New explicitly diagonalizable Hankel matrices

Frantisek Štampach

joint with P. Šiovíček

International Workshop on Operator Theory and its Applications July 22, 2019

Contents

(1) Introduction - the Hilbert matrix

(2) New results - Hankel matrices and Jacobi matrices from the Askey scheme

The Hankel matrix

- The semi-infinite matrix H with entries

$$
H_{m, n}=h_{m+n},
$$

i.e.,

$$
H=\left(\begin{array}{ccccc}
h_{0} & h_{1} & h_{2} & h_{3} & \ldots \\
h_{1} & h_{2} & h_{3} & h_{4} & \ldots \\
h_{2} & h_{3} & h_{4} & h_{5} & \ldots \\
h_{3} & h_{4} & h_{5} & h_{6} & \ldots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

is called the Hankel matrix.

The Hankel matrix

- The semi-infinite matrix H with entries

$$
H_{m, n}=h_{m+n}
$$

i.e.,

$$
H=\left(\begin{array}{ccccc}
h_{0} & h_{1} & h_{2} & h_{3} & \ldots \\
h_{1} & h_{2} & h_{3} & h_{4} & \ldots \\
h_{2} & h_{3} & h_{4} & h_{5} & \ldots \\
h_{3} & h_{4} & h_{5} & h_{6} & \ldots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

is called the Hankel matrix.

- If $h \in \ell^{2}\left(\mathbb{N}_{0}\right)$ and real, then H determines a densely defined symmetric operator on $\ell^{2}\left(\mathbb{N}_{0}\right)$.

The Hankel matrix

- The semi-infinite matrix H with entries

$$
H_{m, n}=h_{m+n}
$$

i.e.,

$$
H=\left(\begin{array}{ccccc}
h_{0} & h_{1} & h_{2} & h_{3} & \ldots \\
h_{1} & h_{2} & h_{3} & h_{4} & \ldots \\
h_{2} & h_{3} & h_{4} & h_{5} & \ldots \\
h_{3} & h_{4} & h_{5} & h_{6} & \ldots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

is called the Hankel matrix.

- If $h \in \ell^{2}\left(\mathbb{N}_{0}\right)$ and real, then H determines a densely defined symmetric operator on $\ell^{2}\left(\mathbb{N}_{0}\right)$.
- Although the general spectral theory of Hankel operators if deeply developed, only very few concrete interesting (=not of finite rank) Hankel matrices with "explicitly" solvable spectral problem.

The Hilbert matrix

- The Hilbert matrix:

$$
\left(H_{0}\right)_{m, n}=\frac{1}{m+n+1},
$$

i.e.,

$$
H_{0}=\left(\begin{array}{ccccc}
\frac{1}{1} & \frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \cdots \\
\frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \cdots \\
\frac{1}{3} & \frac{1}{3} & \frac{5}{4} & \cdots \\
\frac{1}{3} & \frac{1}{4} & \frac{5}{5} & \frac{1}{6} & \cdots \\
\frac{1}{4} & \frac{1}{5} & \frac{1}{6} & \frac{1}{7} & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

The Hilbert matrix

- The (generalized) Hilbert matrix:

$$
\left(H_{\lambda}\right)_{m, n}=\frac{1}{m+n+1+\lambda}
$$

i.e.,

$$
H_{\lambda}=\left(\begin{array}{ccccc}
\frac{1}{1+\lambda} & \frac{1}{2+\lambda} & \frac{1}{3+\lambda} & \frac{1}{4+\lambda} & \cdots \\
\frac{1}{2+\lambda} & \frac{1}{3+\lambda} & \frac{1}{4+\lambda} & \frac{1}{5+\lambda} & \cdots \\
\frac{1}{3+\lambda} & \frac{1}{4+\lambda} & \frac{1}{5+\lambda} & \frac{1}{6+\lambda} & \cdots \\
\frac{1}{4+\lambda} & \frac{1}{5+\lambda} & \frac{1}{6+\lambda} & \frac{1}{7+\lambda} & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

History of the Hilbert matrix

- Hilbert's inequality (1908): There is $M>0$ such that

$$
0 \leq \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \frac{a_{m} a_{n}}{m+n+1} \leq M \sum_{n=0}^{\infty} a_{n}^{2}
$$

for all real $a \in \ell^{2}\left(\mathbb{N}_{0}\right)$.

History of the Hilbert matrix

- Hilbert's inequality (1908): There is $M>0$ such that

$$
0 \leq \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \frac{a_{m} a_{n}}{m+n+1} \leq M \sum_{n=0}^{\infty} a_{n}^{2},
$$

for all real $a \in \ell^{2}\left(\mathbb{N}_{0}\right)$.

