Nevanlinna functions and orthognality relations for q-Lommel polynomials

František Štampach

Faculty of Nuclear Sciences and Physical Engineering, CTU in Prague

OrthoQuad 2014

January 21, 2014

(1) Introduction

2) Nevalinna functions for q-Lommel polynomials
(3) Some measures of orthogonality

4 Recurrences for the moment sequence

q-Lommel polynomials

- By q-Lommel polynomials $h_{n, \nu}(w ; q)$ we mean those functions arising in the relation

$$
J_{\nu+n}(w ; q)=h_{n, \nu}\left(w^{-1} ; q\right) J_{\nu}(w ; q)-h_{n-1, \nu+1}\left(w^{-1} ; q\right) J_{\nu-1}(w ; q)
$$

where $J_{\nu}(w ; q)$ denotes the Hahn-Exton q-Bessel function,

$$
J_{\nu}(w ; q)=w^{\nu} \frac{\left(q^{\nu+1} ; q\right)_{\infty}}{(q ; q)_{\infty}} 1 \phi_{1}\left(0 ; q^{\nu+1} ; q, q w^{2}\right)
$$

q-Lommel polynomials

- By q-Lommel polynomials $h_{n, \nu}(w ; q)$ we mean those functions arising in the relation

$$
J_{\nu+n}(w ; q)=h_{n, \nu}\left(w^{-1} ; q\right) J_{\nu}(w ; q)-h_{n-1, \nu+1}\left(w^{-1} ; q\right) J_{\nu-1}(w ; q)
$$

where $J_{\nu}(w ; q)$ denotes the Hahn-Exton q-Bessel function,

$$
J_{\nu}(w ; q)=w^{\nu} \frac{\left(q^{\nu+1} ; q\right)_{\infty}}{(q ; q)_{\infty}} 1 \phi_{1}\left(0 ; q^{\nu+1} ; q, q w^{2}\right)
$$

- Function $h_{n, \nu}(w ; q)$ are Laurent polynomials in w and polynomials in q^{ν} and are generated by recurrence

$$
h_{n-1, \nu}(w ; q)-\left(w^{-1}+w\left(1-q^{\nu}\right)\right) h_{n, \nu}(w ; q)+h_{n+1, \nu}(w ; q)=0
$$

with initial conditions $h_{-1, \nu}(w ; q)=0$ and $h_{0, \nu}(w ; q)=1$.

q-Lommel polynomials

- By q-Lommel polynomials $h_{n, \nu}(w ; q)$ we mean those functions arising in the relation

$$
J_{\nu+n}(w ; q)=h_{n, \nu}\left(w^{-1} ; q\right) J_{\nu}(w ; q)-h_{n-1, \nu+1}\left(w^{-1} ; q\right) J_{\nu-1}(w ; q)
$$

where $J_{\nu}(w ; q)$ denotes the Hahn-Exton q-Bessel function,

$$
J_{\nu}(w ; q)=w^{\nu} \frac{\left(q^{\nu+1} ; q\right)_{\infty}}{(q ; q)_{\infty}} 1 \phi_{1}\left(0 ; q^{\nu+1} ; q, q w^{2}\right)
$$

- Function $h_{n, \nu}(w ; q)$ are Laurent polynomials in w and polynomials in q^{ν} and are generated by recurrence

$$
h_{n-1, \nu}(w ; q)-\left(w^{-1}+w\left(1-q^{\nu}\right)\right) h_{n, \nu}(w ; q)+h_{n+1, \nu}(w ; q)=0
$$

with initial conditions $h_{-1, \nu}(w ; q)=0$ and $h_{0, \nu}(w ; q)=1$.

- q-Lommel polynomials have been intensively studied in 90's by Koelink, Van Aschee, Swarttouw, and others.

Monic q-Lommel polynomials

- The monic version of q-Lommel polynomials $F_{n}(w ; q, x)$ are generated by recurrence

$$
u_{n+1}=\left(x-\left(w^{-2}+1\right) q^{-n}\right) u_{n}-w^{-2} q^{-2 n+1} u_{n-1}
$$

with initial setting $F_{-1}(w ; q, x)=0$ and $F_{0}(w ; q, x)=1$.

Monic q-Lommel polynomials

- The monic version of q-Lommel polynomials $F_{n}(w ; q, x)$ are generated by recurrence

$$
u_{n+1}=\left(x-\left(w^{-2}+1\right) q^{-n}\right) u_{n}-w^{-2} q^{-2 n+1} u_{n-1}
$$

with initial setting $F_{-1}(w ; q, x)=0$ and $F_{0}(w ; q, x)=1$.

- Polynomials $F_{n}(w ; q, x)$ are related with $h_{n, \nu}(w ; q)$ by identity

$$
h_{n, \nu}(w ; q)=(-1)^{n} w^{n} q^{\frac{1}{2} n(n-1)} F_{n}\left(w ; q, q^{\nu}\right)
$$

Notice we identify $x=q^{\nu}$.

