The spectral pair for Schrödinger operators with complex potentials on the half-line

Frantisek Štampach (Czech Technical University in Prague) joint with Alexander Pushnitski (King's College London)

Workshop on Operator Theory, Complex Analysis, and Applications
University of Aveiro
July 7-11, 2025

Based on: A. Pushnitski, F. Štampach: arXiv:2503.03248 (2025).

Contents

Self-adjoint Schrödinger operators

Non-self-adjoint Schrödinger operators

■ For $q : \mathbb{R}_+ \to \mathbb{R}$ a measurable *bounded* function, we define

$$H = -\frac{\mathrm{d}^2}{\mathrm{d}x^2} + q \qquad \text{in } L^2(\mathbb{R}_+)$$

with

Dom
$$H = \{ f \in W^{2,2}(\mathbb{R}_+) \mid f'(0) + \alpha f(0) = 0 \},$$

where $\alpha \in \mathbb{R} \cup \{\infty\}$ (if $\alpha = \infty$, f(0) = 0).

■ For $q : \mathbb{R}_+ \to \mathbb{R}$ a measurable *bounded* function, we define

$$H = -\frac{\mathrm{d}^2}{\mathrm{d}x^2} + q \qquad \text{in } L^2(\mathbb{R}_+)$$

with

Dom
$$H = \{ f \in W^{2,2}(\mathbb{R}_+) \mid f'(0) + \alpha f(0) = 0 \},$$

where $\alpha \in \mathbb{R} \cup \{\infty\}$ (if $\alpha = \infty$, f(0) = 0).

lacksquare For $\lambda \in \mathbb{C}$, denote by φ and θ the solutions of

$$-f'' + qf = \lambda f$$

satisfying the Cauchy data:

$$\varphi(0,\lambda) = \sin \gamma, \qquad \qquad \theta(0,\lambda) = \cos \gamma,$$

$$\varphi'(0,\lambda) = -\cos\gamma, \qquad \theta'(0,\lambda) = \sin\gamma,$$

where $\gamma = \gamma(\alpha) \in [0, \pi)$.

■ For $q: \mathbb{R}_+ \to \mathbb{R}$ a measurable bounded function, we define

$$H = -\frac{\mathrm{d}^2}{\mathrm{d}x^2} + q \qquad \text{in } L^2(\mathbb{R}_+)$$

with

Dom
$$H = \{ f \in W^{2,2}(\mathbb{R}_+) \mid f'(0) + \alpha f(0) = 0 \},$$

where $\alpha \in \mathbb{R} \cup \{\infty\}$ (if $\alpha = \infty$, f(0) = 0).

■ For $\lambda \in \mathbb{C}$, denote by φ and θ the solutions of

$$-f'' + qf = \lambda f$$

satisfying the Cauchy data:

$$\varphi(0,\lambda) = \sin \gamma, \qquad \qquad \theta(0,\lambda) = \cos \gamma,$$

$$\theta(0,\lambda) = \cos \gamma,$$

$$\varphi'(0,\lambda) = -\cos\gamma, \qquad \theta'(0,\lambda) = \sin\gamma,$$

where $\gamma = \gamma(\alpha) \in [0, \pi)$.

■ *q* bounded \Rightarrow for every $\lambda \in \mathbb{C} \setminus \mathbb{R}$ there exists unique $m_{\alpha}(\lambda) \in \mathbb{C}$ such that

$$\theta(\cdot,\lambda) - \varphi(\cdot,\lambda) m_{\alpha}(\lambda) \in L^{2}(\mathbb{R}_{+}).$$

■ $H = H^* \Rightarrow m_\alpha : \mathbb{C} \setminus \mathbb{R} \to \mathbb{C}$ is Herglotz–Nevanlinna, i.e.

 m_{α} is analytic; $\operatorname{Im} m_{\alpha}(\lambda) \geq 0$, if $\operatorname{Im} \lambda > 0$; $\overline{m_{\alpha}(\lambda)} = m_{\alpha}(\overline{\lambda})$.

$$\overline{m_{\alpha}(\lambda)} = m_{\alpha}(\overline{\lambda}).$$

■ $H = H^* \Rightarrow m_\alpha : \mathbb{C} \setminus \mathbb{R} \to \mathbb{C}$ is Herglotz–Nevanlinna, i.e.

$$m_{\alpha}$$
 is analytic; $\operatorname{Im} m_{\alpha}(\lambda) \geq 0$, if $\operatorname{Im} \lambda > 0$; $\overline{m_{\alpha}(\lambda)} = m_{\alpha}(\overline{\lambda})$.

