Inverse spectral problem for non-self-adjoint Jacobi operators

Frantisek Štampach (Czech Technical University in Prague) joint with Alexander Pushnitski
(King's College London)

Workshop on Operator Theory, Complex Analysis, and Applications University of Évora, Portugal

July 24-28, 2023

Based on:

A. Pushnitski, F. Štampach: An inverse spectral problem for non-self-adjoint Jacobi matrices
arXiv:2305.19608

Contents

(1) Direct and inverse SP for self-adjoint Jacobi matrices

2 Direct and inverse SP for non-self-adjoint Jacobi matrices

Bounded self-adjoint Jacobi matrices

Jacobi matrix:

$$
J=\left(\begin{array}{cccccc}
b_{0} & a_{0} & 0 & 0 & 0 & \cdots \\
a_{0} & b_{1} & a_{1} & 0 & 0 & \cdots \\
0 & a_{1} & b_{2} & a_{2} & 0 & \cdots \\
0 & 0 & a_{2} & b_{3} & a_{3} & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right) \quad \text { in } \ell^{2} \equiv \ell^{2}\left(\mathbb{N}_{0}\right)
$$

Bounded self-adjoint Jacobi matrices

Jacobi matrix:

$$
J=\left(\begin{array}{cccccc}
b_{0} & a_{0} & 0 & 0 & 0 & \cdots \\
a_{0} & b_{1} & a_{1} & 0 & 0 & \cdots \\
0 & a_{1} & b_{2} & a_{2} & 0 & \cdots \\
0 & 0 & a_{2} & b_{3} & a_{3} & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right) \quad \text { in } \ell^{2} \equiv \ell^{2}\left(\mathbb{N}_{0}\right)
$$

Assumptions: ■ J bounded:

$$
\sup _{n \geq 0}\left(\left|a_{n}\right|+\left|b_{n}\right|\right)<\infty
$$

Bounded self-adjoint Jacobi matrices

Jacobi matrix:

$$
J=\left(\begin{array}{cccccc}
b_{0} & a_{0} & 0 & 0 & 0 & \cdots \\
a_{0} & b_{1} & a_{1} & 0 & 0 & \cdots \\
0 & a_{1} & b_{2} & a_{2} & 0 & \cdots \\
0 & 0 & a_{2} & b_{3} & a_{3} & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right) \quad \text { in } \ell^{2} \equiv \ell^{2}\left(\mathbb{N}_{0}\right)
$$

Assumptions: ■ J bounded:

$$
\sup _{n \geq 0}\left(\left|a_{n}\right|+\left|b_{n}\right|\right)<\infty
$$

- J self-adjoint:

$$
a_{n}, b_{n} \in \mathbb{R}
$$

Bounded self-adjoint Jacobi matrices

Jacobi matrix:

$$
J=\left(\begin{array}{cccccc}
b_{0} & a_{0} & 0 & 0 & 0 & \cdots \\
a_{0} & b_{1} & a_{1} & 0 & 0 & \cdots \\
0 & a_{1} & b_{2} & a_{2} & 0 & \cdots \\
0 & 0 & a_{2} & b_{3} & a_{3} & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right) \quad \text { in } \ell^{2} \equiv \ell^{2}\left(\mathbb{N}_{0}\right)
$$

Assumptions: ■ J bounded:

$$
\sup _{n \geq 0}\left(\left|a_{n}\right|+\left|b_{n}\right|\right)<\infty
$$

■ J self-adjoint:

$$
a_{n}, b_{n} \in \mathbb{R}
$$

■ J non-degenerate:

$$
a_{n} \neq 0
$$

Bounded self-adjoint Jacobi matrices

Jacobi matrix:

$$
J=\left(\begin{array}{cccccc}
b_{0} & a_{0} & 0 & 0 & 0 & \cdots \\
a_{0} & b_{1} & a_{1} & 0 & 0 & \cdots \\
0 & a_{1} & b_{2} & a_{2} & 0 & \cdots \\
0 & 0 & a_{2} & b_{3} & a_{3} & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right) \quad \text { in } \ell^{2} \equiv \ell^{2}\left(\mathbb{N}_{0}\right)
$$

Assumptions:
■ J bounded:

$$
\sup _{n \geq 0}\left(\left|a_{n}\right|+\left|b_{n}\right|\right)<\infty
$$

■ J self-adjoint:

$$
a_{n}, b_{n} \in \mathbb{R}
$$

- J non-degenerate:

$$
a_{n} \neq 0
$$

■ Normalization:

$$
a_{n}>0
$$

Bounded self-adjoint Jacobi matrices

Jacobi matrix:

$$
J=\left(\begin{array}{cccccc}
b_{0} & a_{0} & 0 & 0 & 0 & \cdots \\
a_{0} & b_{1} & a_{1} & 0 & 0 & \cdots \\
0 & a_{1} & b_{2} & a_{2} & 0 & \cdots \\
0 & 0 & a_{2} & b_{3} & a_{3} & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right) \quad \text { in } \ell^{2} \equiv \ell^{2}\left(\mathbb{N}_{0}\right)
$$

Assumptions:
■ J bounded:

$$
\sup _{n \geq 0}\left(\left|a_{n}\right|+\left|b_{n}\right|\right)<\infty
$$

■ J self-adjoint:

$$
a_{n}, b_{n} \in \mathbb{R}
$$

■ J non-degenerate:

$$
a_{n} \neq 0
$$

■ Normalization:

$$
a_{n}>0
$$

(Operators $J(a, b)$ and $J(|a|, b)$ have the same spectral measure.)

