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Self-adjoint linear operators - Spectral theorem & Tridiagonalisation

Diagonalisation of self-adjoint operators with simple spectrum

Let H be a complex separable Hilbert space.

Let A be bounded self-adjoint linear operator on H with a cyclic vector δ ∈H, i.e.

span{Anδ ∣ n ≥ 0} =H.

(We take δ normalized, i.e. ∥δ∥ = 1.)

Theorem [Spectral theorem, self-adjoint case, simple spectrum]

There is a unique probability measure µ on R and a unitary operator U ∶H → L2(µ)
such that

Uδ = 1 and UAU−1 = Mλ.

Here Mλf (λ) = λf (λ).

"Proof": µ ∶= ⟨δ,EAδ⟩, where EA is the projection-valued spectral measure of A.

Mλ is a "functional model" of A acting on the "model space" L2(µ).
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Self-adjoint linear operators - Spectral theorem & Tridiagonalisation

Tridiagonalisation of self-adjoint operators with simple spectrum

Jacobi matrix:

J =

⎛
⎜⎜⎜⎜⎜
⎝

b0 a0 0 0 ⋯
a0 b1 a1 0 ⋯
0 a1 b2 a2 ⋯
0 0 a2 b3 ⋯
⋮ ⋮ ⋮ ⋮ ⋱

⎞
⎟⎟⎟⎟⎟
⎠

, an > 0, bn ∈ R.

Theorem [Tridiagonalization, self-adjoint case, simple spectrum]

There exist a unique Jacobi matrix J and a unitary operator V ∶H → `2(N0) such that

Vδ = δ0 and VAV−1 = J,

where δ0 = (1,0,0, . . . )T .

The sequences an > 0 and bn ∈ R are uniquely defined by
these conditions.

J is a "functional model" of A acting on the "model space" `2(N0).
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Self-adjoint linear operators - Spectral theorem & Tridiagonalisation

Sketch of the proof

Apply Gram–Schmidt process to monomials 1, λ, λ2, . . . w.r.t. the inner product

[p,q] ∶= ⟨p(A)δ,q(A)δ⟩ = ∫
R

p(λ)q(λ)dµ(λ) (i.e. in L2(µ)),

where µ be the spectral measure of A.
The resulting sequence {pn}∞n=0 of orthonormal polynomials satisfies the 3-term
recurrence:

an−1pn−1(λ) + bnpn(λ) + anpn+1(λ) = λpn(λ), n ≥ 0,

with a convention a−1 = p−1 = 0 and normalised by conditions an > 0 and p0 = 1.
From the 3-term recurrence, we read off an and bn, and define J.
{pn(A)δ}∞n=0 is ONB of H, and the unitary map V ∶H → `2(N0) is defined by the
correspondence

V ∶ pn(A)δ ↦ δn,

where {δn}∞n=0 is the standard ONB of `2(N0).
Then

Vδ = δ0 and VAV−1 = J.
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Symmetric anti-linear operators - Spectral theorem

Contents

1 Self-adjoint linear operators - Spectral theorem & Tridiagonalisation

2 Symmetric anti-linear operators - Spectral theorem

3 Symmetric anti-linear operators - Tridiagonalisation

František Štampach (CTU in Prague) Symmetric Anti-linear Operators 6 / 16



Symmetric anti-linear operators - Spectral theorem

Anti-linear operators

Let B be bounded anti-linear operator on H:

B(x + y) = Bx + By and B(αx) = αBx (∀x , y ∈H;∀α ∈ C)

We assume B has a (normalized) cyclic vector δ:

span{Bnδ ∣ n ≥ 0} =H.

We assume B is symmetric:

⟨Bx , y⟩ = ⟨By , x⟩ (∀x , y ∈H)

Examples:

Anti-linear Jacobi operator: B = JC, where J is the Jacobi matrix with complex
entries and C the complex conjugation on `2(N0).
Complex symmetric operators: Let C be a conjugation on H, i.e. C anti-unitary and
C2 = I, and A a linear bounded C-symmetric operator on H; i.e. A∗ = CAC. Then
B ∶= AC is anti-linear symmetric operator.
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Symmetric anti-linear operators - Spectral theorem

Anti-linear literature

Complex symmetric operators (C/T /J -symmetric, self-transpose):
Bender, Câmara, Dereziński, Garcia, Gazeau, Georgescu, Krejčiřík, Ptak, Putinar,
Shapiro, Siegl, Znojil,... (very incomplete list)

Functional properties of anti-linear operators:
Gérard, Herbut, Kaplansky, Müller, Pushnitski, Treil, Uhlmann, Vujičić,...

Complex Jacobi matrix and the moment problem:
Huhtanen, Perämäki, Ruotsalainen, Zagorodnyuk,...
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Symmetric anti-linear operators - Spectral theorem

The spectral data of B

Recall B is bounded anti-linear symmetric operator with normalized cyclic vector δ.

B2 is a linear non-negative operator and ∣B∣ ∶=
√

B2.

Spectral measure ν:

⟨f (∣B∣)δ, δ⟩ = ∫
∞

0
f (s)dν(s), ∀f ∈ C(R).

Proposition [Phase function ψ]

There exists a unique complex-valued phase function ψ ∈ L∞(ν) such that

⟨f (∣B∣)Bδ, δ⟩ = ∫
∞

0
sf (s)ψ(s)dν(s), ∀f ∈ C(R).

and ψ(0) = 1 if ν({0}) > 0. The function ψ satisfies ∣ψ(s)∣ ≤ 1, ν-a.e. s > 0.

(ν,ψ) is called spectral data of B.
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√

B2.

Spectral measure ν:

⟨f (∣B∣)δ, δ⟩ = ∫
∞

0
f (s)dν(s), ∀f ∈ C(R).

