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m Let H be a complex separable Hilbert space.
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m Let A be bounded self-adjoint linear operator on ‘H with a cyclic vector § € H, i.e.
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m Let H be a complex separable Hilbert space.
m Let A be bounded self-adjoint linear operator on ‘H with a cyclic vector § € H, i.e.

span{A"5 | n>0} =H.

(We take 6 normalized, i.e. |d] = 1.)

Theorem [Spectral theorem, self-adjoint case, simple spectrum]

There is a unique probability measure p on R and a unitary operator | U : H — Lz(p)

such that

Us=1 and UAU™ - M,.|

Here My () = Af(X).

Franti$ek Stampach (CTU in Prague) Symmetric Anti-linear Operators 3/16



Self-adjoint linear operators - Spectral theorem & Tridiagonalisation
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m Let H be a complex separable Hilbert space.
m Let A be bounded self-adjoint linear operator on ‘H with a cyclic vector § € H, i.e.

span{A"5 | n>0} =H.

(We take 6 normalized, i.e. |d] = 1.)

Theorem [Spectral theorem, self-adjoint case, simple spectrum]

There is a unique probability measure p on R and a unitary operator | U : H — Lz(p)

such that

Us=1 and UAU™ - M,.|

Here My () = Af(X).

m "Proof": i := (0, Ead), where E, is the projection-valued spectral measure of A.
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Self-adjoint linear operators - Spectral theorem & Tridiagonalisation

Diagonalisation of self-adjoint operators with simple spectrum

m Let H be a complex separable Hilbert space.
m Let A be bounded self-adjoint linear operator on ‘H with a cyclic vector § € H, i.e.

span{A"5 | n>0} =H.

(We take 6 normalized, i.e. |d] = 1.)

Theorem [Spectral theorem, self-adjoint case, simple spectrum]

There is a unique probability measure p on R and a unitary operator | U : H — Lz(p)

such that

Us=1 and UAU™ - M,.|

Here My () = Af(X).

m "Proof": i := (0, Ead), where E, is the projection-valued spectral measure of A.
m M, is a "functional model" of A acting on the "model space” L?().
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Tridiagonalisation of self-adjoint operators with simple spectrum

m Jacobi matrix:

bo ap 0 0
ao b1 a 0
J=10 a b a |, an>0,byeR.
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Tridiagonalisation of self-adjoint operators with simple spectrum

m Jacobi matrix:
bo ap 0 0
ao b1 a 0
J=10 a b a |, an>0,byeR.

Theorem [Tridiagonalization, self-adjoint case, simple spectrum]

There exist a unique Jacobi matrix J and a unitary operator | V : % — ¢*(Ny) | such that

Vi-d and VAV =J,]

where & = (1,0,0,...)".
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Self-adjoint linear operators - Spectral theorem & Tridiagonalisation

Tridiagonalisation of self-adjoint operators with simple spectrum

m Jacobi matrix:

bo ap 0 0
ao b1 a 0
J=10 a b a |, an>0,byeR.

Theorem [Tridiagonalization, self-adjoint case, simple spectrum]

There exist a unique Jacobi matrix J and a unitary operator | V : % — ¢*(Ny) | such that

Vi-d and VAV =J,]

where & = (1,0,0,...)". The sequences a, > 0 and b, € R are uniquely defined by
these conditions.

m Jis a "functional model" of A acting on the "model space" ¢?(Np).
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Sketch of the proof

m Apply Gram—Schmidt process to monomials 1, A, A%, ... w.r.t. the inner product
[nﬂ=@MﬁWM®=AMMWMMO)UaMfw»

where . be the spectral measure of A.
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m Apply Gram—Schmidt process to monomials 1, A, A%, ... w.r.t. the inner product
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where . be the spectral measure of A.

m The resulting sequence {p,}q, of orthonormal polynomials satisfies the 3-term
recurrence:

301901 (A) + Bapa(A) + @nPns1 () = Apa(A), N2 0,

with a convention a_y = p_y = 0 and normalised by conditions a, >0 and pp = 1.
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Sketch of the proof

m Apply Gram—Schmidt process to monomials 1, A, A%, ... w.r.t. the inner product
[P, q] = (p(A)d,q(A)d) = fRP(A)q(A)du(A) (i.e. in L*(n)),

where . be the spectral measure of A.

