On the Hilbert L-matrix

Frantisek Štampach
Czech Technical University in Prague

IWOTA 2021
 Chapman University, Orange, CA

Based on: F. Š.: The Hilbert L-matrix, arXiv:2107.10694

August 11, 2021

Contents

(1) Motivation: The work of L. Bouthat and J. Mashreghi

2 Generalities on L-matrices and L-operators

3 The Hilbert L-operator

Motivation

In [L. Bouthat and J. Mashreghi, Oper. Matrices 15, 2021], the authors:

Motivation

In [L. Bouthat and J. Mashreghi, Oper. Matrices 15, 2021], the authors:
(1) Introduced L-matrices, studied when the L-matrix

$$
\mathcal{L}=\left(a_{\max (m, n)}\right)_{m, n=0}^{\infty}=\left(\begin{array}{cccc}
a_{0} & a_{1} & a_{2} & \ldots \\
a_{1} & a_{1} & a_{2} & \ldots \\
a_{2} & a_{2} & a_{2} & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right), \quad\left\{a_{n}\right\}_{n=0}^{\infty} \subset \mathbb{C}
$$

determines a bounded operator on $\ell^{2}\left(\mathbb{N}_{0}\right)$ and derive an upper bound on its norm.

Motivation

In [L. Bouthat and J. Mashreghi, Oper. Matrices 15, 2021], the authors:
(1) Introduced L-matrices, studied when the L-matrix

$$
\mathcal{L}=\left(a_{\max (m, n)}\right)_{m, n=0}^{\infty}=\left(\begin{array}{cccc}
a_{0} & a_{1} & a_{2} & \ldots \\
a_{1} & a_{1} & a_{2} & \ldots \\
a_{2} & a_{2} & a_{2} & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right), \quad\left\{a_{n}\right\}_{n=0}^{\infty} \subset \mathbb{C}
$$

determines a bounded operator on $\ell^{2}\left(\mathbb{N}_{0}\right)$ and derive an upper bound on its norm.
(2) Studied in more detail the norm of operator L_{ν} determined by the Hilbert L-matrix:

$$
a_{n}=\frac{1}{n+\nu}, \quad \nu>0
$$

Motivation

In [L. Bouthat and J. Mashreghi, Oper. Matrices 15, 2021], the authors:
(1) Introduced L-matrices, studied when the L-matrix

$$
\mathcal{L}=\left(a_{\max (m, n)}\right)_{m, n=0}^{\infty}=\left(\begin{array}{cccc}
a_{0} & a_{1} & a_{2} & \ldots \\
a_{1} & a_{1} & a_{2} & \ldots \\
a_{2} & a_{2} & a_{2} & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right), \quad\left\{a_{n}\right\}_{n=0}^{\infty} \subset \mathbb{C}
$$

determines a bounded operator on $\ell^{2}\left(\mathbb{N}_{0}\right)$ and derive an upper bound on its norm.
(2) Studied in more detail the norm of operator L_{ν} determined by the Hilbert L-matrix:

$$
a_{n}=\frac{1}{n+\nu}, \quad \nu>0
$$

and proved that

$$
\left\|L_{\nu}\right\|=4, \quad \text { if } \nu \geq 1 / 2, \quad \text { and } \quad\left\|L_{\nu}\right\|>4, \text { if } 0<\nu<1 / 4
$$

Motivation

In [L. Bouthat and J. Mashreghi, Oper. Matrices 15, 2021], the authors:
(1) Introduced L-matrices, studied when the L-matrix

$$
\mathcal{L}=\left(a_{\max (m, n)}\right)_{m, n=0}^{\infty}=\left(\begin{array}{cccc}
a_{0} & a_{1} & a_{2} & \ldots \\
a_{1} & a_{1} & a_{2} & \ldots \\
a_{2} & a_{2} & a_{2} & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right), \quad\left\{a_{n}\right\}_{n=0}^{\infty} \subset \mathbb{C}
$$

determines a bounded operator on $\ell^{2}\left(\mathbb{N}_{0}\right)$ and derive an upper bound on its norm.
(2) Studied in more detail the norm of operator L_{ν} determined by the Hilbert L-matrix:

$$
a_{n}=\frac{1}{n+\nu}, \quad \nu>0
$$

and proved that

$$
\left\|L_{\nu}\right\|=4, \quad \text { if } \nu \geq 1 / 2, \quad \text { and } \quad\left\|L_{\nu}\right\|>4, \quad \text { if } 0<\nu<1 / 4
$$

(3) Open problems: Determine the numbers

$$
\nu_{0}:=\inf \left\{\nu>0 \mid\left\|L_{\nu}\right\|=4\right\} \quad \text { and } \quad\left\|L_{\nu}\right\|, \text { for } \nu<1 / 2
$$

Contents

(1) Motivation: The work of L. Bouthat and J. Mashreghi
(2) Generalities on L-matrices and L-operators

(3) The Hilbert L-operator

The standard construction

The standard construction of matrix operators:

- Suppose a matrix $\mathcal{A}=\left(a_{m, n}\right)_{m, n=0}^{\infty}$ with rows and columns in ℓ^{2} is given.