Known results on orthogonality

Proposition

The Hamburger as well as the Stieltjes moment problem associated with polynomials $F_{n}(w ; q, x)$ is indeterminate if and only if $q<w^{-2}<1 / q$.

Known results on orthogonality

Proposition

The Hamburger as well as the Stieltjes moment problem associated with polynomials $F_{n}(w ; q, x)$ is indeterminate if and only if $q<w^{-2}<1 / q$.

Proof.

Based on explicit formula for corresponding orthonormal polynomials $P_{n}(w ; q, 0)$ and $Q_{n}(w ; q, 0)$ from which one deduces both are square summable iff $q<w^{-2}<1 / q$.
The indeterminacy of the Stieltjes moment problem then follows from the fact that

$$
\lim _{n \rightarrow \infty} \frac{P_{n}(w ; q, 0)}{Q_{n}(w ; q, 0)}<0
$$

see [Berg \& Valent].

Known results on orthogonality

Proposition

The Hamburger as well as the Stieltjes moment problem associated with polynomials $F_{n}(w ; q, x)$ is indeterminate if and only if $q<w^{-2}<1 / q$.

Proof.

Based on explicit formula for corresponding orthonormal polynomials $P_{n}(w ; q, 0)$ and $Q_{n}(w ; q, 0)$ from which one deduces both are square summable iff $q<w^{-2}<1 / q$.
The indeterminacy of the Stieltjes moment problem then follows from the fact that

$$
\lim _{n \rightarrow \infty} \frac{P_{n}(w ; q, 0)}{Q_{n}(w ; q, 0)}<0
$$

see [Berg \& Valent].

Orthogonality relation [Koelink]

For $m, n \in \mathbb{Z}_{+}$, it holds

$$
\sum_{k=1}^{\infty} \frac{1 \phi_{1}\left(0 ; q w^{-2} ; q, q \xi_{k}\right)}{\left.\partial_{x}\right|_{x=\xi_{k} 1} \phi_{1}\left(0 ; q w^{-2} ; q, x\right)} F_{n}\left(w ; q, \xi_{k}\right) F_{m}\left(w ; q, \xi_{k}\right)=-w^{-2 n} q^{-n^{2}} \delta_{m n}
$$

Contents

(1) Introduction

2) Nevalinna functions for q-Lommel polynomials

(3) Some measures of orthogonality

4 Recurrences for the moment sequence

Formula for the generating function and limit relations

Proposition

For $|t|<\min \left(1, w^{2}\right)$, it holds

$$
\sum_{n=0}^{\infty} q^{\binom{n}{2}} F_{n}(w ; q, x)(-t)^{n}=\frac{1}{(1-t)\left(1-w^{-2} t\right)} 2 \phi_{2}\left(0, q ; q t, q w^{-2} t ; q, x t\right)
$$

Formula for the generating function and limit relations

Proposition

For $|t|<\min \left(1, w^{2}\right)$, it holds

$$
\sum_{n=0}^{\infty} q^{\binom{n}{2}} F_{n}(w ; q, x)(-t)^{n}=\frac{1}{(1-t)\left(1-w^{-2} t\right)} 2 \phi_{2}\left(0, q ; q t, q w^{-2} t ; q, x t\right)
$$

Proof.

By denoting the LHS of the above formula $V(t)$, one finds V fulfills the q-difference equation

$$
(1-t)\left(1-w^{-2} t\right) V(t)=1-x t V(q t)
$$

which leads to the result by iterating.

Formula for the generating function and limit relations

Proposition

For $|t|<\min \left(1, w^{2}\right)$, it holds

$$
\sum_{n=0}^{\infty} q^{\binom{n}{2}} F_{n}(w ; q, x)(-t)^{n}=\frac{1}{(1-t)\left(1-w^{-2} t\right)} 2 \phi_{2}\left(0, q ; q t, q w^{-2} t ; q, x t\right)
$$

Proof.

By denoting the LHS of the above formula $V(t)$, one finds V fulfills the q-difference equation

$$
(1-t)\left(1-w^{-2} t\right) V(t)=1-x t V(q t)
$$

which leads to the result by iterating.
The standard use of the Darboux's method provides us with the following limit relations:

$$
\lim _{n \rightarrow \infty}(-1)^{n} q^{\binom{n}{2}} F_{n}(w ; q, x)=\frac{1}{1-w^{-2}} 1 \phi_{1}\left(0 ; w^{-2} q ; q, x\right), \quad \text { if } w>1
$$

Formula for the generating function and limit relations

Proposition

For $|t|<\min \left(1, w^{2}\right)$, it holds

$$
\sum_{n=0}^{\infty} q^{\binom{n}{2}} F_{n}(w ; q, x)(-t)^{n}=\frac{1}{(1-t)\left(1-w^{-2} t\right)} 2 \phi_{2}\left(0, q ; q t, q w^{-2} t ; q, x t\right)
$$

Proof.

