The Moment Problem

František Štampach

Faculty of Nuclear Sciences and Physical Engineering, CTU in Prague

Motivation

- 2 What the moment problem is?
- Existence and uniqueness of the solution operator approach
- Jacobi matrix and Orthogonal Polynomials
- Sufficient conditions for determinacy
- The set of solutions of indeterminate moment problem

$$\int_{\mathbb{R}} x^n f(x) dx = \int_{\mathbb{R}} x^n e^{-x^2} dx, \quad n = 0, 1, \dots$$

$$\int_{\mathbb{R}} x^n f(x) dx = \int_{\mathbb{R}} x^n e^{-x^2} dx, \quad n = 0, 1, \dots$$

can we then conclude that $f(x) = e^{-x^2}$?

• That is: Is the normal density uniquely determined by its moment sequence?

$$\int_{\mathbb{R}} x^n f(x) dx = \int_{\mathbb{R}} x^n e^{-x^2} dx, \quad n = 0, 1, \dots$$

- That is: Is the normal density uniquely determined by its moment sequence?
- Answer: yes in the sense that $f(x) = e^{-x^2}$ a.e. wrt Lebesque measure on \mathbb{R} .

$$\int_{\mathbb{R}} x^n f(x) dx = \int_{\mathbb{R}} x^n e^{-x^2} dx, \quad n = 0, 1, \dots$$

- That is: Is the normal density uniquely determined by its moment sequence?
- Answer: yes in the sense that $f(x) = e^{-x^2}$ a.e. wrt Lebesque measure on \mathbb{R} .
- What happens if one replaces the normal density by something else?

$$\int_{\mathbb{R}} x^n f(x) dx = \int_{\mathbb{R}} x^n e^{-x^2} dx, \quad n = 0, 1, \dots$$

- That is: Is the normal density uniquely determined by its moment sequence?
- Answer: yes in the sense that $f(x) = e^{-x^2}$ a.e. wrt Lebesque measure on \mathbb{R} .
- What happens if one replaces the normal density by something else?
- The general answer to the Chebychev's question is *no*. Suppose, e.g., X ~ N(0, σ²) and consider densities of exp(X) (lognormal distribution) or sinh(X) then we lost the uniqueness.

$$\int_{\mathbb{R}} x^n f(x) dx = \int_{\mathbb{R}} x^n e^{-x^2} dx, \quad n = 0, 1, \dots$$

can we then conclude that $f(x) = e^{-x^2}$?

- That is: Is the normal density uniquely determined by its moment sequence?
- Answer: yes in the sense that $f(x) = e^{-x^2}$ a.e. wrt Lebesque measure on \mathbb{R} .
- What happens if one replaces the normal density by something else?
- The general answer to the Chebychev's question is *no*. Suppose, e.g., X ~ N(0, σ²) and consider densities of exp(X) (lognormal distribution) or sinh(X) then we lost the uniqueness.

A tough problem: What can be said when there is no longer uniqueness?

$$\int_{I} x^{n} d\mu(x),$$
 (provided the integral exists).

Suppose a real sequence $\{s_n\}_{n\geq 0}$ is given. The moment problem on *I* consists of solving the following three problems:

• Does there exist a positive measure on *I* with moments $\{s_n\}_{n\geq 0}$? If so,

$$\int_{I} x^{n} d\mu(x),$$
 (provided the integral exists).

Suppose a real sequence $\{s_n\}_{n\geq 0}$ is given. The moment problem on *I* consists of solving the following three problems:

- Does there exist a positive measure on *I* with moments $\{s_n\}_{n\geq 0}$? If so,
- **(2)** is this positive measure uniquely determined by moments $\{s_n\}_{n\geq 0}$? (*determinate case*) If this is not the case,

$$\int_{I} x^{n} d\mu(x),$$
 (provided the integral exists).

Suppose a real sequence $\{s_n\}_{n\geq 0}$ is given. The moment problem on *I* consists of solving the following three problems:

- Does there exist a positive measure on *I* with moments $\{s_n\}_{n\geq 0}$? If so,
- **2** is this positive measure uniquely determined by moments $\{s_n\}_{n\geq 0}$? (*determinate case*) If this is not the case,
- (a) how one can describe all positive measures on *I* with moments $\{s_n\}_{n\geq 0}$? (*indeterminate case*)

$$\int_{I} x^{n} d\mu(x),$$
 (provided the integral exists).

Suppose a real sequence $\{s_n\}_{n\geq 0}$ is given. The moment problem on *I* consists of solving the following three problems:

- Does there exist a positive measure on *I* with moments $\{s_n\}_{n\geq 0}$? If so,
- **(2)** is this positive measure uniquely determined by moments $\{s_n\}_{n\geq 0}$? (*determinate case*) If this is not the case,
- O how one can describe all positive measures on *I* with moments {*s_n*}_{n≥0}? (*indeterminate case*)
- uniqueness \simeq determinate case vs. non-uniqueness \simeq indeterminate case

$$\int_{I} x^{n} d\mu(x),$$
 (provided the integral exists).

Suppose a real sequence $\{s_n\}_{n\geq 0}$ is given. The moment problem on *I* consists of solving the following three problems:

- Does there exist a positive measure on *I* with moments $\{s_n\}_{n\geq 0}$? If so,
- **(2)** is this positive measure uniquely determined by moments $\{s_n\}_{n\geq 0}$? (*determinate case*) If this is not the case,
- O how one can describe all positive measures on *I* with moments {*s_n*}_{n≥0}? (*indeterminate case*)
- uniqueness \simeq determinate case vs. non-uniqueness \simeq indeterminate case

One can restrict oneself to cases:

- $I = \mathbb{R}$ *Hamburger* moment problem (M_H = set of solutions)
- $I = [0, +\infty)$ *Stieltjes* moment problem (M_S = set of solutions)
- *I* = [0, 1] *Hausdorff* moment problem

The moment problem has a solution on [0, 1] iff sequence $\{s_n\}_{n\geq 0}$ is completely monotonic, i.e.,

 $(-1)^k (\Delta^k s)_n \geq 0$

for all $k, n \in \mathbb{Z}_+$, where $(\Delta s)_n = s_{n+1} - s_n$.

The moment problem has a solution on [0, 1] iff sequence $\{s_n\}_{n\geq 0}$ is completely monotonic, i.e.,

$$(-1)^k (\Delta^k s)_n \geq 0$$

for all $k, n \in \mathbb{Z}_+$, where $(\Delta s)_n = s_{n+1} - s_n$.

The Hausdorff moment problem is not interesting from the uniqueness of the solution point of view, since

The moment problem has a solution on [0, 1] iff sequence $\{s_n\}_{n\geq 0}$ is completely monotonic, i.e.,

$$(-1)^k (\Delta^k s)_n \geq 0$$

for all $k, n \in \mathbb{Z}_+$, where $(\Delta s)_n = s_{n+1} - s_n$.

The Hausdorff moment problem is not interesting from the uniqueness of the solution point of view, since

The Hausdorff moment problem is always determinate!

The moment problem has a solution on [0, 1] iff sequence $\{s_n\}_{n\geq 0}$ is completely monotonic, i.e.,

$$(-1)^k (\Delta^k s)_n \geq 0$$

for all $k, n \in \mathbb{Z}_+$, where $(\Delta s)_n = s_{n+1} - s_n$.

The Hausdorff moment problem is not interesting from the uniqueness of the solution point of view, since

The Hausdorff moment problem is always determinate!

Steps of the proof:

- measure with finite support is uniquely determined by its moments (Vandermonde matrix),
- approximation theorem of Weierstrass,
- Riesz representation theorem.

The moment problem has a solution on [0, 1] iff sequence $\{s_n\}_{n\geq 0}$ is completely monotonic, i.e.,

$$(-1)^k (\Delta^k s)_n \geq 0$$

for all $k, n \in \mathbb{Z}_+$, where $(\Delta s)_n = s_{n+1} - s_n$.

The Hausdorff moment problem is not interesting from the uniqueness of the solution point of view, since

The Hausdorff moment problem is always determinate!

Steps of the proof:

- measure with finite support is uniquely determined by its moments (Vandermonde matrix),
- approximation theorem of Weierstrass,
- Riesz representation theorem.

Consequently, we will further discuss the Stieltjes and Hamburger moment problem only.

• For $\{s_n\}_{n\geq 0}$, we denote $H_N(s)$ the $N \times N$ Hankel matrix with entries $(H_N(s))_{ij} := s_{i+j}, i, j \in \{0, 1, \dots, N-1\}$.

