The Characteristic Function for Jacobi Matrices with Applications

František Štampach

Faculty of Nuclear Sciences and Physical Engineering, CTU in Prague

Combinatorics on Words and Mathematical Physics

May 18, 2012
(1) Motivation
(2) Function \mathfrak{F}

3 Characteristic function of complex Jacobi matrix
(4) \mathfrak{F} and Special Functions
(5) Functinon \mathfrak{F} and Orthogonal Polynomials

Motivation - introduction

- Consider Jacobi operator J acting on vectors from standard basis $\left\{e_{n}\right\}_{n=1}^{\infty}$ of $\ell^{2}(\mathbb{N})$ as

$$
J e_{n}=w_{n-1} e_{n-1}+\lambda_{n} e_{n}+w_{n} e_{n+1} \quad\left(w_{0}:=0\right)
$$

where $\lambda_{n} \in \mathbb{C}$, $w_{n} \in \mathbb{C} \backslash\{0\}$, and $n \in \mathbb{N}$.

Motivation - introduction

- Consider Jacobi operator J acting on vectors from standard basis $\left\{e_{n}\right\}_{n=1}^{\infty}$ of $\ell^{2}(\mathbb{N})$ as

$$
J e_{n}=w_{n-1} e_{n-1}+\lambda_{n} e_{n}+w_{n} e_{n+1} \quad\left(w_{0}:=0\right)
$$

where $\lambda_{n} \in \mathbb{C}$, $w_{n} \in \mathbb{C} \backslash\{0\}$, and $n \in \mathbb{N}$.

- Set

$$
\operatorname{Dom}(J)=\left\{x \in \ell^{2}(\mathbb{N}): J x \in \ell^{2}(\mathbb{N})\right\}
$$

Motivation - introduction

- Consider Jacobi operator J acting on vectors from standard basis $\left\{e_{n}\right\}_{n=1}^{\infty}$ of $\ell^{2}(\mathbb{N})$ as

$$
J e_{n}=w_{n-1} e_{n-1}+\lambda_{n} e_{n}+w_{n} e_{n+1} \quad\left(w_{0}:=0\right)
$$

where $\lambda_{n} \in \mathbb{C}$, $w_{n} \in \mathbb{C} \backslash\{0\}$, and $n \in \mathbb{N}$.

- Set

$$
\operatorname{Dom}(J)=\left\{x \in \ell^{2}(\mathbb{N}): J x \in \ell^{2}(\mathbb{N})\right\}
$$

- The matrix representation of J in the standard basis:

$$
J=\left(\begin{array}{lllll}
\lambda_{1} & w_{1} & & & \\
w_{1} & \lambda_{2} & w_{2} & & \\
& w_{2} & \lambda_{3} & w_{3} & \\
& & \ddots & \ddots & \ddots
\end{array}\right)
$$

Motivation - introduction

- Consider Jacobi operator J acting on vectors from standard basis $\left\{e_{n}\right\}_{n=1}^{\infty}$ of $\ell^{2}(\mathbb{N})$ as

$$
J e_{n}=w_{n-1} e_{n-1}+\lambda_{n} e_{n}+w_{n} e_{n+1} \quad\left(w_{0}:=0\right)
$$

where $\lambda_{n} \in \mathbb{C}$, $w_{n} \in \mathbb{C} \backslash\{0\}$, and $n \in \mathbb{N}$.

- Set

$$
\operatorname{Dom}(J)=\left\{x \in \ell^{2}(\mathbb{N}): J x \in \ell^{2}(\mathbb{N})\right\}
$$

- The matrix representation of J in the standard basis:

$$
J=\left(\begin{array}{lllll}
\lambda_{1} & w_{1} & & & \\
w_{1} & \lambda_{2} & w_{2} & & \\
& w_{2} & \lambda_{3} & w_{3} & \\
& & \ddots & \ddots & \ddots
\end{array}\right)
$$

- Objective: Investigation of the spectrum of J when the diagonal sequence dominates the off-diagonal in some sense.

Motivation - reformulation of the problem

For $z \in \mathbb{C}$ and $\lambda_{n}>0$ define

$$
A(z):=L^{-1 / 2}\left(U W+W U^{*}-z\right) L^{-1 / 2}=\left(\begin{array}{ccccc}
-\frac{z}{\lambda_{1}} & \frac{w_{1}}{\sqrt{\lambda_{1} \lambda_{2}}} & & & \\
\frac{w_{1}}{\sqrt{\lambda_{1} \lambda_{2}}} & -\frac{z}{\lambda_{2}} & \frac{w_{2}}{\sqrt{\lambda_{2} \lambda_{3}}} & & \\
& \frac{w_{2}}{\sqrt{\lambda_{2} \lambda_{3}}} & -\frac{z}{\lambda_{3}} & \frac{w_{3}}{\sqrt{\lambda_{3} \lambda_{4}}} & \\
& & \ddots & \ddots & \ddots
\end{array}\right)
$$

where $L=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots\right), W=\operatorname{diag}\left(w_{1}, w_{2}, \ldots\right)$, and U is unilateral shift.