m The resulting sequence {p,}q, of orthonormal polynomials satisfies the 3-term
recurrence:

301901 (A) + Bapa(A) + @nPns1 () = Apa(A), N2 0,

with a convention a_y = p_y = 0 and normalised by conditions a, >0 and pp = 1.
m From the 3-term recurrence, we read off a, and b,, and define J.
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[P, q] = (p(A)d,q(A)d) = fRP(A)q(A)du(A) (i.e. in L*(n)),

where . be the spectral measure of A.

m The resulting sequence {p,}q, of orthonormal polynomials satisfies the 3-term
recurrence:

301901 (A) + Bapa(A) + @nPns1 () = Apa(A), N2 0,

with a convention a_y = p_y = 0 and normalised by conditions a, >0 and pp = 1.
m From the 3-term recurrence, we read off a, and b,, and define J.

m {pn(A)d}, is ONB of #H, and the unitary map V : % — (2(Np) is defined by the
correspondence
Vi pn(A)S — 6n,

where {3}, is the standard ONB of £%(Ny).
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Sketch of the proof

m Apply Gram—Schmidt process to monomials 1, A, A%, ... w.r.t. the inner product
[P, q] = (p(A)d,q(A)d) = fRP(A)q(A)du(A) (i.e. in L*(n)),

where . be the spectral measure of A.

m The resulting sequence {p,}q, of orthonormal polynomials satisfies the 3-term
recurrence:

301901 (A) + Bapa(A) + @nPns1 () = Apa(A), N2 0,

with a convention a_y = p_y = 0 and normalised by conditions a, >0 and pp = 1.
m From the 3-term recurrence, we read off a, and b,, and define J.
m {pn(A)d}, is ONB of #H, and the unitary map V : % — (2(Np) is defined by the
correspondence
V' pn(A)S + 6n,
where {3}, is the standard ONB of £%(Ny).

m Then 1
Vo=6 and VAV =J.
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Symmetric anti-linear operators - Spectral theorem

Anti-linear operators

m Let B be bounded anti-linear operator on H:

B(x+y)=Bx+By and B(ax)=aBx (VX,y e H;Va eC)
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m We assume B has a (normalized) cyclic vector :
span{B"3 [n>0} = H.
m We assume B is symmetric:

(Bx,y) = (By,x) (Vx,y e H)

Examples:

m Anti-linear Jacobi operator: B = JC, where J is the Jacobi matrix with complex
entries and C the complex conjugation on ¢2(Np).
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Symmetric anti-linear operators - Spectral theorem

Anti-linear operators

m Let B be bounded anti-linear operator on H:
B(x+y)=Bx+By and B(ax)=aBx (VX,y e H;Va eC)
m We assume B has a (normalized) cyclic vector :
span{B"3 [n>0} = H.
m We assume B is symmetric:

(Bx,y) = (By,x) (Vx,y e H)

Examples:

m Anti-linear Jacobi operator: B = JC, where J is the Jacobi matrix with complex
entries and C the complex conjugation on ¢2(Np).

m Complex symmetric operators: Let C be a conjugation on #, i.e. C anti-unitary and
C? = |, and A a linear bounded C-symmetric operator on #; i.e. A* = CAC. Then
B := AC is anti-linear symmetric operator.
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Symmetric anti-linear operators - Spectral theorem

Anti-linear literature

m Complex symmetric operators (C/7/J-symmetric, self-transpose):
Bender, Camara, Derezinski, Garcia, Gazeau, Georgescu, KrejCitik, Ptak, Putinar,
Shapiro, Siegl, Znajil,... (very incomplete list)
m Functional properties of anti-linear operators:
Gérard, Herbut, Kaplansky, Mller, Pushnitski, Treil, Uhimann, Vuji¢i¢,...
m Complex Jacobi matrix and the moment problem:
Huhtanen, Perdmaki, Ruotsalainen, Zagorodnyuk,...

Franti$ek Stampach (CTU in Prague) Symmetric Anti-linear Operators 8/16



The spectral data of B

m Recall B is bounded anti-linear symmetric operator with normalized cyclic vector §.
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The spectral data of B

m Recall B is bounded anti-linear symmetric operator with normalized cyclic vector §.
m B?is a linear non-negative operator and |B)| := \/B2.
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Symmetric anti-linear operators - Spectral theorem

The spectral data of

B

m Recall B is bounded anti-linear symmetric operator with normalized cyclic vector §.

m B is a linear non-negative operator and |B] := \/B2.

m Spectral measure v:

(f(|B|)5,a>:fo°°f(s)du(s), vfe C(R).
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The spectral data of B

m Recall B is bounded anti-linear symmetric operator with normalized cyclic vector §.
m B is a linear non-negative operator and |B] := \/B2.
m Spectral measure v:

(f(|B|)5,a>:fo°°f(s)du(s), vfe C(R).

