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Self-adjoint Schrödinger operators

Self-adjoint Schrödinger operator on the half-line

For q ∶ R+ → R a measurable bounded function, we define

H = − d2

dx2 + q in L2(R+)

with
Dom H = {f ∈W 2,2(R+) ∣ f ′(0) + αf (0) = 0},

where α ∈ R ∪ {∞} (if α = ∞, f (0) = 0).

For λ ∈ C , denote by φ and θ the solutions of

−f ′′ + qf = λf

satisfying the Cauchy data: φ(0, λ) = sinγ,
φ′(0, λ) = − cosγ,

θ(0, λ) = cosγ,
θ′(0, λ) = sinγ,

where γ = γ(α) ∈ [0, π).
q bounded⇒ for every λ ∈ C ∖R there exists unique mα(λ) ∈ C such that

θ(⋅, λ) − φ(⋅, λ)mα(λ) ∈ L2(R+).
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Self-adjoint Schrödinger operators

The spectral measure of H

H = H∗ ⇒ mα ∶ C ∖R→ C is Herglotz–Nevanlinna, i.e.

mα is analytic; Immα(λ) ≥ 0, if Imλ > 0; mα(λ) = mα(λ).

Herglotz–Nevanlinna integral representation:

mα(λ) = Remα(i) + ∫
∞

−∞

( 1
t − λ −

t
1 + t2 ) dσ(t).

The measure σ is the spectral measure of H. (H is unitarily equivalent to the
operator of multiplication by the independent variable in L2

σ(R).)
The inverse spectral theory of H ≃ properties of the spectral map:

(α,q) ↦ σ.
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Self-adjoint Schrödinger operators

Results of Borg, Marchenko, and others

Borg–Marchenko uniqueness theorem (1949, 1952)

The spectral measure of H determines uniquely the potential q as well as parameter α,
i.e. the spectral map

(α,q) ↦ σ is injective.

An understanding of the image of (α,q) ↦ σ is much more delicate.

Some limitations: Marchenko’s asymptotic formulas (1952): as r →∞,

σ((−∞, r]) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

cαr 1/2 + o(r 1/2), if α ≠ ∞,

c∞r 3/2 + o (r 3/2) , if α = ∞.

Complete characterisation:
Gelfand–Levitan, Krein (1951-3-5); more regularity on q
Remling (2002); locally integrable q
Contributions by many (Gesztesy, Simon,...)
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Non-self-adjoint Schrödinger operators

Non-self-adjoint Schrödinger operator on the half-line

For q ∶ R+ → C a measurable bounded function, we define

H = − d2

dx2 + q in L2(R+)

with
Dom H = {f ∈W 2,2(R+) ∣ f ′(0) + αf (0) = 0},

where α ∈ C ∪ {∞} (if α = ∞, f (0) = 0).

Hermitisation of H:
( 0 H

H∗ 0) in L2(R+) ⊕ L2(R+).

After identifying L2(R+) ⊕ L2(R+) with L2(R+;C2), we get

H = −ϵ d2

dx2 +Q, with ϵ = (0 1
1 0) , Q = (0 q

q 0) ,

Dom H = {F ∈W 2,2(R+;C2) ∣ F ′(0) + AF(0) = 0}, with A = (α 0
0 α

) .
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Non-self-adjoint Schrödinger operators

The spectral measure of H

Let Φ,Θ be the 2 × 2 matrix-valued solutions (the fundamental system) of

−ϵF ′′ +QF = λF , on R+

satisfying specific Cauchy data at 0.

For every λ ∈ C ∖R, there is unique Mα(λ) ∈ C2,2 such that

Θ(⋅, λ) −Φ(⋅, λ)Mα(λ) ∈ L2(R+;C2,2).

Function Mα ∶ C ∖R→ C2,2 is Herglotz–Nevanlinna, i.e.

Mα is analytic; ImMα(λ) ≥ 0, if Imλ > 0; Mα(λ)∗ = Mα(λ).

Herglotz–Nevanlinna integral representation:

Mα(λ) = ReMα(i) + ∫
∞

−∞

( 1
t − λ −

t
1 + t2 ) dΣ(t).

The C2,2-valued measure Σ is called the spectral measure of H.
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Non-self-adjoint Schrödinger operators

The spectral pair of H

Theorem

There exists a unique even positive measure ν on R and a unique odd complex-valued
function ψ ∈ L∞(ν) satisfying ∥ψ∥∞ ≤ 1 such that

dΣ = (1 ψ

ψ 1
) dν.

We call (ν,ψ) the spectral pair of H.
Remark: (ν,ψ) closely related to the polar decomposition H = V ∣H ∣, (∣H ∣ =

√
H∗H).

Proposition

1 The restriction of ∣H ∣ onto (ker ∣H ∣)⊥ is unitarily equivalent to the operator of
multiplication by the independent variable in the space L2

Σ(R+;C2).
2 Moreover, the spectrum of ∣H ∣ has: ● multiplicity one on {s > 0 ∣ ∣ψ(s)∣ = 1},

● multiplicity two on {s > 0 ∣ ∣ψ(s)∣ < 1}.
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Non-self-adjoint Schrödinger operators

The Borg–Marchenko-type uniqueness theorem

Theorem

The spectral map
(α,q) ↦ (ν,ψ) is injective.

