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Toeplitz matrices

Basic definitions and facts

@ (Semi-infinite) Toeplitz matrix:

@ Symbol: the (formal) Laurent series

a(z)=>_apz".

nez

@ Finite Toeplitz matrix: Th(a) stands for the upper-left n x n section of T(a).

@ Recall that if 3" |an| < oo, then T(a) determines a well-defined bounded operator on ¢2(N)
and one has [Toeplitz, Wiener]

spec T(a) = a(T) U {z € C\ a(T) | wind(a — z) # 0}.
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Toeplitz matrices

Basic definitions and facts

@ (Semi-infinite) Toeplitz matrix:

@ Symbol: the (formal) Laurent series

a(z)=>_apz".

nez

@ Finite Toeplitz matrix: Th(a) stands for the upper-left n x n section of T(a).

@ Recall that if 3" |an| < oo, then T(a) determines a well-defined bounded operator on ¢2(N)
and one has [Toeplitz, Wiener]

spec T(a) = a(T) U {z € C\ a(T) | wind(a — z) # 0}.

@ Note that a is real-valued on T, if and only if T(a) = T(a)*.
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Toeplitz matrices

The limiting set and measure

@ The limiting set:
ANa)={reC| Ijminfdist(A, spec(Tn(a)) = 0},

equivalently

AeN@) <«  3ne I €spec(Th(a)) st lim A=A
k—o0
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The limiting set and measure

@ The limiting set:
ANa)={reC| Ijminfdist(A, spec(Tn(a)) = 0},

equivalently

AeN@) <«  3ne I €spec(Th(a)) st lim A=A
k—o0

@ The eigenvalue-counting measure:
1 n
pn=—Y_ NGD
=g

where Aﬁ"), .., 2 are eigenvalues of Ta(a).
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Toeplitz matrices

The limiting set and measure

@ The limiting set:

A(@) = {A € C | liminf dist(, spec( Ta(@)) = 0},

equivalently

AeN@) <«  3ne I €spec(Th(a)) st lim A=A
k—o0

@ The eigenvalue-counting measure:

where Aﬁ"), .., 2 are eigenvalues of Ta(a).

@ If the weak limit, say u, of up for n — oo exists, i.e.,

lim / 1(2)dun(2) = lim fo / f(2)du(z), V€ Co(C),
n—oo C

then p is called a.e.d./limiting measure/density of states.
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Toeplitz matrices

Three sets

@ Naturally, there are 3 sets to compare:
spec T(a) vs. A(a) vs. supppu,

(providing that p exists).
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Toeplitz matrices

Three sets

@ Naturally, there are 3 sets to compare:
spec T(a) vs. A(a) vs. supppu,

(providing that p exists).
@ At this point it is essential to distinguish:
self-adjoint case non-self-adjoint case

VS.
an=4a-n an# a—n
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Toeplitz matrices

The self-adjoint case

@ Here we assume Y |an| < oo and ap = a—p forall n € Z.
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Toeplitz matrices

The self-adjoint case

@ Here we assume Y |an| < oo and ap = a—p forall n € Z.
@ Szegd:

lim_ % kzn1 [,\(k”)]m - 217 /_7; [a(e“)] "dt, vmeN.
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Toeplitz matrices

The self-adjoint case

@ Here we assume Y |an| < oo and ap = a—p forall n € Z.
@ Szegd:

A M _ 1 [T ity] ™
n'LmooE;[Ak ] - g/_w [a(e )] dt, vme N,.
@ The Weierstrass approximation theorem implies
im / F(x)dpun(x / F(xX)du(x), VI € Co(R),
. w
i.e., un — p, where

pl(e B1) = 5| (t € (~m 7] [ @ < a(e) < B}
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Toeplitz matrices

The self-adjoint case

@ Here we assume Y |an| < oo and ap = a—p forall n € Z.
@ Szegd:

1T ity]™
n'LmooE;[Ak ] - g/_w [a(e )] dt, vme N,.
@ The Weierstrass approximation theorem implies

im / F(x)dpun(x / F(xX)du(x), VI € Co(R),
. w
i.e., un — p, where

1 i
w((e, B]) = E'“ € (-m 7 | < a(e") < B}-

o Clearly, supp 1 = [min|;_; a(z), max|z s a(z)], and hence

’ supp 4 = spec T(a).
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Toeplitz matrices

The self-adjoint case

@ A consequence of Szegd’s result:
1
lim M — 7|
n— oo n 2T

where Np(a, 8) = (o, B) U spec Th(a).

{te (—m ]| a<ae) < B}
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Toeplitz matrices

The self-adjoint case

@ A consequence of Szegd’s result:
lim M — l|
n— oo n 2T

where Np(a, B) = (o, 8) U spec Tn(a).
o Itimplies that [min ;_y a(z), max ;-1 a(z)] C A(a).

{te (—m ]| a<ae) < B}
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Toeplitz matrices

The self-adjoint case

@ A consequence of Szegd’s result:
lim Nn(a, B) _ l|
n— oo n 27
where Np(a, B) = (o, 8) U spec Tn(a).
o Itimplies that [min ;_y a(z), max ;-1 a(z)] C A(a).
@ Since min / max a(z) is the lower/upper bound for the Toeplitz form (x, Thx), we get

A(a) = spec T(a).