Proposition [Phase function ]

There exists a unique complex-valued phase function ¢» € L (v) such that

(f(|B|)Bc5,5):/Owsf(s)w(s)dz/(s), Vfe C(R).

and ¢(0) = 1 if »({0}) > 0. The function 1) satisfies |(s)| < 1, v-a.e. s> 0.
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The spectral data of B

m Recall B is bounded anti-linear symmetric operator with normalized cyclic vector §.
m B is a linear non-negative operator and |B] := \/B2.
m Spectral measure v:

(f(|B|)5,a>:fo°°f(s)du(s), vfe C(R).

Proposition [Phase function ]

There exists a unique complex-valued phase function ¢» € L (v) such that

(f(|B|)Bc5,5):/Owsf(s)w(s)dz/(s), Vfe C(R).

and ¢(0) = 1 if »({0}) > 0. The function 1) satisfies |(s)| < 1, v-a.e. s> 0.

m (v,7) is called spectral data of B.
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Symmetric anti-linear operators - Spectral theorem

The functional model B

Proposition

The vector § is of maximal type for |B| and the spectrum of |B| has

multiplicity 1 on Sy := {s>0:|(s)| =1},
multiplicity 2 on Sz :={s>0: [¢(s)| < 1}.
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The functional model B

Proposition

The vector § is of maximal type for |B| and the spectrum of |B| has

multiplicity 1 on Sy := {s>0:|(s)| =1},
multiplicity 2 on Sz :={s>0: [¢(s)| < 1}.

Define

f oo
ety ={r= (1) [T (1R 1a(6)F) () < o).
Definition [model space, model operator]

We define the model operator B on the subspace

M) = {2 C%) =000 S}

by

o ws)  T-ROPR)(sh(S)
(BN(s) = (w “WEE  -9(s) )(sfz<s))'
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Symmetric anti-linear operators - Spectral theorem

The functional model B

Definition [model space, model operator]
We define the model operator B on the subspace

M) = {2 C%) =000 S}

W) TR\ (sh(S)
(BN){s) = (w “WEE  -9(s) )(sf2<s))'
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The functional model B

Definition [model space, model operator]
We define the model operator B on the subspace

M) = {2 C%) =000 S}

W) TR\ (sh(S)
(BN){s) = (w “WEE  -9(s) )(sf2<s))'

Example: Suppose the spectrum of |B| is simple, i.e. |[¢(s)| = 1 for v-a.e. § > 0.
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Symmetric anti-linear operators - Spectral theorem

The functional model B

Definition [model space, model operator]

We define the model operator B on the subspace

M) = {2 C%) =000 S}

W) TR\ (sh(S)
(BN){s) = (w “WEE  -9(s) )(sf2<s))'

Example: Suppose the spectrum of |B| is simple, i.e. |[¢(s)| = 1 for v-a.e. § > 0.
Then M(v) ~ L?(v) and B acts (after a trivial identification) as

{(BN(s) = s(S)T(S).

Notice the analogy between B and M;.
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Symmetric anti-linear operators - Spectral theorem

A spectral theorem for symmetric anti-linear operators

m Assumption: Let B be a bounded symmetric anti-linear operator on H with a cyclic
vector § and (v, ) the spectral data of B.
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A spectral theorem for symmetric anti-linear operators

m Assumption: Let B be a bounded symmetric anti-linear operator on H with a cyclic
vector § and (v, ) the spectral data of B.

m Model: Let B be the model operator on M(v) constructed from (v, ).
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Symmetric anti-linear operators - Spectral theorem

A spectral theorem for symmetric anti-linear operators

m Assumption: Let B be a bounded symmetric anti-linear operator on H with a cyclic
vector § and (v, ) the spectral data of B.

m Model: Let B be the model operator on M(v) constructed from (v, ).