The standard construction

The standard construction of matrix operators:

- Suppose a matrix $\mathcal{A}=\left(a_{m, n}\right)_{m, n=0}^{\infty}$ with rows and columns in ℓ^{2} is given.
- One defines operators $A_{\min }$ and $A_{\max }$ both acting on ℓ^{2} to column vectors x as the matrix multiplication $\mathcal{A} \cdot x$, where x is from the respective domain:

$$
\operatorname{Dom} A_{\max }:=\left\{x \in \ell^{2} \mid \mathcal{A} \cdot x \in \ell^{2}\right\}
$$

and

$$
\operatorname{Dom} A_{\text {min }}:=\left\{x \in \ell^{2} \mid\left(\exists x_{n} \in C_{0}\right)\left(x_{n} \rightarrow x \wedge \mathcal{A} \cdot x_{n} \rightarrow A_{\min } x\right)\right\} .
$$

The standard construction

The standard construction of matrix operators:

- Suppose a matrix $\mathcal{A}=\left(a_{m, n}\right)_{m, n=0}^{\infty}$ with rows and columns in ℓ^{2} is given.
- One defines operators $A_{\min }$ and $A_{\max }$ both acting on ℓ^{2} to column vectors x as the matrix multiplication $\mathcal{A} \cdot x$, where x is from the respective domain:

$$
\operatorname{Dom} A_{\max }:=\left\{x \in \ell^{2} \mid \mathcal{A} \cdot x \in \ell^{2}\right\}
$$

and

$$
\operatorname{Dom} A_{\min }:=\left\{x \in \ell^{2} \mid\left(\exists x_{n} \in C_{0}\right)\left(x_{n} \rightarrow x \wedge \mathcal{A} \cdot x_{n} \rightarrow A_{\min } x\right)\right\} .
$$

- Then $A_{\text {min }} \subset A_{\text {max }}$ and $A_{\text {min }} \subset B \subset A_{\text {max }}$ for any closed operator B with $C_{0} \subset \operatorname{Dom} B$ and matrix representation \mathcal{A}.

The standard construction

The standard construction of matrix operators:

- Suppose a matrix $\mathcal{A}=\left(a_{m, n}\right)_{m, n=0}^{\infty}$ with rows and columns in ℓ^{2} is given.
- One defines operators $A_{\min }$ and $A_{\max }$ both acting on ℓ^{2} to column vectors x as the matrix multiplication $\mathcal{A} \cdot x$, where x is from the respective domain:

$$
\operatorname{Dom} A_{\max }:=\left\{x \in \ell^{2} \mid \mathcal{A} \cdot x \in \ell^{2}\right\}
$$

and

$$
\operatorname{Dom} A_{\min }:=\left\{x \in \ell^{2} \mid\left(\exists x_{n} \in C_{0}\right)\left(x_{n} \rightarrow x \wedge \mathcal{A} \cdot x_{n} \rightarrow A_{\min } x\right)\right\} .
$$

- Then $A_{\text {min }} \subset A_{\text {max }}$ and $A_{\text {min }} \subset B \subset A_{\text {max }}$ for any closed operator B with $C_{0} \subset \operatorname{Dom} B$ and matrix representation \mathcal{A}.
- The matrix \mathcal{A} is called proper iff $A_{\text {min }}=A_{\text {max }}$.

The standard construction

The standard construction of matrix operators:

- Suppose a matrix $\mathcal{A}=\left(a_{m, n}\right)_{m, n=0}^{\infty}$ with rows and columns in ℓ^{2} is given.
- One defines operators $A_{\min }$ and $A_{\max }$ both acting on ℓ^{2} to column vectors x as the matrix multiplication $\mathcal{A} \cdot x$, where x is from the respective domain:

$$
\operatorname{Dom} A_{\max }:=\left\{x \in \ell^{2} \mid \mathcal{A} \cdot x \in \ell^{2}\right\}
$$

and

$$
\operatorname{Dom} A_{\text {min }}:=\left\{x \in \ell^{2} \mid\left(\exists x_{n} \in C_{0}\right)\left(x_{n} \rightarrow x \wedge \mathcal{A} \cdot x_{n} \rightarrow A_{\min } x\right)\right\} .
$$

- Then $A_{\text {min }} \subset A_{\text {max }}$ and $A_{\text {min }} \subset B \subset A_{\text {max }}$ for any closed operator B with $C_{0} \subset \operatorname{Dom} B$ and matrix representation \mathcal{A}.
- The matrix \mathcal{A} is called proper iff $A_{\text {min }}=A_{\text {max }}$.

If \mathcal{A} is an L-matrix, then the standard construction is applicable iff its parameter seq. $a \in \ell^{2}\left(\mathbb{N}_{0}\right)$.

Definition of the L-operator

- Let \mathcal{L} be an L-matrix with the parameter sequence such that $a_{n} \neq a_{n+1}, \forall n \in \mathbb{N}_{0}$.