{te (—m ]| a<ae) < B}
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Toeplitz matrices

The self-adjoint case

@ A consequence of Szegd’s result:
lim Nn(a, B) _ l|
n— oo n 27
where Np(a, B) = (o, 8) U spec Tn(a).
o Itimplies that [min ;_y a(z), max ;-1 a(z)] C A(a).
@ Since min / max a(z) is the lower/upper bound for the Toeplitz form (x, Thx), we get

A(a) = spec T(a).

If >~ |an| < oo and an = a_p for all n € Z, then a.e.d. p exists and

{te (—m ]| a<ae) < B}

’ A(a) = spec T(a) = supp p. ‘
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Toeplitz matrices

The self-adjoint case

@ A consequence of Szegd’s result:
lim Nn(a, B) _ l|
n— oo n 27
where Np(a, B) = (o, 8) U spec Tn(a).
o Itimplies that [min ;_y a(z), max ;-1 a(z)] C A(a).
@ Since min / max a(z) is the lower/upper bound for the Toeplitz form (x, Thx), we get

A(a) = spec T(a).

If >~ |an| < oo and an = a_p for all n € Z, then a.e.d. p exists and

{te (—m ]| a<ae) < B}

’ A(a) = spec T(a) = supp p. ‘

Moreover, p is determined by

(s ) = |t € (ol | o < a(e) < B,
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Toeplitz matrices

The non-self-adjoint case

Q: What happen if the assumption of self-adjointness of T(a) is relaxed?
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Toeplitz matrices

The non-self-adjoint case

Q: What happen if the assumption of self-adjointness of T(a) is relaxed?

... a numerical experiment for

a(z) =2z72 4+ 4iz7' +1 - 2iz+ 522 + 7iz° — z* +1925 + (i+ 2)28 + 2877
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Toeplitz matrices

The non-self-adjoint case

@ There is no more equality between A(a) and spec T(a), but one inclusion still holds:

A(a) C spec T(a)
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The non-self-adjoint case

@ There is no more equality between A(a) and spec T(a), but one inclusion still holds:
A(a) C spec T(a)

@ The understanding of the limiting set A(a) is very little in the non-self-adjoint case.
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Toeplitz matrices

The non-self-adjoint case

@ There is no more equality between A(a) and spec T(a), but one inclusion still holds:
A(a) C spec T(a)

@ The understanding of the limiting set A(a) is very little in the non-self-adjoint case.

@ To get some results, we restrict ourself to banded Toeplitz matrices. So the symbol is the
Laurent polynomial:

s
b(z):Zajzj, r,SZ1, a,,-#o, asfo,
j=—r

(we also exclude lower/upper triangular matrices).
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Toeplitz matrices

The non-self-adjoint case - the result of Schmidt & Spitzer

@ Denote z{(A),. .., Zr+s(\) the roots of the polynomial z — z" (b(z) — \) labeled such that

[21(M)] < [22(M)] < -+ |Zres(A)]-
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The non-self-adjoint case - the result of Schmidt & Spitzer

@ Denote z{(A),. .., Zr+s(\) the roots of the polynomial z — z" (b(z) — \) labeled such that
[Z1(M)] < 22N < .- |z2res(N)]-

@ An elegant description of A(b) for banded Toeplitz matrices is due to Schmidt & Spitzer:

[Ab) = (A e C 1z (V)] = 21 (V)]}- ]
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Toeplitz matrices

The non-self-adjoint case - the result of Schmidt & Spitzer

@ Denote z{(A),. .., Zr+s(\) the roots of the polynomial z — z" (b(z) — \) labeled such that
[Z1(M)] < 22N < .- |z2res(N)]-

@ An elegant description of A(b) for banded Toeplitz matrices is due to Schmidt & Spitzer:

[Ab) = (A e C 1z (V)] = 21 (V)]}- ]

@ This description allows one to deduce analytical and topological properties of A(b):

Theorem (Schmidt, Spitzer, Ullman - 60’s):

A(b) is a connected set that equals the union of a finite number of pairwise disjoint open analytic
arcs and a finite number of the so called exceptional points (basically: branching points and end-
points).
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Toeplitz matrices

The non-self-adjoint case - the result of Schmidt & Spitzer

@ Denote z{(A),. .., Zr+s(\) the roots of the polynomial z — z" (b(z) — \) labeled such that
[Z1(M)] < 22N < .- |z2res(N)]-

@ An elegant description of A(b) for banded Toeplitz matrices is due to Schmidt & Spitzer:

[Ab) = (A e C 1z (V)] = 21 (V)]}- ]

@ This description allows one to deduce analytical and topological properties of A(b):

Theorem (Schmidt, Spitzer, Ullman - 60’s):

A(b) is a connected set that equals the union of a finite number of pairwise disjoint open analytic
arcs and a finite number of the so called exceptional points (basically: branching points and end-
points).