Direct spectral problem: $J \mapsto \mu$

- A distinguished vector:

$$
\delta_{0}:=(1,0,0, \ldots)^{T} .
$$

Direct spectral problem: $J \mapsto \mu$

- A distinguished vector:

$$
\delta_{0}:=(1,0,0, \ldots)^{T} .
$$

- Spectral measure:

$$
\mu(\Delta):=\left\langle\chi_{\Delta}(J) \delta_{0}, \delta_{0}\right\rangle, \quad \Delta \in \mathcal{B}_{\mathbb{R}} .
$$

Direct spectral problem: $J \mapsto \mu$

- A distinguished vector:

$$
\delta_{0}:=(1,0,0, \ldots)^{T} .
$$

- Spectral measure:

$$
\mu(\Delta):=\left\langle\chi_{\Delta}(J) \delta_{0}, \delta_{0}\right\rangle, \quad \Delta \in \mathcal{B}_{\mathbb{R}} .
$$

Theorem (Direct spectral problem, self-adjoint case)

Vector δ_{0} is cyclic for J.

Direct spectral problem: $J \mapsto \mu$

- A distinguished vector:

$$
\delta_{0}:=(1,0,0, \ldots)^{T} .
$$

- Spectral measure:

$$
\mu(\Delta):=\left\langle\chi \Delta(J) \delta_{0}, \delta_{0}\right\rangle, \quad \Delta \in \mathcal{B}_{\mathbb{R}} .
$$

Theorem (Direct spectral problem, self-adjoint case)

Vector δ_{0} is cyclic for J.
Consequently, J is unitarily equivalent to the multiplication operator by x in $L^{2}(\mathbb{R}, \mu)$.

Direct spectral problem: $J \mapsto \mu$

- A distinguished vector:

$$
\delta_{0}:=(1,0,0, \ldots)^{T} .
$$

- Spectral measure:

$$
\mu(\Delta):=\left\langle\chi_{\Delta}(J) \delta_{0}, \delta_{0}\right\rangle, \quad \Delta \in \mathcal{B}_{\mathbb{R}} .
$$

Theorem (Direct spectral problem, self-adjoint case)

Vector δ_{0} is cyclic for J.
Consequently, J is unitarily equivalent to the multiplication operator by x in $L^{2}(\mathbb{R}, \mu)$.

Remark:

OG polynomials: Define sequence of polynomials $p \equiv\left(p_{0}, p_{1}, \ldots\right)^{T}$ recursively by

$$
J p(x)=x p(x), \quad \text { i.e. } \quad a_{n-1} p_{n-1}(x)+b_{n} p_{n}(x)+a_{n} p_{n+1}(x)=0, \quad\left(a_{-1}:=0\right)
$$

and $p_{0}(x)=1$.

Direct spectral problem: $J \mapsto \mu$

- A distinguished vector:

$$
\delta_{0}:=(1,0,0, \ldots)^{T} .
$$

- Spectral measure:

$$
\mu(\Delta):=\left\langle\chi_{\Delta}(J) \delta_{0}, \delta_{0}\right\rangle, \quad \Delta \in \mathcal{B}_{\mathbb{R}} .
$$

Theorem (Direct spectral problem, self-adjoint case)

Vector δ_{0} is cyclic for J.
Consequently, J is unitarily equivalent to the multiplication operator by x in $L^{2}(\mathbb{R}, \mu)$.

Remark:

OG polynomials: Define sequence of polynomials $p \equiv\left(p_{0}, p_{1}, \ldots\right)^{T}$ recursively by

$$
J p(x)=x p(x), \quad \text { i.e. } \quad a_{n-1} p_{n-1}(x)+b_{n} p_{n}(x)+a_{n} p_{n+1}(x)=0, \quad\left(a_{-1}:=0\right)
$$

and $p_{0}(x)=1$. Theorem \uparrow a.k.a. Favard's theorem $\Rightarrow \mu$ is a measure of orthogonality:

$$
\int_{\mathbb{R}} p_{n}(x) p_{m}(x) \mathrm{d} \mu(x)=\delta_{m, n}
$$

Inverse spectral problem: $\mu \mapsto J$

Theorem (Inverse spectral problem, self-adjoint case)

Inverse spectral problem: $\mu \mapsto J$

Theorem (Inverse spectral problem, self-adjoint case)

1 Injectivity: J is uniquely determined by μ.

Inverse spectral problem: $\mu \mapsto J$

Theorem (Inverse spectral problem, self-adjoint case)

1 Injectivity: J is uniquely determined by μ.
2 Surjectivity: If μ is a probability measure on \mathbb{R} with supp μ compact and infinite, then there exists J such that μ is the spectral measure of J.