- For $\{s_n\}_{n\geq 0}$, we denote $H_N(s)$ the $N \times N$ Hankel matrix with entries $(H_N(s))_{ij} := s_{i+j}, i, j \in \{0, 1, \dots, N-1\}$.
- Define two sesquilinear forms H_N and S_N on \mathbb{C}^N by

$$H_N(x,y) := \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} \overline{x_i} y_j s_{i+j}$$
 and $S_N(x,y) := \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} \overline{x_i} y_j s_{i+j+1}.$

- For $\{s_n\}_{n\geq 0}$, we denote $H_N(s)$ the $N \times N$ Hankel matrix with entries $(H_N(s))_{ij} := s_{i+j}, i, j \in \{0, 1, \dots, N-1\}$.
- Define two sesquilinear forms H_N and S_N on \mathbb{C}^N by

$$H_N(x,y) := \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} \overline{x_i} y_j s_{i+j} \text{ and } S_N(x,y) := \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} \overline{x_i} y_j s_{i+j+1}.$$

• Hence $H_N(x, y) = (x, H_N(s)y)$ and $S_N(x, y) = (x, H_N(Ts)y)$ ((.,.) Euclidean inner product).

- For $\{s_n\}_{n\geq 0}$, we denote $H_N(s)$ the $N \times N$ Hankel matrix with entries $(H_N(s))_{ij} := s_{i+j}, i, j \in \{0, 1, \dots, N-1\}$.
- Define two sesquilinear forms H_N and S_N on \mathbb{C}^N by

$$H_N(x,y) := \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} \overline{x_i} y_j s_{i+j} \text{ and } S_N(x,y) := \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} \overline{x_i} y_j s_{i+j+1}.$$

- Hence $H_N(x, y) = (x, H_N(s)y)$ and $S_N(x, y) = (x, H_N(Ts)y)$ ((.,.) Euclidean inner product).
- Let $\mu \in \mathcal{M}_H$ or $\mu \in \mathcal{M}_S$ with infinite support. By observing that

$$H_N(y,y) = \int \Big| \sum_{i=0}^{N-1} y_i x^i \Big|^2 d\mu(x) \text{ and } S_N(y,y) = \int x \Big| \sum_{i=0}^{N-1} y_i x^i \Big|^2 d\mu(x),$$

one immediately gets the following.

- For $\{s_n\}_{n\geq 0}$, we denote $H_N(s)$ the $N \times N$ Hankel matrix with entries $(H_N(s))_{ij} := s_{i+j}, i, j \in \{0, 1, \dots, N-1\}$.
- Define two sesquilinear forms H_N and S_N on \mathbb{C}^N by

$$H_N(x,y) := \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} \overline{x_i} y_j s_{i+j} \text{ and } S_N(x,y) := \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} \overline{x_i} y_j s_{i+j+1}.$$

- Hence $H_N(x, y) = (x, H_N(s)y)$ and $S_N(x, y) = (x, H_N(Ts)y)$ ((.,.) Euclidean inner product).
- Let $\mu \in \mathcal{M}_H$ or $\mu \in \mathcal{M}_S$ with infinite support. By observing that

$$H_N(y,y) = \int \Big|\sum_{i=0}^{N-1} y_i x^i\Big|^2 d\mu(x) \quad \text{and} \quad S_N(y,y) = \int x\Big|\sum_{i=0}^{N-1} y_i x^i\Big|^2 d\mu(x),$$

one immediately gets the following.

Necessary condition for the existence

A necessary condition for the Hamburger moment problem to have a solution (with infinite support) is the sesquilinear form H_N is PD for all $N \in \mathbb{Z}_+$. A necessary condition for the Stieltjes moment problem to have a solution (with infinite support) is both sesquilinear forms H_N and S_N are PD for all $N \in \mathbb{Z}_+$.

• Let H_N be PD for all $N \in \mathbb{N}$.

- Let H_N be PD for all $N \in \mathbb{N}$.
- Let $\mathbb{C}[x]$ be the ring of complex polynomials.

- Let H_N be PD for all $N \in \mathbb{N}$.
- Let $\mathbb{C}[x]$ be the ring of complex polynomials.
- For $P, Q \in \mathbb{C}[x]$,

$$P(x) = \sum_{k=0}^{N-1} a_k x^k$$
, and $Q(x) = \sum_{k=0}^{N-1} b_k x^k$,

$$\langle P, Q \rangle := H_N(a, b).$$

- Let H_N be PD for all $N \in \mathbb{N}$.
- Let $\mathbb{C}[x]$ be the ring of complex polynomials.
- For $P, Q \in \mathbb{C}[x]$,

$$P(x) = \sum_{k=0}^{N-1} a_k x^k$$
, and $Q(x) = \sum_{k=0}^{N-1} b_k x^k$,

$$\langle P, Q \rangle := H_N(a, b).$$

• By using standard procedure, we can complete $\mathbb{C}[x]$ to a Hilbert space $\mathcal{H}^{(s)}$.

- Let H_N be PD for all $N \in \mathbb{N}$.
- Let $\mathbb{C}[x]$ be the ring of complex polynomials.
- For $P, Q \in \mathbb{C}[x]$,

$$P(x) = \sum_{k=0}^{N-1} a_k x^k$$
, and $Q(x) = \sum_{k=0}^{N-1} b_k x^k$,

$$\langle P, Q \rangle := H_N(a, b).$$

- By using standard procedure, we can complete C[x] to a Hilbert space H^(s).
- Define densely defined operator A on $\mathcal{H}^{(s)}$ with $\text{Dom}(A) = \mathbb{C}[x]$ by

A[P(x)] = xP(x).

- Let H_N be PD for all $N \in \mathbb{N}$.
- Let $\mathbb{C}[x]$ be the ring of complex polynomials.
- For $P, Q \in \mathbb{C}[x]$,

$$P(x) = \sum_{k=0}^{N-1} a_k x^k$$
, and $Q(x) = \sum_{k=0}^{N-1} b_k x^k$,

$$\langle P, Q \rangle := H_N(a, b).$$

- By using standard procedure, we can complete $\mathbb{C}[x]$ to a Hilbert space $\mathcal{H}^{(s)}$.
- Define densely defined operator A on $\mathcal{H}^{(s)}$ with $\text{Dom}(A) = \mathbb{C}[x]$ by

A[P(x)] = xP(x).

Since

$$\langle P, A[Q] \rangle = S_N(a, b) = \langle A[P], Q \rangle,$$

A is a symmetric operator.

- Let H_N be PD for all $N \in \mathbb{N}$.
- Let $\mathbb{C}[x]$ be the ring of complex polynomials.
- For $P, Q \in \mathbb{C}[x]$,

$$P(x) = \sum_{k=0}^{N-1} a_k x^k$$
, and $Q(x) = \sum_{k=0}^{N-1} b_k x^k$,

$$\langle P, Q \rangle := H_N(a, b).$$

- By using standard procedure, we can complete $\mathbb{C}[x]$ to a Hilbert space $\mathcal{H}^{(s)}$.
- Define densely defined operator A on $\mathcal{H}^{(s)}$ with $\text{Dom}(A) = \mathbb{C}[x]$ by

A[P(x)] = xP(x).

Since

$$\langle P, A[Q] \rangle = S_N(a, b) = \langle A[P], Q \rangle,$$

A is a symmetric operator.

• Especially,

$$\langle 1, A^n 1 \rangle = s_n, \quad n \in \mathbb{N}.$$

• *A* has a self-adjoint extension since it commutes with a complex conjugation operator *C* on $\mathbb{C}[x]$ (von Neumann).