Motivation - reformulation of the problem

For $z \in \mathbb{C}$ and $\lambda_{n}>0$ define

$$
A(z):=L^{-1 / 2}\left(U W+W U^{*}-z\right) L^{-1 / 2}=\left(\begin{array}{ccccc}
-\frac{z}{\lambda_{1}} & \frac{w_{1}}{\sqrt{\lambda_{1} \lambda_{2}}} & & & \\
\frac{w_{1}}{\sqrt{\lambda_{1} \lambda_{2}}} & -\frac{z}{\lambda_{2}} & \frac{w_{2}}{\sqrt{\lambda_{2} \lambda_{3}}} & & \\
& \frac{w_{2}}{\sqrt{\lambda_{2} \lambda_{3}}} & -\frac{z}{\lambda_{3}} & \frac{w_{3}}{\sqrt{\lambda_{3} \lambda_{4}}} & \\
& & \ddots & \ddots & \ddots
\end{array}\right)
$$

where $L=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots\right), W=\operatorname{diag}\left(w_{1}, w_{2}, \ldots\right)$, and U is unilateral shift.

Assertion

Let $A(z)$ be Hilbert-Schmidt operator for some $0 \neq z \in \mathbb{C}$. Then

$$
z \in \rho(J) \quad \text { iff } \quad-1 \in \rho(A(z))
$$

and it holds

$$
(J-z)^{-1}=L^{-1 / 2}(1+A(z))^{-1} L^{-1 / 2} .
$$

Motivation - reformulation of the problem

For $z \in \mathbb{C}$ and $\lambda_{n}>0$ define

$$
A(z):=L^{-1 / 2}\left(U W+W U^{*}-z\right) L^{-1 / 2}=\left(\begin{array}{ccccc}
-\frac{z}{\lambda_{1}} & \frac{w_{1}}{\sqrt{\lambda_{1} \lambda_{2}}} & & & \\
\frac{w_{1}}{\sqrt{\lambda_{1} \lambda_{2}}} & -\frac{z}{\lambda_{2}} & \frac{w_{2}}{\sqrt{\lambda_{2} \lambda_{3}}} & & \\
& \frac{w_{2}}{\sqrt{\lambda_{2} \lambda_{3}}} & -\frac{z}{\lambda_{3}} & \frac{w_{3}}{\sqrt{\lambda_{3} \lambda_{4}}} & \\
& & \ddots & \ddots & \ddots
\end{array}\right)
$$

where $L=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots\right), W=\operatorname{diag}\left(w_{1}, w_{2}, \ldots\right)$, and U is unilateral shift.

Assertion

Let $A(z)$ be Hilbert-Schmidt operator for some $0 \neq z \in \mathbb{C}$. Then

$$
z \in \rho(J) \quad \text { iff } \quad-1 \in \rho(A(z))
$$

and it holds

$$
(J-z)^{-1}=L^{-1 / 2}(1+A(z))^{-1} L^{-1 / 2} .
$$

To investigate the spectrum of J one can consider operator $A(z)$ instead. Main advantages are:

Motivation - reformulation of the problem

For $z \in \mathbb{C}$ and $\lambda_{n}>0$ define

$$
A(z):=L^{-1 / 2}\left(U W+W U^{*}-z\right) L^{-1 / 2}=\left(\begin{array}{ccccc}
-\frac{z}{\lambda_{1}} & \frac{w_{1}}{\sqrt{\lambda_{1} \lambda_{2}}} & & & \\
\frac{w_{1}}{\sqrt{\lambda_{1} \lambda_{2}}} & -\frac{z}{\lambda_{2}} & \frac{w_{2}}{\sqrt{\lambda_{2} \lambda_{3}}} & & \\
& \frac{w_{2}}{\sqrt{\lambda_{2} \lambda_{3}}} & -\frac{z}{\lambda_{3}} & \frac{w_{3}}{\sqrt{\lambda_{3} \lambda_{4}}} & \\
& & \ddots & \ddots & \ddots
\end{array}\right)
$$

where $L=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots\right), W=\operatorname{diag}\left(w_{1}, w_{2}, \ldots\right)$, and U is unilateral shift.

Assertion

Let $A(z)$ be Hilbert-Schmidt operator for some $0 \neq z \in \mathbb{C}$. Then

$$
z \in \rho(J) \quad \text { iff } \quad-1 \in \rho(A(z))
$$

and it holds

$$
(J-z)^{-1}=L^{-1 / 2}(1+A(z))^{-1} L^{-1 / 2} .
$$

To investigate the spectrum of J one can consider operator $A(z)$ instead. Main advantages are:

- $A(z)$ is Hilbert-Schmidt, while J is unbounded

Motivation - reformulation of the problem

For $z \in \mathbb{C}$ and $\lambda_{n}>0$ define

$$
A(z):=L^{-1 / 2}\left(U W+W U^{*}-z\right) L^{-1 / 2}=\left(\begin{array}{ccccc}
-\frac{z}{\lambda_{1}} & \frac{w_{1}}{\sqrt{\lambda_{1} \lambda_{2}}} & & & \\
\frac{w_{1}}{\sqrt{\lambda_{1} \lambda_{2}}} & -\frac{z}{\lambda_{2}} & \frac{w_{2}}{\sqrt{\lambda_{2} \lambda_{3}}} & & \\
& \frac{w_{2}}{\sqrt{\lambda_{2} \lambda_{3}}} & -\frac{z}{\lambda_{3}} & \frac{w_{3}}{\sqrt{\lambda_{3} \lambda_{4}}} & \\
& & \ddots & \ddots & \ddots
\end{array}\right)
$$

where $L=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots\right), W=\operatorname{diag}\left(w_{1}, w_{2}, \ldots\right)$, and U is unilateral shift.

Assertion

Let $A(z)$ be Hilbert-Schmidt operator for some $0 \neq z \in \mathbb{C}$. Then

$$
z \in \rho(J) \quad \text { iff } \quad-1 \in \rho(A(z))
$$

and it holds

$$
(J-z)^{-1}=L^{-1 / 2}(1+A(z))^{-1} L^{-1 / 2} .
$$

To investigate the spectrum of J one can consider operator $A(z)$ instead. Main advantages are:

- $A(z)$ is Hilbert-Schmidt, while J is unbounded
- one can use function $z \mapsto \operatorname{det}_{2}(1+A(z))$ which is well defined as an entire function.

Function \mathfrak{F}

Definition

Let me define $\mathfrak{F}: D \rightarrow \mathbb{C}$ by relation

$$
\mathfrak{F}(x)=1+\sum_{m=1}^{\infty}(-1)^{m} \sum_{k_{1}=1}^{\infty} \sum_{k_{2}=k_{1}+2}^{\infty} \ldots \sum_{k_{m}=k_{m-1}+2}^{\infty} x_{k_{1}} x_{k_{1}+1} x_{k_{2}} x_{k_{2}+1} \ldots x_{k_{m}} x_{k_{m}+1}
$$

where

$$
D=\left\{\left\{x_{k}\right\}_{k=1}^{\infty} \subset \mathbb{C} ; \sum_{k=1}^{\infty}\left|x_{k} x_{k+1}\right|<\infty\right\}
$$

For a finite number of complex variables let me identify $\mathfrak{F}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ with $\mathfrak{F}(x)$ where $x=\left(x_{1}, x_{2}, \ldots, x_{n}, 0,0,0, \ldots\right)$.

Function \mathfrak{F}

Definition

Let me define $\mathfrak{F}: D \rightarrow \mathbb{C}$ by relation

$$
\mathfrak{F}(x)=1+\sum_{m=1}^{\infty}(-1)^{m} \sum_{k_{1}=1}^{\infty} \sum_{k_{2}=k_{1}+2}^{\infty} \ldots \sum_{k_{m}=k_{m-1}+2}^{\infty} x_{k_{1}} x_{k_{1}+1} x_{k_{2}} x_{k_{2}+1} \ldots x_{k_{m}} x_{k_{m}+1}
$$

where

$$
D=\left\{\left\{x_{k}\right\}_{k=1}^{\infty} \subset \mathbb{C} ; \sum_{k=1}^{\infty}\left|x_{k} x_{k+1}\right|<\infty\right\}
$$

For a finite number of complex variables let me identify $\mathfrak{F}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ with $\mathfrak{F}(x)$ where $x=\left(x_{1}, x_{2}, \ldots, x_{n}, 0,0,0, \ldots\right)$.

- \mathfrak{F} is well defined on D due to estimation

$$
|\mathfrak{F}(x)| \leq \exp \left(\sum_{k=1}^{\infty}\left|x_{k} x_{k+1}\right|\right) .
$$

Function \mathfrak{F}

Definition

Let me define $\mathfrak{F}: D \rightarrow \mathbb{C}$ by relation

$$
\mathfrak{F}(x)=1+\sum_{m=1}^{\infty}(-1)^{m} \sum_{k_{1}=1}^{\infty} \sum_{k_{2}=k_{1}+2}^{\infty} \ldots \sum_{k_{m}=k_{m-1}+2}^{\infty} x_{k_{1}} x_{k_{1}+1} x_{k_{2}} x_{k_{2}+1} \ldots x_{k_{m}} x_{k_{m}+1}
$$

where

$$
D=\left\{\left\{x_{k}\right\}_{k=1}^{\infty} \subset \mathbb{C} ; \sum_{k=1}^{\infty}\left|x_{k} x_{k+1}\right|<\infty\right\}
$$

For a finite number of complex variables let me identify $\mathfrak{F}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ with $\mathfrak{F}(x)$ where $x=\left(x_{1}, x_{2}, \ldots, x_{n}, 0,0,0, \ldots\right)$.

- \mathfrak{F} is well defined on D due to estimation

$$
|\mathfrak{F}(x)| \leq \exp \left(\sum_{k=1}^{\infty}\left|x_{k} x_{k+1}\right|\right) .
$$

- Note that the domain D is not a linear space. One has, however, $\ell^{2}(\mathbb{N}) \subset D$.