Herglotz–Nevanlinna integral representation:

$$m_{\alpha}(\lambda) = \operatorname{Re} m_{\alpha}(i) + \int_{-\infty}^{\infty} \left(\frac{1}{t-\lambda} - \frac{t}{1+t^2}\right) d\sigma(t).$$

The measure σ is the spectral measure of H. (H is unitarily equivalent to the operator of multiplication by the independent variable in $L^2_{\sigma}(\mathbb{R})$.)

■ $H = H^* \Rightarrow m_\alpha : \mathbb{C} \setminus \mathbb{R} \to \mathbb{C}$ is Herglotz–Nevanlinna, i.e.

$$m_{\alpha}$$
 is analytic; $\operatorname{Im} m_{\alpha}(\lambda) \geq 0$, if $\operatorname{Im} \lambda > 0$; $\overline{m_{\alpha}(\lambda)} = m_{\alpha}(\overline{\lambda})$.

Herglotz–Nevanlinna integral representation:

$$m_{\alpha}(\lambda) = \operatorname{Re} m_{\alpha}(i) + \int_{-\infty}^{\infty} \left(\frac{1}{t-\lambda} - \frac{t}{1+t^2}\right) d\sigma(t).$$

The measure σ is the spectral measure of H. (H is unitarily equivalent to the operator of multiplication by the independent variable in $L^2_{\sigma}(\mathbb{R})$.)

■ The inverse spectral theory of $H \simeq$ properties of the spectral map:

$$(\alpha, \mathbf{q}) \mapsto \sigma.$$

Borg-Marchenko uniqueness theorem (1949, 1952)

The spectral measure of H determines uniquely the potential q as well as parameter α , i.e. the spectral map

 $(\alpha, q) \mapsto \sigma$ is injective.

Borg–Marchenko uniqueness theorem (1949, 1952)

The spectral measure of H determines uniquely the potential q as well as parameter α , i.e. the spectral map

$$(\alpha, q) \mapsto \sigma$$
 is injective.

An understanding of the image of $(\alpha, q) \mapsto \sigma$ is much more delicate.

Borg–Marchenko uniqueness theorem (1949, 1952)

The spectral measure of H determines uniquely the potential q as well as parameter α , i.e. the spectral map

$$(\alpha, q) \mapsto \sigma$$
 is injective.

An understanding of the image of $(\alpha, q) \mapsto \sigma$ is much more delicate.

■ Some limitations: Marchenko's asymptotic formulas (1952): as $r \to \infty$,

$$\sigma((-\infty, r]) = \begin{cases} c_{\alpha} r^{1/2} + o(r^{1/2}), & \text{if } \alpha \neq \infty, \\ c_{\infty} r^{3/2} + o(r^{3/2}), & \text{if } \alpha = \infty. \end{cases}$$

Borg-Marchenko uniqueness theorem (1949, 1952)

The spectral measure of H determines uniquely the potential q as well as parameter α , i.e. the spectral map

$$(\alpha, q) \mapsto \sigma$$
 is injective.

An understanding of the image of $(\alpha, q) \mapsto \sigma$ is much more delicate.

■ Some limitations: Marchenko's asymptotic formulas (1952): as $r \to \infty$,

$$\sigma((-\infty, r]) = \begin{cases} c_{\alpha} r^{1/2} + o(r^{1/2}), & \text{if } \alpha \neq \infty, \\ c_{\infty} r^{3/2} + o(r^{3/2}), & \text{if } \alpha = \infty. \end{cases}$$

- Complete characterisation:
 - Gelfand–Levitan, Krein (1951-3-5); more regularity on q
 - Remling (2002); locally integrable q
 - Contributions by many (Gesztesy, Simon,...)