By denoting the LHS of the above formula $V(t)$, one finds V fulfills the q-difference equation

$$
(1-t)\left(1-w^{-2} t\right) V(t)=1-x t V(q t)
$$

which leads to the result by iterating.
The standard use of the Darboux's method provides us with the following limit relations:

$$
\lim _{n \rightarrow \infty}(-1)^{n} q^{\binom{n}{2}} F_{n}(w ; q, x)=\frac{1}{1-w^{-2}} 1 \phi_{1}\left(0 ; w^{-2} q ; q, x\right), \quad \text { if } w>1
$$

and

$$
\lim _{n \rightarrow \infty} \frac{(-1)^{n}}{n} q^{\binom{n}{2}} F_{n}(1 ; q, x)={ }_{1} \phi_{1}(0 ; q ; q, x), \quad \text { for } w=1 .
$$

Nevanlinna parametrization - generalities

- Recall Nevanlinna functions A, B, C, and D defined by

$$
\begin{array}{cc}
A(z)=z \sum_{n=0}^{\infty} Q_{n}(0) Q_{n}(z), & B(z)=-1+z \sum_{n=0}^{\infty} Q_{n}(0) P_{n}(z), \\
C(z)=1+z \sum_{n=0}^{\infty} P_{n}(0) Q_{n}(z), & D(z)=z \sum_{n=0}^{\infty} P_{n}(0) P_{n}(z),
\end{array}
$$

where P_{n} and Q_{n} are orthonormal polynomials of the first and second kind, respectively, are of the greatest interest for the indeterminate Hamburger moment problem.

Nevanlinna parametrization - generalities

- Recall Nevanlinna functions A, B, C, and D defined by

$$
\begin{gathered}
A(z)=z \sum_{n=0}^{\infty} Q_{n}(0) Q_{n}(z), \\
C(z)=1+z \sum_{n=0}^{\infty} P_{n}(0) Q_{n}(z), \\
D(z)=z \sum_{n=0}^{\infty} P_{n}(0) P_{n}(z),
\end{gathered}
$$

where P_{n} and Q_{n} are orthonormal polynomials of the first and second kind, respectively, are of the greatest interest for the indeterminate Hamburger moment problem.

- By the Nevanlinna theorem, all measures of orthogonality μ_{φ} for which

$$
\int_{\mathbb{R}} P_{n}(x) P_{m}(x) d \mu_{\varphi}(x)=\delta_{m n}, \quad m, n \in \mathbb{Z}_{+}
$$

are parametrized according to

$$
\int_{\mathbb{R}} \frac{d \mu_{\varphi}(x)}{z-x}=\frac{A(z) \varphi(z)-C(z)}{B(z) \varphi(z)-D(z)}, \quad z \in \mathbb{C} \backslash \mathbb{R},
$$

where $\varphi \in \mathcal{P} \cup\{\infty\}$ and \mathcal{P} is the space of Pick functions.

Nevanlinna functions for q-Lommel polynomials - computation

- Let us assume $1 \neq w^{-2} \in\left(q ; q^{-1}\right)$. Then by the very definition of function A we have

Nevanlinna functions for q-Lommel polynomials - computation

- Let us assume $1 \neq w^{-2} \in\left(q ; q^{-1}\right)$. Then by the very definition of function A we have

$$
A(w ; q, z)=\frac{z q}{1-w^{-2}} \sum_{n=1}^{\infty}(-1)^{n+1}\left(w^{2 n}-1\right) q^{\binom{n}{2}} F_{n-1}(w ; q, z)
$$

Nevanlinna functions for q-Lommel polynomials - computation

- Let us assume $1 \neq w^{-2} \in\left(q ; q^{-1}\right)$. Then by the very definition of function A we have

$$
\begin{aligned}
& A(w ; q, z)=\frac{z q}{1-w^{-2}} \sum_{n=1}^{\infty}(-1)^{n+1}\left(w^{2 n}-1\right) q^{\binom{n}{2}} F_{n-1}(w ; q, z) \\
& \quad=\frac{z q}{1-w^{-2}}[w^{2} \underbrace{\sum_{n=0}^{\infty} q^{\binom{n}{2}} F_{n}(w ; q, q x)\left(-q w^{2}\right)^{n}}_{\text {gerating function formula with } t=q w^{2}}-\underbrace{\left.\sum_{n=0}^{\infty} q^{\binom{n}{2}} F_{n}(w ; q, q x)(-q)^{n}\right]}_{\ldots \text { and similarly with } t=q}]
\end{aligned}
$$

Nevanlinna functions for q-Lommel polynomials - computation

- Let us assume $1 \neq w^{-2} \in\left(q ; q^{-1}\right)$. Then by the very definition of function A we have

$$
\begin{aligned}
& A(w ; q, z)=\frac{z q}{1-w^{-2}} \sum_{n=1}^{\infty}(-1)^{n+1}\left(w^{2 n}-1\right) q^{\binom{n}{2}} F_{n-1}(w ; q, z) \\
& \quad=\frac{z q}{1-w^{-2}}[w^{2} \underbrace{}_{\underbrace{\sum_{n=0}^{\infty} q^{\binom{n}{2}} F_{n}(w ; q, q x)\left(-q w^{2}\right)^{n}}_{\text {gerating function formula with } t=q w^{2}}-\underbrace{\sum_{n=0}^{\infty} q^{\binom{n}{2}} F_{n}(w ; q, q x)(-q)^{n}}_{\ldots \text { and similarly with } t=q}]}]
\end{aligned}
$$