- A has a self-adjoint extension since it commutes with a complex conjugation operator C on C[x] (von Neumann).
- If each S_N is PD, then

$$\langle P, A[P] \rangle = S_N(a, a) \ge 0, \text{ for all } P \in \mathbb{C}[x],$$

- *A* has a self-adjoint extension since it commutes with a complex conjugation operator *C* on $\mathbb{C}[x]$ (von Neumann).
- If each S_N is PD, then

$$\langle P, A[P] \rangle = S_N(a, a) \ge 0, \text{ for all } P \in \mathbb{C}[x],$$

• Let A' be a self-adjoint extension of A. By the spectral theorem there is a projection valued spectral measure $E_{A'}$ and positive measure

$$\mu(.) = \langle \mathbf{1}, E_{\mathcal{A}'}(.) \mathbf{1} \rangle.$$

- A has a self-adjoint extension since it commutes with a complex conjugation operator C on $\mathbb{C}[x]$ (von Neumann).
- If each S_N is PD, then

$$\langle P, A[P] \rangle = S_N(a, a) \ge 0, \text{ for all } P \in \mathbb{C}[x],$$

• Let A' be a self-adjoint extension of A. By the spectral theorem there is a projection valued spectral measure $E_{A'}$ and positive measure

$$\mu(.) = \langle \mathbf{1}, E_{A'}(.)\mathbf{1} \rangle.$$

• Hence, for a suitable function *f*, it holds

$$\langle 1, f(A')1 \rangle = \int_{\mathbb{R}} f(x) d\mu(x).$$

- A has a self-adjoint extension since it commutes with a complex conjugation operator C on $\mathbb{C}[x]$ (von Neumann).
- If each S_N is PD, then

$$\langle P, A[P] \rangle = S_N(a, a) \ge 0, \text{ for all } P \in \mathbb{C}[x],$$

• Let A' be a self-adjoint extension of A. By the spectral theorem there is a projection valued spectral measure $E_{A'}$ and positive measure

$$\mu(.) = \langle \mathbf{1}, E_{A'}(.)\mathbf{1} \rangle.$$

• Hence, for a suitable function *f*, it holds

$$\langle 1, f(A')1 \rangle = \int_{\mathbb{R}} f(x) d\mu(x).$$

• Especially, for $f(x) = x^n$, one finds

$$s_n = \langle 1, A^n 1 \rangle = \langle 1, (A')^n 1 \rangle = \int_{\mathbb{R}} x^n d\mu(x),$$

since $Dom(A^n) \subset Dom((A')^n)$.

• We see a self-adjoint extension of A yields a solution of the Hamburger moment problem.

Existence of the solution

- We see a self-adjoint extension of A yields a solution of the Hamburger moment problem.
- Moreover, a non-negative self-adjoint extension has supp(µ) ⊂ [0,∞) and so yields a solution
 of the Stieltjes moment problem.

Existence of the solution

- We see a self-adjoint extension of A yields a solution of the Hamburger moment problem.
- Moreover, a non-negative self-adjoint extension has supp(µ) ⊂ [0,∞) and so yields a solution
 of the Stieltjes moment problem.
- Hence we arrive at the theorem on the existence of the solution.

- We see a self-adjoint extension of A yields a solution of the Hamburger moment problem.
- Moreover, a non-negative self-adjoint extension has supp(µ) ⊂ [0,∞) and so yields a solution
 of the Stieltjes moment problem.
- Hence we arrive at the theorem on the existence of the solution.

Theorem (Existence)

i) A necessary and sufficient condition for $\mathcal{M}_H \neq \emptyset$ (with infinite support) is

```
\det H_N(s) > 0 for all N \in \mathbb{N}.
```

ii) A necessary and sufficient condition for $M_S \neq \emptyset$ (with infinite support) is

 $\det H_N(s) > 0 \land \det S_N(s) > 0$ for all $N \in \mathbb{N}$.

- We see a self-adjoint extension of A yields a solution of the Hamburger moment problem.
- Moreover, a non-negative self-adjoint extension has supp(µ) ⊂ [0,∞) and so yields a solution
 of the Stieltjes moment problem.
- Hence we arrive at the theorem on the existence of the solution.

Theorem (Existence)

i) A necessary and sufficient condition for $\mathcal{M}_H \neq \emptyset$ (with infinite support) is

```
\det H_N(s) > 0 for all N \in \mathbb{N}.
```

ii) A necessary and sufficient condition for $M_S \neq \emptyset$ (with infinite support) is

```
\det H_N(s) > 0 \land \det S_N(s) > 0 \quad \text{ for all } N \in \mathbb{N}.
```

• Historically, this result has not been obtained by using the spectral theorem that was invented later.

Theorem (Uniqueness)

i) A necessary and sufficient condition for the Hamburger moment problem to be determinate is that the operator *A* is essentially self-adjoint (i.e., it has a unique self-adjoint extension).

Theorem (Uniqueness)

i) A necessary and sufficient condition for the Hamburger moment problem to be determinate is that the operator *A* is essentially self-adjoint (i.e., it has a unique self-adjoint extension).

ii) A necessary and sufficient condition for the Stieltjes moment problem to be determinate is that the operator A has a unique non-negative self-adjoint extension.

It is not easy to prove the theorem.

Theorem (Uniqueness)

i) A necessary and sufficient condition for the Hamburger moment problem to be determinate is that the operator *A* is essentially self-adjoint (i.e., it has a unique self-adjoint extension).

- It is not easy to prove the theorem.
- In one direction, it is not clear that distinct self-adjoint extensions A'₁ and A'₂ give rise to distinct measures µ₁ and µ₂.

Theorem (Uniqueness)

i) A necessary and sufficient condition for the Hamburger moment problem to be determinate is that the operator *A* is essentially self-adjoint (i.e., it has a unique self-adjoint extension).

- It is not easy to prove the theorem.
- In one direction, it is not clear that distinct self-adjoint extensions A'₁ and A'₂ give rise to distinct measures µ₁ and µ₂.
- The other direction is even less clear. For not only is it not obvious, it is **false** that every solution of the moment problem arise from some measure given by spectral measure of some self-adjoint extension.

Theorem (Uniqueness)

i) A necessary and sufficient condition for the Hamburger moment problem to be determinate is that the operator *A* is essentially self-adjoint (i.e., it has a unique self-adjoint extension).

- It is not easy to prove the theorem.
- In one direction, it is not clear that distinct self-adjoint extensions A'₁ and A'₂ give rise to distinct measures µ₁ and µ₂.
- The other direction is even less clear. For not only is it not obvious, it is **false** that every solution of the moment problem arise from some measure given by spectral measure of some self-adjoint extension.
- A solution of the moment problem which comes from a self-adjoint extension of *A* is called *N-extremal* solution (von Neumann [Simon], extremal [Shohat-Tamarkin]).

• Consider set $\{1, x, x^2, ...\} \subset \mathcal{H}^{(s)}$ which is linearly independent (H_N PD) and span $\mathcal{H}^{(s)}$.

- Consider set $\{1, x, x^2, ...\} \subset \mathcal{H}^{(s)}$ which is linearly independent (H_N PD) and span $\mathcal{H}^{(s)}$.
- By applying the Gramm-Schmidt procedure, we obtain an orthonormal basis $\{P_n\}_{n=0}^{\infty}$ for $\mathcal{H}^{(s)}$.

- Consider set $\{1, x, x^2, ...\} \subset \mathcal{H}^{(s)}$ which is linearly independent $(H_N \text{ PD})$ and span $\mathcal{H}^{(s)}$.
- By applying the Gramm-Schmidt procedure, we obtain an orthonormal basis $\{P_n\}_{n=0}^{\infty}$ for $\mathcal{H}^{(s)}$.
- By construction, P_n is a polynomial of degree n with real coefficients and

$$\langle P_m, P_n \rangle = \delta_{mn}$$

for all $m, n \in \mathbb{Z}_+$. These are well-known *Orthogonal Polynomials*.

- Consider set $\{1, x, x^2, ...\} \subset \mathcal{H}^{(s)}$ which is linearly independent $(H_N \text{ PD})$ and span $\mathcal{H}^{(s)}$.
- By applying the Gramm-Schmidt procedure, we obtain an orthonormal basis $\{P_n\}_{n=0}^{\infty}$ for $\mathcal{H}^{(s)}$.
- By construction, P_n is a polynomial of degree n with real coefficients and

$$\langle P_m, P_n \rangle = \delta_{mn}$$

for all $m, n \in \mathbb{Z}_+$. These are well-known *Orthogonal Polynomials*.

• $\{P_n\}_{n=0}^{\infty}$ are determined by moment sequence $\{s_n\}_{s=0}^{\infty}$,

$$P_n(x) = \frac{1}{\sqrt{\det[H_{n+1}(s)H_n(s)]}} \begin{vmatrix} s_0 & s_1 & \dots & s_n \\ s_1 & s_2 & \dots & s_{n+1} \\ \vdots & \vdots & & \vdots \\ s_{n-1} & s_n & \dots & s_{2n-1} \\ 1 & x & \dots & x^n \end{vmatrix}.$$

• Since span(1, x,..., x^n) = span($P_0, P_1, ..., P_n$), $xP_n(x)$ has an expansion in $P_0, P_1, ..., P_{n+1}$.