@ Open problem: It is not know for what b the set C \ A(b) is connected.
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Toeplitz matrices

The non-self-adjoint case - the result of Hirschman Jr.

@ Also the problem of a.e.d. has been solved for banded Toeplitz matrices. The limiting
measure p exists and one has

A(b) = supp p.
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The non-self-adjoint case - the result of Hirschman Jr.

@ Also the problem of a.e.d. has been solved for banded Toeplitz matrices. The limiting
measure p exists and one has

A(b) = supp p.

@ Moreover, Hirschman Jr. found “an explicit” description of the density of 1.
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Toeplitz matrices

The non-self-adjoint case - the result of Hirschman Jr.

@ Also the problem of a.e.d. has been solved for banded Toeplitz matrices. The limiting
measure p exists and one has

A(b) = supp p.

@ Moreover, Hirschman Jr. found “an explicit” description of the density of 1.

Theorem (Hirschman Jr. - 1967)

On each arc I of A(b), the limiting measure w is a.c. and its density can be expressed as follows:

G 1 (300 00
Mz 2 (zjj(m - %(A—))‘

=1

Here d\ is the complex line element on I taken with respect to a chosen orientation on I' and
Zj(A£) are one-side limits of z;(\"), as A’ approaches A € I' from the left/right side of I' deter-
mined by the chosen orientation.
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Toeplitz matrices

The non-self-adjoint case - the result of Hirschman Jr.

@ Also the problem of a.e.d. has been solved for banded Toeplitz matrices. The limiting
measure p exists and one has

A(b) = supp p.

@ Moreover, Hirschman Jr. found “an explicit” description of the density of 1.

Theorem (Hirschman Jr. - 1967)

On each arc I of A(b), the limiting measure w is a.c. and its density can be expressed as follows:

G 1 (300 00
Mz 2 <zjj(x+) - %(A—))‘

=1

Here d\ is the complex line element on I taken with respect to a chosen orientation on I' and
Zj(A£) are one-side limits of z;(\"), as A’ approaches A € I' from the left/right side of I' deter-
mined by the chosen orientation.

@ A generalization of the results of Schmidt & Spitzer and Hirschman exists for Toeplitz
matrices with rational symbol, see [Day - 1975].
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Toeplitz matrices

The non-self-adjoint case - the result of Hirschman Jr.

@ Also the problem of a.e.d. has been solved for banded Toeplitz matrices. The limiting
measure p exists and one has

A(b) = supp p.

@ Moreover, Hirschman Jr. found “an explicit” description of the density of 1.

Theorem (Hirschman Jr. - 1967)

On each arc I of A(b), the limiting measure w is a.c. and its density can be expressed as follows:

G 1 (300 00
Mz 2 <zjj(x+) - %(A—))‘

=1

Here d\ is the complex line element on I taken with respect to a chosen orientation on I' and
Zj(A£) are one-side limits of z;(\"), as A’ approaches A € I' from the left/right side of I' deter-
mined by the chosen orientation.

@ A generalization of the results of Schmidt & Spitzer and Hirschman exists for Toeplitz
matrices with rational symbol, see [Day - 1975].

@ For more general symbols, no similar results are known.
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Generalized Toeplitz matrices - self-adjoint case

Kac—Murdock—Szegd matrices
@ Assume the coefficients of the symbol depend on an additional variable x € [0, 1]:

a(z,x) =Y a(x)Z".

kezZ
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Generalized Toeplitz matrices - self-adjoint case

Kac—Murdock—Szegd matrices

@ Assume the coefficients of the symbol depend on an additional variable x € [0, 1]:

a(z,x) =Y a(x)Z".

kezZ

@ Kac, Murdock, and Szeg6 (in 1953) introduced the matrices

k +l n—1
Tn(a) = {akfl (7)]
2n+2 k,1=0

and called them Generalized Toeplitz matrices (if ax(t) = ax, Tn(a) is a Toeplitz matrix).
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Generalized Toeplitz matrices - self-adjoint case

Kac—Murdock—Szegd matrices

@ Assume the coefficients of the symbol depend on an additional variable x € [0, 1]:

a(z,x) =Y a(x)Z".

kezZ

@ Kac, Murdock, and Szeg6 (in 1953) introduced the matrices

k +l n—1
Tn(a) = {akfl (7)]
2n+2 k,1=0

and called them Generalized Toeplitz matrices (if ax(t) = ax, Tn(a) is a Toeplitz matrix).

An interesting history:
@ Introduced by Kac, Murdock, and Szeg6 in 1953.
@ After 1958 almost forgotten (no citation in 1958-1999 according to MathSciNet).
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Generalized Toeplitz matrices - self-adjoint case

Kac—Murdock—Szegd matrices

@ Assume the coefficients of the symbol depend on an additional variable x € [0, 1]:

a(z,x) =Y a(x)Z".

kezZ

@ Kac, Murdock, and Szeg6 (in 1953) introduced the matrices

k +l n—1
Tn(a) = {akfl (7)]
2n+2 k,1=0

and called them Generalized Toeplitz matrices (if ax(t) = ax, Tn(a) is a Toeplitz matrix).