- By this way (and using simple identity for q-hypergeometric series) one arrives at the formula

$$
A(w ; q, z)=\frac{1}{1-w^{-2}}\left[{ }_{1} \phi_{1}\left(0 ; w^{-2} q ; q, q z\right)-{ }_{1} \phi_{1}\left(0 ; w^{2} q ; q, w^{2} q z\right)\right]
$$

Nevanlinna functions for q-Lommel polynomials - computation

- Let us assume $1 \neq w^{-2} \in\left(q ; q^{-1}\right)$. Then by the very definition of function A we have

$$
\begin{aligned}
& A(w ; q, z)=\frac{z q}{1-w^{-2}} \sum_{n=1}^{\infty}(-1)^{n+1}\left(w^{2 n}-1\right) q^{\binom{n}{2}} F_{n-1}(w ; q, z) \\
& \quad=\frac{z q}{1-w^{-2}}[w^{2} \underbrace{}_{\underbrace{\sum_{n=0}^{\infty} q^{\binom{n}{2}} F_{n}(w ; q, q x)\left(-q w^{2}\right)^{n}}_{\text {gerating function formula with } t=q w^{2}}-\underbrace{\sum_{n=0}^{\infty} q^{\binom{n}{2}} F_{n}(w ; q, q x)(-q)^{n}}_{\ldots \text { and similarly with } t=q}]}]
\end{aligned}
$$

- By this way (and using simple identity for q-hypergeometric series) one arrives at the formula

$$
A(w ; q, z)=\frac{1}{1-w^{-2}}\left[{ }_{1} \phi_{1}\left(0 ; w^{-2} q ; q, q z\right)-{ }_{1} \phi_{1}\left(0 ; w^{2} q ; q, w^{2} q z\right)\right] .
$$

- Similar computation leads to formulas for B, C, and D, and the result is \ldots

Nevanlinna functions for q-Lommel polynomials

Theorem

Let $1 \neq w^{-2} \in\left(q, q^{-1}\right)$ then the entire functions from the Nevanlinna parametrization are as follows:

$$
\begin{aligned}
A(w ; q, z) & =\frac{w^{2}}{w^{2}-1}\left[{ }_{1} \phi_{1}\left(0 ; w^{-2} q ; q, q z\right)-{ }_{1} \phi_{1}\left(0 ; w^{2} q ; q, w^{2} q z\right)\right] \\
B(w ; q, z) & =\frac{1}{1-w^{2}}\left[w^{2}{ }_{1} \phi_{1}\left(0 ; w^{-2} q ; q, z\right)-{ }_{1} \phi_{1}\left(0 ; w^{2} q ; q, z w^{2}\right)\right] \\
C(w ; q, z) & =\frac{1}{1-w^{2}}\left[{ }_{1} \phi_{1}\left(0 ; w^{-2} q ; q, q z\right)-w^{2}{ }_{1} \phi_{1}\left(0 ; w^{2} q ; q, w^{2} q z\right)\right], \\
D(w ; q, z) & =\frac{1}{w^{2}-1}\left[{ }_{1} \phi_{1}\left(0 ; w^{-2} q ; q, z\right)-{ }_{1} \phi_{1}\left(0 ; w^{2} q ; q, z w^{2}\right)\right]
\end{aligned}
$$

Nevanlinna functions for q-Lommel polynomials

Theorem

Let $1 \neq w^{-2} \in\left(q, q^{-1}\right)$ then the entire functions from the Nevanlinna parametrization are as follows:

$$
\begin{aligned}
A(w ; q, z) & =\frac{w^{2}}{w^{2}-1}\left[{ }_{1} \phi_{1}\left(0 ; w^{-2} q ; q, q z\right)-{ }_{1} \phi_{1}\left(0 ; w^{2} q ; q, w^{2} q z\right)\right] \\
B(w ; q, z) & =\frac{1}{1-w^{2}}\left[w^{2}{ }_{1} \phi_{1}\left(0 ; w^{-2} q ; q, z\right)-{ }_{1} \phi_{1}\left(0 ; w^{2} q ; q, z w^{2}\right)\right] \\
C(w ; q, z) & =\frac{1}{1-w^{2}}\left[{ }_{1} \phi_{1}\left(0 ; w^{-2} q ; q, q z\right)-w^{2}{ }_{1} \phi_{1}\left(0 ; w^{2} q ; q, w^{2} q z\right)\right], \\
D(w ; q, z) & =\frac{1}{w^{2}-1}\left[{ }_{1} \phi_{1}\left(0 ; w^{-2} q ; q, z\right)-{ }_{1} \phi_{1}\left(0 ; w^{2} q ; q, z w^{2}\right)\right]
\end{aligned}
$$