- Since span $(1, x, ..., x^n) = span(P_0, P_1, ..., P_n)$, $xP_n(x)$ has an expansion in $P_0, P_1, ..., P_{n+1}$.
- Moreover, if $0 \le j < n-1$, one has

$$\langle P_j, xP_n \rangle = \langle xP_j, P_n \rangle = 0.$$

• Since $span(1, x, ..., x^n) = span(P_0, P_1, ..., P_n)$, $xP_n(x)$ has an expansion in $P_0, P_1, ..., P_{n+1}$.

• Moreover, if $0 \le j < n-1$, one has

$$\langle P_j, xP_n \rangle = \langle xP_j, P_n \rangle = 0.$$

• There are sequences $\{a_n\}_{n=0}^{\infty}$, $\{b_n\}_{n=0}^{\infty}$, and $\{c_n\}_{n=0}^{\infty}$ such that

$$xP_n(x) = c_nP_{n+1}(x) + b_nP_n(x) + a_{n-1}P_{n-1}(x), \qquad (P_{-1}(x) := 0),$$

for $n \in \mathbb{Z}_+$.

• Since $span(1, x, ..., x^n) = span(P_0, P_1, ..., P_n)$, $xP_n(x)$ has an expansion in $P_0, P_1, ..., P_{n+1}$.

• Moreover, if $0 \le j < n - 1$, one has

$$\langle P_j, xP_n \rangle = \langle xP_j, P_n \rangle = 0.$$

• There are sequences $\{a_n\}_{n=0}^{\infty}$, $\{b_n\}_{n=0}^{\infty}$, and $\{c_n\}_{n=0}^{\infty}$ such that

$$xP_n(x) = c_n P_{n+1}(x) + b_n P_n(x) + a_{n-1} P_{n-1}(x), \qquad (P_{-1}(x) := 0),$$

for $n \in \mathbb{Z}_+$.

• Furthermore, by the Gramm-Schmidt procedure, $c_n > 0$, and

$$c_n = \langle P_{n+1}, xP_n \rangle = \langle P_n, xP_{n+1} \rangle = a_n.$$

• Since $span(1, x, ..., x^n) = span(P_0, P_1, ..., P_n)$, $xP_n(x)$ has an expansion in $P_0, P_1, ..., P_{n+1}$.

• Moreover, if $0 \le j < n - 1$, one has

$$\langle P_j, xP_n \rangle = \langle xP_j, P_n \rangle = 0.$$

• There are sequences $\{a_n\}_{n=0}^{\infty}$, $\{b_n\}_{n=0}^{\infty}$, and $\{c_n\}_{n=0}^{\infty}$ such that

$$xP_n(x) = c_nP_{n+1}(x) + b_nP_n(x) + a_{n-1}P_{n-1}(x), \qquad (P_{-1}(x) := 0),$$

for $n \in \mathbb{Z}_+$.

• Furthermore, by the Gramm-Schmidt procedure, *c_n* > 0, and

$$c_n = \langle P_{n+1}, xP_n \rangle = \langle P_n, xP_{n+1} \rangle = a_n.$$

Thus, any sequence of Orthogonal Polynomials satisfies a three-term recurrence

$$xP_n(x) = a_n P_{n+1}(x) + b_n P_n(x) + a_{n-1} P_{n-1}(x)$$

where $a_n > 0$ and $b_n \in \mathbb{R}$.

• Since span $(1, x, \dots, x^n)$ = span (P_0, P_1, \dots, P_n) , $xP_n(x)$ has an expansion in P_0, P_1, \dots, P_{n+1} .

• Moreover, if $0 \le j < n - 1$, one has

$$\langle P_j, xP_n \rangle = \langle xP_j, P_n \rangle = 0.$$

• There are sequences $\{a_n\}_{n=0}^{\infty}$, $\{b_n\}_{n=0}^{\infty}$, and $\{c_n\}_{n=0}^{\infty}$ such that

$$xP_n(x) = c_nP_{n+1}(x) + b_nP_n(x) + a_{n-1}P_{n-1}(x), \qquad (P_{-1}(x) := 0),$$

for $n \in \mathbb{Z}_+$.

• Furthermore, by the Gramm-Schmidt procedure, $c_n > 0$, and

$$c_n = \langle P_{n+1}, xP_n \rangle = \langle P_n, xP_{n+1} \rangle = a_n.$$

Thus, any sequence of Orthogonal Polynomials satisfies a three-term recurrence

$$xP_n(x) = a_nP_{n+1}(x) + b_nP_n(x) + a_{n-1}P_{n-1}(x)$$

where $a_n > 0$ and $b_n \in \mathbb{R}$.

 Hence A has, in the basis {P_n}[∞]_{n=0}, has tridiagonal matrix representation and Dom(A) is the set of sequences of finite support. • The realization of elements of $\mathcal{H}^{(s)}$ as $\sum_{n=0}^{\infty} \lambda_n P_n$, with $\sum_{n=0}^{\infty} |\lambda_n|^2 < \infty$ gives a different realization of $\mathcal{H}^{(s)}$ as a set of sequences $\lambda = \{\lambda_n\}_{n=0}^{\infty}$ with the usual $\ell^2(\mathbb{Z}_+)$ inner product.

- The realization of elements of $\mathcal{H}^{(s)}$ as $\sum_{n=0}^{\infty} \lambda_n P_n$, with $\sum_{n=0}^{\infty} |\lambda_n|^2 < \infty$ gives a different realization of $\mathcal{H}^{(s)}$ as a set of sequences $\lambda = \{\lambda_n\}_{n=0}^{\infty}$ with the usual $\ell^2(\mathbb{Z}_+)$ inner product.
- $\mathbb{C}[x]$ corresponds to finitely supported sequences λ .

- The realization of elements of $\mathcal{H}^{(s)}$ as $\sum_{n=0}^{\infty} \lambda_n P_n$, with $\sum_{n=0}^{\infty} |\lambda_n|^2 < \infty$ gives a different realization of $\mathcal{H}^{(s)}$ as a set of sequences $\lambda = \{\lambda_n\}_{n=0}^{\infty}$ with the usual $\ell^2(\mathbb{Z}_+)$ inner product.
- $\mathbb{C}[x]$ corresponds to finitely supported sequences λ .
- Thus, given a set of moments {s_n}[∞]_{n=0}, we can find real {b_n}[∞]_{n=0} and positive {a_n}[∞]_{n=0} so that the moment problem is associated to self-adjoint extensions of the Jacobi matrix,

$$A = \begin{pmatrix} b_0 & a_0 & & & \\ a_1 & b_1 & a_1 & & \\ & a_2 & b_2 & b_3 & \\ & & \ddots & \ddots & \ddots \end{pmatrix}.$$

- The realization of elements of $\mathcal{H}^{(s)}$ as $\sum_{n=0}^{\infty} \lambda_n P_n$, with $\sum_{n=0}^{\infty} |\lambda_n|^2 < \infty$ gives a different realization of $\mathcal{H}^{(s)}$ as a set of sequences $\lambda = \{\lambda_n\}_{n=0}^{\infty}$ with the usual $\ell^2(\mathbb{Z}_+)$ inner product.
- $\mathbb{C}[x]$ corresponds to finitely supported sequences λ .
- Thus, given a set of moments {s_n}[∞]_{n=0}, we can find real {b_n}[∞]_{n=0} and positive {a_n}[∞]_{n=0} so that the moment problem is associated to self-adjoint extensions of the Jacobi matrix,

$$A = \begin{pmatrix} b_0 & a_0 & & & \\ a_1 & b_1 & a_1 & & \\ & a_2 & b_2 & b_3 & \\ & & \ddots & \ddots & \ddots \end{pmatrix}.$$

• There are explicit formulae for the *b_n*'s and *a_n*'s in terms of the determinants of the *s_n*'s.