Definition of the L-operator

- Let \mathcal{L} be an L-matrix with the parameter sequence such that $a_{n} \neq a_{n+1}, \forall n \in \mathbb{N}_{0}$.
- Define

$$
b_{n}:=\frac{1}{a_{n}-a_{n+1}}, \quad \mathcal{J}:=\left(\begin{array}{ccccc}
b_{0} & -b_{0} & & & \\
-b_{0} & b_{0}+b_{1} & -b_{1} & & \\
& -b_{1} & b_{1}+b_{2} & -b_{2} & \\
& & -b_{2} & b_{2}+b_{3} & -b_{3} \\
\\
& & & \ddots & \ddots
\end{array}\right)
$$

Definition of the L-operator

- Let \mathcal{L} be an L-matrix with the parameter sequence such that $a_{n} \neq a_{n+1}, \forall n \in \mathbb{N}_{0}$.
- Define

$$
b_{n}:=\frac{1}{a_{n}-a_{n+1}}, \quad \mathcal{J}:=\left(\begin{array}{ccccc}
b_{0} & -b_{0} & & & \\
-b_{0} & b_{0}+b_{1} & -b_{1} & & \\
& -b_{1} & b_{1}+b_{2} & -b_{2} & \\
& & -b_{2} & b_{2}+b_{3} & -b_{3} \\
\\
& & & \ddots & \ddots
\end{array}\right)
$$

Proposition

(1) $\mathcal{L} \cdot \mathcal{J}=\mathcal{J} \cdot \mathcal{L}=\mathcal{I}$, where \mathcal{I} is the identity matrix.

Definition of the L-operator

- Let \mathcal{L} be an L-matrix with the parameter sequence such that $a_{n} \neq a_{n+1}, \forall n \in \mathbb{N}_{0}$.
- Define

$$
b_{n}:=\frac{1}{a_{n}-a_{n+1}}, \quad \mathcal{J}:=\left(\begin{array}{cccccc}
b_{0} & -b_{0} & & & & \\
-b_{0} & b_{0}+b_{1} & -b_{1} & & & \\
& -b_{1} & b_{1}+b_{2} & -b_{2} & & \\
& & -b_{2} & b_{2}+b_{3} & -b_{3} & \\
& & & \ddots & \ddots & \ddots
\end{array}\right)
$$

Proposition

(1) $\mathcal{L} \cdot \mathcal{J}=\mathcal{J} \cdot \mathcal{L}=\mathcal{I}$, where \mathcal{I} is the identity matrix.
(2) \mathcal{J} is proper; hence determines the unique Jacobi operator J.

Definition of the L-operator

- Let \mathcal{L} be an L-matrix with the parameter sequence such that $a_{n} \neq a_{n+1}, \forall n \in \mathbb{N}_{0}$.
- Define

$$
b_{n}:=\frac{1}{a_{n}-a_{n+1}}, \quad \mathcal{J}:=\left(\begin{array}{ccccc}
b_{0} & -b_{0} & & & \\
-b_{0} & b_{0}+b_{1} & -b_{1} & & \\
& -b_{1} & b_{1}+b_{2} & -b_{2} & \\
& & -b_{2} & b_{2}+b_{3} & -b_{3} \\
\\
& & & \ddots & \ddots
\end{array}\right)
$$

Proposition

(1) $\mathcal{L} \cdot \mathcal{J}=\mathcal{J} \cdot \mathcal{L}=\mathcal{I}$, where \mathcal{I} is the identity matrix.
(2) \mathcal{J} is proper; hence determines the unique Jacobi operator J.
(3) J is invertible.

Definition of the L-operator

- Let \mathcal{L} be an L-matrix with the parameter sequence such that $a_{n} \neq a_{n+1}, \forall n \in \mathbb{N}_{0}$.
- Define

$$
b_{n}:=\frac{1}{a_{n}-a_{n+1}}, \quad \mathcal{J}:=\left(\begin{array}{cccccc}
b_{0} & -b_{0} & & & & \\
-b_{0} & b_{0}+b_{1} & -b_{1} & & & \\
& -b_{1} & b_{1}+b_{2} & -b_{2} & & \\
& & -b_{2} & b_{2}+b_{3} & -b_{3} & \\
& & & \ddots & \ddots & \ddots
\end{array}\right)
$$

Proposition

(1) $\mathcal{L} \cdot \mathcal{J}=\mathcal{J} \cdot \mathcal{L}=\mathcal{I}$, where \mathcal{I} is the identity matrix.
(2) \mathcal{J} is proper; hence determines the unique Jacobi operator J.
(3) J is invertible.

Definition (L-operator)

To the L-matrix \mathcal{L}, s.t. $a_{n} \neq a_{n+1}, \forall n \in \mathbb{N}_{0}$, we associate the L-operator $L:=J^{-1}$.

Definition of the L-operator (cont.)

Proposition

(1) The L-operator is densely defined and closed.

Definition of the L-operator (cont.)

Proposition

(1) The L-operator is densely defined and closed.
(2) The L-operator is positive semi-definite iff $a_{n}>a_{n+1}, \forall n \in \mathbb{N}_{0}$.

Definition of the L-operator (cont.)

Proposition

(1) The L-operator is densely defined and closed.
(2) The L-operator is positive semi-definite iff $a_{n}>a_{n+1}, \forall n \in \mathbb{N}_{0}$.

Example:

- Consider the L-matrix

$$
\mathcal{L}=\left(\begin{array}{cccc}
H_{1} & H_{2} & H_{3} & \ldots \\
H_{2} & H_{2} & H_{3} & \ldots \\
H_{3} & H_{3} & H_{3} & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right), \quad H_{n}=1+\frac{1}{2}+\cdots+\frac{1}{n}
$$

Definition of the L-operator (cont.)

Proposition

(1) The L-operator is densely defined and closed.
(2) The L-operator is positive semi-definite iff $a_{n}>a_{n+1}, \forall n \in \mathbb{N}_{0}$.