- Schur 1911: The optimal value of the constant $M=\pi$. (Perhaps first proof of $\left\|H_{0}\right\|=\pi$.)

History of the Hilbert matrix

- Hilbert's inequality (1908): There is $M>0$ such that

$$
0 \leq \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \frac{a_{m} a_{n}}{m+n+1} \leq M \sum_{n=0}^{\infty} a_{n}^{2},
$$

for all real $a \in \ell^{2}\left(\mathbb{N}_{0}\right)$.

- Schur 1911: The optimal value of the constant $M=\pi$. (Perhaps first proof of $\left\|H_{0}\right\|=\pi$.)
- Magnus 1949 (also Schur):

$$
\left\|H_{\lambda}\right\|=\pi, \quad \lambda \geq-1 / 2, \quad \text { and } \quad\left\|H_{\lambda}\right\|=\frac{\pi}{|\sin (\lambda \pi)|}, \quad-1<\lambda<-1 / 2 .
$$

History of the Hilbert matrix

- Hilbert's inequality (1908): There is $M>0$ such that

$$
0 \leq \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \frac{a_{m} a_{n}}{m+n+1} \leq M \sum_{n=0}^{\infty} a_{n}^{2},
$$

for all real $a \in \ell^{2}\left(\mathbb{N}_{0}\right)$.

- Schur 1911: The optimal value of the constant $M=\pi$. (Perhaps first proof of $\left\|H_{0}\right\|=\pi$.)
- Magnus 1949 (also Schur):

$$
\left\|H_{\lambda}\right\|=\pi, \quad \lambda \geq-1 / 2, \quad \text { and } \quad\left\|H_{\lambda}\right\|=\frac{\pi}{|\sin (\lambda \pi)|}, \quad-1<\lambda<-1 / 2 .
$$

- Magnus 1950:

$$
\operatorname{spec}_{c}\left(H_{0}\right)=[0, \pi] .
$$

History of the Hilbert matrix

- Hilbert's inequality (1908): There is $M>0$ such that

$$
0 \leq \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \frac{a_{m} a_{n}}{m+n+1} \leq M \sum_{n=0}^{\infty} a_{n}^{2},
$$

for all real $a \in \ell^{2}\left(\mathbb{N}_{0}\right)$.

- Schur 1911: The optimal value of the constant $M=\pi$.
(Perhaps first proof of $\left\|H_{0}\right\|=\pi$.)
- Magnus 1949 (also Schur):

$$
\left\|H_{\lambda}\right\|=\pi, \quad \lambda \geq-1 / 2, \quad \text { and } \quad\left\|H_{\lambda}\right\|=\frac{\pi}{|\sin (\lambda \pi)|}, \quad-1<\lambda<-1 / 2 .
$$

- Magnus 1950:

$$
\operatorname{spec}_{c}\left(H_{0}\right)=[0, \pi] .
$$

- Rosenblum 1958: A complete explicit spectral representation of H_{λ} for $\lambda>-1$. (Rosenblum applied ideas of the commutator method.)

An alternative proof to Rosenblum's approach

- The Hilbert matrix H_{0} commutes with the Jacobi matrix

$$
J=\left(\begin{array}{ccccc}
\beta_{0} & \alpha_{0} & & & \\
\alpha_{0} & \beta_{1} & \alpha_{1} & & \\
& \alpha_{1} & \beta_{2} & \alpha_{2} & \\
& & \ddots & \ddots & \ddots
\end{array}\right)
$$

where

$$
\alpha_{n}=-(n+1)^{2} \quad \text { and } \quad \beta_{n}=2 n(n+1)+3 / 4
$$

An alternative proof to Rosenblum's approach

- The Hilbert matrix H_{0} commutes with the Jacobi matrix

$$
J=\left(\begin{array}{ccccc}
\beta_{0} & \alpha_{0} & & & \\
\alpha_{0} & \beta_{1} & \alpha_{1} & & \\
& \alpha_{1} & \beta_{2} & \alpha_{2} & \\
& & \ddots & \ddots & \ddots
\end{array}\right)
$$

where

$$
\alpha_{n}=-(n+1)^{2} \quad \text { and } \quad \beta_{n}=2 n(n+1)+3 / 4
$$

- The associated sequence of ON polynomials $P=\left\{P_{n}\right\}_{n \in \mathbb{N}_{0}}$, is unambiguously defined as the formal eigenvector of J :

$$
J P(x)=x P(x)
$$

normalized such that $P_{0}(x)=1$.

