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q-Lommel polynomials

By q-Lommel polynomials hn,ν(w ; q) we mean those functions arising in the relation

Jν+n(w ; q) = hn,ν(w−1; q)Jν(w ; q)− hn−1,ν+1(w−1; q)Jν−1(w ; q)

where Jν(w ; q) denotes the Hahn-Exton q-Bessel function,

Jν(w ; q) = wν
(qν+1; q)∞
(q; q)∞

1φ1

(
0; qν+1; q, qw2

)
.

Function hn,ν(w ; q) are Laurent polynomials in w and polynomials in qν and are generated
by recurrence

hn−1,ν(w ; q)− (w−1 + w(1− qν))hn,ν(w ; q) + hn+1,ν(w ; q) = 0,

with initial conditions h−1,ν(w ; q) = 0 and h0,ν(w ; q) = 1.

q-Lommel polynomials have been intensively studied in 90’s by Koelink, Van Aschee,
Swarttouw, and others.
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Monic q-Lommel polynomials

The monic version of q-Lommel polynomials Fn(w ; q, x) are generated by recurrence

un+1 = (x − (w−2 + 1)q−n)un − w−2q−2n+1un−1

with initial setting F−1(w ; q, x) = 0 and F0(w ; q, x) = 1.

Polynomials Fn(w ; q, x) are related with hn,ν(w ; q) by identity

hn,ν(w ; q) = (−1)nwnq
1
2 n(n−1)Fn(w ; q, qν).

Notice we identify x = qν .
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Known results on orthogonality

Proposition

The Hamburger as well as the Stieltjes moment problem associated with polynomials Fn(w ; q, x)
is indeterminate if and only if q < w−2 < 1/q.

Proof.

Based on explicit formula for corresponding orthonormal polynomials Pn(w ; q, 0) and Qn(w ; q, 0)
from which one deduces both are square summable iff q < w−2 < 1/q.
The indeterminacy of the Stieltjes moment problem then follows from the fact that

lim
n→∞

Pn(w ; q, 0)
Qn(w ; q, 0)

< 0,

see [Berg & Valent].

Orthogonality relation [Koelink]

For m, n ∈ Z+, it holds

∞∑
k=1

1φ1(0; qw−2; q, qξk )

∂x |x=ξk 1φ1(0; qw−2; q, x)
Fn(w ; q, ξk )Fm(w ; q, ξk ) = −w−2nq−n2

δmn.

František Štampach (CTU) Measures of Orthognality for q-Lommel Polynomials January 21, 2014 5 / 19



Known results on orthogonality

Proposition

The Hamburger as well as the Stieltjes moment problem associated with polynomials Fn(w ; q, x)
is indeterminate if and only if q < w−2 < 1/q.

Proof.

Based on explicit formula for corresponding orthonormal polynomials Pn(w ; q, 0) and Qn(w ; q, 0)
from which one deduces both are square summable iff q < w−2 < 1/q.
The indeterminacy of the Stieltjes moment problem then follows from the fact that

lim
n→∞

Pn(w ; q, 0)
Qn(w ; q, 0)

< 0,

see [Berg & Valent].

Orthogonality relation [Koelink]

For m, n ∈ Z+, it holds

∞∑
k=1

1φ1(0; qw−2; q, qξk )

∂x |x=ξk 1φ1(0; qw−2; q, x)
Fn(w ; q, ξk )Fm(w ; q, ξk ) = −w−2nq−n2

δmn.

František Štampach (CTU) Measures of Orthognality for q-Lommel Polynomials January 21, 2014 5 / 19



Known results on orthogonality

Proposition

The Hamburger as well as the Stieltjes moment problem associated with polynomials Fn(w ; q, x)
is indeterminate if and only if q < w−2 < 1/q.

Proof.

Based on explicit formula for corresponding orthonormal polynomials Pn(w ; q, 0) and Qn(w ; q, 0)
from which one deduces both are square summable iff q < w−2 < 1/q.
The indeterminacy of the Stieltjes moment problem then follows from the fact that

lim
n→∞

Pn(w ; q, 0)
Qn(w ; q, 0)

< 0,

see [Berg & Valent].

Orthogonality relation [Koelink]

For m, n ∈ Z+, it holds

∞∑
k=1

1φ1(0; qw−2; q, qξk )

∂x |x=ξk 1φ1(0; qw−2; q, x)
Fn(w ; q, ξk )Fm(w ; q, ξk ) = −w−2nq−n2

δmn.

