula $\mu=\frac{1}{\pi} \partial_{\bar{z}} C_{\mu}$ is elegant, it can be difficult to deduce μ from it in cocrete cases.

The strategy for the derivation of the limiting measure

- Although the generalized formula $\mu=\frac{1}{\pi} \partial_{\bar{z}} C_{\mu}$ is elegant, it can be difficult to deduce μ from it in cocrete cases.
- But if the set of singular points of C_{μ} is a nice curve (e.g., piecewise analytic) in \mathbb{C}, one can make use the Plemelj-Sokhotski formula.

The strategy for the derivation of the limiting measure

- Although the generalized formula $\mu=\frac{1}{\pi} \partial_{\bar{z}} C_{\mu}$ is elegant, it can be difficult to deduce μ from it in cocrete cases.
- But if the set of singular points of C_{μ} is a nice curve (e.g., piecewise analytic) in \mathbb{C}, one can make use the Plemelj-Sokhotski formula.

Plemelj-Sokhotski's formula

Let γ be an oriented analytic curve, \boldsymbol{C}_{μ} analytic on $\mathbb{C} \backslash \gamma$ and can be continuously extended onto γ from the left(+)/right(-) side. Then one has

$$
\frac{\mathrm{d} \mu}{\mathrm{~d} z}(z)=-\frac{1}{2 \pi \mathrm{i}}\left(C_{\mu}(z+)-C_{\mu}(z-)\right)
$$

on γ (details on blackboard).

The strategy for the derivation of the limiting measure

- Although the generalized formula $\mu=\frac{1}{\pi} \partial_{\bar{z}} C_{\mu}$ is elegant, it can be difficult to deduce μ from it in cocrete cases.
- But if the set of singular points of C_{μ} is a nice curve (e.g., piecewise analytic) in \mathbb{C}, one can make use the Plemelj-Sokhotski formula.

Plemelj-Sokhotski's formula

Let γ be an oriented analytic curve, C_{μ} analytic on $\mathbb{C} \backslash \gamma$ and can be continuously extended onto γ from the left(+)/right(-) side. Then one has

$$
\frac{\mathrm{d} \mu}{\mathrm{~d} z}(z)=-\frac{1}{2 \pi \mathrm{i}}\left(C_{\mu}(z+)-C_{\mu}(z-)\right)
$$

on γ (details on blackboard).

- The main difficultly of the strategy: $p_{n}(z) \sim$? for $n \rightarrow \infty$.

The strategy for the derivation of the limiting measure

- Although the generalized formula $\mu=\frac{1}{\pi} \partial_{\bar{z}} C_{\mu}$ is elegant, it can be difficult to deduce μ from it in cocrete cases.
- But if the set of singular points of C_{μ} is a nice curve (e.g., piecewise analytic) in \mathbb{C}, one can make use the Plemelj-Sokhotski formula.

Plemelj-Sokhotski's formula

Let γ be an oriented analytic curve, C_{μ} analytic on $\mathbb{C} \backslash \gamma$ and can be continuously extended onto γ from the left(+)/right(-) side. Then one has

$$
\frac{\mathrm{d} \mu}{\mathrm{~d} z}(z)=-\frac{1}{2 \pi \mathrm{i}}\left(C_{\mu}(z+)-C_{\mu}(z-)\right)
$$

on γ (details on blackboard).

- The main difficultly of the strategy: $p_{n}(z) \sim$? for $n \rightarrow \infty$.
- There are many powerful methods for the asymptotic analysis (Saddle point method, Riemann-Hilbert problem,...) but it usually requires a more detailed knowledge about p_{n} (generating functions, integral representations,...).

An appetizer - one example

$$
\begin{aligned}
& a(x)=\sqrt{a x}, \quad(a>0), \\
& b(x)=\mathrm{i} x, \\
& J_{n}=\left(\begin{array}{cccc}
b\left(\frac{1}{n}\right) & a\left(\frac{1}{n}\right) & & \\
a\left(\frac{1}{n}\right) & b\left(\frac{2}{n}\right) & a\left(\frac{2}{n}\right) & \\
& \ddots & \ddots & \ddots \\
& & a\left(\frac{n-1}{n}\right) & b(1)
\end{array}\right),
\end{aligned}
$$

An appetizer - one example

- Simple estimates on the quadratic form of J_{n} show that

$$
\operatorname{spec}\left(J_{n}\right) \subset(-2 \sqrt{a}, 2 \sqrt{a})+\mathrm{i}(0,1], \quad \forall n \in \mathbb{N}
$$