An alternative proof to Rosenblum's approach

- The Hilbert matrix H_{0} commutes with the Jacobi matrix

$$
J=\left(\begin{array}{ccccc}
\beta_{0} & \alpha_{0} & & & \\
\alpha_{0} & \beta_{1} & \alpha_{1} & & \\
& \alpha_{1} & \beta_{2} & \alpha_{2} & \\
& & \ddots & \ddots & \ddots
\end{array}\right)
$$

where

$$
\alpha_{n}=-(n+1)^{2} \quad \text { and } \quad \beta_{n}=2 n(n+1)+3 / 4
$$

- The associated sequence of ON polynomials $P=\left\{P_{n}\right\}_{n \in \mathbb{N}_{0}}$, is unambiguously defined as the formal eigenvector of J :

$$
J P(x)=x P(x)
$$

normalized such that $P_{0}(x)=1$.

- In this case, P_{n} is a particular case of the Continuous dual Hahn polynomials a three-parameter family of hypergeometric OG polynomials listed in the Askey scheme.

An alternative proof to Rosenblum's approach

- As a result, we know that $\left\{P_{n}\right\}_{n \in \mathbb{N}_{0}}$ is an ONB of $L^{2}((0, \infty), \rho(x) \mathrm{d} x)$, where

$$
\rho(x)=\frac{\pi \sinh (\pi \sqrt{x})}{\cosh ^{2}(\pi \sqrt{x})}
$$

An alternative proof to Rosenblum's approach

- As a result, we know that $\left\{P_{n}\right\}_{n \in \mathbb{N}_{0}}$ is an ONB of $L^{2}((0, \infty), \rho(x) \mathrm{d} x)$, where

$$
\rho(x)=\frac{\pi \sinh (\pi \sqrt{x})}{\cosh ^{2}(\pi \sqrt{x})}
$$

- Moreover, the unitary mapping

$$
U: \ell^{2}\left(\mathbb{N}_{0}\right) \rightarrow L^{2}((0, \infty), \rho(x) \mathrm{d} x): e_{n} \mapsto P_{n}
$$

diagonalizes the Jacobi operator J, i.e, ${U J U U^{-1}}^{-1} T_{x}$.

An alternative proof to Rosenblum's approach

- As a result, we know that $\left\{P_{n}\right\}_{n \in \mathbb{N}_{0}}$ is an ONB of $L^{2}((0, \infty), \rho(x) \mathrm{d} x)$, where

$$
\rho(x)=\frac{\pi \sinh (\pi \sqrt{x})}{\cosh ^{2}(\pi \sqrt{x})}
$$

- Moreover, the unitary mapping

$$
U: \ell^{2}\left(\mathbb{N}_{0}\right) \rightarrow L^{2}((0, \infty), \rho(x) \mathrm{d} x): e_{n} \mapsto P_{n}
$$

diagonalizes the Jacobi operator J, i.e, $U J U^{-1}=T_{x}$.

- Since J is a self-adjoint operator with simple spectrum commuting with H_{0},

$$
U H_{0} U^{-1}=T_{f}
$$

where f is a Borel function.

An alternative proof to Rosenblum's approach

- As a result, we know that $\left\{P_{n}\right\}_{n \in \mathbb{N}_{0}}$ is an ONB of $L^{2}((0, \infty), \rho(x) \mathrm{d} x)$, where

$$
\rho(x)=\frac{\pi \sinh (\pi \sqrt{x})}{\cosh ^{2}(\pi \sqrt{x})}
$$

- Moreover, the unitary mapping

$$
U: \ell^{2}\left(\mathbb{N}_{0}\right) \rightarrow L^{2}((0, \infty), \rho(x) \mathrm{d} x): e_{n} \mapsto P_{n}
$$

diagonalizes the Jacobi operator J, i.e, $U J U^{-1}=T_{x}$.

- Since J is a self-adjoint operator with simple spectrum commuting with H_{0},

$$
U H_{0} U^{-1}=T_{f}
$$

where f is a Borel function.