Contents

Self-adjoint Schrödinger operators

Non-self-adjoint Schrödinger operators

■ For $q : \mathbb{R}_+ \to \mathbb{C}$ a measurable *bounded* function, we define

$$H = -\frac{\mathrm{d}^2}{\mathrm{d}x^2} + q \qquad \text{in } L^2(\mathbb{R}_+)$$

with

Dom
$$H = \{ f \in W^{2,2}(\mathbb{R}_+) \mid f'(0) + \alpha f(0) = 0 \},$$

where $\alpha \in \mathbb{C} \cup \{\infty\}$ (if $\alpha = \infty$, f(0) = 0).

■ For $q: \mathbb{R}_+ \to \mathbb{C}$ a measurable *bounded* function, we define

$$H = -\frac{\mathrm{d}^2}{\mathrm{d}x^2} + q \qquad \text{in } L^2(\mathbb{R}_+)$$

with

Dom
$$H = \{ f \in W^{2,2}(\mathbb{R}_+) \mid f'(0) + \alpha f(0) = 0 \},$$

where $\alpha \in \mathbb{C} \cup \{\infty\}$ (if $\alpha = \infty$, f(0) = 0).

Hermitisation of H:

$$\begin{pmatrix} 0 & H \\ H^* & 0 \end{pmatrix} \quad \text{in } L^2(\mathbb{R}_+) \oplus L^2(\mathbb{R}_+).$$

■ For $q: \mathbb{R}_+ \to \mathbb{C}$ a measurable *bounded* function, we define

$$H = -\frac{\mathrm{d}^2}{\mathrm{d}x^2} + q \qquad \text{in } L^2(\mathbb{R}_+)$$

with

Dom
$$H = \{ f \in W^{2,2}(\mathbb{R}_+) \mid f'(0) + \alpha f(0) = 0 \},$$

where $\alpha \in \mathbb{C} \cup \{\infty\}$ (if $\alpha = \infty$, f(0) = 0).

■ Hermitisation of H:

$$\begin{pmatrix} 0 & H \\ H^* & 0 \end{pmatrix}$$
 in $L^2(\mathbb{R}_+) \oplus L^2(\mathbb{R}_+)$.

■ After identifying $L^2(\mathbb{R}_+) \oplus L^2(\mathbb{R}_+)$ with $L^2(\mathbb{R}_+; \mathbb{C}^2)$, we get

$$\mathbf{H} = -\epsilon \frac{\mathrm{d}^2}{\mathrm{d}x^2} + Q, \quad \text{with } \epsilon = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad Q = \begin{pmatrix} 0 & q \\ \overline{q} & 0 \end{pmatrix},$$

■ For $q: \mathbb{R}_+ \to \mathbb{C}$ a measurable *bounded* function, we define

$$H = -\frac{\mathrm{d}^2}{\mathrm{d}x^2} + q \qquad \text{in } L^2(\mathbb{R}_+)$$

with

Dom
$$H = \{ f \in W^{2,2}(\mathbb{R}_+) \mid f'(0) + \alpha f(0) = 0 \},$$

where $\alpha \in \mathbb{C} \cup \{\infty\}$ (if $\alpha = \infty$, f(0) = 0).

Hermitisation of H:

$$\begin{pmatrix} 0 & H \\ H^* & 0 \end{pmatrix}$$
 in $L^2(\mathbb{R}_+) \oplus L^2(\mathbb{R}_+)$.

■ After identifying $L^2(\mathbb{R}_+) \oplus L^2(\mathbb{R}_+)$ with $L^2(\mathbb{R}_+; \mathbb{C}^2)$, we get

$$\mathbf{H} = -\epsilon \frac{\mathrm{d}^2}{\mathrm{d}x^2} + Q, \quad \text{with } \epsilon = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad Q = \begin{pmatrix} 0 & q \\ \overline{q} & 0 \end{pmatrix},$$

$$\operatorname{Dom} \mathbf{H} = \{ F \in W^{2,2}(\mathbb{R}_+; \mathbb{C}^2) \mid F'(0) + AF(0) = 0 \}, \quad \text{with } A = \begin{pmatrix} \overline{\alpha} & 0 \\ 0 & \alpha \end{pmatrix}.$$

■ Let Φ , Θ be the 2 × 2 matrix-valued solutions (the fundamental system) of

$$-\epsilon F'' + QF = \lambda F$$
, on \mathbb{R}_+

satisfying specific Cauchy data at 0.