An appetizer - one example

$$
\begin{aligned}
& a(x)=\sqrt{a x}, \quad(a>0), \\
& b(x)=\mathrm{i} x, \\
& J_{n}=\left(\begin{array}{cccc}
b\left(\frac{1}{n}\right) & a\left(\frac{1}{n}\right) & & \\
a\left(\frac{1}{n}\right) & b\left(\frac{2}{n}\right) & a\left(\frac{2}{n}\right) & \\
& \ddots & \ddots & \ddots \\
& & a\left(\frac{n-1}{n}\right) & b(1)
\end{array}\right),
\end{aligned}
$$

- Simple estimates on the quadratic form of J_{n} show that

$$
\operatorname{spec}\left(J_{n}\right) \subset(-2 \sqrt{a}, 2 \sqrt{a})+\mathrm{i}(0,1], \quad \forall n \in \mathbb{N} .
$$

- Moreover, $\operatorname{spec}\left(J_{n}\right)$ is the set of zeros of the polynomial

$$
p_{n}(z):={ }_{2} F_{0}\left(-n,-a n-\mathrm{i} n z-1 ;-; a^{-1} n^{-1}\right),
$$

that can be identified with the Charlier polynomials.

An appetizer - one example

- Simple estimates on the quadratic form of J_{n} show that

$$
\operatorname{spec}\left(J_{n}\right) \subset(-2 \sqrt{a}, 2 \sqrt{a})+\mathrm{i}(0,1], \quad \forall n \in \mathbb{N} .
$$

- Moreover, $\operatorname{spec}\left(J_{n}\right)$ is the set of zeros of the polynomial

$$
p_{n}(z):={ }_{2} F_{0}\left(-n,-a n-\mathrm{i} n z-1 ;-; a^{-1} n^{-1}\right),
$$

that can be identified with the Charlier polynomials.

- Namely,

$$
p_{n}(z)=C_{n}^{(-a n)}(-a n-\mathrm{izn}-1),
$$

where $C_{n}^{(\alpha)}(x)$ are the Charlier polynomials.

An appetizer - asymptotic analysis

- From the hypergeometric representation, it follows that $\overline{p_{n}(z)}=p_{n}(-\bar{z})$. Hence, $\operatorname{spec}\left(J_{n}\right)$ is symmetric w.r.t. the imaginary line and we may restrict ourself to the half-plane $\Re z>0$.

An appetizer - asymptotic analysis

- From the hypergeometric representation, it follows that $\overline{p_{n}(z)}=p_{n}(-\bar{z})$. Hence, $\operatorname{spec}\left(J_{n}\right)$ is symmetric w.r.t. the imaginary line and we may restrict ourself to the half-plane $\Re z>0$.
- Certain nice properties of the Charlier polynomials yields the integral representation

$$
p_{n}(z)=\frac{a^{-n} n^{-n}}{2 \pi \mathrm{i}} \oint_{\gamma_{0}} q(\xi) e^{-n p(\xi, z)} \mathrm{d} \xi
$$

where

$$
q(\xi)=\frac{1}{\xi(1+\xi)}, \quad p(\xi, z)=(a+\mathrm{i} z) \log (1+\xi)+\log (\xi)-a \xi
$$

and γ_{0} is a Jordan curve with $0 \in \operatorname{lnt}\left(\gamma_{0}\right)$ located in $\mathbb{C} \backslash(-\infty,-1]$.

An appetizer - asymptotic analysis

- From the hypergeometric representation, it follows that $\overline{p_{n}(z)}=p_{n}(-\bar{z})$. Hence, $\operatorname{spec}\left(J_{n}\right)$ is symmetric w.r.t. the imaginary line and we may restrict ourself to the half-plane $\Re z>0$.
- Certain nice properties of the Charlier polynomials yields the integral representation

$$
p_{n}(z)=\frac{a^{-n} n^{-n}}{2 \pi \mathrm{i}} \oint_{\gamma_{0}} q(\xi) e^{-n p(\xi, z)} \mathrm{d} \xi
$$

where

$$
q(\xi)=\frac{1}{\xi(1+\xi)}, \quad p(\xi, z)=(a+\mathrm{i} z) \log (1+\xi)+\log (\xi)-a \xi
$$

and γ_{0} is a Jordan curve with $0 \in \operatorname{lnt}\left(\gamma_{0}\right)$ located in $\mathbb{C} \backslash(-\infty,-1]$.