An interesting history:
@ Introduced by Kac, Murdock, and Szeg6 in 1953.
@ After 1958 almost forgotten (no citation in 1958-1999 according to MathSciNet).
© Tilli rediscovered these matrices in 1998 and called them locally Toeplitz matrices.
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Generalized Toeplitz matrices - self-adjoint case

Kac—Murdock—Szegd matrices

@ Assume the coefficients of the symbol depend on an additional variable x € [0, 1]:
a(z,x) =Y a(x)Z".
kezZ

@ Kac, Murdock, and Szeg6 (in 1953) introduced the matrices

k +/ n—1
Tn(a) = {akfl (7)]
2n+2/Jy =0

and called them Generalized Toeplitz matrices (if ax(t) = ax, Tn(a) is a Toeplitz matrix).
An interesting history:
@ Introduced by Kac, Murdock, and Szeg6 in 1953.
@ After 1958 almost forgotten (no citation in 1958-1999 according to MathSciNet).
© Tilli rediscovered these matrices in 1998 and called them locally Toeplitz matrices.

@ Kuijlaars and Van Assche (1999) studied the asymptotic distribution of zeros of OG
polynomials with variable coefficients - a special (tridiagonal) case of KMS matrices.
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Generalized Toeplitz matrices - self-adjoint case

Kac—Murdock—Szegd matrices

@ Assume the coefficients of the symbol depend on an additional variable x € [0, 1]:

a(z,x) =Y a(x)Z".

kezZ

@ Kac, Murdock, and Szeg6 (in 1953) introduced the matrices

k +l n—1
Tn(a) = {akfl (7)]
2n+2 k,1=0

and called them Generalized Toeplitz matrices (if ax(t) = ax, Tn(a) is a Toeplitz matrix).
An interesting history:
@ Introduced by Kac, Murdock, and Szeg6 in 1953.
@ After 1958 almost forgotten (no citation in 1958-1999 according to MathSciNet).
© Tilli rediscovered these matrices in 1998 and called them locally Toeplitz matrices.

@ Kuijlaars and Van Assche (1999) studied the asymptotic distribution of zeros of OG
polynomials with variable coefficients - a special (tridiagonal) case of KMS matrices.

@ After 2000, a renewed interest...
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Generalized Toeplitz matrices - self-adjoint case

The result of Kac, Murdock, and Szegd

@ Kac, Murdock, and Szegd derived the so called first Szeg6 limit theorem for KMS matrices
which yields the a.e.d.
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The result of Kac, Murdock, and Szegd

@ Kac, Murdock, and Szegd derived the so called first Szeg6 limit theorem for KMS matrices
which yields the a.e.d.
@ Assumptions:

> llaklloo < o0, a continuous, a_x(x) = ax(x).
kezZ
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Generalized Toeplitz matrices - self-adjoint case

The result of Kac, Murdock, and Szegd

@ Kac, Murdock, and Szegd derived the so called first Szeg6 limit theorem for KMS matrices
which yields the a.e.d.
@ Assumptions:

> llaklloo < o0, a continuous, a_x(x) = ax(x).
kezZ

Theorem (Kac, Murdock, Szegd - 1953)
With the assumptions above, one has

n

Jim % > [)\E(")]m = 21—” /_: /01 [a(e”,x)]mdxdt, vm € Ny,

k=1

where A", ... A\ are eigenvalues of Tr(a).
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Generalized Toeplitz matrices - self-adjoint case

The result of Kac, Murdock, and Szegd

@ Kac, Murdock, and Szegd derived the so called first Szeg6 limit theorem for KMS matrices
which yields the a.e.d.
@ Assumptions:

> llaklloo < o0, a continuous, a_x(x) = ax(x).
kezZ

Theorem (Kac, Murdock, Szegd - 1953)
With the assumptions above, one has

n

Jim % > [)\E(")]m = 21—” /_: /01 [a(e”,x)]mdxdt, vm € Ny,

k=1

where A", ... A\ are eigenvalues of Tr(a).

4

@ By applying the Weierstrass approximation theorem (and the fact that the eigenvalues remain
in a compact interval for all n), we prove that the a.e.d. of Tp(a), as n — oo, exists and is
given by

(s B) = ({6 ) € (—mm] x 0.1] @ < a(e,x) < B}
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Generalized Toeplitz matrices - self-adjoint case

A special case - orthogonal polynomials with variable coefficients
@ From the special case with the trinomial symbol

a(z,x) = a_1(0)z"" + ao(x) + & (x)z,
one can deduce the result of Kuijlaars & Van Assche that can be formulated as follows.
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Generalized Toeplitz matrices - self-adjoint case

A special case - orthogonal polynomials with variable coefficients

@ From the special case with the trinomial symbol
a(z,x) = a_1(0)z"" + ao(x) + & (x)z,
one can deduce the result of Kuijlaars & Van Assche that can be formulated as follows.

Theorem (Kuijlaars, Van Assche - a special case)

Leta:[0,1] — Ry and b : [0,1] — R be continuous and p,((") be a family of polynomials

generated by the recurrence

A& = (z-0(%)) A - (a (k%))z 5 (2)

with the initial conditions p(_"z (z) =0and p(()")(z) =1.