- Determination of f using a generating function formula for P_{n} :

$$
f(x)=f(x) P_{0}(x)=T_{f} U e_{0}=U H_{0} e_{0}=\sum_{n=0}^{\infty} \frac{P_{n}(x)}{n+1}=
$$

An alternative proof to Rosenblum's approach

- As a result, we know that $\left\{P_{n}\right\}_{n \in \mathbb{N}_{0}}$ is an ONB of $L^{2}((0, \infty), \rho(x) \mathrm{d} x)$, where

$$
\rho(x)=\frac{\pi \sinh (\pi \sqrt{x})}{\cosh ^{2}(\pi \sqrt{x})}
$$

- Moreover, the unitary mapping

$$
U: \ell^{2}\left(\mathbb{N}_{0}\right) \rightarrow L^{2}((0, \infty), \rho(x) \mathrm{d} x): e_{n} \mapsto P_{n}
$$

diagonalizes the Jacobi operator J, i.e, $U J U^{-1}=T_{x}$.

- Since J is a self-adjoint operator with simple spectrum commuting with H_{0},

$$
U H_{0} U^{-1}=T_{f}
$$

where f is a Borel function.

- Determination of f using a generating function formula for P_{n} :

$$
f(x)=f(x) P_{0}(x)=T_{f} U e_{0}=U H_{0} e_{0}=\sum_{n=0}^{\infty} \frac{P_{n}(x)}{n+1}=\frac{\pi}{\cosh (\pi x)} .
$$

A summary of the commutator method

- In total, this approach shows that H_{0} is unitarily equivalent to the multiplication operator by function

$$
f(x)=\frac{\pi}{\cosh (\pi x)}
$$

acting on $L^{2}((0, \infty), \rho(x) \mathrm{d} x)$. This yields the spectral representation of H_{0}. Particularly,

$$
\operatorname{spec}\left(H_{0}\right)=\operatorname{spec}_{\mathrm{ac}}\left(H_{0}\right)=[0, \pi]
$$

For details, see [Otte 2005 - slides; T. Kalvoda and P. Štovíček 2016].

A summary of the commutator method

- In total, this approach shows that H_{0} is unitarily equivalent to the multiplication operator by function

$$
f(x)=\frac{\pi}{\cosh (\pi x)}
$$

acting on $L^{2}((0, \infty), \rho(x) \mathrm{d} x)$. This yields the spectral representation of H_{0}. Particularly,

$$
\operatorname{spec}\left(H_{0}\right)=\operatorname{spec}_{\mathrm{ac}}\left(H_{0}\right)=[0, \pi] .
$$

For details, see [Otte 2005 - slides; T. Kalvoda and P. Štovíček 2016].

Two main steps of the commutator method:

A summary of the commutator method

- In total, this approach shows that H_{0} is unitarily equivalent to the multiplication operator by function

$$
f(x)=\frac{\pi}{\cosh (\pi x)}
$$

acting on $L^{2}((0, \infty), \rho(x) \mathrm{d} x)$. This yields the spectral representation of H_{0}. Particularly,

$$
\operatorname{spec}\left(H_{0}\right)=\operatorname{spec}_{\mathrm{ac}}\left(H_{0}\right)=[0, \pi] .
$$

For details, see [Otte 2005 - slides; T. Kalvoda and P. Štovíček 2016].

Two main steps of the commutator method:
(1) Finding a self-adjoint operator J with simple spectrum and solvable spectral problem that commutes with H.
(typical sources $=$ Sturm-Liouville operators, Jacobi operators,...)

A summary of the commutator method

- In total, this approach shows that H_{0} is unitarily equivalent to the multiplication operator by function

$$
f(x)=\frac{\pi}{\cosh (\pi x)}
$$

acting on $L^{2}((0, \infty), \rho(x) \mathrm{d} x)$. This yields the spectral representation of H_{0}. Particularly,

$$
\operatorname{spec}\left(H_{0}\right)=\operatorname{spec}_{\mathrm{ac}}\left(H_{0}\right)=[0, \pi] .
$$

For details, see [Otte 2005 - slides; T. Kalvoda and P. Štovíček 2016].

Two main steps of the commutator method:
(1) Finding a self-adjoint operator J with simple spectrum and solvable spectral problem that commutes with H.
(typical sources = Sturm-Liouville operators, Jacobi operators,...)
(2) Finding the spectral mapping f.

Contents

(1) Introduction - the Hilbert matrix

(2) New results - Hankel matrices and Jacobi matrices from the Askey scheme

(3) New results - New diagonalizable Hankel matrices

The scope

Goal of the project: To extend the set of known Hankel matrices with explicitly solvable spectral problem.

The scope

Goal of the project: To extend the set of known Hankel matrices with explicitly solvable spectral problem.

- Observation: The generalized Hilbert matrix commutes with a Jacobi matrix from the Askey scheme of hypergeometric OGPs.

