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1 Basics from the theory of measure and integral, definition of orthogonal
polynomials, examples, tree-term recurrence, Favard’s theorem (regular lecture).

2 Christoffel-Darboux kernel and formula, zeros of orthogonal polynomials,
properties of the very classical orthogonal polynomials (regular lecture).

3 Orthogonal polynomials and spectral theory of Jacobi operators, interesting
comments, criteria on uniqueness of the measure of orthogonality, the case of
non-uniqueness of measure of orthogonality, Markov’s theorem, Navanlinna
parametrization (informative chitchat lecture).

Sources used: Akhiezer’s, Chihara’s and Ismail’s
monograph, Koornwinder’s lecture notes, papers
cited later.
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A very strong motivation

Why to care about Orthogonal Polynomials?

Polynomials = very simple special functions, everybody understands them.
Orthogonality = makes things simple,

moreover, this phenomenon naturally emerge in the real life:

Proof:
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Very strong motivation

By the way orthogonal polynomials brings together many mathematical and physical
branches:

Complex analysis (Bieberbach conjecture, moment problem, Padé
approximation)

Functional analysis (Fourier-Plancherel transform, spectral analysis of Jacobi
operators)

Numerical mathematics (approximation theory, quadrature, differential
equations)

Number theory (continued fractions, proofs of irrationality of numbers)

Quantum mechanics (harmonic oscilator and its deformations, Schrödinger
operator with spherically symmetric potential, coherent states)

Integrable systems (solitons, Toda equation)

Random matrix theory, Riemann-Hilbert problem, Radon transform, Zonal
spherical harmonics, group representation theory, coding theory, electrostatic
problems, . . . .
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Several books

G. Szegö: Ortogonal polynomials, Amer. Math. Soc., Fourth
ed., 1975.

T. S. Chihara: An Introduction to Orthogonal Polynomials,
Gordon and Breach, 1978, reprinted Dover, 2011.

N. I. Akhiezer: The Classical Moment Problem and Some
Related Questions in Analysis, Oliver & Boyd, 1965.
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Other Sources

M. E. H. Ismail: Classical and Quantum Orthogonal Polynomials
in One Variable, Cambridge University Press, 2005.

R. Koekoek, P. A. Lesky R. F. Swarttouw: Hypergeometric
orthogonal polynomials and their q-analogues, Springer-Verlag,
2010.

The Askey-scheme available on arXiv: arXiv:math/9602214

NIST Digital Library of Mathematical Functions, in particular
Chp. 18 on Orthogonal polynomials

http://dlmf.nist.gov
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Construction of Orthogonal polynomials

Let P be the real linear space of polynomials in one variable with real coefficients.

Assume a positive definite inner product 〈., .〉 is given on P.

Apply the Gram-Schmidt orthogonalization process to monomials {1, x , x2, . . . }.
Resulting polynomials {p0, p1, p2, . . . } are mutually orthogonal (with respect to the
given inner product) and they are produced recursively

p0(x) = 1, pn(x) = xn −
n−1∑
k=0

〈pk , xn〉
〈pk , pk 〉

pk (x).

(Need to check the orthogonality?)

Moreover, it holds

Pn := span{1, x , . . . , xn} = span{p0, p1, . . . , pn}.

Polynomials pn are unique up to a nonzero multiplicative constant. We denote
constants hn and kn as follows:

〈pn, pn〉 = hn and pn(x) = knxn + “a polynomial of degree < n”.

Orthonormal polynomials (hn = 1) vs. Monic orthogonal polynomials (kn = 1).
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Inner products on P

What inner product on P can we have?

For example for f , g ∈ P

〈f , g〉 =

∫ b

a
f (x)g(x) w(x)︸ ︷︷ ︸

≥0

dx or 〈f , g〉 =
∑

k

wk︸︷︷︸
≥0

f (xk )g(xk ).