Franti$ek Stampach (FIT CTU in Prague) 15/31



Generalized Toeplitz matrices - self-adjoint case

A special case - orthogonal polynomials with variable coefficients

@ From the special case with the trinomial symbol
a(z,x) = a_1(0)z"" + ao(x) + & (x)z,
one can deduce the result of Kuijlaars & Van Assche that can be formulated as follows.

Theorem (Kuijlaars, Van Assche - a special case)

Leta:[0,1] — Ry and b : [0,1] — R be continuous and p,(( ) be a family of polynomials
generated by the recurrence

A& = (z-0(%)) A - (a (k%))z 5 (2)

with the initial conditions p (z) =0and p0 (z) = 1. Then the zero-counting measure of pﬁ, )
converges weakly to

1
W= /0 Wib(t)—2a(t),b(t)+2a(t)] 4L

Franti$ek Stampach (FIT CTU in Prague) 15/31



Generalized Toeplitz matrices - self-adjoint case
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@ From the special case with the trinomial symbol
a(z,x) = a_1(0)z"" + ao(x) + & (x)z,
one can deduce the result of Kuijlaars & Van Assche that can be formulated as follows.

Theorem (Kuijlaars, Van Assche - a special case)

Leta:[0,1] — Ry and b : [0,1] — R be continuous and p,(( ) be a family of polynomials
generated by the recurrence

A& = (z-0(%)) A - (a (k%))z 5 (2)

with the initial conditions p (z) =0and p0 (z) = 1. Then the zero-counting measure of pﬁ, )
converges weakly to

1
W= /0 Wib(t)—2a(t),b(t)+2a(t)] 4L

where
dw[aﬂ] (X) _ 1

dAx - (,B—X)(x—a)’ for a<x<p.

Franti$ek Stampach (FIT CTU in Prague) 15/31



Generalized Toeplitz matrices - self-adjoint case

An alternative formulation - sampling Jacobi matrix

@ Alternatively, the previous statement says that the a.e.d. of a self-adjoint sampling Jacobi

matrix
bg;g a(t
a(s) b(% agi;
Jn(ayb): : % ° % a(%) 5
() o) o)
a2 b(1)

with a, b € C([0, 1]), exists and equals

]
M:/O Wib(t)—2a(t),b(t)+2a(t)]dt-
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Generalized Toeplitz matrices - self-adjoint case

An alternative formulation - sampling Jacobi matrix

@ Alternatively, the previous statement says that the a.e.d. of a self-adjoint sampling Jacobi

matrix
bg;g a(t
a(i) b(2 agig
wan—| 202G =) |
() o) o)
a2 b(1)

with a, b € C([0, 1]), exists and equals

]
M:/O Wib(t)—2a(t),b(t)+2a(t)]dt-

@ The last formula fails to hold, if the assumption on self-adjointness is relaxed and no
generalization is known.
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@ We restrict ourself to non-self-adjoint sampling Jacobi matrices for simplicity.

@ Based on numerical experiments and the known a.e.d. for banded Toeplitz matrices, we
formulate the following conjecture.

Let a,b : [0,1] — C be continuous. Then the a.e.d. u exists and it is supported on a set that
equals a finite union of open analytic arcs and finite number of points.
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@ We restrict ourself to non-self-adjoint sampling Jacobi matrices for simplicity.

@ Based on numerical experiments and the known a.e.d. for banded Toeplitz matrices, we
formulate the following conjecture.

Let a,b : [0,1] — C be continuous. Then the a.e.d. u exists and it is supported on a set that
equals a finite union of open analytic arcs and finite number of points.

Problem: © = u(a, b)?

Provided that a.e.d. u exists, a natural question asks whether p or supp p can be expressed in
terms of the functions a and b (as it is possible in the self-adjoint case).

@ Our inability to solve this problem in its generality motivates us to investigate some special
cases - collaboration with O. Turek, work very much in progress.
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Generalized Toeplitz matrices - non-self-adjoint case

@ In general, very little is known about the a.e.d. of non-self-adjoint KMS matrices.
@ We restrict ourself to non-self-adjoint sampling Jacobi matrices for simplicity.

@ Based on numerical experiments and the known a.e.d. for banded Toeplitz matrices, we
formulate the following conjecture.

Let a,b : [0,1] — C be continuous. Then the a.e.d. u exists and it is supported on a set that
equals a finite union of open analytic arcs and finite number of points.

Problem: © = u(a, b)?

Provided that a.e.d. u exists, a natural question asks whether p or supp p can be expressed in
terms of the functions a and b (as it is possible in the self-adjoint case).

@ Our inability to solve this problem in its generality motivates us to investigate some special
cases - collaboration with O. Turek, work very much in progress.

@ Typically, the special choices of a and b correspond to well-known families of polynomials
where more properties are available.

Franti$ek Stampach (FIT CTU in Prague) 18/31



Generalized Toeplitz matrices - non-self-adjoint case

The strategy for the derivation of the limiting measure

Definition:
The Cauchy transform of a Borel measure p is a function defined by

dp(x
Cu(2) ;:/CZ“_()z, z € C\ supp p.