- The realization of elements of $\mathcal{H}^{(s)}$ as $\sum_{n=0}^{\infty} \lambda_n P_n$, with $\sum_{n=0}^{\infty} |\lambda_n|^2 < \infty$ gives a different realization of $\mathcal{H}^{(s)}$ as a set of sequences $\lambda = \{\lambda_n\}_{n=0}^{\infty}$ with the usual $\ell^2(\mathbb{Z}_+)$ inner product.
- $\mathbb{C}[x]$ corresponds to finitely supported sequences λ .
- Thus, given a set of moments {s_n}[∞]_{n=0}, we can find real {b_n}[∞]_{n=0} and positive {a_n}[∞]_{n=0} so that the moment problem is associated to self-adjoint extensions of the Jacobi matrix,

$$A = \begin{pmatrix} b_0 & a_0 & & & \\ a_1 & b_1 & a_1 & & \\ & a_2 & b_2 & b_3 & \\ & & \ddots & \ddots & \ddots \end{pmatrix}.$$

- There are explicit formulae for the b_n's and a_n's in terms of the determinants of the s_n's.
- The set of moments $\{s_n\}_{n=0}^{\infty}$ is associated to the Jacobi matrix A through identity

$$\mathbf{s}_n=(\mathbf{e}_0,\mathbf{A}^n\mathbf{e}_0).$$

- The realization of elements of $\mathcal{H}^{(s)}$ as $\sum_{n=0}^{\infty} \lambda_n P_n$, with $\sum_{n=0}^{\infty} |\lambda_n|^2 < \infty$ gives a different realization of $\mathcal{H}^{(s)}$ as a set of sequences $\lambda = \{\lambda_n\}_{n=0}^{\infty}$ with the usual $\ell^2(\mathbb{Z}_+)$ inner product.
- $\mathbb{C}[x]$ corresponds to finitely supported sequences λ .
- Thus, given a set of moments {s_n}[∞]_{n=0}, we can find real {b_n}[∞]_{n=0} and positive {a_n}[∞]_{n=0} so that the moment problem is associated to self-adjoint extensions of the Jacobi matrix,

$$A = \begin{pmatrix} b_0 & a_0 & & & \\ a_1 & b_1 & a_1 & & \\ & a_2 & b_2 & b_3 & \\ & & \ddots & \ddots & \ddots \end{pmatrix}.$$

- There are explicit formulae for the b_n's and a_n's in terms of the determinants of the s_n's.
- The set of moments $\{s_n\}_{n=0}^{\infty}$ is associated to the Jacobi matrix A through identity

$$s_n = (e_0, A^n e_0).$$

Consequently, we reveal following correspondences:

Sufficient conditions for determinacy - moment sequence

It is desirable to be able to tell whether the moment problem is determinate (or indeterminate) just by looking at the moment sequence $\{s_n\}_{n=0}^{\infty}$, or the Jacobi matrix (seq. $\{a_n\}_{n=0}^{\infty}$, $\{b_n\}_{n=0}^{\infty}$), or orthogonal polynomials $\{P_n\}_{n=1}^{\infty}$.

Sufficient conditions for determinacy - moment sequence

It is desirable to be able to tell whether the moment problem is determinate (or indeterminate) just by looking at the moment sequence $\{s_n\}_{n=0}^{\infty}$, or the Jacobi matrix (seq. $\{a_n\}_{n=0}^{\infty}$, $\{b_n\}_{n=0}^{\infty}$), or orthogonal polynomials $\{P_n\}_{n=1}^{\infty}$.

Carleman, 1922, 1926

lf

1)
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt[2n]{|s_{2n}|}} = \infty$$
 or 2) $\sum_{n=1}^{\infty} \frac{1}{a_n} = \infty$

then the Hamburger moment problem is determinate. If

$$\sum_{n=1}^{\infty} \frac{1}{\sqrt[2n]{|s_n|}} = \infty$$

then both Hamburger and Stieltjes moment problems are determinate.

Sufficient conditions for determinacy - moment sequence

It is desirable to be able to tell whether the moment problem is determinate (or indeterminate) just by looking at the moment sequence $\{s_n\}_{n=0}^{\infty}$, or the Jacobi matrix (seq. $\{a_n\}_{n=0}^{\infty}$, $\{b_n\}_{n=0}^{\infty}$), or orthogonal polynomials $\{P_n\}_{n=1}^{\infty}$.

Carleman, 1922, 1926

lf

1)
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt[2n]{|s_{2n}|}} = \infty$$
 or 2) $\sum_{n=1}^{\infty} \frac{1}{a_n} = \infty$

then the Hamburger moment problem is determinate. If

$$\sum_{n=1}^{\infty} \frac{1}{\sqrt[2n]{|s_n|}} = \infty$$

then both Hamburger and Stieltjes moment problems are determinate.

• Hence, e.g., if $\{a_n\}_{n=0}^{\infty}$ is bounded or there are R, C > 0 such that

 $|s_n| \leq CR^n n!,$

for all n sufficiently large, we have determinate Hamburger m.p. If

$$|s_n| \leq CR^n(2n)!,$$

for all *n* sufficiently large, we have determinate Stieltjes m.p.

Chihara, 1989

Let

$$\lim_{n\to\infty} b_n = \infty \quad \text{and} \quad \lim_{n\to\infty} \frac{a_n^2}{b_n b_{n+1}} = L < \frac{1}{4}.$$

then the Hamburger moment problem is determinate if

$$\liminf_{n\to\infty} \sqrt[n]{b_n} < \frac{1+\sqrt{1-4L}}{1-\sqrt{1-4L}}$$

and indeterminate if the opposite (strict) inequality holds.

Chihara, 1989

Let

$$\lim_{n\to\infty} b_n = \infty \quad \text{and} \quad \lim_{n\to\infty} \frac{a_n^2}{b_n b_{n+1}} = L < \frac{1}{4}.$$

then the Hamburger moment problem is determinate if

$$\liminf_{n\to\infty} \sqrt[n]{b_n} < \frac{1+\sqrt{1-4L}}{1-\sqrt{1-4L}}$$

and indeterminate if the opposite (strict) inequality holds.

• Chihara uses totally different approach to the problem - concept of chain sequences.

• Recall $\{P_n\}_{n=0}^{\infty}$ are determined by the three-term recurrence

$$xP_n(x) = a_nP_{n+1}(x) + b_nP_n(x) + a_{n-1}P_{n-1}(x)$$

with initial settings $P_0(x) = 1$ and $P_1(x) = \frac{1}{b_0}(x - a_0)$.

• Recall $\{P_n\}_{n=0}^{\infty}$ are determined by the three-term recurrence

$$xP_n(x) = a_n P_{n+1}(x) + b_n P_n(x) + a_{n-1} P_{n-1}(x)$$

with initial settings $P_0(x) = 1$ and $P_1(x) = \frac{1}{b_0}(x - a_0)$.

• Let us denote by $\{Q_n\}_{n=0}^{\infty}$ a polynomial sequence that solve the same recurrence as $\{P_n\}_{n=0}^{\infty}$ with initial conditions $Q_0(x) = 0$ and $Q_1(x) = \frac{1}{b_0}$.

• Recall $\{P_n\}_{n=0}^{\infty}$ are determined by the three-term recurrence

$$xP_n(x) = a_nP_{n+1}(x) + b_nP_n(x) + a_{n-1}P_{n-1}(x)$$

with initial settings $P_0(x) = 1$ and $P_1(x) = \frac{1}{b_0}(x - a_0)$.

- Let us denote by $\{Q_n\}_{n=0}^{\infty}$ a polynomial sequence that solve the same recurrence as $\{P_n\}_{n=0}^{\infty}$ with initial conditions $Q_0(x) = 0$ and $Q_1(x) = \frac{1}{b_0}$.
- These two polynomial sequences are linearly independent and any solution of the three-term recurrence is a linear combination of them.

• Recall $\{P_n\}_{n=0}^{\infty}$ are determined by the three-term recurrence

$$xP_n(x) = a_n P_{n+1}(x) + b_n P_n(x) + a_{n-1} P_{n-1}(x)$$

with initial settings $P_0(x) = 1$ and $P_1(x) = \frac{1}{b_0}(x - a_0)$.

- Let us denote by $\{Q_n\}_{n=0}^{\infty}$ a polynomial sequence that solve the same recurrence as $\{P_n\}_{n=0}^{\infty}$ with initial conditions $Q_0(x) = 0$ and $Q_1(x) = \frac{1}{b_0}$.
- These two polynomial sequences are linearly independent and any solution of the three-term recurrence is a linear combination of them.

Hamburger 1920-21

The Hamburger moment problem is determinate if and only if

$$\sum_{n=0}^{\infty} (P_n^2(0) + Q_n^2(0)) = \infty.$$

• Recall $\{P_n\}_{n=0}^{\infty}$ are determined by the three-term recurrence

$$xP_n(x) = a_n P_{n+1}(x) + b_n P_n(x) + a_{n-1} P_{n-1}(x)$$

with initial settings $P_0(x) = 1$ and $P_1(x) = \frac{1}{b_0}(x - a_0)$.

- Let us denote by $\{Q_n\}_{n=0}^{\infty}$ a polynomial sequence that solve the same recurrence as $\{P_n\}_{n=0}^{\infty}$ with initial conditions $Q_0(x) = 0$ and $Q_1(x) = \frac{1}{b_0}$.
- These two polynomial sequences are linearly independent and any solution of the three-term recurrence is a linear combination of them.