These examples are special cases of the inner product of the form

〈f , g〉 =

∫
R

f (x)g(x)dµ(x)

where µ is a (positive) measure.
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Intermezzo about measures

Let B be a system of Borel subsets of R.

A map µ : B → [0,∞) is finite (Borel) measure on R if it is σ-additive. That means
that for any system of mutually disjoint sets {Ai} it holds

µ

(
∞⋃
i=1

Ai

)
=
∞∑
i=1

µ(Ai ).

Having a measure µ on R there is a general construction of an integral∫
R

f (x)dµ(x)

where f is a measurable function (preimage of a Borel set is a Borel set).
Very nice introduction on the general theory of measures and integral calculus is
given in

W. Rudin: Real and complex analysis, in czech, Academia, 2003.
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Intermezzo about measures - two special cases

We distinguish two special cases.

The measure µ is absolutely continuous if there exists a positive function w such
that dµ(x) = w(x)dx . The integral of a measurable functions f has the form∫

R
f (x)dµ(x) =

∫
R

f (x)w(x)dx .

Example: For w(x) = e−x2
we have∫

R
1dµ(x) =

∫
R

e−x2
dx =

√
π.

The measure µ is discrete if there exists sequences xk ∈ R, wk > 0 such that
dµ(x) =

∑
k wkδxk (x) where δxk (x) is a unit mass at xk . The integral of a

measurable functions f has the form∫
R

f (x)dµ(x) =
∑

k

f (xk )wk .

Example: For xk = k , wk = 1/k !, k ∈ Z+ we have∫
R

1dµ(x) =
∞∑

k=0

1
k !

= e.
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Intermezzo about measures - distribution function

With any measure µ one can associate the distribution function

Fµ(x) := µ((−∞, x ]).

Function Fµ is non-decreasing and continuous from the right.

On the other hand such function F determines a unique (Lebesgue-Stieltjes)
measure on R.

We say measure µ has in x a mass point of mass c > 0 if Fµ has jump at x of
magnitude c, i.e.,

Fµ(x)− lim
δ→0+

Fµ(x − δ) = c.

(The number of mass points is at most countable.)

More generally, the support of the measure µ consists of all x such that
µ((x − δ, x + δ)) > 0 for all δ > 0. This is set is always closed.

So if A ⊂ R \ suppµ then µ(A) = 0 and one does not need to "integrate outside the
support", ∫

R
f (x)dµ(x) =

∫
suppµ

f (x)dµ(x),

for any measurable function f . (Examples!)
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µ((x − δ, x + δ)) > 0 for all δ > 0. This is set is always closed.

So if A ⊂ R \ suppµ then µ(A) = 0 and one does not need to "integrate outside the
support", ∫

R
f (x)dµ(x) =

∫
suppµ

f (x)dµ(x),

for any measurable function f . (Examples!)
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Definition of Orthogonal polynomials

Let µ be positive Borel measure on R of infinite support such that∫
R

xndµ(x) <∞, for all n ∈ Z+.

Let the space P is equipped with inner product

〈f , g〉 :=

∫
R

f (x)g(x)dµ(x).

A sequence {p0, p1, p2, . . . } ⊂ P where degree of pn is n orthogonal with respect
to the above inner product is called a sequence of orthogonal polynomials (=OPs)
with respect to the measure µ.

The orthogonality relation then reads∫
R

pm(x)pn(x)dµ(x) = hnδm,n, m, n ∈ Z+.
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Example - Hermite polynomials

Hermite polynomials Hn: orthogonal on R with respect to w(x) = e−x2
(normalized

by kn = 2n).

Constants hn can be determined and the orthogonality relation reads∫
R

Hm(x)Hn(x)e−x2
dx =

√
π 2nn!δm,n.

In principle, Hn(x) can be computed for any n ∈ Z+ by using the Gram-Schmidt
procedure. Several first are

H0(x) = 1, H1(x) = 2x , H2(x) = 4x2 − 2, H3(x) = 8x3 − 12x ,

. . .