■ Let Φ , Θ be the 2 × 2 matrix-valued solutions (the fundamental system) of

$$-\epsilon F'' + QF = \lambda F$$
, on \mathbb{R}_+

satisfying specific Cauchy data at 0.

■ For every $\lambda \in \mathbb{C} \setminus \mathbb{R}$, there is unique $M_{\alpha}(\lambda) \in \mathbb{C}^{2,2}$ such that

$$\Theta(\cdot,\lambda) - \Phi(\cdot,\lambda) M_{\alpha}(\lambda) \in L^{2}(\mathbb{R}_{+};\mathbb{C}^{2,2}).$$

■ Let Φ , Θ be the 2 × 2 matrix-valued solutions (the fundamental system) of

$$-\epsilon F'' + QF = \lambda F$$
, on \mathbb{R}_+

satisfying specific Cauchy data at 0.

■ For every $\lambda \in \mathbb{C} \setminus \mathbb{R}$, there is unique $M_{\alpha}(\lambda) \in \mathbb{C}^{2,2}$ such that

$$\Theta(\cdot,\lambda) - \Phi(\cdot,\lambda) M_{\alpha}(\lambda) \in L^{2}(\mathbb{R}_{+};\mathbb{C}^{2,2}).$$

■ Function $M_{\alpha}: \mathbb{C} \setminus \mathbb{R} \to \mathbb{C}^{2,2}$ is Herglotz–Nevanlinna, i.e.

$$M_{\alpha}$$
 is analytic; $\operatorname{Im} M_{\alpha}(\lambda) \geq 0$, if $\operatorname{Im} \lambda > 0$; $M_{\alpha}(\lambda)^* = M_{\alpha}(\overline{\lambda})$.

■ Let Φ , Θ be the 2 × 2 matrix-valued solutions (the fundamental system) of

$$-\epsilon F'' + QF = \lambda F$$
, on \mathbb{R}_+

satisfying specific Cauchy data at 0.

■ For every $\lambda \in \mathbb{C} \setminus \mathbb{R}$, there is unique $M_{\alpha}(\lambda) \in \mathbb{C}^{2,2}$ such that

$$\Theta(\cdot,\lambda) - \Phi(\cdot,\lambda) M_{\alpha}(\lambda) \in L^{2}(\mathbb{R}_{+};\mathbb{C}^{2,2}).$$

■ Function $M_{\alpha}: \mathbb{C} \setminus \mathbb{R} \to \mathbb{C}^{2,2}$ is Herglotz–Nevanlinna, i.e.

$$M_{\alpha}$$
 is analytic; $\operatorname{Im} M_{\alpha}(\lambda) \geq 0$, if $\operatorname{Im} \lambda > 0$; $M_{\alpha}(\lambda)^* = M_{\alpha}(\overline{\lambda})$.

Herglotz–Nevanlinna integral representation:

$$M_{\alpha}(\lambda) = \operatorname{Re} M_{\alpha}(i) + \int_{-\infty}^{\infty} \left(\frac{1}{t-\lambda} - \frac{t}{1+t^2}\right) d\Sigma(t).$$

The $\mathbb{C}^{2,2}$ -valued measure Σ is called the spectral measure of **H**.

Theorem

There exists a unique **even** positive measure ν on $\mathbb R$ and a unique **odd** complex-valued function $\psi \in L^\infty(\nu)$ satisfying $\|\psi\|_\infty \le 1$ such that

$$d\Sigma = \begin{pmatrix} 1 & \psi \\ \overline{\psi} & 1 \end{pmatrix} d\nu.$$

Theorem

There exists a unique **even** positive measure ν on $\mathbb R$ and a unique **odd** complex-valued function $\psi \in L^\infty(\nu)$ satisfying $\|\psi\|_\infty \le 1$ such that

$$d\Sigma = \begin{pmatrix} 1 & \psi \\ \overline{\psi} & 1 \end{pmatrix} d\nu.$$

■ We call (ν, ψ) the spectral pair of H.

Theorem

There exists a unique **even** positive measure ν on $\mathbb R$ and a unique **odd** complex-valued function $\psi \in L^\infty(\nu)$ satisfying $\|\psi\|_\infty \le 1$ such that

$$d\Sigma = \begin{pmatrix} 1 & \psi \\ \overline{\psi} & 1 \end{pmatrix} d\nu.$$

- We call (ν, ψ) the spectral pair of H.
- **Remark**: (ν, ψ) closely related to the polar decomposition H = V|H|, $(|H| = \sqrt{H^*H})$.