Example:

- Consider the L-matrix

$$
\mathcal{L}=\left(\begin{array}{cccc}
H_{1} & H_{2} & H_{3} & \ldots \\
H_{2} & H_{2} & H_{3} & \ldots \\
H_{3} & H_{3} & H_{3} & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right), \quad H_{n}=1+\frac{1}{2}+\cdots+\frac{1}{n} .
$$

- Then $b_{n}=-(n+1)$ and the Jacobi operator J corresponds to the Laguerre polynomials (up to the sign).

Definition of the L-operator (cont.)

Proposition

(1) The L-operator is densely defined and closed.
(2) The L-operator is positive semi-definite iff $a_{n}>a_{n+1}, \forall n \in \mathbb{N}_{0}$.

Example:

- Consider the L-matrix

$$
\mathcal{L}=\left(\begin{array}{cccc}
H_{1} & H_{2} & H_{3} & \ldots \\
H_{2} & H_{2} & H_{3} & \ldots \\
H_{3} & H_{3} & H_{3} & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right), \quad H_{n}=1+\frac{1}{2}+\cdots+\frac{1}{n} .
$$

- Then $b_{n}=-(n+1)$ and the Jacobi operator J corresponds to the Laguerre polynomials (up to the sign).
- One can use well-known properties of the Laguerre polynomials to show that the spectrum of the L-operator $L=J^{-1}$ is simple and $\sigma(L)=\sigma_{\text {ac }}(L)=(-\infty, 0]$.

Contents

(1) Motivation: The work of L. Bouthat and J. Mashreghi

(2) Generalities on L-matrices and L-operators
(3) The Hilbert L-operator

Spectral analysis of L_{ν} via the inverse

Main goal: Spectral analysis of the Hilbert L-operator:

Spectral analysis of L_{ν} via the inverse
Main goal: Spectral analysis of the Hilbert L-operator:

$$
L_{\nu}=\left(\begin{array}{cccc}
a_{0}(\nu) & a_{1}(\nu) & a_{2}(\nu) & \ldots \\
a_{1}(\nu) & a_{1}(\nu) & a_{2}(\nu) & \ldots \\
a_{2}(\nu) & a_{2}(\nu) & a_{2}(\nu) & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right), \quad a_{n}(\nu)=\frac{1}{n+\nu}
$$

for $\nu \in \mathbb{R} \backslash\left(-\mathbb{N}_{0}\right)$.

Spectral analysis of L_{ν} via the inverse

Main goal: Spectral analysis of the Hilbert L-operator:

$$
L_{\nu}=\left(\begin{array}{cccc}
a_{0}(\nu) & a_{1}(\nu) & a_{2}(\nu) & \ldots \\
a_{1}(\nu) & a_{1}(\nu) & a_{2}(\nu) & \ldots \\
a_{2}(\nu) & a_{2}(\nu) & a_{2}(\nu) & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right), \quad a_{n}(\nu)=\frac{1}{n+\nu},
$$

for $\nu \in \mathbb{R} \backslash\left(-\mathbb{N}_{0}\right)$.

$$
L_{\nu}^{-1}=J_{\nu}=\left(\begin{array}{ccccc}
b_{0}(\nu) & -b_{0}(\nu) & & & \\
-b_{0}(\nu) & b_{0}(\nu)+b_{1}(\nu) & -b_{1}(\nu) & & \\
& -b_{1}(\nu) & b_{1}(\nu)+b_{2}(\nu) & -b_{2}(\nu) & \\
& & \ddots & \ddots & \ddots
\end{array}\right)
$$

where

$$
b_{n}(\nu)=(n+\nu)(n+\nu+1)
$$

Spectral analysis of L_{ν} via the inverse

Main goal: Spectral analysis of the Hilbert L-operator:

$$
L_{\nu}=\left(\begin{array}{cccc}
a_{0}(\nu) & a_{1}(\nu) & a_{2}(\nu) & \ldots \\
a_{1}(\nu) & a_{1}(\nu) & a_{2}(\nu) & \ldots \\
a_{2}(\nu) & a_{2}(\nu) & a_{2}(\nu) & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right), \quad a_{n}(\nu)=\frac{1}{n+\nu},
$$

for $\nu \in \mathbb{R} \backslash\left(-\mathbb{N}_{0}\right)$.

$$
L_{\nu}^{-1}=J_{\nu}=\left(\begin{array}{ccccc}
b_{0}(\nu) & -b_{0}(\nu) & & & \\
-b_{0}(\nu) & b_{0}(\nu)+b_{1}(\nu) & -b_{1}(\nu) & & \\
& -b_{1}(\nu) & b_{1}(\nu)+b_{2}(\nu) & -b_{2}(\nu) & \\
& & \ddots & \ddots & \ddots
\end{array}\right)
$$

where

$$
b_{n}(\nu)=(n+\nu)(n+\nu+1)
$$

- For $\nu=1, J_{1}$ corresponds to a subfamily of the Continuous dual Hahn OGPs.