H10(x) = 1024x10 − 23040x8 + 161280x6 − 403200x4 + 302400x2 − 30240

However, it is a difficult task to derive the explicit formula for Hn from the very
definition. The formula reads

Hn(x) = n!

b n
2 c∑

k=0

(−1)k

k !(n − 2k)!
(2x)n−2k .
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More examples

Laguerre polynomials Ln : orthogonal on (0,∞) w. r. t. the weight function e−x ,
thus w(x) = e−xχ(0,∞)(x) (normalized by kn = (−1)n/n! or hn = 1).

The explicit formula for Ln reads

Ln(x) =
n∑

k=0

(
n
k

)
(−1)k

k !
xk , n ∈ Z+.

Exercise for students #1: Prove the explicit formula for Laguerre polynomials. Further
find the generating function formula and the three-term recurrence relation for Ln(x).

Jacobi polynomials P(α,β)
n : orthogonal on [−1, 1] w. r. t. weight function

(1− x)α(1 + x)β where α, β > −1 (normalized by P(α,β)
n (1) = (α + 1)n/n!).

There are several families of OPs that are special cases of Jacobi polynomials.
For example Gegenbauer or ultraspherical polynomials (α = β = λ− 1/2),
Legendre polynomials (α = β = 0), Chebyshev polynomials (α = β = ±1/2).

Charlier polynomials C(a)
n : orthogonal on Z+ w. r. t. the weights wk = ak/k ! where

a > 0 (normalized by C(a)
n (0) = (−a)n).
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Three-term recurrence relation

Theorem

Monic orthogonal polynomials pn satisfy

pn+1(x) = (x − an)pn(x)− bn−1pn−1(x), for n ≥ 1,

p1(x) = (x − a0)p0(x)

where an ∈ R and bn > 0. Moreover, one has hn/h0 = b0b1 . . . bn−1.

Proof: (on the whiteboard)
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Favard’s theorem

Theorem (Favard, 1935)

If polynomials pn of degree n satisfy

pn+1(x) = (x − an)pn(x)− bn−1pn−1(x), for n ≥ 1,

p1(x) = (x − a0)p0(x)

where an ∈ R and bn > 0 then there exists a positive measure µ
on R such that polynomials pn are orthogonal w. r. t. µ.

Proof: indicated on the whiteboard

Several remarks on uniqueness of the measure of orthogonality:
The measure µ from the Favard’s theorem may not be unique!
If sequences {an} and {bn} are bounded then the measure µ is unique.
The measure µ is unique if

∞∑
n=0

1√
bn

=∞ (Carleman’s condition)
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Christoffel-Darboux kernel

Definition

Let pn be OPs w. r. t. measure µ. The Christoffel-Darboux kernel kernel is the function

Kn(x , y) :=
n∑

k=0

pk (x)pk (y)

hk

Linear map Πn : P → Pn defined by formula

(Πnf ) :=

∫
R

Kn(x , y)f (y)dµ(y)

is an orthogonal projection onto Pn (Proof: whiteboard).
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Christoffel-Darboux formula

Theorem

Assume pn are monic OPs (kn = 1) then it holds

(x − y)
n∑

k=0

pk (x)pk (y)

hk
=

1
hn

(pn+1(x)pn(y)− pn(x)pn+1(y)) .

Corollary

n∑
k=0

p2
k (x)

hk
=

1
hn

(
p′n+1(x)pn(x)− p′n(x)pn+1(x)

)
.

Proofs: whiteboard
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Zeros of OPs

Theorem

Let pn be OPs w. r. t. µ (of degree n). Then pn has n distinct zeros in suppµ.

Proof: whiteboard

Corollary

All zeros of pn are simple.

Theorem

Zeros of pn and pn+1 alternate.