Theorem

There exists a unique **even** positive measure ν on $\mathbb R$ and a unique **odd** complex-valued function $\psi \in L^{\infty}(\nu)$ satisfying $\|\psi\|_{\infty} \le 1$ such that

$$d\Sigma = \begin{pmatrix} 1 & \psi \\ \overline{\psi} & 1 \end{pmatrix} d\nu.$$

- We call (ν, ψ) the spectral pair of H.
- Remark: (ν, ψ) closely related to the polar decomposition H = V|H|, $(|H| = \sqrt{H^*H})$.

Proposition

• The restriction of |H| onto $(\ker |H|)^{\perp}$ is unitarily equivalent to the operator of multiplication by the independent variable in the space $L^2_{\Sigma}(\mathbb{R}_+; \mathbb{C}^2)$.

Theorem

There exists a unique **even** positive measure ν on \mathbb{R} and a unique **odd** complex-valued function $\psi \in L^{\infty}(\nu)$ satisfying $\|\psi\|_{\infty} \leq 1$ such that

$$d\Sigma = \begin{pmatrix} 1 & \psi \\ \overline{\psi} & 1 \end{pmatrix} d\nu.$$

- We call (ν, ψ) the spectral pair of H.
- **Remark**: (ν, ψ) closely related to the polar decomposition H = V|H|, $(|H| = \sqrt{H^*H})$.

Proposition

- ① The restriction of |H| onto $(\ker |H|)^{\perp}$ is unitarily equivalent to the operator of multiplication by the independent variable in the space $L^2_{\Sigma}(\mathbb{R}_+;\mathbb{C}^2)$.
- Moreover, the spectrum of |H| has: multiplicity one on $\{s > 0 \mid |\psi(s)| = 1\}$,

 - multiplicity two on $\{s > 0 \mid |\psi(s)| < 1\}$.

The Borg–Marchenko-type uniqueness theorem

The Borg-Marchenko-type uniqueness theorem

Theorem

The spectral map

$$(\alpha, q) \mapsto (\nu, \psi)$$
 is injective.

The Borg-Marchenko-type uniqueness theorem

Theorem

The spectral map

$$(\alpha, q) \mapsto (\nu, \psi)$$
 is injective.

Remark: In fact, we prove the injectivity of $(\alpha, Q) \mapsto \Sigma$ for any $Q = Q^*$. We apply a neat argument of C. Bennewitz [CMP, 2001].

Theorem

The spectral pair (ν, ψ) of H satisfies:

$$\lim_{r\to\infty}\frac{\nu([0,r])}{r^{1/2}}=\lim_{r\to\infty}\frac{1}{r^{1/2}}\int_0^r\psi(s)\mathrm{d}\nu(s)=\frac{1+|\alpha|^2}{\pi},\quad\text{ if }\alpha\neq\infty$$

Theorem

The spectral pair (ν, ψ) of H satisfies:

$$\lim_{r\to\infty}\frac{\nu([0,r])}{r^{1/2}}=\lim_{r\to\infty}\frac{1}{r^{1/2}}\int_0^r\psi(s)\mathrm{d}\nu(s)=\frac{1+|\alpha|^2}{\pi},\quad\text{ if }\alpha\neq\infty$$

and

$$\lim_{r\to\infty}\frac{\nu([0,r])}{r^{3/2}}=\lim_{r\to\infty}\frac{1}{r^{3/2}}\int_0^r\psi(s)\mathrm{d}\nu(s)=\frac{1}{3\pi},\quad\text{ if }\alpha=\infty.$$

Theorem

The spectral pair (ν, ψ) of H satisfies:

$$\lim_{r\to\infty}\frac{\nu([0,r])}{r^{1/2}}=\lim_{r\to\infty}\frac{1}{r^{1/2}}\int_0^r\psi(s)\mathrm{d}\nu(s)=\frac{1+|\alpha|^2}{\pi},\quad\text{ if }\alpha\neq\infty$$

and

$$\lim_{r\to\infty}\frac{\nu([0,r])}{r^{3/2}}=\lim_{r\to\infty}\frac{1}{r^{3/2}}\int_0^r\psi(s)\mathrm{d}\nu(s)=\frac{1}{3\pi},\quad\text{ if }\alpha=\infty.$$

Tauberian theorem

Let M and M^0 be Herglotz–Nevanlinna matrix-valued functions with measures Σ and Σ^0 , respectively.