Franti$ek Stampach (FIT CTU in Prague) 19/31



Generalized Toeplitz matrices - non-self-adjoint case

The strategy for the derivation of the limiting measure

Definition:
The Cauchy transform of a Borel measure p is a function defined by

dp(x
Cu(2) ::/(Cz“_()37 z € C\ suppp.

Example: To compute the Cauchy transform of the root-counting measure p., of a monic
polynomial py is extremely easy. One has

_ Pn(2)
Mn( )_ npn(z).

Franti$ek Stampach (FIT CTU in Prague) 19/31



Generalized Toeplitz matrices - non-self-adjoint case

The strategy for the derivation of the limiting measure

Definition:
The Cauchy transform of a Borel measure p is a function defined by

dp(x
Cu(2) ::/(Cz“_()37 z € C\ suppp.

Example: To compute the Cauchy transform of the root-counting measure p., of a monic
polynomial py is extremely easy. One has

_ Pn(2)
Mn( )_ npn(z).

Theorem

Let un is @ sequence of probability measures supported uniformly in a compact set K C C.

Assume that
nim Cu,(z)=C(2), ae.zeC.

Then C is the Cauchy transform of a probability measure p which is a weak limit of s for n — oco.
Moreover, one has

1
uw= —03C inthe generalized sense.
71'
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Generalized Toeplitz matrices - non-self-adjoint case

The strategy for the derivation of the limiting measure

@ Although the generalized formula © = %8;@ is elegant, it can be difficult to deduce p from it
in cocrete cases.
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The strategy for the derivation of the limiting measure

@ Although the generalized formula © = %BZCH is elegant, it can be difficult to deduce p from it
in cocrete cases.

@ But if the set of singular points of C,, is a nice curve (e.g., piecewise analytic) in C, one can
make use the Plemelj—Sokhotski formula.

Plemelj—Sokhotski’s formula

Let v be an oriented analytic curve, C,, analytic on C \ -y and can be continuously extended onto ~
from the left(+)/right(-) side. Then one has

(@)=~ (Culz4) — Culz-))

on v (details on blackboard).
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Generalized Toeplitz matrices - non-self-adjoint case

The strategy for the derivation of the limiting measure

@ Although the generalized formula © = %BZCH is elegant, it can be difficult to deduce p from it
in cocrete cases.

@ But if the set of singular points of C,, is a nice curve (e.g., piecewise analytic) in C, one can
make use the Plemelj—Sokhotski formula.

Plemelj—Sokhotski’s formula

Let v be an oriented analytic curve, C,, analytic on C \ -y and can be continuously extended onto ~
from the left(+)/right(-) side. Then one has

(@)=~ (Culz4) — Culz-))

on v (details on blackboard).

@ The main difficultly of the strategy: W for n — oo.

@ There are many powerful methods for the asymptotic analysis (Saddle point method,
Riemann—Hilbert problem,...) but it usually requires a more detailed knowledge about p,
(generating functions, integral representations,...).
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Generalized Toeplitz matrices - non-self-adjoint case

An appetizer - one example

b
a(x) =+ax, (a>0), aé

b(x) = ix,

a(%) b(1.)
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b
a(x) =+ax, (a>0), aé

b(x) = ix,

@ Simple estimates on the quadratic form of J, show that

spec(Jn) C (—2v/a,2v/a) +i(0,1], VneN.
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An appetizer - one example

b(L) a(i
)= VA (20, REE IS
Jn: El
b(x) = ix, .

@ Simple estimates on the quadratic form of J, show that
spec(Jn) C (—2v/a,2v/a) +i(0,1], VneN.
@ Moreover, spec(Jp) is the set of zeros of the polynomial
pn(2) := 2Fo (—n, —an—inz—1;—; af‘nq),

that can be identified with the Charlier polynomials.
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An appetizer - one example

1 1
b(7) als
a(x) =vax, (a>0), y a(i) b(2 a (%)
n — )
b(X):1X7
a(") b(1)
@ Simple estimates on the quadratic form of J, show that
spec(Jn) C (—2v/a,2v/a) +i(0,1], VneN.
@ Moreover, spec(Jp) is the set of zeros of the polynomial
pn(2) := 2F (—n, —an—inz —1;—; af‘nq),
that can be identified with the Charlier polynomials.
@ Namely,
pn(z) = S (—an —izn — 1),
where C,(f‘)(x) are the Charlier polynomials.
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Generalized Toeplitz matrices - non-self-adjoint case

An appetizer - asymptotic analysis

@ From the hypergeometric representation, it follows that pa(z) = pn(—Z). Hence, spec(Jp) is
symmetric w.r.t. the imaginary line and we may restrict ourself to the half-plane $z > 0.
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Generalized Toeplitz matrices - non-self-adjoint case

An appetizer - asymptotic analysis

@ From the hypergeometric representation, it follows that pa(z) = pn(—Z). Hence, spec(Jp) is
symmetric w.r.t. the imaginary line and we may restrict ourself to the half-plane $z > 0.