- This is a suitable form for the application of the Saddle point method:

$$
p_{n}(z) \sim A_{n}(z) e^{-n p\left(\xi_{ \pm}, z\right)}, \quad \text { if } \Re p\left(\xi_{+}, z\right) \lessgtr \Re p\left(\xi_{-}, z\right)
$$

where $\xi_{ \pm}=\xi_{ \pm}(z, a)$ are two stationary points of $p(\cdot, z)$, i.e., the solutions of

$$
a \xi^{2}-(1+\mathrm{i} z) \xi-1=0 .
$$

An appetizer - the Cauchy transform

$$
\Omega_{ \pm}:=\left\{z \in(0,2 \sqrt{a})+\mathrm{i}(0,1) \mid \Re p\left(\xi_{+}, z\right) \lessgtr \Re p\left(\xi_{-}, z\right)\right\}
$$

An appetizer - the Cauchy transform

$$
\Omega_{ \pm}:=\left\{z \in(0,2 \sqrt{a})+\mathrm{i}(0,1) \mid \Re p\left(\xi_{+}, z\right) \lessgtr \Re p\left(\xi_{-}, z\right)\right\}
$$

- $C_{\mu}(z)= \begin{cases}\mathrm{i} \log \left(1+\xi_{+}\right), & z \in \Omega_{+}, \\ \mathrm{i} \log \left(1+\xi_{-}\right), & z \in \Omega_{-},\end{cases}$

An appetizer - the Cauchy transform

$$
\Omega_{ \pm}:=\left\{z \in(0,2 \sqrt{a})+\mathrm{i}(0,1) \mid \Re p\left(\xi_{+}, z\right) \lessgtr \Re p\left(\xi_{-}, z\right)\right\}
$$

- $C_{\mu}(z)= \begin{cases}\mathrm{i} \log \left(1+\xi_{+}\right), & z \in \Omega_{+}, \\ \mathrm{i} \log \left(1+\xi_{-}\right), & z \in \Omega_{-},\end{cases}$
- C_{μ} is discontinuous on the curve given implicitly by

$$
\Re p\left(\xi_{+}, z\right)=\Re p\left(\xi_{-}, z\right)
$$

for $z \in(0,2 \sqrt{a})+i(0,1)$.

An appetizer - the Cauchy transform

$$
\Omega_{ \pm}:=\left\{z \in(0,2 \sqrt{a})+\mathrm{i}(0,1) \mid \Re p\left(\xi_{+}, z\right) \lessgtr \Re p\left(\xi_{-}, z\right)\right\}
$$

- $C_{\mu}(z)= \begin{cases}\mathrm{i} \log \left(1+\xi_{+}\right), & z \in \Omega_{+}, \\ \mathrm{i} \log \left(1+\xi_{-}\right), & z \in \Omega_{-},\end{cases}$
- C_{μ} is discontinuous on the curve given implicitly by

$$
\Re p\left(\xi_{+}, z\right)=\Re p\left(\xi_{-}, z\right)
$$

for $z \in(0,2 \sqrt{a})+i(0,1)$.

- If the curve is parametrized by the real part of the variable:

$$
\gamma(x):=x+\mathrm{i} y(x), \quad x \in(0,2 \sqrt{a})
$$

then one can show that

$$
y^{\prime}(x)=-\frac{\Im \log \left(\left(1+\xi_{+}\right) /\left(1+\xi_{-}\right)\right)}{\Re \log \left(\left(1+\xi_{+}\right) /\left(1+\xi_{-}\right)\right)} .
$$

An appetizer - the limiting measure on Arc 1

- The application of Plemelj-Sokhotski's formula yields

$$
\frac{\mathrm{d} \mu}{\mathrm{~d} x}(x)=\frac{1}{2 \pi} \frac{\left|\log \left(\left(1+\xi_{+}\right) /\left(1+\xi_{-}\right)\right)\right|^{2}}{\Re \log \left(\left(1+\xi_{+}\right) /\left(1+\xi_{-}\right)\right)}, \quad x \in(0,2 \sqrt{a}) .
$$

An appetizer - threshold

- Since $\overline{p_{n}(z)}=p_{n}(-\bar{z})$, one has

$$
\overline{C_{\mu}(z)}=-C_{\mu}(-\bar{z})
$$

which allows us to extend the Cauchy transform to the left half-plane $\Re z<0$.

An appetizer - threshold

- Since $\overline{p_{n}(z)}=p_{n}(-\bar{z})$, one has

$$
\overline{C_{\mu}(z)}=-C_{\mu}(-\bar{z})
$$

which allows us to extend the Cauchy transform to the left half-plane $\Re z<0$.
Denote by $y_{0}(a)$ the imaginary part of the point where the curve γ intersects the imaginary line.