Inverse spectral problem: $\mu \mapsto J$

Theorem (Inverse spectral problem, self-adjoint case)

1 Injectivity: J is uniquely determined by μ.
2 Surjectivity: If μ is a probability measure on \mathbb{R} with supp μ compact and infinite, then there exists J such that μ is the spectral measure of J.

Remark 1:

$$
\mu \leadsto \text { moments } / \text { m-function } \leadsto b_{n}, a_{n}^{2} \stackrel{a_{n}>0}{\sim} b_{n}, a_{n}
$$

Inverse spectral problem: $\mu \mapsto J$

Theorem (Inverse spectral problem, self-adjoint case)

1 Injectivity: J is uniquely determined by μ.
2 Surjectivity: If μ is a probability measure on \mathbb{R} with $\operatorname{supp} \mu$ compact and infinite, then there exists J such that μ is the spectral measure of J.

Remark 1:

$$
\mu \leadsto \text { moments } / \text { m-function } \leadsto b_{n}, a_{n}^{2} \stackrel{a_{n}>0}{\sim} b_{n}, a_{n}
$$

Remark 2:

OG polynomials: Given μ, an application of the Gram-Schmidt to $1, x, x^{2}, \ldots$ in $L^{2}(\mu)$ produces the sequence of monic polynomials P_{n} satisfying

$$
P_{n+1}(x)=\left(x-b_{n}\right) P_{n}(x)-a_{n-1}^{2} P_{n-1}(x), \quad P_{0}(x)=1
$$

From the recurrence we can reconstruct b_{n} and a_{n}^{2}.

The one-to-one correspondence: $J \longleftrightarrow \mu$

The mapping

$$
J \mapsto \mu \text { is a bijection! }
$$

The one-to-one correspondence: $J \longleftrightarrow \mu$
The mapping

$$
J \mapsto \mu \text { is a bijection! }
$$

Project goal: To establish a variant of the correspondence when $J \neq J^{*}$.

The one-to-one correspondence: $J \longleftrightarrow \mu$
The mapping

$$
J \mapsto \mu \text { is a bijection! }
$$

Project goal: To establish a variant of the correspondence when $J \neq J^{*}$.

Related questions:

The one-to-one correspondence: $J \longleftrightarrow \mu$
The mapping

$$
J \mapsto \mu \text { is a bijection! }
$$

Project goal: To establish a variant of the correspondence when $J \neq J^{*}$.

Related questions:

■ What should be the spectral data? ($J \neq J^{*} \leadsto$ no spectral measure)

The one-to-one correspondence: $J \longleftrightarrow \mu$

The mapping

$$
J \mapsto \mu \text { is a bijection! }
$$

Project goal: To establish a variant of the correspondence when $J \neq J^{*}$.

Related questions:

■ What should be the spectral data? ($J \neq J^{*} \leadsto$ no spectral measure)

- Can the bijectivity of the spectral mapping be preserved?

The one-to-one correspondence: $J \longleftrightarrow \mu$

The mapping

$$
J \mapsto \mu \text { is a bijection! }
$$

Project goal: To establish a variant of the correspondence when $J \neq J^{*}$.

Related questions:

■ What should be the spectral data? ($J \neq J^{*} \leadsto$ no spectral measure)

- Can the bijectivity of the spectral mapping be preserved?
- What are the implications for orthogonal polynomials?

Contents

(1) Direct and inverse SP for self-adjoint Jacobi matrices

(2) Direct and inverse SP for non-self-adjoint Jacobi matrices

Bounded non-self-adjoint Jacobi matrices

Jacobi matrix:

$$
J=\left(\begin{array}{cccccc}
b_{0} & a_{0} & 0 & 0 & 0 & \cdots \\
a_{0} & b_{1} & a_{1} & 0 & 0 & \cdots \\
0 & a_{1} & b_{2} & a_{2} & 0 & \cdots \\
0 & 0 & a_{2} & b_{3} & a_{3} & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right), \quad\left\{a_{n}\right\},\left\{b_{n}\right\} \text { bounded }
$$

Bounded non-self-adjoint Jacobi matrices

Jacobi matrix:

$$
J=\left(\begin{array}{cccccc}
b_{0} & a_{0} & 0 & 0 & 0 & \cdots \\
a_{0} & b_{1} & a_{1} & 0 & 0 & \cdots \\
0 & a_{1} & b_{2} & a_{2} & 0 & \cdots \\
0 & 0 & a_{2} & b_{3} & a_{3} & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right), \quad \begin{gathered}
\\
b_{n} \in \mathbb{C}, a_{n}>0 \\
\left\{a_{n}\right\},\left\{b_{n}\right\} \text { bounded }
\end{gathered}
$$

Notation: $J \in \mathcal{J}_{+}$

Bounded non-self-adjoint Jacobi matrices

Jacobi matrix:

$$
J=\left(\begin{array}{cccccc}
b_{0} & a_{0} & 0 & 0 & 0 & \cdots \\
a_{0} & b_{1} & a_{1} & 0 & 0 & \cdots \\
0 & a_{1} & b_{2} & a_{2} & 0 & \cdots \\
0 & 0 & a_{2} & b_{3} & a_{3} & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right), \quad \begin{gathered}
\\
b_{n} \in \mathbb{C}, a_{n}>0 \\
\left\{a_{n}\right\},\left\{b_{n}\right\} \text { bounded }
\end{gathered}
$$