If $w=1$ then we have

$$
\begin{gathered}
A(1 ; q, z)=-z \frac{\partial}{\partial z}{ }_{1} \phi_{1}(0 ; q ; q, q z), \quad B(1 ; q, z)=z^{2} \frac{\partial}{\partial z}\left[z^{-1}{ }_{1} \phi_{1}(0 ; q ; q, z)\right] \\
C(1 ; q, z)=\frac{\partial}{\partial z}\left[z_{1} \phi_{1}(0 ; q ; q, q z)\right], \quad D(1 ; q, z)=-z \frac{\partial}{\partial z}{ }_{1} \phi_{1}(0 ; q ; q, z)
\end{gathered}
$$

Contents

(1) Introduction

2) Nevalinna functions for q-Lommel polynomials
(3) Some measures of orthogonality
4. Recurrences for the moment sequence

N-extremal measures

- Having Nevanlinna functions at hand one can describe some exceptional measures of orthogonality for q-Lommel polynomials.
- Having Nevanlinna functions at hand one can describe some exceptional measures of orthogonality for q-Lommel polynomials.
- Recall N -extremal measures μ_{t} correspond to the choice

$$
\varphi=t, \quad t \in \mathbb{R} \cup\{\infty\}
$$

for the Pick function φ in the Nevanlinna parametrization of the Stieltjes transform of μ_{t}.

N-extremal measures

- Having Nevanlinna functions at hand one can describe some exceptional measures of orthogonality for q-Lommel polynomials.
- Recall N -extremal measures μ_{t} correspond to the choice

$$
\varphi=t, \quad t \in \mathbb{R} \cup\{\infty\}
$$

for the Pick function φ in the Nevanlinna parametrization of the Stieltjes transform of μ_{t}.

- Measures μ_{t} are purely discrete with unbounded support. Moreover,

$$
\operatorname{supp} \mu_{t} \subset[0, \infty) \quad \text { iff } \quad t \in[\alpha, 0] \quad \text { where } \quad \alpha= \begin{cases}-1, & \text { if } w \geq 1 \\ -w^{-2}, & \text { if } w<1\end{cases}
$$

N-extremal measures for q-Lommel polynomials

- For a simple form of the following expressions we use notation

$$
\phi_{w}(z):={ }_{1} \phi_{1}\left(0 ; w^{-2} q ; q, z\right), \quad \text { and } \quad \psi_{w}(z):={ }_{1} \phi_{1}\left(0 ; w^{2} q ; q, z w^{2}\right) .
$$

N-extremal measures for q-Lommel polynomials

- For a simple form of the following expressions we use notation

$$
\phi_{w}(z):={ }_{1} \phi_{1}\left(0 ; w^{-2} q ; q, z\right), \quad \text { and } \quad \psi_{w}(z):={ }_{1} \phi_{1}\left(0 ; w^{2} q ; q, z w^{2}\right) .
$$

Proposition

Let $1 \neq w^{-2} \in\left(q, q^{-1}\right)$ then all N-extremal measures $\mu_{t}=\mu_{t}(w ; q)$ are of the form

$$
\mu_{t}=\sum_{x \in \mathfrak{Z}_{t}} \frac{w^{2}-1}{\phi_{w}(x) \psi_{w}^{\prime}(x)-\psi_{w}(x) \phi_{w}^{\prime}(x)} \varepsilon_{x}
$$

where

$$
\mathfrak{Z}_{t}=\mathfrak{Z}_{t}(w ; q)=\left\{x \in \mathbb{R} \mid(t+1) \psi_{w}(x)=\left(w^{2} t+1\right) \phi_{w}(x)\right\}
$$

and ε_{x} stands for the Dirac measure supported on $\{x\}$.

N-extremal measures for q-Lommel polynomials

- For a simple form of the following expressions we use notation

$$
\phi_{w}(z):={ }_{1} \phi_{1}\left(0 ; w^{-2} q ; q, z\right), \quad \text { and } \quad \psi_{w}(z):={ }_{1} \phi_{1}\left(0 ; w^{2} q ; q, z w^{2}\right) .
$$

Proposition

Let $1 \neq w^{-2} \in\left(q, q^{-1}\right)$ then all N-extremal measures $\mu_{t}=\mu_{t}(w ; q)$ are of the form

$$
\mu_{t}=\sum_{x \in \mathfrak{Z}_{t}} \frac{w^{2}-1}{\phi_{w}(x) \psi_{w}^{\prime}(x)-\psi_{w}(x) \phi_{w}^{\prime}(x)} \varepsilon_{x}
$$

where

$$
\mathfrak{Z}_{t}=\mathfrak{Z}_{t}(w ; q)=\left\{x \in \mathbb{R} \mid(t+1) \psi_{w}(x)=\left(w^{2} t+1\right) \phi_{w}(x)\right\}
$$

and ε_{x} stands for the Dirac measure supported on $\{x\}$.