If $a>y_{0}(a), C_{\mu}$ is analytic everywhere but on the curve γ.

An appetizer - threshold

- Since $\overline{p_{n}(z)}=p_{n}(-\bar{z})$, one has

$$
\overline{C_{\mu}(z)}=-C_{\mu}(-\bar{z})
$$

which allows us to extend the Cauchy transform to the left half-plane $\Re z<0$.
Denote by $y_{0}(a)$ the imaginary part of the point where the curve γ intersects the imaginary line.

If $a<y_{0}(a), C_{\mu}$ has an additional branch cut on the line segment $\mathrm{i}\left(a, y_{0}(a)\right)$.

An appetizer - threshold

- Since $\overline{p_{n}(z)}=p_{n}(-\bar{z})$, one has

$$
\overline{C_{\mu}(z)}=-C_{\mu}(-\bar{z})
$$

which allows us to extend the Cauchy transform to the left half-plane $\Re z<0$.
Denote by $y_{0}(a)$ the imaginary part of the point where the curve γ intersects the imaginary line.

If $a<y_{0}(a), C_{\mu}$ has an additional branch cut on the line segment $\mathrm{i}\left(a, y_{0}(a)\right)$. Plemelj-Sokhotski implies

$$
\frac{\mathrm{d} \mu}{\mathrm{~d} y}(y)=1, \quad y \in\left(a, y_{0}(a)\right)
$$

An appetizer - summary

There are two regimes according to the value of a :

An appetizer - summary

There are two regimes according to the value of a :

$$
a \geq y_{0}(a)
$$

An appetizer - summary

There are two regimes according to the value of a :

$$
a<y_{0}(a)
$$

An appetizer - summary

There are two regimes according to the value of a :

$$
a<y_{0}(a)
$$

- The threshold $a=y_{0}(a)$ occurs for $a>0$ the unique solution of the equation

$$
a e^{1+a}=1
$$

i.e, $a=0.278465 \ldots$.

An appetizer - numerical demonstrations

The histogram of eigenvalues of J_{1000} compared with the limiting density in $\Re z>0$.

An appetizer - numerical demonstrations

The histogram of eigenvalues of J_{1000} compared with the limiting density in $\Re z>0$.

An appetizer - numerical demonstrations

The histogram of eigenvalues of J_{1000} compared with the limiting density in $\Re z>0$.

An appetizer - numerical demonstrations

The histogram of eigenvalues of J_{1000} compared with the limiting density in $\Re z>0$.

An appetizer - numerical demonstrations

The histogram of eigenvalues of J_{1000} compared with the limiting density in $\Re z>0$.

An appetizer - numerical demonstrations

The histogram of eigenvalues of J_{1000} compared with the limiting density in $\Re z>0$.

An appetizer - numerical demonstrations

The histogram of eigenvalues of J_{1000} compared with the limiting density in $\Re z>0$.

An appetizer - numerical demonstrations

The histogram of eigenvalues of J_{1000} compared with the limiting density in $\Re z>0$.

An appetizer - numerical demonstrations

The histogram of eigenvalues of J_{1000} compared with the limiting density in $\Re z>0$.

An appetizer - numerical demonstrations

The histogram of eigenvalues of J_{1000} on $\Re z=0$ (when present).

An appetizer - numerical demonstrations

The histogram of eigenvalues of J_{1000} on $\Re z=0$ (when present).

An appetizer - numerical demonstrations

The histogram of eigenvalues of J_{1000} on $\Re z=0$ (when present).

An appetizer - numerical demonstrations

The histogram of eigenvalues of J_{1000} on $\Re z=0$ (when present).

An appetizer - numerical demonstrations

The histogram of eigenvalues of J_{1000} on $\Re z=0$ (when present).

An appetizer - numerical demonstrations

The histogram of eigenvalues of J_{1000} on $\Re z=0$ (when present).

An appetizer - numerical demonstrations

The histogram of eigenvalues of J_{1000} on $\Re z=0$ (when present).

An appetizer - numerical demonstrations

The histogram of eigenvalues of J_{1000} on $\Re z=0$ (when present).

An appetizer - numerical demonstrations

The histogram of eigenvalues of J_{1000} on $\Re z=0$ (when present).

An appetizer - numerical demonstrations

The distribution of eigenvalues in Regime 1: $a=1>y_{0}(a)=0.32$.

An appetizer - numerical demonstrations

The distribution of eigenvalues in Regime 2: $a=0.08<y_{0}(a)=0.4$.

Thank you!