Exercise for students #2: Prove the last Theorem. Hint: WLOG take kn = 1 and use
that for all x ∈ R it holds

p′n+1(x)pn(x)− p′n(x)pn+1(x) = hn

n∑
k=0

p2
k (x)

hk
> 0,

as it follows from the Christoffel-Darboux formula.
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that for all x ∈ R it holds

p′n+1(x)pn(x)− p′n(x)pn+1(x) = hn

n∑
k=0

p2
k (x)

hk
> 0,

as it follows from the Christoffel-Darboux formula.
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Graphs of Chebyshev OPs of the second kind

Chebyshev polynomials of the second kind Un are orthogonal on [−1, 1] w.r.t the
weight function

√
1− x2.

Figure : Alternating zeros of Chebyshev polynomials U8 and U9.
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Some properties of the very classical OPs

For the very classical OPs (Jacobi, Hermite, Laguerre) the following relations are
known.

Relations (2nd order ODE, Shift operator, Rodriguez) mentioned below do not
hold for a general family of OPs (cf. Bochner’s classification)! However, there are
various generalizations of them (again not remaining true in general).

We illustrate them in the case of (generalized) Laguerre polynomials Lαn (x).

Polynomials Lαn (x) are orthogonal on [0,∞) w. r. t. the weight function
w(x) = xαe−x where α > −1. They are normalized as Lαn (0) = (α + 1)n/n!.

Explicit expression:

Lαn (x) =
n∑

k=0

(−1)k

(
n + α

n − k

)
xk

k !

Recurrence relation:

(n + 1)Lαn+1(x)− (2n + α + 1− x)Lαn (x) + (n + α)Lαn (x) = 0
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Some properties of the very classical OPs - cntd.

Second order ODE:

xy ′′(x) + (α + 1− x)y ′(x) + ny(x) = 0, y(x) = Lαn (x)

Forward shift operator:
d
dx

Lαn (x) = −Lα+1
n−1 (x)

Backward shift operator:

d
dx
[
e−x xαLαn (x)

]
= (n + 1)e−x xα−1Lα−1

n+1 (x)

Rodriguez formula:

Lαn (x) =
ex x−α

n!

(
d
dx

)n [
e−x xn+α]
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One way for the derivation of the previous relations

In special situations (the very classical OPs is the case) one can use the following
procedure to derive the explicit formula and other relations for OPs in question.

Let us assume 0 < w ,w1 ∈ C1((a, b)) and pn, qn be OPs orthogonal w.r.t. w , w1,
respectively. Further let

lim
x→a+

w1(x) = lim
x→b−

w1(x) = 0.

If one more assumption is provided, namely

1
w(x)

d
dx

[
xn−1w1(x)

]
= − ξn︸︷︷︸

6=0

xn + “a polynomial of degree < n”,

one deduces relations

p′n(x) = nqn−1(x) and
1

w(x)

d
dx

[qn−1(x)w1(x)] = −ξnpn.

From which it further follows

n
∫ b

a
qn−1(x)2w1(x)dx = ξn

∫ b

a
pn(x)2w(x)dx .

(Details on whiteboard.)
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Derivation of relations for Laguerre polynomials

Exercise for students #3: Derive the explicit formula, backward/forward shift operators,
second order ODE and Rodriguez formula for Laguerre polynomials Lαn by applying the
previous general procedure. Moreover, determine the normalization factors hn.

hint 1: Consider monic version of Laguerre polynomials pn(x) = `αn (x) and set

w(x) := xαe−x , w1(x) = xα+1e−x , hence qn(x) = `α+1
n (x).

hint 2: Ask me for the advice!
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Classification theorems for the very classical OPs

The very classical polynomials (Jacobi, Laguerre, Hermite) are determined as the only
OPs pn(x) (up to constant factor and linear transformation of the argument) by one of
the following condition:

1 Bochner’s theorem: pn are eigenfunctions of the 2nd order ODE of the form

f (x)
d2

dx2 + g(x)
d
dx

with f , g polynomials of degree at most 2,1, respectively.
2 Polynomials p′n(x) are OP’s as well.
3 The polynomials are orthogonal w. r. t. 0 < w ∈ C∞ on an open interval and there

exists a polynomial Y such that the Rodriguez formula

pn(x) = const.w(x)−1 dn

dxn

[
Y (x)nw(x)