Properties of \mathfrak{F}

- For all $x \in D$ and $k=1,2, \ldots$ one has

Recursive relation

$$
\mathfrak{F}(x)=\mathfrak{F}\left(x_{1}, \ldots, x_{k}\right) \mathfrak{F}\left(T^{k} x\right)-\mathfrak{F}\left(x_{1}, \ldots, x_{k-1}\right) x_{k} x_{k+1} \mathfrak{F}\left(T^{k+1} x\right)
$$

where T denotes the truncation operator from the left defined on the space of all sequences:

$$
T\left(\left\{x_{k}\right\}_{k=1}^{\infty}\right)=\left\{x_{k+1}\right\}_{k=1}^{\infty} .
$$

Properties of \mathfrak{F}

- For all $x \in D$ and $k=1,2, \ldots$ one has

Recursive relation

$$
\mathfrak{F}(x)=\mathfrak{F}\left(x_{1}, \ldots, x_{k}\right) \mathfrak{F}\left(T^{k} x\right)-\mathfrak{F}\left(x_{1}, \ldots, x_{k-1}\right) x_{k} x_{k+1} \mathfrak{F}\left(T^{k+1} x\right)
$$

where T denotes the truncation operator from the left defined on the space of all sequences:

$$
T\left(\left\{x_{k}\right\}_{k=1}^{\infty}\right)=\left\{x_{k+1}\right\}_{k=1}^{\infty}
$$

- Especially for $k=1$, one gets the simple relation

$$
\mathfrak{F}(x)=\mathfrak{F}(T x)-x_{1} x_{2} \mathfrak{F}\left(T^{2} x\right)
$$

Properties of \mathfrak{F}

- For all $x \in D$ and $k=1,2, \ldots$ one has

Recursive relation

$$
\mathfrak{F}(x)=\mathfrak{F}\left(x_{1}, \ldots, x_{k}\right) \mathfrak{F}\left(T^{k} x\right)-\mathfrak{F}\left(x_{1}, \ldots, x_{k-1}\right) x_{k} x_{k+1} \mathfrak{F}\left(T^{k+1} x\right)
$$

where T denotes the truncation operator from the left defined on the space of all sequences:

$$
T\left(\left\{x_{k}\right\}_{k=1}^{\infty}\right)=\left\{x_{k+1}\right\}_{k=1}^{\infty} .
$$

- Especially for $k=1$, one gets the simple relation

$$
\mathfrak{F}(x)=\mathfrak{F}(T x)-x_{1} x_{2} \mathfrak{F}\left(T^{2} x\right)
$$

- Moreover, for x finite the relation has the form

$$
\mathfrak{F}\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right)=\mathfrak{F}\left(x_{2}, x_{3}, \ldots, x_{n}\right)-x_{1} x_{2} \mathfrak{F}\left(x_{3}, \ldots, x_{n}\right) .
$$

Properties of \mathfrak{F}

- For all $x \in D$ and $k=1,2, \ldots$ one has

Recursive relation

$$
\mathfrak{F}(x)=\mathfrak{F}\left(x_{1}, \ldots, x_{k}\right) \mathfrak{F}\left(T^{k} x\right)-\mathfrak{F}\left(x_{1}, \ldots, x_{k-1}\right) x_{k} x_{k+1} \mathfrak{F}\left(T^{k+1} x\right)
$$

where T denotes the truncation operator from the left defined on the space of all sequences:

$$
T\left(\left\{x_{k}\right\}_{k=1}^{\infty}\right)=\left\{x_{k+1}\right\}_{k=1}^{\infty} .
$$

- Especially for $k=1$, one gets the simple relation

$$
\mathfrak{F}(x)=\mathfrak{F}(T x)-x_{1} x_{2} \mathfrak{F}\left(T^{2} x\right)
$$

- Moreover, for x finite the relation has the form

$$
\mathfrak{F}\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right)=\mathfrak{F}\left(x_{2}, x_{3}, \ldots, x_{n}\right)-x_{1} x_{2} \mathfrak{F}\left(x_{3}, \ldots, x_{n}\right) .
$$

- Functions \mathfrak{F} restricted on $\ell^{2}(\mathbb{N})$ is a continuous functional on $\ell^{2}(\mathbb{N})$. Further, for $x \in D$, it holds

$$
\lim _{n \rightarrow \infty} \mathfrak{F}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\mathfrak{F}(x) \quad \text { and } \quad \lim _{n \rightarrow \infty} \mathfrak{F}\left(T^{n} x\right)=1
$$

Other properties of \mathfrak{F}

- Initial values $\mathfrak{F}(\emptyset)=\mathfrak{F}\left(x_{1}\right)=1$ together with relation

$$
\mathfrak{F}\left(x_{1}, \ldots, x_{n-1}, x_{n}\right)=\mathfrak{F}\left(x_{1}, \ldots, x_{n-2}, x_{n-1}\right)-x_{n-1} x_{n} \mathfrak{F}\left(x_{1}, \ldots, x_{n-3}, x_{n-2}\right)
$$

determine recursively and unambiguously $\mathfrak{F}\left(x_{1}, \ldots, x_{n}\right)$ for any finite number of variables.