Notation: $J \in \mathcal{J}_{+}$
Essential assumptions:

- Boundedness of J

Bounded non-self-adjoint Jacobi matrices

Jacobi matrix:

$$
J=\left(\begin{array}{cccccc}
b_{0} & a_{0} & 0 & 0 & 0 & \cdots \\
a_{0} & b_{1} & a_{1} & 0 & 0 & \cdots \\
0 & a_{1} & b_{2} & a_{2} & 0 & \cdots \\
0 & 0 & a_{2} & b_{3} & a_{3} & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right), \quad \begin{gathered}
\\
b_{n} \in \mathbb{C}, a_{n}>0 \\
\left\{a_{n}\right\},\left\{b_{n}\right\} \text { bounded }
\end{gathered}
$$

Notation: $J \in \mathcal{J}_{+}$
Essential assumptions:

- Boundedness of J
- $J=J^{\top}$, i.e. C-symmetry of $J, J^{*}=C J C$.

Bounded non-self-adjoint Jacobi matrices

Jacobi matrix:

$$
J=\left(\begin{array}{cccccc}
b_{0} & a_{0} & 0 & 0 & 0 & \cdots \\
a_{0} & b_{1} & a_{1} & 0 & 0 & \cdots \\
0 & a_{1} & b_{2} & a_{2} & 0 & \cdots \\
0 & 0 & a_{2} & b_{3} & a_{3} & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right), \quad \begin{gathered}
\\
b_{n} \in \mathbb{C}, a_{n}>0 \\
\left\{a_{n}\right\},\left\{b_{n}\right\} \text { bounded }
\end{gathered}
$$

Notation: $J \in \mathcal{J}_{+}$
Essential assumptions:

- Boundedness of J

■ $J=J^{\top}$, i.e. C-symmetry of $J, J^{*}=C J C$.
Inessential assumptions:

- Normalization $a_{n}>0$ (can be replace by $a_{n} \in \mathbb{C}$ with $\arg a_{n}$ prescribed)

The 1st component of spectral data - the spectral measure ν

Spectral measure:

$$
\nu(\Delta):=\left\langle\chi_{\Delta}(|J|) \delta_{0}, \delta_{0}\right\rangle, \quad \Delta \in \mathcal{B}_{\mathbb{R}},
$$

where $|J|:=\sqrt{J^{*} J}$.

The 1st component of spectral data - the spectral measure ν

Spectral measure:

$$
\nu(\Delta):=\left\langle\chi_{\Delta}(|J|) \delta_{0}, \delta_{0}\right\rangle, \quad \Delta \in \mathcal{B}_{\mathbb{R}},
$$

where $|J|:=\sqrt{J^{*} J}$.

Theorem (Direct spectral problem, non-self-adjoint case)

The multiplicity of spectrum of $|\mathrm{J}|$ is ≤ 2 and vector δ_{0} is of maximal type for $|J|$, i.e

$$
\nu(\Delta)=\left\langle\chi_{\Delta}(|J|) \delta_{0}, \delta_{0}\right\rangle=0 \quad \Rightarrow \quad \chi_{\Delta}(|J|)=0 .
$$

The 1st component of spectral data - the spectral measure ν

Spectral measure:

$$
\nu(\Delta):=\left\langle\chi_{\Delta}(|J|) \delta_{0}, \delta_{0}\right\rangle, \quad \Delta \in \mathcal{B}_{\mathbb{R}},
$$

where $|J|:=\sqrt{J^{*} J}$.

Theorem (Direct spectral problem, non-self-adjoint case)

The multiplicity of spectrum of $|\mathrm{J}|$ is ≤ 2 and vector δ_{0} is of maximal type for $|J|$, i.e

$$
\nu(\Delta)=\left\langle\chi_{\Delta}(|J|) \delta_{0}, \delta_{0}\right\rangle=0 \quad \Rightarrow \quad \chi_{\Delta}(|J|)=0 .
$$

The 1st component of spectral data - the spectral measure ν
Spectral measure:

$$
\nu(\Delta):=\left\langle\chi_{\Delta}(|J|) \delta_{0}, \delta_{0}\right\rangle, \quad \Delta \in \mathcal{B}_{\mathbb{R}}
$$

where $|J|:=\sqrt{J^{*} J}$.
Theorem (Direct spectral problem, non-self-adjoint case)
The multiplicity of spectrum of $|J|$ is ≤ 2 and vector δ_{0} is of maximal type for $|J|$, i.e

$$
\nu(\Delta)=\left\langle\chi_{\Delta}(|J|) \delta_{0}, \delta_{0}\right\rangle=0 \quad \Rightarrow \quad \chi_{\Delta}(|J|)=0 .
$$

Remarks:

The 1st component of spectral data - the spectral measure ν

Spectral measure:

$$
\nu(\Delta):=\left\langle\chi_{\Delta}(|J|) \delta_{0}, \delta_{0}\right\rangle, \quad \Delta \in \mathcal{B}_{\mathbb{R}},
$$

where $|J|:=\sqrt{J^{*} J}$.
Theorem (Direct spectral problem, non-self-adjoint case)
The multiplicity of spectrum of $|\mathrm{J}|$ is ≤ 2 and vector δ_{0} is of maximal type for $|J|$, i.e

$$
\nu(\Delta)=\left\langle\chi_{\Delta}(|J|) \delta_{0}, \delta_{0}\right\rangle=0 \quad \Rightarrow \quad \chi_{\Delta}(|J|)=0 .
$$

Remarks:

■ The multiplicity of $|J|$ can be 2.