The scope

Goal of the project: To extend the set of known Hankel matrices with explicitly solvable spectral problem.

- Observation: The generalized Hilbert matrix commutes with a Jacobi matrix from the Askey scheme of hypergeometric OGPs.
- The Askey scheme = A list of Jacobi operators with explicitly solvable spectral problem.

The Askey scheme

The Askey scheme - semi-infinite Jacobi matrices

The scope

Goal of the project: To extend the set of known Hankel matrices with explicitly solvable spectral problem.

- Observation: The generalized Hilbert matrix commutes with a Jacobi matrix from the Askey scheme of hypergeometric OGPs.
- The Askey scheme = A list of Jacobi operators with explicitly solvable spectral problem.
- Natural question: What Hankel matrices commute with the Jacobi matrices from the hypergeometric Askey scheme?

The scope

Goal of the project: To extend the set of known Hankel matrices with explicitly solvable spectral problem.

- Observation: The generalized Hilbert matrix commutes with a Jacobi matrix from the Askey scheme of hypergeometric OGPs.
- The Askey scheme = A list of Jacobi operators with explicitly solvable spectral problem.
- Natural question: What Hankel matrices commute with the Jacobi matrices from the hypergeometric Askey scheme?
- Answer: Basically, it is only the generalized Hilbert matrix.

The scope

Goal of the project: To extend the set of known Hankel matrices with explicitly solvable spectral problem.

- Observation: The generalized Hilbert matrix commutes with a Jacobi matrix from the Askey scheme of hypergeometric OGPs.
- The Askey scheme = A list of Jacobi operators with explicitly solvable spectral problem.
- Natural question: What Hankel matrices commute with the Jacobi matrices from the hypergeometric Askey scheme?
- Answer: Basically, it is only the generalized Hilbert matrix.

Theorem (A prominent role of the Hilbert matrix)

Let $H=\left(h_{m+n}\right)$ be a Hankel matrix with rank $H>1$ and $h \in \ell^{2}\left(\mathbb{N}_{0}\right)$.

The scope

Goal of the project: To extend the set of known Hankel matrices with explicitly solvable spectral problem.

- Observation: The generalized Hilbert matrix commutes with a Jacobi matrix from the Askey scheme of hypergeometric OGPs.
- The Askey scheme = A list of Jacobi operators with explicitly solvable spectral problem.
- Natural question: What Hankel matrices commute with the Jacobi matrices from the hypergeometric Askey scheme?
- Answer: Basically, it is only the generalized Hilbert matrix.

Theorem (A prominent role of the Hilbert matrix)

Let $H=\left(h_{m+n}\right)$ be a Hankel matrix with rank $H>1$ and $h \in \ell^{2}\left(\mathbb{N}_{0}\right)$. Let J be a hermitian semi-infinite non-decomposable Jacobi matrix from the Askey scheme.

The scope

Goal of the project: To extend the set of known Hankel matrices with explicitly solvable spectral problem.

- Observation: The generalized Hilbert matrix commutes with a Jacobi matrix from the Askey scheme of hypergeometric OGPs.
- The Askey scheme = A list of Jacobi operators with explicitly solvable spectral problem.
- Natural question: What Hankel matrices commute with the Jacobi matrices from the hypergeometric Askey scheme?
- Answer: Basically, it is only the generalized Hilbert matrix.

Theorem (A prominent role of the Hilbert matrix)

Let $H=\left(h_{m+n}\right)$ be a Hankel matrix with rank $H>1$ and $h \in \ell^{2}\left(\mathbb{N}_{0}\right)$. Let J be a hermitian semi-infinite non-decomposable Jacobi matrix from the Askey scheme. If $H J=J H$, then H is the generalized Hilbert matrix up to a constant multiplier.

Contents

(1) Introduction - the Hilbert matrix

(2) New results - Hankel matrices and Jacobi matrices from the Askey scheme

(3) New results - New diagonalizable Hankel matrices

A class of Jacobi matrices

We consider the class of Jacobi matrices $J=J(a, b, c ; \sigma, k)$ with:

$$
\begin{aligned}
& \alpha_{n}=-\sqrt{(n+1)(n+a+1)(n+b+1)(n+c+1)} \\
& \beta_{n}=\left(k^{-1}+k\right) n(n+\sigma)
\end{aligned}
$$

for $a, b, c>-1, \sigma \in \mathbb{R}$, and $k \in(0,1)$.