Other properties of \mathfrak{F}

- Initial values $\mathfrak{F}(\emptyset)=\mathfrak{F}\left(x_{1}\right)=1$ together with relation

$$
\mathfrak{F}\left(x_{1}, \ldots, x_{n-1}, x_{n}\right)=\mathfrak{F}\left(x_{1}, \ldots, x_{n-2}, x_{n-1}\right)-x_{n-1} x_{n} \mathfrak{F}\left(x_{1}, \ldots, x_{n-3}, x_{n-2}\right)
$$

determine recursively and unambiguously $\mathfrak{F}\left(x_{1}, \ldots, x_{n}\right)$ for any finite number of variables.

- Other equivalent definitions of $\mathfrak{F}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is:

$$
\mathfrak{F}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\operatorname{det} X_{n}=\operatorname{det}\left(\begin{array}{ccccc}
1 & x_{1} & & & \\
x_{2} & 1 & x_{2} & & \\
& \ddots & \ddots & \ddots & \\
& & x_{n-1} & 1 & x_{n-1} \\
& & & x_{n} & 1
\end{array}\right)
$$

Other properties of \mathfrak{F}

- Initial values $\mathfrak{F}(\emptyset)=\mathfrak{F}\left(x_{1}\right)=1$ together with relation

$$
\mathfrak{F}\left(x_{1}, \ldots, x_{n-1}, x_{n}\right)=\mathfrak{F}\left(x_{1}, \ldots, x_{n-2}, x_{n-1}\right)-x_{n-1} x_{n} \mathfrak{F}\left(x_{1}, \ldots, x_{n-3}, x_{n-2}\right)
$$

determine recursively and unambiguously $\mathfrak{F}\left(x_{1}, \ldots, x_{n}\right)$ for any finite number of variables.

- Other equivalent definitions of $\mathfrak{F}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is:

$$
\mathfrak{F}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\operatorname{det} X_{n}=\operatorname{det}\left(\begin{array}{ccccc}
1 & x_{1} & & & \\
x_{2} & 1 & x_{2} & & \\
& \ddots & \ddots & \ddots & \\
& & x_{n-1} & 1 & x_{n-1} \\
& & & x_{n} & 1
\end{array}\right)
$$

- Function \mathfrak{F} is related to a continued fraction. For a given $x \in D$ such that $\mathfrak{F}(x) \neq 0$, it holds

$$
\frac{\mathfrak{F}(T x)}{\mathfrak{F}(x)}=\frac{1}{1-\frac{x_{1} x_{2}}{1-\frac{x_{2} x_{3}}{1-\frac{x_{3} x_{4}}{1-\ldots}}}} .
$$

Characteristic function of complex Jacobi matrix

Proposition

Let $\left\{\lambda_{n}\right\}$ be positive and

$$
\sum_{n=1}^{\infty} \frac{1}{\lambda_{n}^{2}}<\infty \quad \text { and } \quad \sum_{n=1}^{\infty}\left|\frac{w_{n}^{2}}{\lambda_{n} \lambda_{n+1}}\right|<\infty
$$

Then $A(z)$ is Hilbert-Schmidt for all $z \in \mathbb{C}$ and it holds

$$
\operatorname{det}_{2}(1+A(z))=\mathfrak{F}\left(\left\{\frac{\gamma_{n}^{2}}{\lambda_{n}-z}\right\}_{n=1}^{\infty}\right) \prod_{n=1}^{\infty}\left(1-\frac{z}{\lambda_{n}}\right) e^{z / \lambda_{n}}
$$

where the sequence $\left\{\gamma_{n}\right\}$ can be defined recursively as $\gamma_{1}=1, \gamma_{k+1}=w_{k} / \gamma_{k}$.

Characteristic function of complex Jacobi matrix

Proposition

Let $\left\{\lambda_{n}\right\}$ be positive and

$$
\sum_{n=1}^{\infty} \frac{1}{\lambda_{n}^{2}}<\infty \quad \text { and } \quad \sum_{n=1}^{\infty}\left|\frac{w_{n}^{2}}{\lambda_{n} \lambda_{n+1}}\right|<\infty
$$

Then $A(z)$ is Hilbert-Schmidt for all $z \in \mathbb{C}$ and it holds

$$
\operatorname{det}_{2}(1+A(z))=\mathfrak{F}\left(\left\{\frac{\gamma_{n}^{2}}{\lambda_{n}-z}\right\}_{n=1}^{\infty}\right) \prod_{n=1}^{\infty}\left(1-\frac{z}{\lambda_{n}}\right) e^{z / \lambda_{n}}
$$

where the sequence $\left\{\gamma_{n}\right\}$ can be defined recursively as $\gamma_{1}=1, \gamma_{k+1}=w_{k} / \gamma_{k}$.