The 1st component of spectral data - the spectral measure ν

Spectral measure:

$$
\nu(\Delta):=\left\langle\chi_{\Delta}(|J|) \delta_{0}, \delta_{0}\right\rangle, \quad \Delta \in \mathcal{B}_{\mathbb{R}},
$$

where $|J|:=\sqrt{J^{*} J}$.

Theorem (Direct spectral problem, non-self-adjoint case)

The multiplicity of spectrum of $|\mathrm{J}|$ is ≤ 2 and vector δ_{0} is of maximal type for $|J|$, i.e

$$
\nu(\Delta)=\left\langle\chi_{\Delta}(|J|) \delta_{0}, \delta_{0}\right\rangle=0 \quad \Rightarrow \quad \chi_{\Delta}(|J|)=0 .
$$

Remarks:

■ The multiplicity of $|J|$ can be 2.
■ If $|J|$ has simple and discrete spectrum, then $J x_{k}=s_{k} \overline{x_{k}}$ and

$$
\nu=\sum_{k} \nu_{k} \delta_{s_{k}}, \quad \nu_{k}:=\left|\left\langle\delta_{0}, x_{k}\right\rangle\right|^{2}>0
$$

The 2nd component of spectral data - the phase function ψ

Recall

$$
\left\langle f(|J|) \delta_{0}, \delta_{0}\right\rangle=\int_{0}^{\infty} f(s) \mathrm{d} \nu(s), \quad \forall f \in C(\mathbb{R})
$$

The 2nd component of spectral data - the phase function ψ
Recall

$$
\left\langle f(|J|) \delta_{0}, \delta_{0}\right\rangle=\int_{0}^{\infty} f(s) \mathrm{d} \nu(s), \quad \forall f \in C(\mathbb{R})
$$

Theorem (Definition of ψ)

There exists a unique phase function $\psi \in L^{\infty}(\nu)$ satisfying $\psi(0)=1$ and $|\psi(s)| \leq 1$ for ν-a.e. $s \geq 0$ such that

$$
\left\langle J f(|J|) \delta_{0}, \delta_{0}\right\rangle=\int_{0}^{\infty} s f(s) \psi(s) \mathrm{d} \nu(s), \quad \forall f \in C(\mathbb{R}) .
$$

The 2nd component of spectral data - the phase function ψ
Recall

$$
\left\langle f(|J|) \delta_{0}, \delta_{0}\right\rangle=\int_{0}^{\infty} f(s) \mathrm{d} \nu(s), \quad \forall f \in C(\mathbb{R})
$$

Theorem (Definition of ψ)

There exists a unique phase function $\psi \in L^{\infty}(\nu)$ satisfying $\psi(0)=1$ and $|\psi(s)| \leq 1$ for ν-a.e. $s \geq 0$ such that

$$
\left\langle J f(|J|) \delta_{0}, \delta_{0}\right\rangle=\int_{0}^{\infty} s f(s) \psi(s) \mathrm{d} \nu(s), \quad \forall f \in C(\mathbb{R})
$$

Remarks:

$\square \psi(0)=1$ is a normalization; it is not needed if $\nu(\{0\})=0$.

The 2nd component of spectral data - the phase function ψ
Recall

$$
\left\langle f(|J|) \delta_{0}, \delta_{0}\right\rangle=\int_{0}^{\infty} f(s) \mathrm{d} \nu(s), \quad \forall f \in C(\mathbb{R})
$$

Theorem (Definition of ψ)

There exists a unique phase function $\psi \in L^{\infty}(\nu)$ satisfying $\psi(0)=1$ and $|\psi(s)| \leq 1$ for ν-a.e. $s \geq 0$ such that

$$
\left\langle J f(|J|) \delta_{0}, \delta_{0}\right\rangle=\int_{0}^{\infty} s f(s) \psi(s) \mathrm{d} \nu(s), \quad \forall f \in C(\mathbb{R})
$$

Remarks:

$\square \psi(0)=1$ is a normalization; it is not needed if $\nu(\{0\})=0$.
■ If $|J|$ has simple and discrete spectrum, then $J x_{k}=s_{k} \overline{x_{k}}$ and we have

$$
\nu=\sum_{k} \nu_{k} \delta_{s_{k}}, \quad \nu_{k}:=\left|\left\langle\delta_{0}, x_{k}\right\rangle\right|^{2}>0 \quad \text { and } \quad \psi\left(s_{k}\right)=\left(\frac{\left\langle\delta_{0}, x_{k}\right\rangle}{\left|\left\langle\delta_{0}, x_{k}\right\rangle\right|}\right)^{2}
$$