Spectral analysis of L_{ν} via the inverse

Main goal: Spectral analysis of the Hilbert L-operator:

$$
L_{\nu}=\left(\begin{array}{cccc}
a_{0}(\nu) & a_{1}(\nu) & a_{2}(\nu) & \ldots \\
a_{1}(\nu) & a_{1}(\nu) & a_{2}(\nu) & \ldots \\
a_{2}(\nu) & a_{2}(\nu) & a_{2}(\nu) & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right), \quad a_{n}(\nu)=\frac{1}{n+\nu},
$$

for $\nu \in \mathbb{R} \backslash\left(-\mathbb{N}_{0}\right)$.

$$
L_{\nu}^{-1}=J_{\nu}=\left(\begin{array}{ccccc}
b_{0}(\nu) & -b_{0}(\nu) & & & \\
-b_{0}(\nu) & b_{0}(\nu)+b_{1}(\nu) & -b_{1}(\nu) & & \\
& -b_{1}(\nu) & b_{1}(\nu)+b_{2}(\nu) & -b_{2}(\nu) & \\
& & \ddots & \ddots & \ddots
\end{array}\right)
$$

where

$$
b_{n}(\nu)=(n+\nu)(n+\nu+1)
$$

- For $\nu=1, J_{1}$ corresponds to a subfamily of the Continuous dual Hahn OGPs.
- For general ν, OGPs unknown but a closely related study has been done in [Ismail, Letessier, Valent, SIAM J. Math. Anal. (1989)]

Spectral analysis of J_{ν}

- Spectral analysis of J_{ν} is possible in terms of the regularized hypergeometric functions with unit argument:

$$
{ }_{3} \tilde{F}_{2}\left(\begin{array}{c|c}
a_{1}, a_{2}, a_{3} & 1 \\
b_{1}, b_{2} & 1
\end{array}\right):=\sum_{n=0}^{\infty} \frac{\left(a_{1}\right)_{n}\left(a_{2}\right)_{n}\left(a_{3}\right)_{n}}{n!\Gamma\left(b_{1}+n\right) \Gamma\left(b_{2}+n\right)} .
$$

The function is analytic in $\Re\left(b_{1}+b_{2}-a_{1}-a_{2}-a_{3}\right)>0$.

Spectral analysis of J_{ν}

- Spectral analysis of J_{ν} is possible in terms of the regularized hypergeometric functions with unit argument:

$$
{ }_{3} \tilde{F}_{2}\left(\begin{array}{c|c}
a_{1}, a_{2}, a_{3} & 1 \\
b_{1}, b_{2} & 1
\end{array}\right):=\sum_{n=0}^{\infty} \frac{\left(a_{1}\right)_{n}\left(a_{2}\right)_{n}\left(a_{3}\right)_{n}}{n!\Gamma\left(b_{1}+n\right) \Gamma\left(b_{2}+n\right)}
$$

The function is analytic in $\Re\left(b_{1}+b_{2}-a_{1}-a_{2}-a_{3}\right)>0$.

- One has

$$
J_{\nu} \phi(z ; \nu)=\left(\frac{1}{4}-z^{2}\right) \phi(z ; \nu)+\chi(z ; \nu) e_{0},
$$

where

$$
\phi_{n}(z ; \nu):=\frac{\Gamma(n+\nu) \Gamma(n+\nu+1)}{\Gamma(z+3 / 2)}{ }_{3} \tilde{F}_{2}\left(\left.\begin{array}{c|c}
z-1 / 2, n+\nu, n+\nu \\
n+\nu+z+1 / 2, n+\nu+z+1 / 2
\end{array} \right\rvert\, 1\right)
$$

and

$$
\chi(z ; \nu):=\frac{(z+1 / 2) \Gamma(\nu) \Gamma(\nu+1)}{\Gamma(z+1 / 2)}{ }_{3} \tilde{F}_{2}\left(\left.\begin{array}{c}
\nu-1, \nu+1, z+1 / 2 \\
z+\nu+1 / 2, z+\nu+1 / 2
\end{array} \right\rvert\, 1\right) .
$$

Spectrum of J_{ν} for general ν

- Asymptotic analysis of the involved functions, etc. (many details omitted), yields the spectrum of J_{ν} for general ν.
"Beautiful properties of the unit argument ${ }_{3} F_{2}$-function save the day here!"

Spectrum of J_{ν} for general ν

- Asymptotic analysis of the involved functions, etc. (many details omitted), yields the spectrum of J_{ν} for general ν.
"Beautiful properties of the unit argument ${ }_{3} F_{2}$-function save the day here!"

Theorem (Spectrum of J_{ν} for general ν)

For any $\nu \in \mathbb{R} \backslash\left(-\mathbb{N}_{0}\right)$, the spectrum of J_{ν} is simple and decomposes as

$$
\sigma\left(J_{\nu}\right)=\sigma_{p}\left(J_{\nu}\right) \cup \sigma_{\mathrm{ac}}\left(J_{\nu}\right),
$$

Spectrum of J_{ν} for general ν

- Asymptotic analysis of the involved functions, etc. (many details omitted), yields the spectrum of J_{ν} for general ν.
"Beautiful properties of the unit argument ${ }_{3} F_{2}$-function save the day here!"