A class of Jacobi matrices

We consider the class of Jacobi matrices $J=J(a, b, c ; \sigma, k)$ with:

$$
\begin{aligned}
& \alpha_{n}=-\sqrt{(n+1)(n+a+1)(n+b+1)(n+c+1)} \\
& \beta_{n}=\left(k^{-1}+k\right) n(n+\sigma)
\end{aligned}
$$

for $a, b, c>-1, \sigma \in \mathbb{R}$, and $k \in(0,1)$.
A motivation:
(1) The corresponding OGPs are closely related to Heun functions.

A class of Jacobi matrices

We consider the class of Jacobi matrices $J=J(a, b, c ; \sigma, k)$ with:

$$
\begin{aligned}
& \alpha_{n}=-\sqrt{(n+1)(n+a+1)(n+b+1)(n+c+1)} \\
& \beta_{n}=\left(k^{-1}+k\right) n(n+\sigma)
\end{aligned}
$$

for $a, b, c>-1, \sigma \in \mathbb{R}$, and $k \in(0,1)$.
A motivation:
(1) The corresponding OGPs are closely related to Heun functions.
(2) For $k=1$, generalized Hilbert matrix commutes with a particular class of the Jacobi matrix (Wilson, Cont. dual Hahn).

A class of Jacobi matrices

We consider the class of Jacobi matrices $J=J(a, b, c ; \sigma, k)$ with:

$$
\begin{aligned}
& \alpha_{n}=-\sqrt{(n+1)(n+a+1)(n+b+1)(n+c+1)} \\
& \beta_{n}=\left(k^{-1}+k\right) n(n+\sigma)
\end{aligned}
$$

for $a, b, c>-1, \sigma \in \mathbb{R}$, and $k \in(0,1)$.
A motivation:
(1) The corresponding OGPs are closely related to Heun functions.
(2) For $k=1$, generalized Hilbert matrix commutes with a particular class of the Jacobi matrix (Wilson, Cont. dual Hahn).

Theorem

The Jacobi matrix J commutes with a non-trivial Hankel matrix if and only if α_{n} is a polynomial function of n.

Characterization of commuting Hankel matrices

Theorem

Let J is the Jacobi matrix with

$$
\alpha_{n}=-(n+1)(n+a+1), \quad \beta_{n}=\left(k+k^{-1}\right) n(n+\sigma) .
$$

Characterization of commuting Hankel matrices

Theorem

Let J is the Jacobi matrix with

$$
\alpha_{n}=-(n+1)(n+a+1), \quad \beta_{n}=\left(k+k^{-1}\right) n(n+\sigma)
$$

Then, up to a constant multiplier, the Hankel matrix $H_{m, n}=h_{m+n}$ with entries

$$
h_{n}=\frac{k^{n} \Gamma(n+a+1)}{\Gamma(n+a+\omega(a, \sigma)+1)}{ }_{2} F_{1}\left(n+a+1, \omega(a, \sigma)-1 ; n+a+\omega(a, \sigma)+1 ; k^{2}\right)
$$

where

$$
\omega(a, \sigma)=\frac{-2 k^{2}+\left(1+k^{2}\right)(\sigma-a)}{1-k^{2}}
$$

is the only Hankel matrix with $h \in \ell^{2}\left(\mathbb{N}_{0}\right)$ commuting with J.

Characterization of commuting Hankel matrices

Theorem

Let J is the Jacobi matrix with

$$
\alpha_{n}=-(n+1)(n+a+1), \quad \beta_{n}=\left(k+k^{-1}\right) n(n+\sigma)
$$

Then, up to a constant multiplier, the Hankel matrix $H_{m, n}=h_{m+n}$ with entries

$$
h_{n}=\frac{k^{n} \Gamma(n+a+1)}{\Gamma(n+a+\omega(a, \sigma)+1)}{ }_{2} F_{1}\left(n+a+1, \omega(a, \sigma)-1 ; n+a+\omega(a, \sigma)+1 ; k^{2}\right)
$$

where

$$
\omega(a, \sigma)=\frac{-2 k^{2}+\left(1+k^{2}\right)(\sigma-a)}{1-k^{2}}
$$

is the only Hankel matrix with $h \in \ell^{2}\left(\mathbb{N}_{0}\right)$ commuting with J. Moreover, H is a trace class operator on $\ell^{2}\left(\mathbb{N}_{0}\right)$.