The 2nd component of spectral data - the phase function ψ

Recall

$$
\left\langle f(|J|) \delta_{0}, \delta_{0}\right\rangle=\int_{0}^{\infty} f(s) \mathrm{d} \nu(s), \quad \forall f \in C(\mathbb{R})
$$

Theorem (Definition of ψ)

There exists a unique phase function $\psi \in L^{\infty}(\nu)$ satisfying $\psi(0)=1$ and $|\psi(s)| \leq 1$ for ν-a.e. $s \geq 0$ such that

$$
\left\langle J f(|J|) \delta_{0}, \delta_{0}\right\rangle=\int_{0}^{\infty} s f(s) \psi(s) \mathrm{d} \nu(s), \quad \forall f \in C(\mathbb{R})
$$

Remarks:

■ $\psi(0)=1$ is a normalization; it is not needed if $\nu(\{0\})=0$.
■ If $|J|$ has simple and discrete spectrum, then $J x_{k}=s_{k} \overline{x_{k}}$ and we have

$$
\nu=\sum_{k} \nu_{k} \delta_{s_{k}}, \quad \nu_{k}:=\left|\left\langle\delta_{0}, x_{k}\right\rangle\right|^{2}>0 \quad \text { and } \quad \psi\left(s_{k}\right)=\left(\frac{\left\langle\delta_{0}, x_{k}\right\rangle}{\left|\left\langle\delta_{0}, x_{k}\right\rangle\right|}\right)^{2}
$$

■ The theorem only uses $C J C=J^{*}$ and $C \delta_{0}=\delta_{0}$. It can be deduced from the refined polar decomposition for C-symmetric operators [Garcia-Putinar, 2007].

Main result

Theorem (Inverse spectral problem, non-self-adjoint case)

Main result

Theorem (Inverse spectral problem, non-self-adjoint case)

1 Injectivity: $J \in \mathcal{J}_{+}$is uniquely determined by (ν, ψ).

Main result

Theorem (Inverse spectral problem, non-self-adjoint case)
1 Injectivity: $J \in \mathcal{J}_{+}$is uniquely determined by (ν, ψ).
2 Surjectivity: Let ν is a probability meas. on $[0, \infty)$ with supp ν compact and infinite.

Main result

Theorem (Inverse spectral problem, non-self-adjoint case)

1 Injectivity: $J \in \mathcal{J}_{+}$is uniquely determined by (ν, ψ).
2 Surjectivity: Let ν is a probability meas. on [$0, \infty$) with supp ν compact and infinite. Let $\psi \in L^{\infty}(\nu)$ be such that $\psi(0)=1$ and $|\psi(s)| \leq 1$ for ν-a.e. $s \geq 0$.

Main result

Theorem (Inverse spectral problem, non-self-adjoint case)

1 Injectivity: $J \in \mathcal{J}_{+}$is uniquely determined by (ν, ψ).
2 Surjectivity: Let ν is a probability meas. on [$0, \infty$) with supp ν compact and infinite. Let $\psi \in L^{\infty}(\nu)$ be such that $\psi(0)=1$ and $|\psi(s)| \leq 1$ for ν-a.e. $s \geq 0$. Then (ν, ψ) is a spectral data for some $J \in \mathcal{J}_{+}$.

Main result

Theorem (Inverse spectral problem, non-self-adjoint case)

1 Injectivity: $J \in \mathcal{J}_{+}$is uniquely determined by (ν, ψ).
2 Surjectivity: Let ν is a probability meas. on [$0, \infty$) with supp ν compact and infinite. Let $\psi \in L^{\infty}(\nu)$ be such that $\psi(0)=1$ and $|\psi(s)| \leq 1$ for ν-a.e. $s \geq 0$. Then (ν, ψ) is a spectral data for some $J \in \mathcal{J}_{+}$.

The spectral mapping

$$
J \mapsto(\nu, \psi) \text { is a bijection! }
$$

Special classes

Theorem

Special classes

Theorem

1) $|J|$ has simple spectrum iff $|\psi(s)|=1$ for ν-a.e. $s \geq 0$.

Special classes

Theorem

1) $|J|$ has simple spectrum iff $|\psi(s)|=1$ for ν-a.e. $s \geq 0$.
2) $J=J^{*}$ iff $\psi(s) \in \mathbb{R}$ for ν-a.e. $s \geq 0$.

Special classes

Theorem

1) $|J|$ has simple spectrum iff $|\psi(s)|=1$ for ν-a.e. $s \geq 0$.
2) $J=J^{*}$ iff $\psi(s) \in \mathbb{R}$ for ν-a.e. $s \geq 0$.
3) $b_{n}=0$ for all n iff $\psi(s)=0$ for ν-a.e. $s>0$.