Theorem (Spectrum of J_{ν} for general ν)

For any $\nu \in \mathbb{R} \backslash\left(-\mathbb{N}_{0}\right)$, the spectrum of J_{ν} is simple and decomposes as

$$
\sigma\left(J_{\nu}\right)=\sigma_{p}\left(J_{\nu}\right) \cup \sigma_{a c}\left(J_{\nu}\right)
$$

where

$$
\sigma_{a c}\left(J_{\nu}\right)=\left[\frac{1}{4}, \infty\right) \quad \text { and } \quad \sigma_{p}\left(J_{\nu}\right)=\left\{\left.\frac{1}{4}-x^{2} \right\rvert\, \chi(x ; \nu)=0, x>0\right\}
$$

Spectrum of J_{ν} for general ν

- Asymptotic analysis of the involved functions, etc. (many details omitted), yields the spectrum of J_{ν} for general ν.
"Beautiful properties of the unit argument ${ }_{3} F_{2}$-function save the day here!"

Theorem (Spectrum of J_{ν} for general ν)

For any $\nu \in \mathbb{R} \backslash\left(-\mathbb{N}_{0}\right)$, the spectrum of J_{ν} is simple and decomposes as

$$
\sigma\left(J_{\nu}\right)=\sigma_{p}\left(J_{\nu}\right) \cup \sigma_{a c}\left(J_{\nu}\right)
$$

where

$$
\sigma_{a c}\left(J_{\nu}\right)=\left[\frac{1}{4}, \infty\right) \quad \text { and } \quad \sigma_{p}\left(J_{\nu}\right)=\left\{\left.\frac{1}{4}-x^{2} \right\rvert\, \chi(x ; \nu)=0, x>0\right\}
$$

Moreover, $\sigma_{p}\left(J_{\nu}\right)$ is finite (possibly empty).

Spectrum of J_{ν} for general ν

- Asymptotic analysis of the involved functions, etc. (many details omitted), yields the spectrum of J_{ν} for general ν.
"Beautiful properties of the unit argument ${ }_{3} F_{2}$-function save the day here!"

Theorem (Spectrum of J_{ν} for general ν)

For any $\nu \in \mathbb{R} \backslash\left(-\mathbb{N}_{0}\right)$, the spectrum of J_{ν} is simple and decomposes as

$$
\sigma\left(J_{\nu}\right)=\sigma_{p}\left(J_{\nu}\right) \cup \sigma_{a c}\left(J_{\nu}\right)
$$

where

$$
\sigma_{a c}\left(J_{\nu}\right)=\left[\frac{1}{4}, \infty\right) \quad \text { and } \quad \sigma_{p}\left(J_{\nu}\right)=\left\{\left.\frac{1}{4}-x^{2} \right\rvert\, \chi(x ; \nu)=0, x>0\right\}
$$

Moreover, $\sigma_{p}\left(J_{\nu}\right)$ is finite (possibly empty).

- Since $L_{\nu}=J_{\nu}^{-1}$ the result readily translates to $L_{\nu} \ldots$

Spectrum of L_{ν} for general ν

Theorem (Spectrum of L_{ν} for general ν)
For all $\nu \in \mathbb{R} \backslash\left(-\mathbb{N}_{0}\right)$, the spectrum of L_{ν} is simple and $\sigma\left(L_{\nu}\right)=\sigma_{a c}\left(L_{\nu}\right) \cup \sigma_{p}\left(L_{\nu}\right)$, where

Spectrum of L_{ν} for general ν

Theorem (Spectrum of L_{ν} for general ν)

For all $\nu \in \mathbb{R} \backslash\left(-\mathbb{N}_{0}\right)$, the spectrum of L_{ν} is simple and $\sigma\left(L_{\nu}\right)=\sigma_{a c}\left(L_{\nu}\right) \cup \sigma_{p}\left(L_{\nu}\right)$, where

$$
\sigma_{a c}\left(L_{\nu}\right)=[0,4]
$$

and

$$
\sigma_{\rho}\left(L_{\nu}\right)=\left\{\left.\frac{4}{1-4 x^{2}} \right\rvert\, \chi(x ; \nu)=0, x>0\right\} .
$$

Spectrum of L_{ν} for general ν

Theorem (Spectrum of L_{ν} for general ν)

For all $\nu \in \mathbb{R} \backslash\left(-\mathbb{N}_{0}\right)$, the spectrum of L_{ν} is simple and $\sigma\left(L_{\nu}\right)=\sigma_{a c}\left(L_{\nu}\right) \cup \sigma_{p}\left(L_{\nu}\right)$, where

$$
\sigma_{\mathrm{ac}}\left(L_{\nu}\right)=[0,4]
$$

and

$$
\sigma_{\rho}\left(L_{\nu}\right)=\left\{\left.\frac{4}{1-4 x^{2}} \right\rvert\, \chi(x ; \nu)=0, x>0\right\} .
$$

Moreover, $\sigma_{\rho}\left(L_{\nu}\right)$ is finite (possibly empty).

A closer look at $\sigma_{p}\left(J_{\nu}\right)$ for $\nu>0$

Theorem

(1) The function

$$
\nu \mapsto{ }_{3} F_{2}\left(\left.\begin{array}{c}
-1 / 2,1 / 2,3 / 2 \\
1, \nu+1 / 2
\end{array} \right\rvert\, \begin{array}{c}
1
\end{array}\right)
$$

$$
(=c \cdot \chi(0 ; \nu))
$$

has a unique positive zero ν_{0} which is located in ($0,1 / 2$); numerically $\nu_{0} \approx 0.3491$.