Hamburger 1920-21

The Hamburger moment problem is determinate if and only if

$$\sum_{n=0}^{\infty} (P_n^2(0) + Q_n^2(0)) = \infty.$$

• Actually, one can write some $x \in \mathbb{R}$ instead of zero in the condition.

Sufficient conditions for determinacy - Orthogonal Polynomials

• Recall $\{P_n\}_{n=0}^{\infty}$ are determined by the three-term recurrence

$$xP_n(x) = a_n P_{n+1}(x) + b_n P_n(x) + a_{n-1} P_{n-1}(x)$$

with initial settings $P_0(x) = 1$ and $P_1(x) = \frac{1}{b_0}(x - a_0)$.

- Let us denote by $\{Q_n\}_{n=0}^{\infty}$ a polynomial sequence that solve the same recurrence as $\{P_n\}_{n=0}^{\infty}$ with initial conditions $Q_0(x) = 0$ and $Q_1(x) = \frac{1}{b_0}$.
- These two polynomial sequences are linearly independent and any solution of the three-term recurrence is a linear combination of them.

Hamburger 1920-21

The Hamburger moment problem is determinate if and only if

$$\sum_{n=0}^{\infty} (P_n^2(0) + Q_n^2(0)) = \infty.$$

- Actually, one can write some $x \in \mathbb{R}$ instead of zero in the condition.
- It is even necessary and sufficient that there exists a z ∈ C \ ℝ such that both {P_n(z)}[∞]_{n=0} and {Q_n(z)}[∞]_{n=0} does not belong to ℓ²(ℤ₊).

Sufficient conditions for indeterminacy - density of measure

 Sometimes the natural starting point is not orthogonal polynomials of Jacobi matrix but a density w with moments {s_n}[∞]_{n=0}. Sometimes the natural starting point is not orthogonal polynomials of Jacobi matrix but a density w with moments {s_n}[∞]_{n=0}.

Krein, 1945

Let w be a density of μ (i.e., $d\mu(x) = w(x)dx$) where either 1) supp(w) = \mathbb{R} and

$$\int_{\mathbb{R}}\frac{\ln(w(x))}{1+x^2}dx>-\infty,$$

or 2) $\operatorname{supp}(w) = [0, \infty)$ and

$$\int_0^\infty \frac{\ln(w(x))}{\sqrt{x}(1+x)} dx > -\infty.$$

Suppose that for all $n \in \mathbb{Z}_+$:

$$\int_{\mathbb{R}}|x|^{n}w(x)dx<\infty.$$

Then the moment problem (Hamburger in case (1), Stieltjes in case(2)) with moments

$$s_n = \frac{\int x^n w(x) dx}{\int w(x) dx}$$

is indeterminate.

The set of solutions of indeterminate moment problem

• The problem about describing \mathcal{M}_H was solved by Nevanlinna in 1922 using complex function theory.

The set of solutions of indeterminate moment problem

- The problem about describing \mathcal{M}_H was solved by Nevanlinna in 1922 using complex function theory.
- A function ϕ is called *Pick* function (beware Herglotz) if it is holomorphic in $\mathbb{C}_+ := \{z \in \mathbb{C} \mid \Im z > 0\}$ and $\Im \phi(z) \ge 0$ for $z \in \mathbb{C}_+$.

The set of solutions of indeterminate moment problem

- The problem about describing \mathcal{M}_H was solved by Nevanlinna in 1922 using complex function theory.
- A function ϕ is called *Pick* function (beware Herglotz) if it is holomorphic in $\mathbb{C}_+ := \{z \in \mathbb{C} \mid \Im z > 0\}$ and $\Im \phi(z) \ge 0$ for $z \in \mathbb{C}_+$.
- Denote the set of Pick functions by \mathcal{P} .

- The problem about describing \mathcal{M}_H was solved by Nevanlinna in 1922 using complex function theory.
- A function ϕ is called *Pick* function (beware Herglotz) if it is holomorphic in $\mathbb{C}_+ := \{z \in \mathbb{C} \mid \Im z > 0\}$ and $\Im \phi(z) \ge 0$ for $z \in \mathbb{C}_+$.
- Denote the set of Pick functions by \mathcal{P} .
- $\mathcal{P} \cup \{\infty\}$ denotes the one-point compactification of \mathcal{P} (\mathcal{P} inherits the topology of holomorphic functions on $\mathbb{C} \setminus \mathbb{R}$)

- The problem about describing \mathcal{M}_H was solved by Nevanlinna in 1922 using complex function theory.
- A function ϕ is called *Pick* function (beware Herglotz) if it is holomorphic in $\mathbb{C}_+ := \{z \in \mathbb{C} \mid \Im z > 0\}$ and $\Im \phi(z) \ge 0$ for $z \in \mathbb{C}_+$.
- $\bullet\,$ Denote the set of Pick functions by $\mathcal{P}.$
- $\mathcal{P} \cup \{\infty\}$ denotes the one-point compactification of \mathcal{P} (\mathcal{P} inherits the topology of holomorphic functions on $\mathbb{C} \setminus \mathbb{R}$)

Nevanlinna, 1922

The solutions of the Hamburger moment problem in the indeterminate case are parametrized via homeomorphism $\phi \mapsto \mu_{\phi}$ of $\mathcal{P} \cup \{\infty\}$ onto \mathcal{M}_H given by

$$\int_{\mathbb{R}} \frac{d\mu_{\phi}(x)}{x-z} = -\frac{A(z)\phi(z) - C(z)}{B(z)\phi(z) - D(z)}, \quad z \in \mathbb{C} \setminus \mathbb{R},$$

where *A*, *B*, *C*, *D* are certain entire function determined by the problem (i.e., the moment sequence, or orthogonal polynomials, ...).

- The problem about describing \mathcal{M}_H was solved by Nevanlinna in 1922 using complex function theory.
- A function ϕ is called *Pick* function (beware Herglotz) if it is holomorphic in $\mathbb{C}_+ := \{z \in \mathbb{C} \mid \Im z > 0\}$ and $\Im \phi(z) \ge 0$ for $z \in \mathbb{C}_+$.
- $\bullet\,$ Denote the set of Pick functions by $\mathcal{P}.$
- $\mathcal{P} \cup \{\infty\}$ denotes the one-point compactification of \mathcal{P} (\mathcal{P} inherits the topology of holomorphic functions on $\mathbb{C} \setminus \mathbb{R}$)

Nevanlinna, 1922

The solutions of the Hamburger moment problem in the indeterminate case are parametrized via homeomorphism $\phi \mapsto \mu_{\phi}$ of $\mathcal{P} \cup \{\infty\}$ onto \mathcal{M}_H given by

$$\int_{\mathbb{R}} \frac{d\mu_{\phi}(x)}{x-z} = -\frac{A(z)\phi(z) - C(z)}{B(z)\phi(z) - D(z)}, \quad z \in \mathbb{C} \setminus \mathbb{R},$$

where *A*, *B*, *C*, *D* are certain entire function determined by the problem (i.e., the moment sequence, or orthogonal polynomials, ...).

• A, B, C, D are called Nevanlinna functions and $\begin{pmatrix} A & C \\ B & D \end{pmatrix}$ the Nevanlinna matrix.

- $\bullet\,$ The problem about describing \mathcal{M}_{H} was solved by Nevanlinna in 1922 using complex function theory.
- A function ϕ is called *Pick* function (beware Herglotz) if it is holomorphic in $\mathbb{C}_+ := \{z \in \mathbb{C} \mid \Im z > 0\}$ and $\Im \phi(z) \ge 0$ for $z \in \mathbb{C}_+$.
- $\bullet\,$ Denote the set of Pick functions by $\mathcal{P}.$
- $\mathcal{P} \cup \{\infty\}$ denotes the one-point compactification of \mathcal{P} (\mathcal{P} inherits the topology of holomorphic functions on $\mathbb{C} \setminus \mathbb{R}$)

Nevanlinna, 1922

The solutions of the Hamburger moment problem in the indeterminate case are parametrized via homeomorphism $\phi \mapsto \mu_{\phi}$ of $\mathcal{P} \cup \{\infty\}$ onto \mathcal{M}_H given by

$$\int_{\mathbb{R}} \frac{d\mu_{\phi}(x)}{x-z} = -\frac{A(z)\phi(z) - C(z)}{B(z)\phi(z) - D(z)}, \quad z \in \mathbb{C} \setminus \mathbb{R},$$

where *A*, *B*, *C*, *D* are certain entire function determined by the problem (i.e., the moment sequence, or orthogonal polynomials, ...).