]
.
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Towards the Askey scheme - the very classical polynomials
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Askey scheme
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Askey scheme with heads
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q-Askey scheme
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Intermezzo - OPs and the spectral analysis of linear operators

We saw any sequence of monic OPs {pn} is a solution of the recurrence

pn+1(x) = (x − an)pn(x)− bn−1pn−1(x), (p−1(x) := 0),

and vice versa.

Consequently, by setting
√

b0 . . . bn−1Pn(x) := pn(x) one arrives at the equation√
bn−1Pn−1(x) + anPn(x) +

√
bnPn+1(x) = xPn(x), (P−1(x) = 0).

Hence sequence P(x) := {Pn(x)} is a formal solution of the eigenvalue equation

JP(x) = xP(x)

where J is semi-infinite symmetric Jacobi matrix with diagonal sequence {an} and
off-diagonal sequence {

√
bn}.

Matrix J determines (not uniquely in general) a densely defined linear operator on
`2(Z+).

So one can guess there is close connection between the spectral analysis of
tridiagonal linear operators and corresponding OPs. Indeed, there is relation
between spectral measure of J (under some assumptions) and the measure of
orthogonality µ for OPs.
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Intermezzo - Two problems to solve

Problem n.1: The measure µ is given (e.g. by its density w(x)) and the goal is to
recover sequences {an} and {bn} (or at least some of their properties as asymptotics,
periodicity, etc.) from the three-term recurrence relation of corresponding OPs
- a.k.a. inverse spectral problem.
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Intermezzo - Two problems to solve

Problem n.2: A sequence of OPs is prescribed by the tree-term recurrence relation,
i.e. by sequences {an} and {bn}. The goal is to describe a measure of orthogonality µ
(character, support, mass points/jumps) and find the orthogonality relation
- a.k.a spectral analysis of a linear operator.

This situation is quite familiar in problems of mathematical physics

Examples:
Quantum mechanics: discrete Schrödinger operators on `2(Z+);

(Hψ)n := −(ψn+1 + ψn−1) + Vnψn.

Statistical physics: equation of motion for magnetization in kinetic Ising chain;

dmn

dt
= −mn +

√
γn−1γn

2
mn−1 +

√
γnγn+1

2
mn+1.
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Intermezzo - Is it still actual?

Figure : Open problem: M. Ismal, JCAM, 2005
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Intermezzo - Is it still actual? (cntd.)

Figure : Open problem: P. D. Siafarikas, JCAM, 2001
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Criteria for boundedness of the measure of orthogonality µ

Let pn be the sequence of monic OPs generated by the three-term recurrence

pn+1(x) = (x − an)pn(x)− bn−1pn−1(x).

Theorem

{an}, {bn} bounded ⇐⇒ suppµ bounded.

Proof: only indicated on whiteboard (in terms of operators)

Theorem

Let limn→∞ an = a ∈ R and limn→∞ bn = b ∈ R then suppµ is a bounded set which is
composed of interval [a− 2

√
b, a + 2

√
b] and possibly at most countably many point

being outside [a− 2
√

b, a + 2
√

b] with the only possible limit points a± 2
√

b.

Remark: Blumenthal (1898) proved a part of the above theorem, but he asserted there
can be at most finitely many point of suppµ in the complement of [a− 2

√
b, a + 2

√
b].

Chihara (1968) proved the assertion is false (chain sequences approach and Szögo’s
theorem).
Nowadays one can find numerous other proofs in the literature. However, the concrete
example illustrating the invalidity of Blumenthal’s assertion was missing until 2000, ...
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Criteria for uniqueness of the measure of orthogonality µ

Theorem

The measure of orthogonality of the monic OPs {pn} is unique iff there exists at least
one z ∈ C \ R such that

∞∑
n=0

|pn(z)|2

b0b1 . . . bn−1
=∞.