Theorem

The spectral pair (ν, ψ) of H satisfies:

$$\lim_{r\to\infty}\frac{\nu([0,r])}{r^{1/2}}=\lim_{r\to\infty}\frac{1}{r^{1/2}}\int_0^r\psi(s)\mathrm{d}\nu(s)=\frac{1+|\alpha|^2}{\pi},\quad\text{ if }\alpha\neq\infty$$

and

$$\lim_{r\to\infty}\frac{\nu([0,r])}{r^{3/2}}=\lim_{r\to\infty}\frac{1}{r^{3/2}}\int_0^r\psi(s)\mathrm{d}\nu(s)=\frac{1}{3\pi},\quad\text{ if }\alpha=\infty.$$

Tauberian theorem

Let M and M^0 be Herglotz–Nevanlinna matrix-valued functions with measures Σ and Σ^0 , respectively. Suppose there exists g = g(r) > 0 such that

$$M(r\lambda) = g(r) \left(M^{0}(\lambda) + o(1) \right), \quad \text{as } r \to \infty,$$

for any $\lambda \in \mathbb{C} \setminus \mathbb{R}$.

High energy asymptotics of the spectral pair

Theorem

The spectral pair (ν, ψ) of H satisfies:

$$\lim_{r\to\infty}\frac{\nu([0,r])}{r^{1/2}}=\lim_{r\to\infty}\frac{1}{r^{1/2}}\int_0^r\psi(s)\mathrm{d}\nu(s)=\frac{1+|\alpha|^2}{\pi},\quad\text{ if }\alpha\neq\infty$$

and

$$\lim_{r\to\infty}\frac{\nu([0,r])}{r^{3/2}}=\lim_{r\to\infty}\frac{1}{r^{3/2}}\int_0^r\psi(s)\mathrm{d}\nu(s)=\frac{1}{3\pi},\quad\text{ if }\alpha=\infty.$$

Tauberian theorem

Let M and M^0 be Herglotz–Nevanlinna matrix-valued functions with measures Σ and Σ^0 , respectively. Suppose there exists g = g(r) > 0 such that

$$M(r\lambda) = g(r) \left(M^{0}(\lambda) + o(1) \right), \quad \text{as } r \to \infty,$$

for any $\lambda \in \mathbb{C} \setminus \mathbb{R}$. If 0 and 1 are not point masses of Σ^0 , then

$$\Sigma([0,r]) = rg(r) \left(\Sigma^{0}([0,1]) + o(1) \right), \text{ as } r \to \infty.$$

Theorem

 $(\nu,\psi) \text{ is the spectral pair of } H \iff (\nu,\overline{\psi}) \text{ is the spectral pair of } H^*.$

Theorem

 (ν, ψ) is the spectral pair of $H \iff (\nu, \overline{\psi})$ is the spectral pair of H^* . Consequently, $H = H^* \iff \psi$ is real-valued.

Theorem

 (ν,ψ) is the spectral pair of $H\iff (\nu,\overline{\psi})$ is the spectral pair of H^* .

Consequently, $H = H^* \iff \psi$ is real-valued.

Theorem

Let $H = H^*$, i.e. q real-valued and $\alpha \in \mathbb{R} \cup \{\infty\}$, σ is the spectral measure of H, and (ν, ψ) the spectral pair of H.

Theorem

 (ν, ψ) is the spectral pair of $H \iff (\nu, \overline{\psi})$ is the spectral pair of H^* . Consequently, $H = H^* \iff \psi$ is real-valued.

Theorem

Let $H = H^*$, i.e. q real-valued and $\alpha \in \mathbb{R} \cup \{\infty\}$, σ is the spectral measure of H, and (ν, ψ) the spectral pair of H. Then

$$\mathrm{d}\sigma=\big(\mathbf{1}+\psi\big)\mathrm{d}\nu.$$

Theorem

 (ν, ψ) is the spectral pair of $H \iff (\nu, \overline{\psi})$ is the spectral pair of H^* .