@ Certain nice properties of the Charlier polynomials yields the integral representation

p(2) = 20— 4 qe)e P,
Yo
where :
q(¢) = ETL p(§,2) = (a+iz)log(1 + &) + log(€) — &g,

and ~ is a Jordan curve with 0 € Int(g) located in C \ (—oo, —1].
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Generalized Toeplitz matrices - non-self-adjoint case

An appetizer - asymptotic analysis

@ From the hypergeometric representation, it follows that pa(z) = pn(—Z). Hence, spec(Jp) is
symmetric w.r.t. the imaginary line and we may restrict ourself to the half-plane $z > 0.

@ Certain nice properties of the Charlier polynomials yields the integral representation

pr(2) = 250§ a(e e,
ml 0
where :
Q€)= ———, P 2)=(a+iz)log(1 +¢) + log(€) — &g,

§1+9)
and ~ is a Jordan curve with 0 € Int(g) located in C \ (—oo, —1].
@ This is a suitable form for the application of the Saddle point method:

pn(z) ~ An(2)e”"PEE2) | it R p(¢y,z) S R p(E-, 2).

where £+ = £4(z, @) are two stationary points of p(-, z), i.e., the solutions of

a® —(1+iz)¢—1=0.
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Generalized Toeplitz matrices - non-self-adjoint case

An appetizer - the Cauchy transform

Qi = {z€(0,2Va) +i(0,1) | R p(é+,2) S R p(é—,2)}

10

Q.
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Generalized Toeplitz matrices - non-self-adjoint case

An appetizer - the Cauchy transform

Q4 :={z€(0,2Va) +i(0,1) | R p(¢+,2) S R p(¢é-,2)}

_ Jilog(1 +¢&4), z€Qy,
¢ C”(Z){ilogﬁ—i-é), zeQ_,

@ C, is discontinuous on the curve given
implicitly by

%p(£+72) = %p(g—zz)’
for z € (0,2v/a) +i(0, 1).
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Generalized Toeplitz matrices - non-self-adjoint case

An appetizer - the Cauchy transform

Qi = {z€(0,2Va) +i(0,1) | R p(é+,2) S R p(é—,2)}

10

C ( )_ 1|09(1 +£+)7 ze Q+7 0s
K27 lilog(1 +¢62), zeQ-, Q,

@ C, is discontinuous on the curve given
implicitly by o

%p(§+72) = ﬂ?p(ﬁ_,Z),
for z € (0,2v/a) +i(0, 1).

@ If the curve is parametrized by the real part of the variable:
y(x) = x+iy(x), x€(0,2Va),
then one can show that

oo — SN0 +e)/(1 )
Rlog (1 +&4)/(1+6-))
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Generalized Toeplitz matrices - non-self-adjoint case

An appetizer - the limiting measure on Arc 1

@ The application of Plemelj—Sokhotski’s formula yields

dp 1 Jlog (1 +&4)/(1+€ )P
M= 2 Riog (1 e/ ey €OV
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An appetizer - threshold

@ Since pn(z) = pn(—2), one has ’m =—Cu(-2) ‘

which allows us to extend the Cauchy transform to the left half-plane Rz < 0.
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An appetizer - threshold

@ Since pn(z) = pn(—2), one has ’m =—Cu(-2) ‘

which allows us to extend the Cauchy transform to the left half-plane Rz < 0.

Denote by yy(a) the imaginary part of the point where the curve ~ intersects the imaginary line.

10

Yo(a@)

“10 “0s5 00 05 10

If C,, is analytic everywhere but on the curve .
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An appetizer - threshold

@ Since pn(z) = pn(—2), one has ’m =—Cu(-2) ‘

which allows us to extend the Cauchy transform to the left half-plane Rz < 0.

Denote by yy(a) the imaginary part of the point where the curve ~ intersects the imaginary line.

10

Yo(a)

If Cy. has an additional branch cut on the line segment i(a, yo(a)).
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An appetizer - threshold

@ Since pn(z) = pn(—2), one has ’m =—Cu(-2) ‘

which allows us to extend the Cauchy transform to the left half-plane Rz < 0.

Denote by yy(a) the imaginary part of the point where the curve ~ intersects the imaginary line.

10

Yo(a)

If Cy. has an additional branch cut on the line segment i(a, yo(a)). Plemelj—Sokhotski
implies

j—ﬁ(y) =1, ye(ana)
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Generalized Toeplitz matrices - non-self-adjoint case

An appetizer - summary

There are two regimes according to the value of a:
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An appetizer - summary

There are two regimes according to the value of a:

a> yo(a)

dx 27 Relog((1+£,)/(1+¢&))

du 1 1log(1+&)/(1+E0 |®
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Generalized Toeplitz matrices - non-self-adjoint case

An appetizer - summary

There are two regimes according to the value of a:

a < yo(a)

dx

27 Relog((1+¢&,)/(1+€))

du 1 1log((1+€)/(+ED|®

-05 0o
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Generalized Toeplitz matrices - non-self-adjoint case

An appetizer - summary

There are two regimes according to the value of a:

a < yo(a)

du 1 1log((1+€)/(+ED|®

dx

27 Relog((1+¢&,)/(1+€))

@ The threshold a = yp(a) occurs for a > 0 the unique solution of the equation

i.e,a=0.278465....
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Generalized Toeplitz matrices - non-self-adjoint case

An appetizer - numerical demonstrations

a = 0.063

The histogram of eigenvalues of Jjggg compared with the limiting density in ®z > 0.
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Generalized Toeplitz matrices - non-self-adjoint case

An appetizer - numerical demonstrations

a =013

01 02 03 04 05 06 5?