Remarks:

If the measure of orthogonality µ is unique then

µ({x}) =

(
∞∑

n=0

|pn(x)|2

b0b1 . . . bn−1

)−1

,

if x is a mass point of the measure µ.

In the case of non-uniqueness the sum above is the value of the largest possible
jumps of a measure µ at x and there always exists a measure realizing this jump.
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Criteria for uniqueness of the measure of orthogonality µ (cntd.)

Recall the nth moment of Borel measure µ on R is defined as

mn :=

∫
R

xndµ(x), (provided the integral exists).

Theorem (Carleman, 1926)

The measure of orthogonality µ of monic OPs pn is unique if one
of the following condition holds:

1
∞∑

n=0

1
2n
√

m2n
=∞,

2
∞∑

n=0

1√
bn

=∞.
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Criteria for uniqueness of the measure of orthogonality µ - Examples

Hermite:

m2n =

∫
R

x2ne−x2
dx = Γ

(
n +

1
2

)
Since Γ(n + 1/2) ≤ n! we have

∞∑
n=0

1
2n
√

m2n
≥
∞∑

n=0

1
n
√

n!
=∞ (Stirling’s formula)

At the same time bn = (n + 1)/2 hence also
∑

n b−1/2
n =∞. Consequently, the

measure of orthogonality of Hermite OPs is unique. (In other words: “Gaussian
normal distribution is uniquely determined by its moments.”)

Laguerre: bn = (n + 1)(n + α + 1),

∞∑
n=1

1√
n(n + α)

=∞, so the measure of orthogonality is unique.

Also one has mn =

∫ ∞
0

xn+αe−x dx = Γ(n+α+1) leading to the same conclusion.

All OPs from the Askey scheme: unique measure of orthogonality.
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Example of non-unique orthogonality measure

To find an example of OPs with non-unique orthogonality measure one has to
enter the q-world - e.g. the Stieltjes-Wigert polynomials.

First note ∫ ∞
0

xk x− ln x sin(2π ln x)dx = 0, ∀k ∈ Z+,

(substitution ln x = y + (k + 1)/2).
Then for all k ∈ Z+ and all θ ∈ (−1, 1) one has∫ ∞

0
xk x− ln x (1 + θ sin(2π ln x)) dx =

√
πe(n+1)2/4.

Hence all measures µθ with densities wθ(x) = x− ln x (1 + θ sin(2π ln x)) on (0,∞)
have the same moments.
Corresponding OPs are Stieltjes-Wigert polynomials that are orthogonal w.r.t µθ
for all −1 < θ < 1.
Moreover, note the function

fθ(x) =
sin(2π ln x)

1 + θ sin(2π ln x)

is in L2(R+, dµθ) and is orthogonal to all polynomials.
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Thomas Joannes Stieltjes

The previous example is due to Thomas Joannes
Stieltjes:

Dutch mathematician, born in 1856 in Zwolle,
died in 1894 in Toulouse at the age of 38!

1877 - Assistant at Leiden observatory

1884 - Honorary doctorate of Leiden University

1885 - member of the Royal Dutch Academy of
Sciences

1889 - professor at Toulouse University

1882-1894 corresponding with Hermite (432 letters)

Stieltjes contributed significantly to the analytic theory of continued fractions.

Initiated a systematic study of the moment problem, see his memoir:
Recherches sur les fractions continues, Anns. Fac. Sci. Univ. Toulouse (1894–95).

His work is also seen as important as a first step towards the theory of Hilbert
spaces.
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1882-1894 corresponding with Hermite (432 letters)

Stieltjes contributed significantly to the analytic theory of continued fractions.

Initiated a systematic study of the moment problem, see his memoir:
Recherches sur les fractions continues, Anns. Fac. Sci. Univ. Toulouse (1894–95).