Consequently, $H = H^* \iff \psi$ is real-valued.

Theorem

Let $H = H^*$, i.e. q real-valued and $\alpha \in \mathbb{R} \cup \{\infty\}$, σ is the spectral measure of H, and (ν, ψ) the spectral pair of H. Then

$$d\sigma = (1 + \psi)d\nu$$
.

Furthermore, $H = H^* \ge 0 \iff \psi(s) = 1 \text{ for } \nu\text{-a.e. } s > 0.$

Theorem

 (ν, ψ) is the spectral pair of $H \iff (\nu, \overline{\psi})$ is the spectral pair of H^* . Consequently, $H = H^* \iff \psi$ is real-valued.

Theorem

Let $H = H^*$, i.e. q real-valued and $\alpha \in \mathbb{R} \cup \{\infty\}$, σ is the spectral measure of H, and (ν, ψ) the spectral pair of H. Then

$$d\sigma = (1 + \psi)d\nu$$
.

Furthermore, $H = H^* \ge 0 \iff \psi(s) = 1 \text{ for } \nu\text{-a.e. } s > 0.$

Remark: There is a generalisation of the last claim describing spectral pairs for normal H.

Lemma (the distinguished solution)

Let $\lambda > 0$ be a simple eigenvalue of |H|. Then there exists a unique, up to multiplication by ± 1 , normalised function $e \in L^2(\mathbb{R}_+)$, which satisfies

$$-e'' + qe = \lambda \overline{e}$$

and $e'(0) + \alpha e(0) = 0$.

Lemma (the distinguished solution)

Let $\lambda > 0$ be a simple eigenvalue of |H|. Then there exists a unique, up to multiplication by ± 1 , normalised function $e \in L^2(\mathbb{R}_+)$, which satisfies

$$-e'' + qe = \lambda \overline{e}$$

and
$$e'(0) + \alpha e(0) = 0$$
.

■ For $f \in \text{Dom } H$, put

$$\ell_{\alpha}(f) \coloneqq \frac{\overline{\alpha}f'(0) - f(0)}{\sqrt{1 + |\alpha|^2}}.$$

Lemma (the distinguished solution)

Let $\lambda > 0$ be a simple eigenvalue of |H|. Then there exists a unique, up to multiplication by ± 1 , normalised function $e \in L^2(\mathbb{R}_+)$, which satisfies

$$-e'' + qe = \lambda \overline{e}$$

and
$$e'(0) + \alpha e(0) = 0$$
.

■ For $f \in \text{Dom } H$, put

$$\ell_{\alpha}(f) \coloneqq \frac{\overline{\alpha}f'(0) - f(0)}{\sqrt{1 + |\alpha|^2}}.$$

Theorem

Let $\lambda > 0$ be a simple eigenvalue of |H| and let e be the distinguished solution from above. Then $\ell_{\alpha}(e) \neq 0$ and

$$\nu(\{\lambda\}) = \frac{1}{2} \big| \ell_{\alpha}(\boldsymbol{e}) \big|^2, \quad \psi(\lambda) = \frac{\overline{\ell_{\alpha}(\boldsymbol{e})^2}}{|\ell_{\alpha}(\boldsymbol{e})|^2}.$$

Related literature

Hankel operators:

- P. Gérard, S. Grellier: The cubic Szegő equation and Hankel operators, Astérisque 389 (2017).
- P. Gérard, A. Pushnitski, S. Treil: *An inverse spectral problem for non-compact Hankel operators with simple spectrum*, J. Anal. Math. **154** (2024).

Jacobi operators:

- A. Pushnitski, F. Š.: An inverse spectral problem for non-self-adjoint Jacobi matrices, Int. Math. Res. Not. 2024 (2024).
- A. Pushnitski, F. Š.: A functional model and tridiagonalisation for symmetric anti-linear operators, preprint (2024), arXiv:2402.01237.

Schrödinger operators:

■ A. Pushnitski, F. Š.: *The Borg–Marchenko uniqueness theorem for complex potentials*, preprint (2025), arXiv:2503.03248.

THANK YOU!

[Picture kindly provided by the professional photographer Jani Virtanen, 7/7/25.]