- A, B, C, D are called Nevanlinna functions and $\begin{pmatrix} A & C \\ B & D \end{pmatrix}$ the Nevanlinna matrix.
- The solution μ_ϕ can be then expressed by using Stiltjes-Perron inversion formula.

• \mathcal{M}_H is convex (therefore infinite).

- \mathcal{M}_H is convex (therefore infinite).
- Equipped with the vague topology (Riesz theorem), M_H is a compact infinite dimensional set.

- \mathcal{M}_H is convex (therefore infinite).
- Equipped with the vague topology (Riesz theorem), M_H is a compact infinite dimensional set.
- The subsets of absolutely continuous, discrete and singular continuous solutions each are dense in \mathcal{M}_H , [Berg and Christensen, 1981].

- \mathcal{M}_H is convex (therefore infinite).
- Equipped with the vague topology (Riesz theorem), M_H is a compact infinite dimensional set.
- The subsets of absolutely continuous, discrete and singular continuous solutions each are dense in \mathcal{M}_H , [Berg and Christensen, 1981].
- μ is an extreme point in \mathcal{M}_H if and only if polynomials $\mathbb{C}[x]$ are dense in $L^1(\mathbb{R}, \mu)$, [Naimark, 1946].

- \mathcal{M}_H is convex (therefore infinite).
- Equipped with the vague topology (Riesz theorem), M_H is a compact infinite dimensional set.
- The subsets of absolutely continuous, discrete and singular continuous solutions each are dense in \mathcal{M}_H , [Berg and Christensen, 1981].
- μ is an extreme point in \mathcal{M}_H if and only if polynomials $\mathbb{C}[x]$ are dense in $L^1(\mathbb{R}, \mu)$, [Naimark, 1946].
- Extreme points are dense in \mathcal{M}_H .

Example due to Stieltjes

• Note first that, for $k \in \mathbb{Z}_+$,

$$\int_0^\infty u^k u^{-\ln u} \sin(2\pi \ln u) du = 0$$

Example due to Stieltjes

• Note first that, for $k \in \mathbb{Z}_+$,

$$\int_0^\infty u^k u^{-\ln u} \sin(2\pi \ln u) du = 0$$

• This follows from: change of variables $v = -(k+1)/2 + \ln u$, sin(.) is 2π -periodic and odd.

Example due to Stieltjes

• Note first that, for $k \in \mathbb{Z}_+$,

$$\int_0^\infty u^k u^{-\ln u} \sin(2\pi \ln u) du = 0$$

- This follows from: change of variables $v = -(k+1)/2 + \ln u$, sin(.) is 2π -periodic and odd.
- Thus, for any $\vartheta \in [-1, 1]$, it holds

$$\frac{1}{\sqrt{\pi}} \int_0^\infty u^k u^{-\ln u} \left[1 + \vartheta \sin(2\pi \ln u) \right] du = e^{\frac{1}{4}(k+1)^2}.$$

• Note first that, for $k \in \mathbb{Z}_+$,

$$\int_0^\infty u^k u^{-\ln u} \sin(2\pi \ln u) du = 0$$

- This follows from: change of variables $v = -(k+1)/2 + \ln u$, sin(.) is 2π -periodic and odd.
- Thus, for any $\vartheta \in [-1, 1]$, it holds

$$\frac{1}{\sqrt{\pi}}\int_0^\infty u^k u^{-\ln u} \left[1 + \vartheta \sin(2\pi \ln u)\right] du = e^{\frac{1}{4}(k+1)^2}.$$

• So $s_k = \exp(1/4(k+1)^2)$ is a moment set for an indeterminate Stieltjes problem.

• Note first that, for $k \in \mathbb{Z}_+$,

$$\int_0^\infty u^k u^{-\ln u} \sin(2\pi \ln u) du = 0$$

- This follows from: change of variables $v = -(k+1)/2 + \ln u$, sin(.) is 2π -periodic and odd.
- Thus, for any $\vartheta \in [-1, 1]$, it holds

$$\frac{1}{\sqrt{\pi}}\int_0^\infty u^k u^{-\ln u} \left[1 + \vartheta \sin(2\pi \ln u)\right] du = e^{\frac{1}{4}(k+1)^2}.$$

• So $s_k = \exp(1/4(k+1)^2)$ is a moment set for an indeterminate Stieltjes problem.

Moreover, denoting

$$d\mu_{\vartheta}(u) = \frac{1}{\sqrt{\pi}} u^{-\ln u} \left[1 + \vartheta \sin(2\pi \ln u)\right] du,$$

then, for $\vartheta \in (-1, 1)$, function

$$f_{\vartheta}(u) = \frac{\sin(2\pi \ln u)}{1 + \vartheta \sin(2\pi \ln u)}$$

is in $L^2(d\mu_{\vartheta})$ and it is orthogonal to all polynomials.

• Note first that, for $k \in \mathbb{Z}_+$,

$$\int_0^\infty u^k u^{-\ln u} \sin(2\pi \ln u) du = 0$$

- This follows from: change of variables $v = -(k+1)/2 + \ln u$, sin(.) is 2π -periodic and odd.
- Thus, for any $\vartheta \in [-1, 1]$, it holds

$$\frac{1}{\sqrt{\pi}}\int_0^\infty u^k u^{-\ln u} \left[1 + \vartheta \sin(2\pi \ln u)\right] du = e^{\frac{1}{4}(k+1)^2}.$$

• So $s_k = \exp(1/4(k+1)^2)$ is a moment set for an indeterminate Stieltjes problem.

Moreover, denoting

$$d\mu_{\vartheta}(u) = \frac{1}{\sqrt{\pi}} u^{-\ln u} \left[1 + \vartheta \sin(2\pi \ln u)\right] du,$$

then, for $\vartheta \in (-1, 1)$, function

$$f_{\vartheta}(u) = \frac{\sin(2\pi \ln u)}{1 + \vartheta \sin(2\pi \ln u)}$$

is in $L^2(d\mu_{\vartheta})$ and it is orthogonal to all polynomials.

 Hence polynomials are not dense in L²(dμ_ψ). This is a typical situation for solutions of indeterminate moment problems which are not N-extremal. • In some sense, to solve indeterminate Hamburger moment problem means to find the Nevanlinna functions *A*,*B*,*C*, and *D* (in particular *B* and *D*).

- In some sense, to solve indeterminate Hamburger moment problem means to find the Nevanlinna functions *A*,*B*,*C*, and *D* (in particular *B* and *D*).
- They can by computed by using orthogonal polynomials,

$$\begin{aligned} A(z) &= z \sum_{k=0}^{\infty} Q_k(0) Q_k(z), \qquad C(z) = 1 + z \sum_{k=0}^{\infty} P_k(0) Q_k(z) \\ B(z) &= -1 + z \sum_{k=0}^{\infty} Q_k(0) P_k(z), \qquad D(z) = z \sum_{k=0}^{\infty} P_k(0) P_k(z), \end{aligned}$$

where sums converge locally uniformly in $\ensuremath{\mathbb{C}}.$

- In some sense, to solve indeterminate Hamburger moment problem means to find the Nevanlinna functions *A*,*B*,*C*, and *D* (in particular *B* and *D*).
- They can by computed by using orthogonal polynomials,

$$A(z) = z \sum_{k=0}^{\infty} Q_k(0) Q_k(z), \qquad C(z) = 1 + z \sum_{k=0}^{\infty} P_k(0) Q_k(z)$$

$$B(z) = -1 + z \sum_{k=0}^{\infty} Q_k(0) P_k(z), \qquad D(z) = z \sum_{k=0}^{\infty} P_k(0) P_k(z),$$

where sums converge locally uniformly in $\ensuremath{\mathbb{C}}.$

More on A,B,C,D:

- A,B,C,D are entire functions of order ≤ 1 , if the order is 1, the exponential type is 0 [Riesz, 1923]
- *A*,*B*,*C*,*D* have the same order, type and Phragmén-Lindenlöf indicator function [Berg and Pedersen, 1994]

$$\mu_t = \sum_{x \in \Lambda_t} \rho(x) \delta(x).$$

$$\mu_t = \sum_{\mathbf{x} \in \Lambda_t} \rho(\mathbf{x}) \delta(\mathbf{x}).$$

• Λ_t denotes the set of zeros of $x \mapsto B(x)t - D(x)$ (or $x \mapsto B(x)$ if $t = \infty$) and

$$\frac{1}{\rho(x)}=\sum_{n=0}^{\infty}P_n^2(x)=B'(x)D(x)-B(x)D'(x),\quad x\in\mathbb{R}.$$

$$\mu_t = \sum_{\mathbf{x} \in \Lambda_t} \rho(\mathbf{x}) \delta(\mathbf{x}).$$

• Λ_t denotes the set of zeros of $x \mapsto B(x)t - D(x)$ (or $x \mapsto B(x)$ if $t = \infty$) and

$$\frac{1}{\rho(x)}=\sum_{n=0}^{\infty}P_n^2(x)=B'(x)D(x)-B(x)D'(x),\quad x\in\mathbb{R}.$$

