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Direct and inverse SP for self-adjoint Jacobi matrices

Bounded self-adjoint Jacobi matrices

Jacobi matrix:

J =

⎛
⎜⎜⎜⎜⎜
⎝

b0 a0 0 0 0 ⋯
a0 b1 a1 0 0 ⋯
0 a1 b2 a2 0 ⋯
0 0 a2 b3 a3 ⋯
⋮ ⋮ ⋮ ⋮ ⋮ ⋱

⎞
⎟⎟⎟⎟⎟
⎠

in `2 ≡ `2(N0)

Assumptions: J bounded:
sup
n≥0

(∣an∣ + ∣bn∣) < ∞

J self-adjoint:
an,bn ∈ R

J non-degenerate:
an ≠ 0

Normalization:
an > 0

(Operators J(a,b) and J(∣a∣,b) have the same spectral measure.)
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Direct and inverse SP for self-adjoint Jacobi matrices

Direct spectral problem: J ↦ µ

A distinguished vector:
δ0 ∶= (1,0,0, . . . )T .

Spectral measure:
µ(∆) ∶= ⟨χ∆(J)δ0, δ0⟩, ∆ ∈ BR.

Theorem (Direct spectral problem, self-adjoint case)

Vector δ0 is cyclic for J.

Consequently, J is unitarily equivalent to the multiplication operator by x in L2(R, µ).

Remark:
OG polynomials: Define sequence of polynomials p ≡ (p0,p1, . . . )T recursively by

Jp(x) = xp(x), i.e. an−1pn−1(x) + bnpn(x) + anpn+1(x) = 0, (a−1 ∶= 0)

and p0(x) = 1. Theorem 1 a.k.a. Favard’s theorem⇒ µ is a measure of orthogonality:

∫
R

pn(x)pm(x)dµ(x) = δm,n.
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Direct and inverse SP for self-adjoint Jacobi matrices

Inverse spectral problem: µ↦ J

Theorem (Inverse spectral problem, self-adjoint case)

1 Injectivity: J is uniquely determined by µ.

2 Surjectivity: If µ is a probability measure on R with suppµ compact and infinite,
then there exists J such that µ is the spectral measure of J.

Remark 1:
µ ↝ moments / m-function ↝ bn,a2

n
an>0↝ bn,an

Remark 2:
OG polynomials: Given µ, an application of the Gram–Schmidt to 1, x , x2, . . . in L2(µ)
produces the sequence of monic polynomials Pn satisfying

Pn+1(x) = (x − bn)Pn(x) − a2
n−1Pn−1(x), P0(x) = 1

From the recurrence we can reconstruct bn and a2
n.
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Direct and inverse SP for self-adjoint Jacobi matrices

The one-to-one correspondence: J ←→ µ

The mapping
J ↦ µ is a bijection!

Project goal: To establish a variant of the correspondence when J ≠ J∗.

Related questions:

What should be the spectral data? (J ≠ J∗ ↝ no spectral measure)

Can the bijectivity of the spectral mapping be preserved?

What are the implications for orthogonal polynomials?
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Direct and inverse SP for non-self-adjoint Jacobi matrices

Bounded non-self-adjoint Jacobi matrices

Jacobi matrix:

J =

⎛
⎜⎜⎜⎜⎜
⎝

b0 a0 0 0 0 ⋯
a0 b1 a1 0 0 ⋯
0 a1 b2 a2 0 ⋯
0 0 a2 b3 a3 ⋯
⋮ ⋮ ⋮ ⋮ ⋮ ⋱

⎞
⎟⎟⎟⎟⎟
⎠

,
bn ∈ C, an > 0

{an},{bn} bounded

Notation: J ∈ J+

Essential assumptions: Boundedness of J

J = JT , i.e. C-symmetry of J, J∗ = CJC.

Inessential assumptions: Normalization an > 0
(can be replace by an ∈ C with arg an prescribed)
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Direct and inverse SP for non-self-adjoint Jacobi matrices

The 1st component of spectral data - the spectral measure ν

Spectral measure:
ν(∆) ∶= ⟨χ∆(∣J ∣)δ0, δ0⟩, ∆ ∈ BR,

where ∣J ∣ ∶=
√

J∗J.

Theorem (Direct spectral problem, non-self-adjoint case)

The multiplicity of spectrum of ∣J ∣ is ≤ 2 and vector δ0 is of maximal type for ∣J ∣, i.e

ν(∆) = ⟨χ∆(∣J ∣)δ0, δ0⟩ = 0 ⇒ χ∆(∣J ∣) = 0.