- By using identity (which is $A D-B C=1$)

$$
w^{2} \phi_{w}(z) \psi_{w}(q z)-\phi_{w}(q z) \psi_{w}(z)=w^{2}-1, \quad w \neq 1
$$

one finds the measure derived by Koelink is μ_{-1}, and the orthogonality relation reads

$$
\sum_{k=1}^{\infty} \frac{\phi_{w}\left(q \xi_{k}\right)}{\phi_{w}^{\prime}\left(\xi_{k}\right)} F_{n}\left(w ; q, \xi_{k}\right) F_{m}\left(w ; q, \xi_{k}\right)=-w^{-2 n} q^{-n^{2}} \delta_{m n}
$$

where $\left\{\xi_{k} \mid k \in \mathbb{N}\right\}$ are all zeros of the function ϕ_{w}.

Another measure of orthogonality

- Similar orthogonality relation with N -extremal measure $\mu_{-w^{-2}}$ reads

$$
\sum_{k=1}^{\infty} \frac{\psi_{w}\left(q \eta_{k}\right)}{\psi_{w}^{\prime}\left(\eta_{k}\right)} F_{n}\left(w ; q, \eta_{k}\right) F_{m}\left(w ; q, \eta_{k}\right)=w^{-2 n-2} q^{-n^{2}} \delta_{m n}
$$

where $\left\{\eta_{k} \mid k \in \mathbb{N}\right\}$ are all zeros of the function ψ_{w}.

Another measure of orthogonality

- Similar orthogonality relation with N -extremal measure $\mu_{-w^{-2}}$ reads

$$
\sum_{k=1}^{\infty} \frac{\psi_{w}\left(q \eta_{k}\right)}{\psi_{w}^{\prime}\left(\eta_{k}\right)} F_{n}\left(w ; q, \eta_{k}\right) F_{m}\left(w ; q, \eta_{k}\right)=w^{-2 n-2} q^{-n^{2}} \delta_{m n}
$$

where $\left\{\eta_{k} \mid k \in \mathbb{N}\right\}$ are all zeros of the function ψ_{w}.

- Both measures μ_{-1} and $\mu_{-w^{-2}}$ are supported in $(0, \infty)$ and both correspond to the spectral measure of the Friedrichs extension of associated Jacobi matrix:

$$
\mu_{-1} \text { if } q<w^{-2}<1, \quad \text { and } \quad \mu_{-w^{-2}} \text { if } 1<w^{-2}<1 / q .
$$

Another measure of orthogonality

- Similar orthogonality relation with N -extremal measure $\mu_{-w^{-2}}$ reads

$$
\sum_{k=1}^{\infty} \frac{\psi_{w}\left(q \eta_{k}\right)}{\psi_{w}^{\prime}\left(\eta_{k}\right)} F_{n}\left(w ; q, \eta_{k}\right) F_{m}\left(w ; q, \eta_{k}\right)=w^{-2 n-2} q^{-n^{2}} \delta_{m n}
$$

where $\left\{\eta_{k} \mid k \in \mathbb{N}\right\}$ are all zeros of the function ψ_{w}.

- Both measures μ_{-1} and $\mu_{-w^{-2}}$ are supported in $(0, \infty)$ and both correspond to the spectral measure of the Friedrichs extension of associated Jacobi matrix:

$$
\mu_{-1} \text { if } q<w^{-2}<1, \quad \text { and } \quad \mu_{-w-2} \text { if } 1<w^{-2}<1 / q .
$$

Recall $\phi_{1}(z)={ }_{1} \phi_{1}(0 ; q ; q, z)$.

Proposition

For $w=1$, all N -extremal measures $\mu_{t}=\mu_{t}(1 ; q)$ are of the form

$$
\mu_{t}=-\sum_{x \in \mathfrak{Y}_{t}} \frac{1}{\phi_{1}^{\prime}(x)+x \phi_{1}^{\prime \prime}(x)} \varepsilon_{x}
$$

where

$$
\mathfrak{Y}_{t}=\mathfrak{Y}_{t}(q)=\left\{x \in \mathbb{R} \mid x(t+1) \phi_{1}^{\prime}(x)=t \phi_{1}(x)\right\}
$$

and ε_{x} stands for the Dirac measure supported on $\{x\}$.

Absolutely continuous measures of orthogonality

- An example of two-parametric family of absolutely continuous measures $\mu_{\beta, \gamma}$ of orthogonality corresponds to the choice of the Pick function φ as

$$
\varphi(z):=\beta+i \gamma \operatorname{sgn} \Im z, \quad z \in \mathbb{C} \backslash \mathbb{R}
$$

where $\beta \in \mathbb{R}$ and $\gamma>0$.