The histogram of eigenvalues of Jjggg compared with the limiting density in ®z > 0.

Franti$ek Stampach (FIT CTU in Prague) 27/31



Generalized Toeplitz matrices - non-self-adjoint case

An appetizer - numerical demonstrations

a =019

0.2 04 06 08

The histogram of eigenvalues of Jjggg compared with the limiting density in ®z > 0.
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An appetizer - numerical demonstrations

The histogram of eigenvalues of Jjggg compared with the limiting density in ®z > 0.
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Generalized Toeplitz matrices - non-self-adjoint case

An appetizer - numerical demonstrations

a =031

0.2 0.4 08 08 1.0

The histogram of eigenvalues of Jjggg compared with the limiting density in ®z > 0.
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Generalized Toeplitz matrices - non-self-adjoint case

An appetizer - numerical demonstrations

a =038

02 04 06 08 10 12

The histogram of eigenvalues of Jjggg compared with the limiting density in ®z > 0.
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Generalized Toeplitz matrices - non-self-adjoint case

An appetizer - numerical demonstrations

a = 0.44

The histogram of eigenvalues of Jjggg compared with the limiting density in ®z > 0.
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Generalized Toeplitz matrices - non-self-adjoint case

An appetizer - numerical demonstrations

a = 0.50

The histogram of eigenvalues of Jjggg compared with the limiting density in ®z > 0.
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Generalized Toeplitz matrices - non-self-adjoint case

An appetizer - numerical demonstrations

a = 0.56

02 0.4 06 08 10 12 14\

The histogram of eigenvalues of Jjggg compared with the limiting density in ®z > 0.
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Generalized Toeplitz matrices - non-self-adjoint case

An appetizer - numerical demonstrations

a = 0.010

14
12
08

06+
04r
02

01 ) 03 o4 05 o5 07

The histogram of eigenvalues of Jjggg on Rz = 0 (when present).
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Generalized Toeplitz matrices - non-self-adjoint case

An appetizer - numerical demonstrations

a = 0.030
14F
12}
— — —
0.8
06
041
02r
0.1 02 03 0.4

The histogram of eigenvalues of Jjggg on Rz = 0 (when present).
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Generalized Toeplitz matrices - non-self-adjoint case

An appetizer - numerical demonstrations

a = 0.050

06

041

0zf

0.1 02 03 04

The histogram of eigenvalues of Jjggg on Rz = 0 (when present).
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Generalized Toeplitz matrices - non-self-adjoint case

An appetizer - numerical demonstrations

0.10 0.15 0.20 025 0.30 035 0.40

The histogram of eigenvalues of Jjggg on Rz = 0 (when present).
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Generalized Toeplitz matrices - non-self-adjoint case

An appetizer - numerical demonstrations

a = 0.090

141

121

or | I
0.8

06

04f

02

0.10 015 0.20 0.25 0.30 0.35

The histogram of eigenvalues of Jjggg on Rz = 0 (when present).
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Generalized Toeplitz matrices - non-self-adjoint case

An appetizer - numerical demonstrations

a =011

0.15 0.20 025 0.30

The histogram of eigenvalues of Jjggg on Rz = 0 (when present).

Franti$ek Stampach (FIT CTU in Prague) 28/31



Generalized Toeplitz matrices - non-self-adjoint case

An appetizer - numerical demonstrations

a =013

0.15 0.20 025 0.30

The histogram of eigenvalues of Jjggg on Rz = 0 (when present).
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Generalized Toeplitz matrices - non-self-adjoint case

An appetizer - numerical demonstrations

a =015
141
12h
1ol
081
061
04b
02F
0.16 YT 020 oz 024 025 028 030

The histogram of eigenvalues of Jjggg on Rz = 0 (when present).
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Generalized Toeplitz matrices - non-self-adjoint case

An appetizer - numerical demonstrations

06

041

02F

0.18 0.20 022 0.24 0.26 0.28

The histogram of eigenvalues of Jjggg on Rz = 0 (when present).
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Generalized Toeplitz matrices - non-self-adjoint case

An appetizer - numerical demonstrations
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The distribution of eigenvalues in Regime 1: a=1 > yy(a) = 0.32.
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Generalized Toeplitz matrices - non-self-adjoint case

An appetizer - numerical demonstrations
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The distribution of eigenvalues in Regime 2: a = 0.08 < yp(a) = 0.4.
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Thank you!

$ek Stampach (FI in Prague) 31/31




	Toeplitz matrices
	Generalized Toeplitz matrices - self-adjoint case
	Generalized Toeplitz matrices - non-self-adjoint case

	anm0: 
	anm1: 
	anm2: 
	anm3: 