Characterization of commuting Hankel matrices

Theorem

Let J is the Jacobi matrix with

$$
\alpha_{n}=-(n+1)(n+a+1), \quad \beta_{n}=\left(k+k^{-1}\right) n(n+\sigma)
$$

Then, up to a constant multiplier, the Hankel matrix $H_{m, n}=h_{m+n}$ with entries

$$
h_{n}=\frac{k^{n} \Gamma(n+a+1)}{\Gamma(n+a+\omega(a, \sigma)+1)}{ }_{2} F_{1}\left(n+a+1, \omega(a, \sigma)-1 ; n+a+\omega(a, \sigma)+1 ; k^{2}\right)
$$

where

$$
\omega(a, \sigma)=\frac{-2 k^{2}+\left(1+k^{2}\right)(\sigma-a)}{1-k^{2}}
$$

is the only Hankel matrix with $h \in \ell^{2}\left(\mathbb{N}_{0}\right)$ commuting with J. Moreover, H is a trace class operator on $\ell^{2}\left(\mathbb{N}_{0}\right)$.

- For $\sigma=a+1$ and $k \rightarrow 1$, we arrive at the generalized Hankel matrix

$$
h_{n}=\frac{1}{n+a+1} .
$$

Stieltjes-Carlitz polynomials

- Following the lines of the commutator method we seek for Jacobi matrices with

$$
\alpha_{n}=-(n+1)(n+a+1), \quad \beta_{n}=\left(k+k^{-1}\right) n(n+\sigma)
$$

whose spectral properties can be obtained explicitly (or in terms of special functions).

Stieltjes-Carlitz polynomials

- Following the lines of the commutator method we seek for Jacobi matrices with

$$
\alpha_{n}=-(n+1)(n+a+1), \quad \beta_{n}=\left(k+k^{-1}\right) n(n+\sigma)
$$

whose spectral properties can be obtained explicitly (or in terms of special functions).

- It turns out that there are at least 4 special Jacobi matrices whose spectral properties can be deduced from the known properties of the Stieltjes-Carlitz polynomials (Carlitz 1960).

Stieltjes-Carlitz polynomials

- Following the lines of the commutator method we seek for Jacobi matrices with

$$
\alpha_{n}=-(n+1)(n+a+1), \quad \beta_{n}=\left(k+k^{-1}\right) n(n+\sigma)
$$

whose spectral properties can be obtained explicitly (or in terms of special functions).

- It turns out that there are at least 4 special Jacobi matrices whose spectral properties can be deduced from the known properties of the Stieltjes-Carlitz polynomials (Carlitz 1960).
- These corresponds to the particular values of the parameters

	p	q	r	s
a	$-1 / 2$	$1 / 2$	$-1 / 2$	$1 / 2$
σ	$1 /\left(k^{2}+1\right)$	$\left(1+2 k^{2}\right) /\left(k^{2}+1\right)$	$k^{2} /\left(k^{2}+1\right)$	$\left(2+k^{2}\right) /\left(k^{2}+1\right)$

Stieltjes-Carlitz polynomials

- Following the lines of the commutator method we seek for Jacobi matrices with

$$
\alpha_{n}=-(n+1)(n+a+1), \quad \beta_{n}=\left(k+k^{-1}\right) n(n+\sigma)
$$

whose spectral properties can be obtained explicitly (or in terms of special functions).

- It turns out that there are at least 4 special Jacobi matrices whose spectral properties can be deduced from the known properties of the Stieltjes-Carlitz polynomials (Carlitz 1960).
- These corresponds to the particular values of the parameters

	p	q	r	s
a	$-1 / 2$	$1 / 2$	$-1 / 2$	$1 / 2$
σ	$1 /\left(k^{2}+1\right)$	$\left(1+2 k^{2}\right) /\left(k^{2}+1\right)$	$k^{2} /\left(k^{2}+1\right)$	$\left(2+k^{2}\right) /\left(k^{2}+1\right)$

- Basic elements of the theory of elliptic functions:

$$
K=K(k):=\int_{0}^{\pi / 2} \frac{\mathrm{~d} \theta}{\sqrt{1-k^{2} \sin ^{2} \theta}}, \quad K^{\prime}=K^{\prime}(k):=K\left(\sqrt{1-k^{2}}\right)
$$

and

$$
q=q(k):=\exp \left(-\pi K^{\prime}(k) / K(k)\right)
$$

Four new diagonalizable Hankel matrices

We introduce four Hankel matrices $H^{(p)}, H^{(q)}, H^{(r)}, H^{(s)}$, depending on a parameter $k \in(0,1)$,