Special classes

Theorem

1) $|J|$ has simple spectrum iff $|\psi(s)|=1$ for ν-a.e. $s \geq 0$.
2) $J=J^{*}$ iff $\psi(s) \in \mathbb{R}$ for ν-a.e. $s \geq 0$.
3) $b_{n}=0$ for all n iff $\psi(s)=0$ for ν-a.e. $s>0$.
4) $J=J^{*}$ and $|J|$ has simple spectrum iff $\psi(s)= \pm 1$ for ν-a.e. $s>0$.

Special classes

Theorem

1) $|J|$ has simple spectrum iff $|\psi(s)|=1$ for ν-a.e. $s \geq 0$.
2) $J=J^{*}$ iff $\psi(s) \in \mathbb{R}$ for ν-a.e. $s \geq 0$.
3) $b_{n}=0$ for all n iff $\psi(s)=0$ for ν-a.e. $s>0$.
4) $J=J^{*}$ and $|J|$ has simple spectrum iff $\psi(s)= \pm 1$ for ν-a.e. $s>0$.
5) If $J^{*} J=J J^{*}$ and $|J|$ has simple spectrum, then $J=|J| \psi(|J|)$ [polar decomposition].

Special classes

Theorem

1) $|J|$ has simple spectrum iff $|\psi(s)|=1$ for ν-a.e. $s \geq 0$.
2) $J=J^{*}$ iff $\psi(s) \in \mathbb{R}$ for ν-a.e. $s \geq 0$.
3) $b_{n}=0$ for all n iff $\psi(s)=0$ for ν-a.e. $s>0$.
4) $J=J^{*}$ and $|J|$ has simple spectrum iff $\psi(s)= \pm 1$ for ν-a.e. $s>0$.
5) If $J^{*} J=J J^{*}$ and $|J|$ has simple spectrum, then $J=|J| \psi(|J|)$ [polar decomposition].

When $J=J^{*}$, we have $J \leftrightarrow \mu$ and $J \leftrightarrow(\nu, \psi)$. What is the relation $\mu \leftrightarrow(\nu, \psi)$?

Special classes

Theorem

1) $|J|$ has simple spectrum iff $|\psi(s)|=1$ for ν-a.e. $s \geq 0$.
2) $J=J^{*}$ iff $\psi(s) \in \mathbb{R}$ for ν-a.e. $s \geq 0$.
3) $b_{n}=0$ for all n iff $\psi(s)=0$ for ν-a.e. $s>0$.
4) $J=J^{*}$ and $|J|$ has simple spectrum iff $\psi(s)= \pm 1$ for ν-a.e. $s>0$.
5) If $J^{*} J=J J^{*}$ and $|J|$ has simple spectrum, then $J=|J| \psi(|J|)$ [polar decomposition].

When $J=J^{*}$, we have $J \leftrightarrow \mu$ and $J \leftrightarrow(\nu, \psi)$. What is the relation $\mu \leftrightarrow(\nu, \psi)$? Denote

$$
\widetilde{\mu}(\Delta):=\mu(-\Delta), \quad \Delta \in \mathcal{B}_{\mathbb{R}} .
$$

Special classes

Theorem

1) $|J|$ has simple spectrum iff $|\psi(s)|=1$ for ν-a.e. $s \geq 0$.
2) $J=J^{*}$ iff $\psi(s) \in \mathbb{R}$ for ν-a.e. $s \geq 0$.
3) $b_{n}=0$ for all n iff $\psi(s)=0$ for ν-a.e. $s>0$.
4) $J=J^{*}$ and $|J|$ has simple spectrum iff $\psi(s)= \pm 1$ for ν-a.e. $s>0$.
5) If $J^{*} J=J J^{*}$ and $|J|$ has simple spectrum, then $J=|J| \psi(|J|)$ [polar decomposition].

When $J=J^{*}$, we have $J \leftrightarrow \mu$ and $J \leftrightarrow(\nu, \psi)$. What is the relation $\mu \leftrightarrow(\nu, \psi)$?
Denote

$$
\widetilde{\mu}(\Delta):=\mu(-\Delta), \quad \Delta \in \mathcal{B}_{\mathbb{R}} .
$$

Theorem

For $J=J^{*}$ we have

$$
\begin{array}{ll}
\mathrm{d} \mu(s)=\frac{1+\psi(s)}{2} \mathrm{~d} \nu(s), & s \geq 0 \\
\mathrm{~d} \widetilde{\mu}(s)=\frac{1-\psi(s)}{2} \mathrm{~d} \nu(s), & s>0
\end{array}
$$

Special classes

Theorem

1) $|J|$ has simple spectrum iff $|\psi(s)|=1$ for ν-a.e. $s \geq 0$.
2) $J=J^{*}$ iff $\psi(s) \in \mathbb{R}$ for ν-a.e. $s \geq 0$.
3) $b_{n}=0$ for all n iff $\psi(s)=0$ for ν-a.e. $s>0$.
4) $J=J^{*}$ and $|J|$ has simple spectrum iff $\psi(s)= \pm 1$ for ν-a.e. $s>0$.
5) If $J^{*} J=J J^{*}$ and $|J|$ has simple spectrum, then $J=|J| \psi(|J|)$ [polar decomposition].