- In the following we focus just on the function

$$
F_{J}(z):=\mathfrak{F}\left(\left\{\frac{\gamma_{n}^{2}}{\lambda_{n}-z}\right\}_{n=1}^{\infty}\right)
$$

Characteristic function of complex Jacobi matrix

- Function F_{J} is well defined on $\mathbb{C} \backslash \overline{\left\{\lambda_{n}\right\}}$ if

$$
\left\{\frac{\gamma_{n}^{2}}{\lambda_{n}-z}\right\}_{n=1}^{\infty} \in D \quad \text { for all } z \in \mathbb{C} \backslash \overline{\left\{\lambda_{n}\right\}}
$$

which holds if there is at least one $z_{0} \in \mathbb{C} \backslash \overline{\left\{\lambda_{n}\right\}}$ such that

$$
\sum_{n=1}^{\infty}\left|\frac{w_{n}^{2}}{\left(\lambda_{n}-z_{0}\right)\left(\lambda_{n+1}-z_{0}\right)}\right|<\infty
$$

(λ_{n} and w_{n} are complex!)

Characteristic function of complex Jacobi matrix

- Function F_{J} is well defined on $\mathbb{C} \backslash \overline{\left\{\lambda_{n}\right\}}$ if

$$
\left\{\frac{\gamma_{n}^{2}}{\lambda_{n}-z}\right\}_{n=1}^{\infty} \in D \quad \text { for all } z \in \mathbb{C} \backslash \overline{\left\{\lambda_{n}\right\}}
$$

which holds if there is at least one $z_{0} \in \mathbb{C} \backslash \overline{\left\{\lambda_{n}\right\}}$ such that

$$
\sum_{n=1}^{\infty}\left|\frac{w_{n}^{2}}{\left(\lambda_{n}-z_{0}\right)\left(\lambda_{n+1}-z_{0}\right)}\right|<\infty
$$

(λ_{n} and w_{n} are complex!)

- This assumptions is assumed everywhere from now.

Characteristic function of complex Jacobi matrix

- Function F_{J} is well defined on $\mathbb{C} \backslash \overline{\left\{\lambda_{n}\right\}}$ if

$$
\left\{\frac{\gamma_{n}^{2}}{\lambda_{n}-z}\right\}_{n=1}^{\infty} \in D \quad \text { for all } z \in \mathbb{C} \backslash \overline{\left\{\lambda_{n}\right\}}
$$

which holds if there is at least one $z_{0} \in \mathbb{C} \backslash \overline{\left\{\lambda_{n}\right\}}$ such that

$$
\sum_{n=1}^{\infty}\left|\frac{w_{n}^{2}}{\left(\lambda_{n}-z_{0}\right)\left(\lambda_{n+1}-z_{0}\right)}\right|<\infty
$$

(λ_{n} and w_{n} are complex!)

- This assumptions is assumed everywhere from now.
- F_{J} is meromorphic function on $\mathbb{C} \backslash \overline{\left\{\lambda_{n}\right\}}$ with poles in $z \in\left\{\lambda_{n}\right\} \backslash \operatorname{der}\left(\left\{\lambda_{n}\right\}\right)$ of finite order less or equal to the number

$$
r(z):=\sum_{n=1}^{\infty} \delta_{z, \lambda_{n}} .
$$

Characteristic function of complex Jacobi matrix

Definition

Let us define

$$
\mathfrak{J}(J):=\left\{z \in \mathbb{C} \backslash \operatorname{der}(\lambda) ; \lim _{u \rightarrow z}(u-z)^{r(z)} F_{J}(u)=0\right\}
$$

and, for $k \in \mathbb{Z}_{+}$and $z \in \mathbb{C} \backslash \operatorname{der}\left(\left\{\lambda_{n}\right\}\right)$, we put

$$
\xi_{k}(z):=\lim _{u \rightarrow z}(u-z)^{r(z)}\left(\prod_{l=1}^{k} \frac{w_{l-1}}{u-\lambda_{l}}\right) \mathfrak{F}\left(\left\{\frac{\gamma_{l}^{2}}{\lambda_{l}-u}\right\}_{l=k+1}^{\infty}\right)
$$

where we set $w_{0}:=1$.

Characteristic function of complex Jacobi matrix

Definition

Let us define

$$
\mathfrak{Z}(J):=\left\{z \in \mathbb{C} \backslash \operatorname{der}(\lambda) ; \lim _{u \rightarrow z}(u-z)^{r(z)} F_{J}(u)=0\right\}
$$

and, for $k \in \mathbb{Z}_{+}$and $z \in \mathbb{C} \backslash \operatorname{der}\left(\left\{\lambda_{n}\right\}\right)$, we put

$$
\xi_{k}(z):=\lim _{u \rightarrow z}(u-z)^{r(z)}\left(\prod_{l=1}^{k} \frac{w_{l-1}}{u-\lambda_{l}}\right) \mathfrak{F}\left(\left\{\frac{\gamma_{l}^{2}}{\lambda_{l}-u}\right\}_{l=k+1}^{\infty}\right)
$$

where we set $w_{0}:=1$.