$$
H_{m, n}^{(j)}=h_{m+n}^{(j)}, \quad j=p, q, r, s,
$$

for $m, n \in \mathbb{N}_{0}$, where

$$
\begin{aligned}
& h_{n}^{(p)}:=\frac{k^{n} \Gamma(n+1 / 2)}{(n+1)!}{ }_{2} F_{1}\left(\left.\begin{array}{c}
n+1 / 2,1 / 2 \\
n+2
\end{array} \right\rvert\, k^{2}\right)=\frac{4 k^{n}}{\sqrt{\pi}} \int_{0}^{1} t^{2 n} \sqrt{\frac{1-t^{2}}{1-k^{2} t^{2}}} \mathrm{~d} t, \\
& h_{n}^{(q)}:=\frac{k^{n} \Gamma(n+3 / 2)}{(n+1)!}{ }_{2} F_{1}\left(\left.\begin{array}{c}
n+3 / 2,-1 / 2 \\
n+2
\end{array} \right\rvert\, k^{2}\right)=\frac{2 k^{n}}{\sqrt{\pi}} \int_{0}^{1} t^{2 n+2} \sqrt{\frac{1-k^{2} t^{2}}{1-t^{2}}} \mathrm{~d} t, \\
& h_{n}^{(r)}:=\frac{k^{n} \Gamma(n+1 / 2)}{n!}{ }_{2} F_{1}\left(\left.\begin{array}{c}
n+1 / 2,-1 / 2 \\
n+1
\end{array} \right\rvert\, k^{2}\right)=\frac{2 k^{n}}{\sqrt{\pi}} \int_{0}^{1} t^{2 n} \sqrt{\frac{1-k^{2} t^{2}}{1-t^{2}}} \mathrm{~d} t, \\
& h_{n}^{(s)}:=\frac{k^{n} \Gamma(n+3 / 2)}{(n+2)!}{ }_{2} F_{1}\left(\left.\begin{array}{c}
n+3 / 2,1 / 2 \\
n+3
\end{array} \right\rvert\, k^{2}\right)=\frac{4 k^{n}}{\sqrt{\pi}} \int_{0}^{1} t^{2 n+2} \sqrt{\frac{1-t^{2}}{1-k^{2} t^{2}}} \mathrm{~d} t .
\end{aligned}
$$

Diagonalization of $H^{(p)}, H^{(q)}, H^{(r)}, H^{(s)}$.

Theorem

Each of the Hankel matrices $H^{(j)}, j=p, q, r, s$, represents a positive trace class operator on $\ell^{2}\left(\mathbb{N}_{0}\right)$ with simple eigenvalues which are as follows:

$$
\begin{aligned}
& \nu_{m}^{(p)}=\frac{4 \sqrt{\pi}}{k} \frac{q^{m+1 / 2}}{1+q^{2 m+1}}, \quad m \geq 0, \\
& \nu_{m}^{(q)}=\frac{2 \sqrt{\pi}}{k} \frac{q^{m+1 / 2}}{1+q^{2 m+1}}, \quad m \geq 0, \\
& \nu_{m}^{(r)}=2 \sqrt{\pi} \frac{q^{m}}{1+q^{2 m}}, \quad m \geq 0, \\
& \nu_{m}^{(s)}=\frac{4 \sqrt{\pi}}{k^{2}} \frac{q^{m}}{1+q^{2 m}}, \quad m \geq 1 .
\end{aligned}
$$

Diagonalization of $H^{(p)}, H^{(q)}, H^{(r)}, H^{(s)}$.

Theorem

Each of the Hankel matrices $H^{(j)}, j=p, q, r, s$, represents a positive trace class operator on $\ell^{2}\left(\mathbb{N}_{0}\right)$ with simple eigenvalues which are as follows:

$$
\begin{aligned}
& \nu_{m}^{(p)}=\frac{4 \sqrt{\pi}}{k} \frac{q^{m+1 / 2}}{1+q^{2 m+1}}, \quad m \geq 0, \\
& \nu_{m}^{(q)}=\frac{2 \sqrt{\pi}}{k} \frac{q^{m+1 / 2}}{1+q^{2 m+1}}, \quad m \geq 0, \\
& \nu_{m}^{(r)}=2 \sqrt{\pi} \frac{q^{m}}{1+q^{2 m}}, \quad m \geq 0 \\
& \nu_{m}^{(s)}=\frac{4 \sqrt{\pi}}{k^{2}} \frac{q^{m}}{1+q^{2 m}}, \quad m \geq 1
\end{aligned}
$$

Moreover, the corresponding eigenvectors and their ℓ^{2}-norms are expressible in terms of the Stieltjes-Carlitz polynomials and elliptic integrals (not displayed).

Thank you!