When $J=J^{*}$, we have $J \leftrightarrow \mu$ and $J \leftrightarrow(\nu, \psi)$. What is the relation $\mu \leftrightarrow(\nu, \psi)$?
Denote

$$
\widetilde{\mu}(\Delta):=\mu(-\Delta), \quad \Delta \in \mathcal{B}_{\mathbb{R}} .
$$

Theorem

For $J=J^{*}$ we have

$$
\begin{array}{ll}
\mathrm{d} \mu(s)=\frac{1+\psi(s)}{2} \mathrm{~d} \nu(s), & s \geq 0 \\
\mathrm{~d} \widetilde{\mu}(s)=\frac{1-\psi(s)}{2} \mathrm{~d} \nu(s), & s>0
\end{array}
$$

In particular, if $J=J^{*} \geq 0$, then $\mu=\nu$ and $\psi \equiv 1$.

Orthogonal polynomials for non-self-adjoint J

■ Given $J \in \mathcal{J}_{+}$, define polynomials $q=\left(q_{0}, q_{1}, \ldots\right)$ recursively by $J q(s)=s \bar{q}(s)$,

Orthogonal polynomials for non-self-adjoint J

■ Given $J \in \mathcal{J}_{+}$, define polynomials $q=\left(q_{0}, q_{1}, \ldots\right)$ recursively by $J q(s)=s \bar{q}(s)$, i.e.,

$$
a_{n-1} q_{n-1}(s)+b_{n} q_{n}(s)+a_{n} q_{n+1}(s)=s \bar{q}_{n}(s), \quad\left(a_{-1}:=0\right)
$$

and the normalization $q_{0}(s)=1$.

Orthogonal polynomials for non-self-adjoint J

■ Given $J \in \mathcal{J}_{+}$, define polynomials $q=\left(q_{0}, q_{1}, \ldots\right)$ recursively by $J q(s)=s \bar{q}(s)$, i.e.,

$$
a_{n-1} q_{n-1}(s)+b_{n} q_{n}(s)+a_{n} q_{n+1}(s)=s \bar{q}_{n}(s), \quad\left(a_{-1}:=0\right)
$$

and the normalization $q_{0}(s)=1$.
■ Clearly, if $J=J^{*}$, then $q_{n}=p_{n}$.

Orthogonal polynomials for non-self-adjoint J

■ Given $J \in \mathcal{J}_{+}$, define polynomials $q=\left(q_{0}, q_{1}, \ldots\right)$ recursively by $J q(s)=s \bar{q}(s)$, i.e.,

$$
a_{n-1} q_{n-1}(s)+b_{n} q_{n}(s)+a_{n} q_{n+1}(s)=s \bar{q}_{n}(s), \quad\left(a_{-1}:=0\right)
$$

and the normalization $q_{0}(s)=1$.
■ Clearly, if $J=J^{*}$, then $q_{n}=p_{n}$.

Theorem (Orthogonality relation)

For all $m, n \geq 0$, we have

$$
\frac{1}{2} \int_{0}^{\infty}\left\langle\left(\begin{array}{cc}
1+\Re \psi(s) & -\mathrm{i} \Im \psi(s) \\
\mathrm{i} \Im \psi(s) & 1-\Re \not R(s)
\end{array}\right)\binom{q_{m}(s)}{q_{m}(-s)},\left.\binom{q_{n}(s)}{q_{n}(-s)}\right|_{\mathbb{C}^{2}} \mathrm{~d} \nu(s)=\delta_{m, n}\right.
$$

Orthogonal polynomials for non-self-adjoint J

■ Given $J \in \mathcal{J}_{+}$, define polynomials $q=\left(q_{0}, q_{1}, \ldots\right)$ recursively by $J q(s)=s \bar{q}(s)$, i.e.,

$$
a_{n-1} q_{n-1}(s)+b_{n} q_{n}(s)+a_{n} q_{n+1}(s)=s \bar{q}_{n}(s), \quad\left(a_{-1}:=0\right)
$$

and the normalization $q_{0}(s)=1$.
■ Clearly, if $J=J^{*}$, then $q_{n}=p_{n}$.

Theorem (Orthogonality relation)

For all $m, n \geq 0$, we have

$$
\frac{1}{2} \int_{0}^{\infty}\left\langle\left(\begin{array}{cc}
1+\Re \psi(s) & -\mathrm{i} \Im \psi(s) \\
\mathrm{i} \Im \psi(s) & 1-\Re \psi(s)
\end{array}\right)\binom{q_{m}(s)}{q_{m}(-s)},\left.\binom{q_{n}(s)}{q_{n}(-s)}\right|_{\mathbb{C}^{2}} \mathrm{~d} \nu(s)=\delta_{m, n}\right.
$$

The integrand expanded:

$$
\begin{aligned}
(1+\Re \psi(s)) q_{m}(s) \bar{q}_{n}(s)+(1-\Re \psi(s)) & q_{m}(-s) \bar{q}_{n}(-s) \\
& +\mathrm{i} \Im \psi(s)\left[q_{m}(s) \bar{q}_{n}(-s)-q_{m}(-s) \bar{q}_{n}(s)\right]
\end{aligned}
$$

Thank you!