A closer look at $\sigma_{p}\left(J_{\nu}\right)$ for $\nu>0$

Theorem

© The function

$$
\nu \mapsto{ }_{3} F_{2}\left(\left.\begin{array}{c}
-1 / 2,1 / 2,3 / 2 \\
1, \nu+1 / 2
\end{array} \right\rvert\, \begin{array}{c}
1
\end{array}\right)
$$

$$
(=c \cdot \chi(0 ; \nu))
$$

has a unique positive zero ν_{0} which is located in ($0,1 / 2$); numerically $\nu_{0} \approx 0.3491$.
(2) We have

$$
\sigma_{p}\left(J_{\nu}\right)= \begin{cases}\emptyset, & \text { if } \nu \geq \nu_{0}, \\ 1 / 4-x_{0}^{2}(\nu), & \text { if } 0<\nu<\nu_{0},\end{cases}
$$

A closer look at $\sigma_{p}\left(J_{\nu}\right)$ for $\nu>0$

Theorem

(1) The function

$$
\nu \mapsto{ }_{3} F_{2}\left(\left.\begin{array}{c}
-1 / 2,1 / 2,3 / 2 \\
1, \nu+1 / 2
\end{array} \right\rvert\, \begin{array}{c}
1
\end{array}\right)
$$

$$
(=c \cdot \chi(0 ; \nu))
$$

has a unique positive zero ν_{0} which is located in ($0,1 / 2$); numerically $\nu_{0} \approx 0.3491$.
(2) We have

$$
\sigma_{p}\left(J_{\nu}\right)= \begin{cases}\emptyset, & \text { if } \nu \geq \nu_{0}, \\ 1 / 4-x_{0}^{2}(\nu), & \text { if } 0<\nu<\nu_{0},\end{cases}
$$

where $x_{0}(\nu)$ is the unique zero of the function

$$
x \mapsto{ }_{3} F_{2}\left(\left.\begin{array}{c}
x-1 / 2, x+1 / 2, x+3 / 2 \\
2 x+1, x+\nu+1 / 2
\end{array} \right\rvert\, 1\right) \quad(=c \cdot x(x ; \nu))
$$

located in ($0,1 / 2$).

A closer look at $\sigma_{p}\left(J_{\nu}\right)$ for $\nu>0$

Theorem

© The function

$$
\nu \mapsto{ }_{3} F_{2}\left(\left.\begin{array}{c}
-1 / 2,1 / 2,3 / 2 \\
1, \nu+1 / 2
\end{array} \right\rvert\, \begin{array}{c}
1
\end{array}\right)
$$

$$
(=c \cdot \chi(0 ; \nu))
$$

has a unique positive zero ν_{0} which is located in ($0,1 / 2$); numerically $\nu_{0} \approx 0.3491$.
(2) We have

$$
\sigma_{p}\left(J_{\nu}\right)= \begin{cases}\emptyset, & \text { if } \nu \geq \nu_{0}, \\ 1 / 4-x_{0}^{2}(\nu), & \text { if } 0<\nu<\nu_{0},\end{cases}
$$

where $x_{0}(\nu)$ is the unique zero of the function

$$
x \mapsto_{3} F_{2}\left(\left.\begin{array}{c}
x-1 / 2, x+1 / 2, x+3 / 2 \\
2 x+1, x+\nu+1 / 2
\end{array} \right\rvert\, 1\right) \quad(=c \cdot \chi(x ; \nu))
$$

located in ($0,1 / 2$).
(3) Function $x_{0}:\left(0, \nu_{0}\right) \rightarrow(0,1 / 2): \nu \mapsto x_{0}(\nu)$ is real analytic and strictly decreasing.

A closer look at $\sigma_{p}\left(J_{\nu}\right)$ for $\nu>0$

Theorem

(1) The function

$$
\nu \mapsto_{3} F_{2}\left(\begin{array}{c|c}
-1 / 2,1 / 2,3 / 2 & 1 \\
1, \nu+1 / 2 & 1
\end{array}\right)
$$

$$
(=c \cdot \chi(0 ; \nu))
$$

has a unique positive zero ν_{0} which is located in $(0,1 / 2)$; numerically $\nu_{0} \approx 0.3491$.
(2) We have

$$
\sigma_{p}\left(J_{\nu}\right)= \begin{cases}\emptyset, & \text { if } \nu \geq \nu_{0} \\ 1 / 4-x_{0}^{2}(\nu), & \text { if } 0<\nu<\nu_{0}\end{cases}
$$

where $x_{0}(\nu)$ is the unique zero of the function

$$
x \mapsto{ }_{3} F_{2}\left(\begin{array}{c|c}
x-1 / 2, x+1 / 2, x+3 / 2 & 1 \\
2 x+1, x+\nu+1 / 2 & 1
\end{array}\right) \quad(=c \cdot \chi(x ; \nu))
$$

located in ($0,1 / 2$).
(8) Function $x_{0}:\left(0, \nu_{0}\right) \rightarrow(0,1 / 2): \nu \mapsto x_{0}(\nu)$ is real analytic and strictly decreasing.
(4)

$$
x_{0}(\nu)=\frac{1}{2}-\nu-\nu^{2}-\left(2-\frac{\pi^{2}}{6}\right) \nu^{3}-\left(5-\frac{\pi^{2}}{3}-\zeta(3)\right) \nu^{4}+O\left(\nu^{5}\right), \quad \nu \rightarrow 0+.
$$

The point spectrum of L_{ν} for $\nu>0$

Theorem ($\sigma_{p}\left(L_{\nu}\right)$ for $\nu>0$)
Let $\nu>0$ and $\nu_{0}, x_{0}(\nu)$ the roots defined on the previous slide.