• Measures μ_t , $t \in \mathbb{R} \cup \{\infty\}$, are all N-extremal solutions.

$$\mu_t = \sum_{\mathbf{x} \in \Lambda_t} \rho(\mathbf{x}) \delta(\mathbf{x}).$$

• Λ_t denotes the set of zeros of $x \mapsto B(x)t - D(x)$ (or $x \mapsto B(x)$ if $t = \infty$) and

$$\frac{1}{\rho(x)}=\sum_{n=0}^{\infty}P_n^2(x)=B'(x)D(x)-B(x)D'(x),\quad x\in\mathbb{R}.$$

- Measures μ_t , $t \in \mathbb{R} \cup \{\infty\}$, are all N-extremal solutions.
- They are the only solutions for which polynomials C[x] are dense in L²(ℝ, μ_t) ({P_n} forms an orthonormal basis of L²(ℝ, μ_t)), [Riesz, 1923].

$$\mu_t = \sum_{\mathbf{x} \in \Lambda_t} \rho(\mathbf{x}) \delta(\mathbf{x}).$$

• Λ_t denotes the set of zeros of $x \mapsto B(x)t - D(x)$ (or $x \mapsto B(x)$ if $t = \infty$) and

$$\frac{1}{\rho(x)}=\sum_{n=0}^{\infty}P_n^2(x)=B'(x)D(x)-B(x)D'(x),\quad x\in\mathbb{R}.$$

- Measures μ_t , $t \in \mathbb{R} \cup \{\infty\}$, are all N-extremal solutions.
- They are the only solutions for which polynomials $\mathbb{C}[x]$ are dense in $L^2(\mathbb{R}, \mu_t)$ ({ P_n } forms an orthonormal basis of $L^2(\mathbb{R}, \mu_t)$), [Riesz, 1923].
- N-extremal solutions are indeed extreme points in \mathcal{M}_H but not the only ones.

If we set

$$\phi(z) = egin{cases} eta+i\gamma, & \Im z>0, \ eta-i\gamma, & \Im z<0, \end{cases}$$

for $\beta \in \mathbb{R}$ and $\gamma > 0$, then $\phi \in \mathcal{P}$ and $\mu_{\beta,\gamma}$ is absolutely continuous with density

$$\frac{d\mu_{\beta,\gamma}}{dx} = \frac{\gamma/\pi}{(\beta B(x) - D(x))^2 + (\gamma B(x))^2}, \quad x \in \mathbb{R}.$$

If we set

$$\phi(z) = egin{cases} eta+i\gamma, & \Im z>0, \ eta-i\gamma, & \Im z<0, \end{cases}$$

for $\beta \in \mathbb{R}$ and $\gamma > 0$, then $\phi \in \mathcal{P}$ and $\mu_{\beta,\gamma}$ is absolutely continuous with density

$$rac{d\mu_{eta,\gamma}}{dx}=rac{\gamma/\pi}{(eta B(x)-D(x))^2+(\gamma B(x))^2},\quad x\in\mathbb{R}.$$

• Polynomials $\mathbb{C}[x]$ are not dense in $L^1(\mathbb{R}, \mu_{\beta,\gamma})$.

If we set

$$\phi(z) = egin{cases} eta+i\gamma, & \Im z>0, \ eta-i\gamma, & \Im z<0, \end{cases}$$

for $\beta \in \mathbb{R}$ and $\gamma > 0$, then $\phi \in \mathcal{P}$ and $\mu_{\beta,\gamma}$ is absolutely continuous with density

$$rac{d\mu_{eta,\gamma}}{dx}=rac{\gamma/\pi}{(eta B(x)-D(x))^2+(\gamma B(x))^2},\quad x\in\mathbb{R}.$$

- Polynomials $\mathbb{C}[x]$ are not dense in $L^1(\mathbb{R}, \mu_{\beta,\gamma})$.
- The solution μ_{0,1} is the one that maximizes certain entropy integral, see Krein's condition. More general and additional information are provided in [Gabardo, 1992].

• Suppose $\{s_n\}_{n=0}^{\infty}$ is a sequence of Stieltjes moments such that the moment problem is indeterminate in the sense of Hamburger.

- Suppose {s_n}_{n=0}[∞] is a sequence of Stieltjes moments such that the moment problem is indeterminate in the sense of Hamburger.
- To describe \mathcal{M}_S one can still use the Nevanlinna parametrization.

- Suppose {s_n}_{n=0}[∞] is a sequence of Stieltjes moments such that the moment problem is indeterminate in the sense of Hamburger.
- To describe $\mathcal{M}_{\mathcal{S}}$ one can still use the Nevanlinna parametrization.
- Just restrict oneself to consider only the Pick functions φ which have an analytic continuation to C \ [0,∞) such that α ≤ φ(x) ≤ 0 for x < 0, [Pedersen, 1997]

- Suppose {s_n}_{n=0}[∞] is a sequence of Stieltjes moments such that the moment problem is indeterminate in the sense of Hamburger.
- To describe \mathcal{M}_S one can still use the Nevanlinna parametrization.
- Just restrict oneself to consider only the Pick functions φ which have an analytic continuation to C \ [0,∞) such that α ≤ φ(x) ≤ 0 for x < 0, [Pedersen, 1997]
- The quantity $\alpha \leq$ 0 plays an important role and can be obtain as the limit

$$\alpha = \lim_{n \to \infty} \frac{P_n(0)}{Q_n(0)}.$$

- Suppose {s_n}_{n=0}[∞] is a sequence of Stieltjes moments such that the moment problem is indeterminate in the sense of Hamburger.
- To describe $\mathcal{M}_{\mathcal{S}}$ one can still use the Nevanlinna parametrization.
- Just restrict oneself to consider only the Pick functions φ which have an analytic continuation to C \ [0,∞) such that α ≤ φ(x) ≤ 0 for x < 0, [Pedersen, 1997]
- The quantity $\alpha \leq$ 0 plays an important role and can be obtain as the limit

$$\alpha = \lim_{n \to \infty} \frac{P_n(0)}{Q_n(0)}.$$

• The moment problem is determinate in the sense of Stieltjes if and only if $\alpha = 0$.

- Suppose {s_n}_{n=0}[∞] is a sequence of Stieltjes moments such that the moment problem is indeterminate in the sense of Hamburger.
- To describe \mathcal{M}_S one can still use the Nevanlinna parametrization.
- Just restrict oneself to consider only the Pick functions φ which have an analytic continuation to C \ [0,∞) such that α ≤ φ(x) ≤ 0 for x < 0, [Pedersen, 1997]
- The quantity $\alpha \leq$ 0 plays an important role and can be obtain as the limit

$$\alpha = \lim_{n \to \infty} \frac{P_n(0)}{Q_n(0)}.$$

- The moment problem is determinate in the sense of Stieltjes if and only if $\alpha = 0$.
- The only N-extremal solutions supported within $[0,\infty)$ are μ_t with $\alpha \leq t \leq 0$.

- Suppose {s_n}_{n=0}[∞] is a sequence of Stieltjes moments such that the moment problem is indeterminate in the sense of Hamburger.
- To describe \mathcal{M}_S one can still use the Nevanlinna parametrization.
- Just restrict oneself to consider only the Pick functions φ which have an analytic continuation to C \ [0,∞) such that α ≤ φ(x) ≤ 0 for x < 0, [Pedersen, 1997]
- The quantity $\alpha \leq$ 0 plays an important role and can be obtain as the limit

$$\alpha = \lim_{n \to \infty} \frac{P_n(0)}{Q_n(0)}.$$

- The moment problem is determinate in the sense of Stieltjes if and only if $\alpha = 0$.
- The only N-extremal solutions supported within $[0, \infty)$ are μ_t with $\alpha \le t \le 0$.
- For the indeterminate Stieljes moment problem there is a sligtly more elegant way how to describe \mathcal{M}_S known as *Krein parametrization*, [Krein, 1967].

Thank you, and see you in Beskydy!