Proposition [Phase function ψ]
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∞

0
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and ψ(0) = 1 if ν({0}) > 0. The function ψ satisfies ∣ψ(s)∣ ≤ 1, ν-a.e. s > 0.

(ν,ψ) is called spectral data of B.
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Symmetric anti-linear operators - Spectral theorem

The functional model B

Proposition

The vector δ is of maximal type for ∣B∣ and the spectrum of ∣B∣ has

⎧⎪⎪⎨⎪⎪⎩

multiplicity 1 on S1 ∶= {s ≥ 0 ∶ ∣ψ(s)∣ = 1},
multiplicity 2 on S2 ∶= {s ≥ 0 ∶ ∣ψ(s)∣ < 1}.

Define

L2(ν;C2) ∶= {f = (f1
f2
) ∶ ∫

∞

0
(∣f1(s)∣2 + ∣f2(s)∣2) dν(s) <∞} .

Definition [model space, model operator]

We define the model operator B on the subspace

M(ν) ∶= {f ∈ L2(ν;C2) ∶ f2 ≡ 0 on S1}

by

(Bf )(s) ∶= ( ψ(s)
√

1 − ∣ψ(s)∣2√
1 − ∣ψ(s)∣2 −ψ(s)

)(sf1(s)
sf2(s)

) .
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Symmetric anti-linear operators - Spectral theorem

The functional model B

Definition [model space, model operator]

We define the model operator B on the subspace

M(ν) ∶= {f ∈ L2(ν;C2) ∶ f2 ≡ 0 on S1}

by

(Bf )(s) ∶= ( ψ(s)
√

1 − ∣ψ(s)∣2√
1 − ∣ψ(s)∣2 −ψ(s)

)(sf1(s)
sf2(s)

) .

Example:

Suppose the spectrum of ∣B∣ is simple, i.e. ∣ψ(s)∣ = 1 for ν-a.e. s ≥ 0.
ThenM(ν) ≃ L2(ν) and B acts (after a trivial identification) as

(Bf )(s) = sψ(s)f (s).

Notice the analogy between B and Ms.
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Symmetric anti-linear operators - Spectral theorem

A spectral theorem for symmetric anti-linear operators

Assumption: Let B be a bounded symmetric anti-linear operator on H with a cyclic
vector δ and (ν,ψ) the spectral data of B.

Model: Let B be the model operator onM(ν) constructed from (ν,ψ).

Theorem [Pushnitski–Š.]

There exists a unitary map U ∶H →M(ν) such that

Uδ = (1
0) and UBU−1 = B.
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Symmetric anti-linear operators - Tridiagonalisation

Contents

1 Self-adjoint linear operators - Spectral theorem & Tridiagonalisation

2 Symmetric anti-linear operators - Spectral theorem

3 Symmetric anti-linear operators - Tridiagonalisation

František Štampach (CTU in Prague) Symmetric Anti-linear Operators 13 / 16



Symmetric anti-linear operators - Tridiagonalisation

Tridiagonalisation of symmetric anti-linear operators

Anti-linear Jacobi operator: JC ∶= JC , where

J =

⎛
⎜⎜⎜⎜⎜
⎝

b0 a0 0 0 ⋯
a0 b1 a1 0 ⋯
0 a1 b2 a2 ⋯
0 0 a2 b3 ⋯
⋮ ⋮ ⋮ ⋮ ⋱

⎞
⎟⎟⎟⎟⎟
⎠

, an > 0, bn ∈ C.

Assumption: Let B be a bounded symmetric anti-linear operator on H with a cyclic
vector δ.

Theorem [Pushnitski–Š.]

There exist bounded sequences an > 0 and bn ∈ C and a unitary map V ∶H → `2(N0)
such that

Vδ = δ0 and VBV−1 = JC .

The sequences an > 0 and bn ∈ C are uniquely defined by these conditions.
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Symmetric anti-linear operators - Tridiagonalisation

Sketch of the proof

Apply Gram–Schmidt process to monomials 1, s, s2, . . . w.r.t. the inner product

[p,q] ∶= ⟨p(B)δ,q(B)δ⟩ = ∫
∞

0
⟨( 1 ψ(s)
ψ(s) 1

)(pe(s)
po(s)) ,(

qe(s)
qo(s))⟩ dν(s),

where
pe(s) ∶= p(s) + p(−s)

2
, po(s) ∶= p(s) − p(−s)

2
and (ν,ψ) are spectral data of B.
The non-degenaracy of [⋅, ⋅] is non-trivial.
The resulting sequence {qn}∞n=0 of anti-orthonormal polynomials satisfies the
3-term recurrence:

an−1qn−1(s) + bnqn(s) + anqn+1(s) = sqn(s), n ≥ 0,

with a convention a−1 = q−1 = 0 and normalised by conditions an > 0 and q0 = 1.
Here bn ∈ C!
From the 3-term recurrence, we read off an and bn, and define JC .
{pn(B)δ}∞n=0 is ONB of H, and the unitary map V ∶H → `2(N0) is defined by

V ∶ pn(B)δ ↦ δn, n ≥ 0.

Then one can show that Vδ = δ0 and VBV−1 = JC as well as the uniqueness.
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Symmetric anti-linear operators - Tridiagonalisation

Motivated by:

P. Gérard, S. Grellier: The cubic Szegő equation and Hankel operators,
Astérisque 389 (2017).

A. Pushnitski, F. Š.: An inverse spectral problem for non-self-adjoint Jacobi
matrices, Int. Math. Res. Not. 2024 (2024).

Based on:

A. Pushnitski, F. Š.: A functional model and tridiagonalisation for symmetric
anti-linear operators, preprint (2024), arXiv:2402.01237.
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