Remarks:
The multiplicity of ∣J ∣ can be 2.

If ∣J ∣ has simple and discrete spectrum, then Jxk = sk xk and

ν = ∑
k
νkδsk , νk ∶= ∣⟨δ0, xk ⟩∣2 > 0
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Direct and inverse SP for non-self-adjoint Jacobi matrices

The 2nd component of spectral data - the phase function ψ

Recall
⟨f (∣J ∣)δ0, δ0⟩ = ∫

∞

0
f (s)dν(s), ∀f ∈ C(R).

Theorem (Definition of ψ)

There exists a unique phase function ψ ∈ L∞(ν) satisfying ψ(0) = 1 and ∣ψ(s)∣ ≤ 1 for
ν-a.e. s ≥ 0 such that

⟨Jf (∣J ∣)δ0, δ0⟩ = ∫
∞

0
sf (s)ψ(s)dν(s), ∀f ∈ C(R).

Remarks:
ψ(0) = 1 is a normalization; it is not needed if ν({0}) = 0.

If ∣J ∣ has simple and discrete spectrum, then Jxk = sk xk and we have

ν = ∑
k
νkδsk , νk ∶= ∣⟨δ0, xk ⟩∣2 > 0 and ψ(sk) = ( ⟨δ0, xk ⟩

∣⟨δ0, xk ⟩∣
)

2

The theorem only uses CJC = J∗ and Cδ0 = δ0. It can be deduced from the refined
polar decomposition for C-symmetric operators [Garcia-Putinar, 2007].
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Direct and inverse SP for non-self-adjoint Jacobi matrices

Main result

Theorem (Inverse spectral problem, non-self-adjoint case)

1 Injectivity: J ∈ J+ is uniquely determined by (ν,ψ).

2 Surjectivity: Let ν is a probability meas. on [0,∞) with supp ν compact and infinite.

Let ψ ∈ L∞(ν) be such that ψ(0) = 1 and ∣ψ(s)∣ ≤ 1 for ν-a.e. s ≥ 0.
Then (ν,ψ) is a spectral data for some J ∈ J+.

The spectral mapping
J ↦ (ν,ψ) is a bijection!
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Direct and inverse SP for non-self-adjoint Jacobi matrices

Special classes

Theorem

1) ∣J ∣ has simple spectrum iff ∣ψ(s)∣ = 1 for ν-a.e. s ≥ 0.

2) J = J∗ iff ψ(s) ∈ R for ν-a.e. s ≥ 0.

3) bn = 0 for all n iff ψ(s) = 0 for ν-a.e. s > 0.

4) J = J∗ and ∣J ∣ has simple spectrum iff ψ(s) = ±1 for ν-a.e. s > 0.

5) If J∗J = JJ∗ and ∣J ∣ has simple spectrum, then J = ∣J ∣ψ(∣J ∣) [polar decomposition].

When J = J∗, we have J ↔ µ and J ↔ (ν,ψ). What is the relation µ↔ (ν,ψ)?
Denote

µ̃(∆) ∶= µ(−∆), ∆ ∈ BR.

Theorem

For J = J∗ we have
dµ(s) = 1 + ψ(s)

2
dν(s), s ≥ 0,

dµ̃(s) = 1 − ψ(s)
2

dν(s), s > 0.

In particular, if J = J∗ ≥ 0, then µ = ν and ψ ≡ 1.
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Direct and inverse SP for non-self-adjoint Jacobi matrices

Orthogonal polynomials for non-self-adjoint J

Given J ∈ J+, define polynomials q = (q0,q1, . . . ) recursively by Jq(s) = sq(s),

i.e.,
an−1qn−1(s) + bnqn(s) + anqn+1(s) = sqn(s), (a−1 ∶= 0)

and the normalization q0(s) = 1.

Clearly, if J = J∗, then qn = pn.

Theorem (Orthogonality relation)

For all m,n ≥ 0, we have

1
2 ∫

∞

0
⟨(1 +Rψ(s) −iIψ(s)

iIψ(s) 1 −Rψ(s))( qm(s)
qm(−s)) ,(

qn(s)
qn(−s))⟩

C2

dν(s) = δm,n.

The integrand expanded:

(1 +Rψ(s))qm(s)qn(s) + (1 −Rψ(s))qm(−s)qn(−s)
+ iIψ(s)[qm(s)qn(−s) − qm(−s)qn(s)]
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Direct and inverse SP for non-self-adjoint Jacobi matrices

Thank you!
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