Theorem [Pushnitski-S ]
There exists a unitary map U : H - M (v) such that

0

U5:(1) and UBU'=B.
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Symmetric anti-linear operators - Tridiagonalisation

Tridiagonalisation of symmetric anti-linear operators

m Anti-linear Jacobi operator: , Where

bp a 0 O
ao b1 a 0
J=10 a b a |, an>0, b,eC.

0 0 ao b3

Franti$ek Stampach (CTU in Prague) Symmetric Anti-linear Operators 14/16



Symmetric anti-linear operators - Tridiagonalisation

Tridiagonalisation of symmetric anti-linear operators

m Anti-linear Jacobi operator: , Where

bp a 0 O
ao b1 a 0
J=10 a b a |, an>0, b,eC.

0 0 ao b3

m Assumption: Let B be a bounded symmetric anti-linear operator on H with a cyclic
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0 0 ao b3

m Assumption: Let B be a bounded symmetric anti-linear operator on H with a cyclic
vector 4.

Theorem [Pushnitski-S.]
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such that
Vé6=6 and VBV =.
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Symmetric anti-linear operators - Tridiagonalisation

Tridiagonalisation of symmetric anti-linear operators

m Anti-linear Jacobi operator: , Where

bp a 0 O
ao b1 a 0
J=10 a b a |, an>0, b,eC.

0 0 as b3

m Assumption: Let B be a bounded symmetric anti-linear operator on H with a cyclic
vector 4.

Theorem [Pushnitski-S.]
There exist bounded sequences a, > 0 and b, € C and a unitary map V : H — £2(Np)

such that
Vé6=6 and VBV =.

The sequences a, > 0 and b, € C are uniquely defined by these conditions.
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Sketch of the proof

m Apply Gram—Schmidt process to monomials 1, s, s, ... w.r.t. the inner product

pa=e@aaen- [y ") (5E) ()] e

p°(s) := M7 p°(s) = M

and (v, 1) are spectral data of B.

where
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p°(s) := M7 p°(s) = M

and (v, 1) are spectral data of B.
m The non-degenaracy of [-,-] is non-trivial.
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Sketch of the proof

m Apply Gram—Schmidt process to monomials 1, s, s, ... w.r.t. the inner product

pa=e@aaen- [y ") (5E) ()] e

s)+p(-s s)-p(-s
and (v, 1) are spectral data of B.
m The non-degenaracy of [-,-] is non-trivial.
m The resulting sequence {qn} o of anti-orthonormal polynomials satisfies the
3-term recurrence:

where

8n-1Gn-1(S) + bnQn(S) + @nQn+1(S) = sqn(s), n=0,

with a convention a_y = g_1 = 0 and normalised by conditions a, > 0 and qo = 1.
Here b, € C!
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m From the 3-term recurrence, we read off a, and b, and define Jc.
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Here b, € C!

m From the 3-term recurrence, we read off a, and b,, and define Jc.
m {pn(B)d}32, is ONB of 7, and the unitary map V : H — ¢2(Ny) is defined by

V:pn(B)S > 6n, n>0.
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Sketch of the proof

m Apply Gram—Schmidt process to monomials 1, s, s, ... w.r.t. the inner product

pa=e@aaen- [y ") (5E) ()] e

s)+p(-s s)-p(-s
and (v, 1) are spectral data of B.
m The non-degenaracy of [-,-] is non-trivial.
m The resulting sequence {qn} o of anti-orthonormal polynomials satisfies the

3-term recurrence:

8n-1Gn-1(S) + bnQn(S) + @nQn+1(S) = sqn(s), n=0,

where

with a convention a_y = g_1 = 0 and normalised by conditions a, > 0 and qo = 1.
Here b, € C!
m From the 3-term recurrence, we read off a, and b,, and define Jc.
m {pn(B)d}32, is ONB of 7, and the unitary map V : H — ¢2(Ny) is defined by
V:pn(B)d—6n, n>0.

m Then one can show that V§ = 6, and VBV~ = Jc as well as the uniqueness.
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Symmetric anti-linear operators - Tridiagonalisation

= P Gérard, S. Grellier: Th
Astérisque 389 (2017).

m A. Pushnitski, F. S.: An inverse spectral problem for non-self-adjoint Jacobi
matrices, Int. Math. Res. Not. 2024 (2024).

Based on:

m A. Pushnitski, F. S.: A functional model and tridiagonalisation for symmetric
anti-linear operators, preprint (2024), arXiv:2402.01237.
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