The point spectrum of L_{ν} for $\nu>0$

Theorem ($\sigma_{p}\left(L_{\nu}\right)$ for $\nu>0$)
Let $\nu>0$ and $\nu_{0}, x_{0}(\nu)$ the roots defined on the previous slide.
(1) If $\nu \geq \nu_{0}, \sigma_{\rho}\left(L_{\nu}\right)=\emptyset$, while if $\nu<\nu_{0}, \sigma_{p}\left(L_{\nu}\right)$ is the one-point set containing

$$
\left\|L_{\nu}\right\|=\frac{4}{1-4 x_{0}^{2}(\nu)} .
$$

The point spectrum of L_{ν} for $\nu>0$

Theorem ($\sigma_{p}\left(L_{\nu}\right)$ for $\nu>0$)

Let $\nu>0$ and $\nu_{0}, x_{0}(\nu)$ the roots defined on the previous slide.
(1) If $\nu \geq \nu_{0}, \sigma_{\rho}\left(L_{\nu}\right)=\emptyset$, while if $\nu<\nu_{0}, \sigma_{p}\left(L_{\nu}\right)$ is the one-point set containing

$$
\left\|L_{\nu}\right\|=\frac{4}{1-4 x_{0}^{2}(\nu)} .
$$

(2) Function $\left\|L_{\nu}\right\|:\left(0, \nu_{0}\right) \rightarrow(4, \infty)$ is real analytic and strictly decreasing.

The point spectrum of L_{ν} for $\nu>0$

Theorem ($\sigma_{p}\left(L_{\nu}\right)$ for $\nu>0$)

Let $\nu>0$ and $\nu_{0}, x_{0}(\nu)$ the roots defined on the previous slide.
(1) If $\nu \geq \nu_{0}, \sigma_{\rho}\left(L_{\nu}\right)=\emptyset$, while if $\nu<\nu_{0}, \sigma_{p}\left(L_{\nu}\right)$ is the one-point set containing

$$
\left\|L_{\nu}\right\|=\frac{4}{1-4 x_{0}^{2}(\nu)} .
$$

(2) Function $\left\|L_{\nu}\right\|:\left(0, \nu_{0}\right) \rightarrow(4, \infty)$ is real analytic and strictly decreasing.
(3) We have the lower bound

$$
\left\|L_{\nu}\right\| \geq \max \left(4, \nu \psi^{\prime}(\nu)\right),
$$

where $\psi=\Gamma^{\prime} / \Gamma$ is the Digamma function.

The point spectrum of L_{ν} for $\nu>0$

Theorem ($\sigma_{p}\left(L_{\nu}\right)$ for $\nu>0$)

Let $\nu>0$ and $\nu_{0}, x_{0}(\nu)$ the roots defined on the previous slide.
(1) If $\nu \geq \nu_{0}, \sigma_{\rho}\left(L_{\nu}\right)=\emptyset$, while if $\nu<\nu_{0}, \sigma_{p}\left(L_{\nu}\right)$ is the one-point set containing

$$
\left\|L_{\nu}\right\|=\frac{4}{1-4 x_{0}^{2}(\nu)} .
$$

(2) Function $\left\|L_{\nu}\right\|:\left(0, \nu_{0}\right) \rightarrow(4, \infty)$ is real analytic and strictly decreasing.
(3) We have the lower bound

$$
\left\|L_{\nu}\right\| \geq \max \left(4, \nu \psi^{\prime}(\nu)\right),
$$

where $\psi=\Gamma^{\prime} / \Gamma$ is the Digamma function.
©

$$
\left\|L_{\nu}\right\|=\frac{1}{\nu}+\frac{\pi^{2}}{6} \nu+\zeta(3) \nu^{2}+O\left(\nu^{3}\right), \quad \text { as } \nu \rightarrow 0+
$$

...to show an animation.

The point spectrum of L_{ν} for $\nu<0$

Conjecture
Suppose $\nu<0$ and $-\nu \notin \mathbb{N}$. Then $\sigma\left(L_{\nu}\right)$ consists of exactly one negative eigenvalue and none or exactly one eigenvalue of L_{ν} greater than 4 .

The point spectrum of L_{ν} for $\nu<0$

Conjecture

Suppose $\nu<0$ and $-\nu \notin \mathbb{N}$. Then $\sigma\left(L_{\nu}\right)$ consists of exactly one negative eigenvalue and none or exactly one eigenvalue of L_{ν} greater than 4 .
More precisely, there are numbers $-2<\nu_{3}<\nu_{2}<-1<\nu_{1}<0$ such that

$$
\sigma_{p}\left(L_{\nu}\right)= \begin{cases}\left\{\lambda_{-}(\nu)\right\}, & \text { for } \nu \in\left(\nu_{3}, \nu_{2}\right) \cup\left(\nu_{1}, 0\right), \\ \left\{\lambda_{-}(\nu), \lambda_{+}(\nu)\right\}, & \text { otherwise, }\end{cases}
$$

where $\lambda_{-}(\nu)<0$ and $\lambda_{+}(\nu)>4$.
...to show an animation.

Thank you!