František Štampach (CTU) Measures of Orthognality for q-Lommel Polynomials January 21, 2014 5 / 19



Contents

1 Introduction

2 Nevalinna functions for q-Lommel polynomials

3 Some measures of orthogonality

4 Recurrences for the moment sequence

František Štampach (CTU) Measures of Orthognality for q-Lommel Polynomials January 21, 2014 6 / 19



Formula for the generating function and limit relations

Proposition

For |t | < min(1,w2), it holds

∞∑
n=0

q
(

n
2

)
Fn(w ; q, x)(−t)n =

1
(1− t)(1− w−2t) 2φ2(0, q; qt , qw−2t ; q, xt).

Proof.

By denoting the LHS of the above formula V (t), one finds V fulfills the q-difference equation

(1− t)(1− w−2t)V (t) = 1− xtV (qt)

which leads to the result by iterating.

The standard use of the Darboux’s method provides us with the following limit relations:

lim
n→∞

(−1)nq
(

n
2

)
Fn(w ; q, x) =

1
1− w−2 1φ1(0;w−2q; q, x), if w > 1,

and

lim
n→∞

(−1)n

n
q
(

n
2

)
Fn(1; q, x) = 1φ1(0; q; q, x), for w = 1.
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Nevanlinna parametrization – generalities

Recall Nevanlinna functions A, B, C, and D defined by

A(z) = z
∞∑

n=0

Qn(0)Qn(z), B(z) = −1 + z
∞∑

n=0

Qn(0)Pn(z),

C(z) = 1 + z
∞∑

n=0

Pn(0)Qn(z), D(z) = z
∞∑

n=0

Pn(0)Pn(z),

where Pn and Qn are orthonormal polynomials of the first and second kind, respectively, are
of the greatest interest for the indeterminate Hamburger moment problem.

By the Nevanlinna theorem, all measures of orthogonality µϕ for which∫
R

Pn(x)Pm(x)dµϕ(x) = δmn, m, n ∈ Z+,

are parametrized according to

∫
R

dµϕ(x)
z − x

=
A(z)ϕ(z)− C(z)
B(z)ϕ(z)− D(z)

, z ∈ C \ R,

where ϕ ∈ P ∪ {∞} and P is the space of Pick functions.
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Nevanlinna functions for q-Lommel polynomials – computation

Let us assume 1 6= w−2 ∈ (q; q−1). Then by the very definition of function A we have

A(w ; q, z) =
zq

1− w−2

∞∑
n=1

(−1)n+1(w2n − 1)q
(

n
2

)
Fn−1(w ; q, z)

=
zq

1− w−2

w2
∞∑

n=0

q
(

n
2

)
Fn(w ; q, qx)(−qw2)n

︸ ︷︷ ︸
gerating function formula with t=qw2

−
∞∑

n=0

q
(

n
2

)
Fn(w ; q, qx)(−q)n

︸ ︷︷ ︸
...and similarly with t=q


By this way (and using simple identity for q-hypergeometric series) one arrives at the formula

A(w ; q, z) =
1

1− w−2

[
1φ1(0;w−2q; q, qz)− 1φ1(0;w2q; q,w2qz)

]
.

Similar computation leads to formulas for B, C, and D, and the result is . . .
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Nevanlinna functions for q-Lommel polynomials

Theorem

Let 1 6= w−2 ∈ (q, q−1) then the entire functions from the Nevanlinna parametrization are as
follows:

A(w ; q, z) =
w2

w2 − 1

[
1φ1(0;w−2q; q, qz)− 1φ1(0;w2q; q,w2qz)

]
,

B(w ; q, z) =
1

1− w2

[
w2

1φ1(0;w−2q; q, z)− 1φ1(0;w2q; q, zw2)
]
,

C(w ; q, z) =
1

1− w2

[
1φ1(0;w−2q; q, qz)− w2

1φ1(0;w2q; q,w2qz)
]
,

D(w ; q, z) =
1

w2 − 1

[
1φ1(0;w−2q; q, z)− 1φ1(0;w2q; q, zw2)

]
.

If w = 1 then we have

A(1; q, z) = −z
∂

∂z 1φ1(0; q; q, qz), B(1; q, z) = z2 ∂

∂z

[
z−1

1φ1(0; q; q, z)
]
,

C(1; q, z) =
∂

∂z
[z 1φ1(0; q; q, qz)] , D(1; q, z) = −z

∂

∂z 1φ1(0; q; q, z).
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N-extremal measures

Having Nevanlinna functions at hand one can describe some exceptional measures of
orthogonality for q-Lommel polynomials.

Recall N-extremal measures µt correspond to the choice

ϕ = t , t ∈ R ∪ {∞},

for the Pick function ϕ in the Nevanlinna parametrization of the Stieltjes transform of µt .

Measures µt are purely discrete with unbounded support. Moreover,

suppµt ⊂ [0,∞) iff t ∈ [α, 0] where α =

{
−1, if w ≥ 1,
−w−2, if w < 1.
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N-extremal measures for q-Lommel polynomials

For a simple form of the following expressions we use notation

φw (z) := 1φ1(0;w−2q; q, z), and ψw (z) := 1φ1(0;w2q; q, zw2).