- Note that for $z \in \mathbb{C} \backslash \overline{\left\{\lambda_{n}\right\}}, \xi_{0}(z)=F_{J}(z)$.

Characteristic function of complex Jacobi matrix

Definition

Let us define

$$
\mathfrak{Z}(J):=\left\{z \in \mathbb{C} \backslash \operatorname{der}(\lambda) ; \lim _{u \rightarrow z}(u-z)^{r(z)} F_{J}(u)=0\right\}
$$

and, for $k \in \mathbb{Z}_{+}$and $z \in \mathbb{C} \backslash \operatorname{der}\left(\left\{\lambda_{n}\right\}\right)$, we put

$$
\xi_{k}(z):=\lim _{u \rightarrow z}(u-z)^{r(z)}\left(\prod_{l=1}^{k} \frac{w_{l-1}}{u-\lambda_{l}}\right) \mathfrak{F}\left(\left\{\frac{\gamma_{l}^{2}}{\lambda_{l}-u}\right\}_{l=k+1}^{\infty}\right)
$$

where we set $w_{0}:=1$.

- Note that for $z \in \mathbb{C} \backslash \overline{\left\{\lambda_{n}\right\}}, \xi_{0}(z)=F_{J}(z)$.
- We call $\xi_{0}(z) \equiv \lim _{u \rightarrow z}(u-z)^{r(z)} F_{J}(u)$ the characteristic function of Jacobi matrix J.

Zeros as eigenvalues

Proposition

If $\xi_{0}(z)=0$ for some $z \in \mathbb{C} \backslash \operatorname{der}\left(\left\{\lambda_{n}\right\}\right)$, then z is an eigenvalue of J and

$$
\xi(z):=\left(\xi_{1}(z), \xi_{2}(z), \xi_{3}(z), \ldots\right)
$$

is the corresponding eigenvector.

Zeros as eigenvalues

Proposition

If $\xi_{0}(z)=0$ for some $z \in \mathbb{C} \backslash \operatorname{der}\left(\left\{\lambda_{n}\right\}\right)$, then z is an eigenvalue of J and

$$
\xi(z):=\left(\xi_{1}(z), \xi_{2}(z), \xi_{3}(z), \ldots\right)
$$

is the corresponding eigenvector.

- Hence the inclusion

$$
\mathfrak{Z}(J) \subset \operatorname{spec}_{p}(J) \backslash \operatorname{der}\left(\left\{\lambda_{n}\right\}\right)
$$

holds.

Zeros as eigenvalues

Proposition

If $\xi_{0}(z)=0$ for some $z \in \mathbb{C} \backslash \operatorname{der}\left(\left\{\lambda_{n}\right\}\right)$, then z is an eigenvalue of J and

$$
\xi(z):=\left(\xi_{1}(z), \xi_{2}(z), \xi_{3}(z), \ldots\right)
$$

is the corresponding eigenvector.

- Hence the inclusion

$$
\mathfrak{Z}(J) \subset \operatorname{spec}_{p}(J) \backslash \operatorname{der}\left(\left\{\lambda_{n}\right\}\right)
$$

holds.

- Moreover, for $z \notin \overline{\left\{\lambda_{n}\right\}}$, vector $\xi(z)$ satisfies the formula

$$
\sum_{k=1}^{\infty}\left(\xi_{k}(z)\right)^{2}=\xi_{0}^{\prime}(z) \xi_{1}(z)-\xi_{0}(z) \xi_{1}^{\prime}(z)
$$

Zeros as eigenvalues

Proposition

If $\xi_{0}(z)=0$ for some $z \in \mathbb{C} \backslash \operatorname{der}\left(\left\{\lambda_{n}\right\}\right)$, then z is an eigenvalue of J and

$$
\xi(z):=\left(\xi_{1}(z), \xi_{2}(z), \xi_{3}(z), \ldots\right)
$$

is the corresponding eigenvector.

- Hence the inclusion

$$
\mathcal{Z}(J) \subset \operatorname{spec}_{p}(J) \backslash \operatorname{der}\left(\left\{\lambda_{n}\right\}\right)
$$

holds.

- Moreover, for $z \notin \overline{\left\{\lambda_{n}\right\}}$, vector $\xi(z)$ satisfies the formula

$$
\sum_{k=1}^{\infty}\left(\xi_{k}(z)\right)^{2}=\xi_{0}^{\prime}(z) \xi_{1}(z)-\xi_{0}(z) \xi_{1}^{\prime}(z)
$$

- Consequently, if $\left\{\lambda_{n}\right\}$ and $\left\{w_{n}\right\}$ are real sequences and $z \in \mathcal{Z}(J) \backslash\left\{\lambda_{n}\right\}$ then

$$
\|\xi(z)\|^{2}=\xi_{0}^{\prime}(z) \xi_{1}(z)
$$

The opposite inclusion

Proposition

If $z \notin\left(\mathcal{Z}(J) \cup \operatorname{der}\left(\left\{\lambda_{n}\right\}\right)\right)$ then $z \in \rho(J)$. Consequently, it holds

$$
\operatorname{spec}(J) \backslash \operatorname{der}\left(\left\{\lambda_{n}\right\}\right)=\operatorname{spec}_{p}(J) \backslash \operatorname{der}\left(\left\{\lambda_{n}\right\}\right)=\mathfrak{Z}(J)
$$