Absolutely continuous measures of orthogonality

- An example of two-parametric family of absolutely continuous measures $\mu_{\beta, \gamma}$ of orthogonality corresponds to the choice of the Pick function φ as

$$
\varphi(z):=\beta+i \gamma \operatorname{sgn} \Im z, \quad z \in \mathbb{C} \backslash \mathbb{R}
$$

where $\beta \in \mathbb{R}$ and $\gamma>0$.

- The general formula for the density $d \mu_{\beta, \gamma} / d x$ in terms of Nevanlinna functions is due to [Berg \& Valent].

Absolutely continuous measures of orthogonality

- An example of two-parametric family of absolutely continuous measures $\mu_{\beta, \gamma}$ of orthogonality corresponds to the choice of the Pick function φ as

$$
\varphi(z):=\beta+i \gamma \operatorname{sgn} \Im z, \quad z \in \mathbb{C} \backslash \mathbb{R}
$$

where $\beta \in \mathbb{R}$ and $\gamma>0$.

- The general formula for the density $d \mu_{\beta, \gamma} / d x$ in terms of Nevanlinna functions is due to [Berg \& Valent].
- By setting $\beta=-1$ (for simplicity) one arrives at the orthogonality relation

$$
\int_{\mathbb{R}} \frac{F_{m}(w ; q, x) F_{n}(w ; q, x)}{\gamma\left(\psi_{w}(x)-w^{2} \phi_{w}(x)\right)^{2}+\gamma^{-1}\left(1-w^{2}\right)^{2} \phi_{w}^{2}(x)} d x=\frac{\pi}{\left(1-w^{2}\right)^{2}} w^{-2 n} q^{-n^{2}} \delta_{m n}
$$

for $1 \neq w^{-2} \in\left(q, q^{-1}\right)$.

Absolutely continuous measures of orthogonality

- An example of two-parametric family of absolutely continuous measures $\mu_{\beta, \gamma}$ of orthogonality corresponds to the choice of the Pick function φ as

$$
\varphi(z):=\beta+i \gamma \operatorname{sgn} \Im z, \quad z \in \mathbb{C} \backslash \mathbb{R}
$$

where $\beta \in \mathbb{R}$ and $\gamma>0$.

- The general formula for the density $d \mu_{\beta, \gamma} / d x$ in terms of Nevanlinna functions is due to [Berg \& Valent].
- By setting $\beta=-1$ (for simplicity) one arrives at the orthogonality relation

$$
\int_{\mathbb{R}} \frac{F_{m}(w ; q, x) F_{n}(w ; q, x)}{\gamma\left(\psi_{w}(x)-w^{2} \phi_{w}(x)\right)^{2}+\gamma^{-1}\left(1-w^{2}\right)^{2} \phi_{w}^{2}(x)} d x=\frac{\pi}{\left(1-w^{2}\right)^{2}} w^{-2 n} q^{-n^{2}} \delta_{m n}
$$

for $1 \neq w^{-2} \in\left(q, q^{-1}\right)$.

- The orthogonality relation for $w=1$ reads

$$
\int_{\mathbb{R}} \frac{F_{m}(1 ; q, x) F_{n}(1 ; q, x)}{\gamma\left(x \phi_{1}^{\prime}(x)-\phi_{1}(x)\right)^{2}+\gamma^{-1}\left(\phi_{1}(x)\right)^{2}} d x=\pi q^{-n^{2}} \delta_{m n}
$$

(1) Introduction

(2) Nevalinna functions for q-Lommel polynomials
(3) Some measures of orthogonality

4 Recurrences for the moment sequence

The moment sequence

- We denote $a:=w^{-2}$ and

$$
m_{n}=m_{n}(a ; q):=\int_{\mathbb{R}} x^{n} d \mu^{(a ; q)}(x), \quad n \in \mathbb{Z}_{+}
$$

where $\mu^{(a ; q)}$ is a measure of orthogonality for q-Lommel polynomials normalized to $m_{0}=1$.

The moment sequence

- We denote $a:=w^{-2}$ and

$$
m_{n}=m_{n}(a ; q):=\int_{\mathbb{R}} x^{n} d \mu^{(a ; q)}(x), \quad n \in \mathbb{Z}_{+}
$$

where $\mu^{(a ; q)}$ is a measure of orthogonality for q-Lommel polynomials normalized to $m_{0}=1$.

- It seems the moment sequence m_{n} can not be expressed explicitly.

The moment sequence

- We denote $a:=w^{-2}$ and

$$
m_{n}=m_{n}(a ; q):=\int_{\mathbb{R}} x^{n} d \mu^{(a ; q)}(x), \quad n \in \mathbb{Z}_{+}
$$

where $\mu^{(a ; q)}$ is a measure of orthogonality for q-Lommel polynomials normalized to $m_{0}=1$.