Proposition

Let 1 6= w−2 ∈ (q, q−1) then all N-extremal measures µt = µt (w ; q) are of the form

µt =
∑
x∈Zt

w2 − 1
φw (x)ψ′w (x)− ψw (x)φ′w (x)

εx

where
Zt = Zt (w ; q) = {x ∈ R | (t + 1)ψw (x) = (w2t + 1)φw (x)}

and εx stands for the Dirac measure supported on {x}.

By using identity (which is AD − BC = 1)

w2φw (z)ψw (qz)− φw (qz)ψw (z) = w2 − 1, w 6= 1,

one finds the measure derived by Koelink is µ−1, and the orthogonality relation reads
∞∑

k=1

φw (qξk )

φ′w (ξk )
Fn(w ; q, ξk )Fm(w ; q, ξk ) = −w−2nq−n2

δmn

where {ξk | k ∈ N} are all zeros of the function φw .
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Another measure of orthogonality

Similar orthogonality relation with N-extremal measure µ−w−2 reads

∞∑
k=1

ψw (qηk )

ψ′w (ηk )
Fn(w ; q, ηk )Fm(w ; q, ηk ) = w−2n−2q−n2

δmn,

where {ηk | k ∈ N} are all zeros of the function ψw .

Both measures µ−1 and µ−w−2 are supported in (0,∞) and both correspond to the spectral
measure of the Friedrichs extension of associated Jacobi matrix:

µ−1 if q < w−2 < 1, and µ−w−2 if 1 < w−2 < 1/q.

Recall φ1(z) = 1φ1(0; q; q, z).

Proposition

For w = 1, all N-extremal measures µt = µt (1; q) are of the form

µt = −
∑

x∈Yt

1
φ′1(x) + xφ′′1 (x)

εx

where
Yt = Yt (q) = {x ∈ R | x(t + 1)φ′1(x) = tφ1(x)}

and εx stands for the Dirac measure supported on {x}.
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Absolutely continuous measures of orthogonality

An example of two-parametric family of absolutely continuous measures µβ,γ of orthogonality
corresponds to the choice of the Pick function ϕ as

ϕ(z) := β + iγ sgn=z, z ∈ C \ R,

where β ∈ R and γ > 0.

The general formula for the density dµβ,γ/dx in terms of Nevanlinna functions is due to [Berg
& Valent].

By setting β = −1 (for simplicity) one arrives at the orthogonality relation

∫
R

Fm(w ; q, x)Fn(w ; q, x)
γ(ψw (x)− w2φw (x))2 + γ−1(1− w2)2φ2

w (x)
dx =

π

(1− w2)2
w−2nq−n2

δmn,

for 1 6= w−2 ∈ (q, q−1).

The orthogonality relation for w = 1 reads

∫
R

Fm(1; q, x)Fn(1; q, x)
γ(xφ′1(x)− φ1(x))2 + γ−1(φ1(x))2

dx = πq−n2
δmn.
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The moment sequence

We denote a := w−2 and

mn = mn(a; q) :=
∫
R

xndµ(a;q)(x), n ∈ Z+,

where µ(a;q) is a measure of orthogonality for q-Lommel polynomials normalized to m0 = 1.

It seems the moment sequence mn can not be expressed explicitly.

It would be of interest to know the asymptotic behavior of mn, for n→∞, in particular in the
case of indeterminate Hamburger moment problem, i.e., q < a < 1/q.
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Recurrences for the moment sequence

The moment sequence satisfies the following recurrences:

Quadratic recursion

mn+2(a; q) = (a + 1)mn+1(a; q) +
a
q

n∑
k=0

q−k mk (a; q)mn−k (a; q), n ∈ {−1, 0, 1, 2, . . . }.

Linear recursion

mn(a; q) =
ωn(a; q)
(q; q)n−1

−
n−1∑
k=1

qk

(q; q)k
ωk (a; q)mn−k (a; q), n ∈ N.

where

ωn(a; q) =
n∑

k=0

[
n
k

]
q

q−k(n−k)ak .

It is not very difficult to show, for all n ∈ N, it holds:
√

aq−
n−1

4 ≤ n
√
ωn(a; q) ≤ (1 + a)q−

n
4 .

Consequently,

mn(a; q) ≤
ωn(a; q)
(q; q)n−1

≤
(1 + a)n

(q; q)n−1
q−

n2
4 , n ∈ N.
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Conclusion

Some open questions:

Is there any C = C(a; q) such that, for all n ∈ N,

Cq−
n
4 ≤ n

√
mn(a; q) ?

Does the limit
lim

n→∞
q

n
4 n
√

mn(a; q)

exist? If so, what its value is?

Gracia!
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