Remark: In fact, we prove the injectivity of (α,Q) ↦ Σ for any Q = Q∗.
We apply a neat argument of C. Bennewitz [CMP, 2001].
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Non-self-adjoint Schrödinger operators

High energy asymptotics of the spectral pair

Theorem

The spectral pair (ν,ψ) of H satisfies:

lim
r→∞

ν([0, r])
r 1/2

= lim
r→∞

1
r 1/2 ∫

r

0
ψ(s)dν(s) = 1 + ∣α∣2

π
, if α ≠ ∞

and
lim

r→∞

ν([0, r])
r 3/2

= lim
r→∞

1
r 3/2 ∫

r

0
ψ(s)dν(s) = 1

3π
, if α = ∞.

Tauberian theorem

Let M and M0 be Herglotz–Nevanlinna matrix-valued functions with measures Σ and
Σ0, respectively.

Suppose there exists g = g(r) > 0 such that

M(rλ) = g(r) (M0(λ) + o(1)) , as r →∞,
for any λ ∈ C ∖R. If 0 and 1 are not point masses of Σ0, then

Σ([0, r]) = rg(r) (Σ0([0,1]) + o(1)) , as r →∞.
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Non-self-adjoint Schrödinger operators

Spectral pair of self-adjoint H

Theorem

(ν,ψ) is the spectral pair of H ⇐⇒ (ν,ψ) is the spectral pair of H∗.

Consequently, H = H∗ ⇐⇒ ψ is real-valued.

Theorem

Let H = H∗, i.e. q real-valued and α ∈ R ∪ {∞}, σ is the spectral measure of H, and
(ν,ψ) the spectral pair of H.

Then

dσ = (1 + ψ)dν.

Furthermore, H = H∗ ≥ 0 ⇐⇒ ψ(s) = 1 for ν-a.e. s > 0.

Remark: There is a generalisation of the last claim describing spectral pairs for
normal H.
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Non-self-adjoint Schrödinger operators

Spectral pair at a simple singular value of H

Lemma (the distinguished solution)

Let λ > 0 be a simple eigenvalue of ∣H ∣. Then there exists a unique, up to multiplication
by ±1, normalised function e ∈ L2(R+), which satisfies

−e′′ + qe = λe

and e′(0) + αe(0) = 0.

For f ∈ Dom H, put
ℓα(f ) ∶=

αf ′(0) − f (0)√
1 + ∣α∣2

.

Theorem

Let λ > 0 be a simple eigenvalue of ∣H ∣ and let e be the distinguished solution from
above. Then ℓα(e) ≠ 0 and

ν({λ}) = 1
2
∣ℓα(e)∣2, ψ(λ) = ℓα(e)2

∣ℓα(e)∣2
.

František Štampach (CTU in Prague) The spectral pair for complex potentials 13 / 15



Non-self-adjoint Schrödinger operators

Spectral pair at a simple singular value of H

Lemma (the distinguished solution)

Let λ > 0 be a simple eigenvalue of ∣H ∣. Then there exists a unique, up to multiplication
by ±1, normalised function e ∈ L2(R+), which satisfies

−e′′ + qe = λe

and e′(0) + αe(0) = 0.

For f ∈ Dom H, put
ℓα(f ) ∶=

αf ′(0) − f (0)√
1 + ∣α∣2

.

Theorem

Let λ > 0 be a simple eigenvalue of ∣H ∣ and let e be the distinguished solution from
above. Then ℓα(e) ≠ 0 and

ν({λ}) = 1
2
∣ℓα(e)∣2, ψ(λ) = ℓα(e)2

∣ℓα(e)∣2
.

František Štampach (CTU in Prague) The spectral pair for complex potentials 13 / 15



Non-self-adjoint Schrödinger operators

Spectral pair at a simple singular value of H

Lemma (the distinguished solution)

Let λ > 0 be a simple eigenvalue of ∣H ∣. Then there exists a unique, up to multiplication
by ±1, normalised function e ∈ L2(R+), which satisfies

−e′′ + qe = λe

and e′(0) + αe(0) = 0.

For f ∈ Dom H, put
ℓα(f ) ∶=

αf ′(0) − f (0)√
1 + ∣α∣2

.

Theorem

Let λ > 0 be a simple eigenvalue of ∣H ∣ and let e be the distinguished solution from
above. Then ℓα(e) ≠ 0 and

ν({λ}) = 1
2
∣ℓα(e)∣2, ψ(λ) = ℓα(e)2

∣ℓα(e)∣2
.

František Štampach (CTU in Prague) The spectral pair for complex potentials 13 / 15



Non-self-adjoint Schrödinger operators

Spectral pair at a simple singular value of H

Lemma (the distinguished solution)

Let λ > 0 be a simple eigenvalue of ∣H ∣. Then there exists a unique, up to multiplication
by ±1, normalised function e ∈ L2(R+), which satisfies

−e′′ + qe = λe

and e′(0) + αe(0) = 0.

For f ∈ Dom H, put
ℓα(f ) ∶=

αf ′(0) − f (0)√
1 + ∣α∣2

.

Theorem

Let λ > 0 be a simple eigenvalue of ∣H ∣ and let e be the distinguished solution from
above. Then ℓα(e) ≠ 0 and

ν({λ}) = 1
2
∣ℓα(e)∣2, ψ(λ) = ℓα(e)2

∣ℓα(e)∣2
.

František Štampach (CTU in Prague) The spectral pair for complex potentials 13 / 15



Non-self-adjoint Schrödinger operators

Related literature

Hankel operators:

P. Gérard, S. Grellier: The cubic Szegő equation and Hankel operators,
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