His work is also seen as important as a first step towards the theory of Hilbert
spaces.
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Stieltjes transform of a measure and associated OPs

Let µ be finite Borel measure on R. The Stieltjes (Chauchy) transform is given by
the formula ∫

R

dµ(x)

x − z
, z ∈ C \ R.

This transform is one-to-one mapping between finite complex Borel measures and
analytic functions on the cut-plane C \ R. There exists the expression for the
inverse transform known as Stieltjes-Perron inversion formula.
Let {pn} be monic OPs satisfying

pn+1(x) = (an − x)pn(x)− bn−1pn−1(x), (p−1(x) := 0)

and {p(1)
n } be monic (first) associated OPs, i.e., the monic solution of recurrence

p(1)
n+1(x) = (an+1 − x)p(1)

n (x)− bnp(1)
n−1(x), (p(1)

−1(x) := 0).

Assume µ is a probability measure (m0 = 1). It can be shown polynomials pn and
p(1)

n−1 are related by formula

p(1)
n−1(x) =

∫
R

pn(x)− pn(y)

x − y
dµ(y).
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Markov’s theorem

Theorem (essentially due to Markov)

Suppose the measure of orthogonality µ (m0 = 1) of monic OPs
pn is unique. Then it holds

lim
n→∞

p(1)
n−1(x)

pn(x)
=

∫
R

dµ(x)

x − z

and the convergence is local uniform on C \ R.

Historical remarks:
Markov considered the measure µ with a density and a bounded support (1895).
The restriction to measures with density is not essential for the proof.

On the other hand the case of measures with unbounded support is significant.
Already Markov knew the theorem holds for some measures with unbounded
support (Laguerre OPs).

The theorem as stated has been proved then by Hamburger in 1920. In the
respective paper he treated the complete convergence of continued fractions.
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Measures in case of non-uniqueness - Nevanlinna functions

The crucial question in the case of more measures of orthogonality is: How the set
of all the measures of orthogonality looks like? Can they be somehow described?

In the case of non-uniqueness sums

∞∑
n=0

|pn(z)|2

b0b1 . . . bn−1
and

∞∑
n=0

|p(1)
n (z)|2

b1b2 . . . bn

converge locally uniformly on C.

Consequently four Nevanlinna functions

A(z) := z
∞∑

n=0

p(1)
n (0)p(1)

n (z)

b1b2 . . . bn
, B(z) := −1 + z

∞∑
n=1

p(1)
n−1(0)pn(z)
√

b0b1 . . . bn−1
,

C(z) := 1 + z
∞∑

n=1

pn(0)p(1)
n−1(z)

√
b0b1 . . . bn−1

, D(z) := z
∞∑

n=0

pn(0)pn(z)

b0b1 . . . bn−1

are well defined entire functions.
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Measures in case of non-uniqueness - Nevanlinna parametrization

Theorem (Nevanlinna, 1922)

All the measures of orthogonality for OPs in the case of
non-uniqueness are parametrized via homeomorphism ϕ 7→ µϕ
of P ∪ {∞} onto the set of all measures of orthogonality given by∫

R

dµϕ(x)

x − z
= −A(z)ϕ(z)− C(z)

B(z)ϕ(z)− D(z)
, z ∈ C \ R

where P is the set of holomorphic functions in the upper
half-plane {z ∈ C | =z > 0} with nonnegative imaginary part
(Pick functions).

Remarks:
By setting ϕ(z) := t ∈ R ∪ {∞} in the Nevanlinna parametrization (ϕ ∈ P) one
arrives at the so called Nevanlinna extremal measures µt .
Measures µt are all discrete with unbounded support. Moreover, they are
precisely those measures for which polynomials are dense in L2(R, dµt ) among all
the measures of orthogonality (Riezs, 1923).
µt are also very closely related with spectral measures of all self-adjoint
extensions of the corresponding Jacobi operator.
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End of story - Starring:
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