- It seems the moment sequence m_{n} can not be expressed explicitly.
- It would be of interest to know the asymptotic behavior of m_{n}, for $n \rightarrow \infty$, in particular in the case of indeterminate Hamburger moment problem, i.e., $q<a<1 / q$.
- The moment sequence satisfies the following recurrences:

Recurrences for the moment sequence

- The moment sequence satisfies the following recurrences:

Quadratic recursion

$$
m_{n+2}(a ; q)=(a+1) m_{n+1}(a ; q)+\frac{a}{q} \sum_{k=0}^{n} q^{-k} m_{k}(a ; q) m_{n-k}(a ; q), \quad n \in\{-1,0,1,2, \ldots\}
$$

Recurrences for the moment sequence

- The moment sequence satisfies the following recurrences:

Quadratic recursion

$$
m_{n+2}(a ; q)=(a+1) m_{n+1}(a ; q)+\frac{a}{q} \sum_{k=0}^{n} q^{-k} m_{k}(a ; q) m_{n-k}(a ; q), \quad n \in\{-1,0,1,2, \ldots\}
$$

Linear recursion

$$
m_{n}(a ; q)=\frac{\omega_{n}(a ; q)}{(q ; q)_{n-1}}-\sum_{k=1}^{n-1} \frac{q^{k}}{(q ; q)_{k}} \omega_{k}(a ; q) m_{n-k}(a ; q), \quad n \in \mathbb{N}
$$

where

$$
\omega_{n}(a ; q)=\sum_{k=0}^{n}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q} q^{-k(n-k)} a^{k}
$$

Recurrences for the moment sequence

- The moment sequence satisfies the following recurrences:

Quadratic recursion

$$
m_{n+2}(a ; q)=(a+1) m_{n+1}(a ; q)+\frac{a}{q} \sum_{k=0}^{n} q^{-k} m_{k}(a ; q) m_{n-k}(a ; q), \quad n \in\{-1,0,1,2, \ldots\}
$$

Linear recursion

$$
m_{n}(a ; q)=\frac{\omega_{n}(a ; q)}{(q ; q)_{n-1}}-\sum_{k=1}^{n-1} \frac{q^{k}}{(q ; q)_{k}} \omega_{k}(a ; q) m_{n-k}(a ; q), \quad n \in \mathbb{N}
$$

where

$$
\omega_{n}(a ; q)=\sum_{k=0}^{n}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q} q^{-k(n-k)} a^{k} .
$$

- It is not very difficult to show, for all $n \in \mathbb{N}$, it holds: $\sqrt{a} q^{-\frac{n-1}{4}} \leq \sqrt[n]{\omega_{n}(a ; q)} \leq(1+a) q^{-\frac{n}{4}}$.

Recurrences for the moment sequence

- The moment sequence satisfies the following recurrences:

Quadratic recursion

$$
m_{n+2}(a ; q)=(a+1) m_{n+1}(a ; q)+\frac{a}{q} \sum_{k=0}^{n} q^{-k} m_{k}(a ; q) m_{n-k}(a ; q), \quad n \in\{-1,0,1,2, \ldots\}
$$

Linear recursion

$$
m_{n}(a ; q)=\frac{\omega_{n}(a ; q)}{(q ; q)_{n-1}}-\sum_{k=1}^{n-1} \frac{q^{k}}{(q ; q)_{k}} \omega_{k}(a ; q) m_{n-k}(a ; q), \quad n \in \mathbb{N}
$$

where

$$
\omega_{n}(a ; q)=\sum_{k=0}^{n}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q} q^{-k(n-k)} a^{k} .
$$

- It is not very difficult to show, for all $n \in \mathbb{N}$, it holds: $\sqrt{a} q^{-\frac{n-1}{4}} \leq \sqrt[n]{\omega_{n}(a ; q)} \leq(1+a) q^{-\frac{n}{4}}$.
- Consequently,

$$
m_{n}(a ; q) \leq \frac{\omega_{n}(a ; q)}{(q ; q)_{n-1}} \leq \frac{(1+a)^{n}}{(q ; q)_{n-1}} q^{-\frac{n^{2}}{4}}, \quad n \in \mathbb{N}
$$

Conclusion

Some open questions:

Conclusion

Some open questions:

- Is there any $C=C(a ; q)$ such that, for all $n \in \mathbb{N}$,

$$
C q^{-\frac{n}{4}} \leq \sqrt[n]{m_{n}(a ; q)} \quad ?
$$

Conclusion

Some open questions:

- Is there any $C=C(a ; q)$ such that, for all $n \in \mathbb{N}$,

$$
C q^{-\frac{n}{4}} \leq \sqrt[n]{m_{n}(a ; q)} \quad ?
$$

- Does the limit

$$
\lim _{n \rightarrow \infty} q^{\frac{n}{4}} \sqrt[n]{m_{n}(a ; q)}
$$

exist? If so, what its value is?

Conclusion

Some open questions:

- Is there any $C=C(a ; q)$ such that, for all $n \in \mathbb{N}$,

$$
C q^{-\frac{n}{4}} \leq \sqrt[n]{m_{n}(a ; q)} \quad ?
$$

- Does the limit

$$
\lim _{n \rightarrow \infty} q^{\frac{n}{4}} \sqrt[n]{m_{n}(a ; q)}
$$

exist? If so, what its value is?

Gracia!