The opposite inclusion

Proposition

If $z \notin\left(\mathcal{Z}(J) \cup \operatorname{der}\left(\left\{\lambda_{n}\right\}\right)\right)$ then $z \in \rho(J)$. Consequently, it holds

$$
\operatorname{spec}(J) \backslash \operatorname{der}\left(\left\{\lambda_{n}\right\}\right)=\operatorname{spec}_{p}(J) \backslash \operatorname{der}\left(\left\{\lambda_{n}\right\}\right)=\mathfrak{Z}(J)
$$

Moreover, the Green function $G(z)$ of J is expressible in terms of \mathfrak{F},

$$
G_{i j}(z)=\left(e_{i},(J-z)^{-1} e_{j}\right)=-\frac{1}{w_{M}} \prod_{l=m}^{M}\left(\frac{w_{l}}{z-\lambda_{l}}\right) \frac{\mathfrak{F}\left(\left\{\frac{\gamma_{l}^{2}}{\lambda_{l}-z}\right\}_{l=1}^{m-1}\right) \mathfrak{F}\left(\left\{\frac{\gamma_{l}^{2}}{\lambda_{l}-z}\right\}_{l=M+1}^{\infty}\right)}{\mathfrak{F}\left(\left\{\frac{\gamma_{l}^{2}}{\lambda_{l}-z}\right\}_{l=1}^{\infty}\right)}
$$

where $m:=\min (i, j)$ and $M:=\max (i, j)$.

The opposite inclusion

Proposition

If $z \notin\left(\mathcal{Z}(J) \cup \operatorname{der}\left(\left\{\lambda_{n}\right\}\right)\right)$ then $z \in \rho(J)$. Consequently, it holds

$$
\operatorname{spec}(J) \backslash \operatorname{der}\left(\left\{\lambda_{n}\right\}\right)=\operatorname{spec}_{p}(J) \backslash \operatorname{der}\left(\left\{\lambda_{n}\right\}\right)=\mathfrak{Z}(J)
$$

Moreover, the Green function $G(z)$ of J is expressible in terms of \mathfrak{F},

$$
G_{i j}(z)=\left(e_{i},(J-z)^{-1} e_{j}\right)=-\frac{1}{w_{M}} \prod_{l=m}^{M}\left(\frac{w_{l}}{z-\lambda_{l}}\right) \frac{\mathfrak{F}\left(\left\{\frac{\gamma_{l}^{2}}{\lambda_{l}-z}\right\}_{l=1}^{m-1}\right) \mathfrak{F}\left(\left\{\frac{\gamma_{l}^{2}}{\lambda_{l}-z}\right\}_{l=M+1}^{\infty}\right)}{\mathfrak{F}\left(\left\{\frac{\gamma_{l}^{2}}{\lambda_{l}-z}\right\}_{l=1}^{\infty}\right)}
$$

where $m:=\min (i, j)$ and $M:=\max (i, j)$.
Especially, we get a compact formula for the Weyl m-function $m(z)=G_{11}(z)$,

$$
m(z)=\frac{\mathfrak{F}\left(\left\{\frac{\gamma_{j}^{2}}{\lambda_{j}-z}\right\}_{j=2}^{\infty}\right)}{\left(\lambda_{1}-z\right) \mathfrak{F}\left(\left\{\frac{\gamma_{j}^{2}}{\lambda_{j}-z}\right\}_{j=1}^{\infty}\right)} .
$$

\mathfrak{F} and Special Functions

Various special functions are expressible in terms of \mathfrak{F} applied to a suitable sequence, e.g.:

Methods of deriving formulas:

\mathfrak{F} and Special Functions

Various special functions are expressible in terms of \mathfrak{F} applied to a suitable sequence, e.g.:

- Bessel Functions and q-Bessel Functions

Methods of deriving formulas:

Various special functions are expressible in terms of \mathfrak{F} applied to a suitable sequence, e.g.:

- Bessel Functions and q-Bessel Functions
- Confluent Hypergeometric Functions ${ }_{1} F_{1}$, especially Regular Coulomb Wave Function

Methods of deriving formulas:

Various special functions are expressible in terms of \mathfrak{F} applied to a suitable sequence, e.g.:

- Bessel Functions and q-Bessel Functions
- Confluent Hypergeometric Functions ${ }_{1} F_{1}$, especially Regular Coulomb Wave Function
- Basic Hypergeometric Functions ${ }_{1} \phi_{1}$

Methods of deriving formulas:

Various special functions are expressible in terms of \mathfrak{F} applied to a suitable sequence, e.g.:

- Bessel Functions and q-Bessel Functions
- Confluent Hypergeometric Functions ${ }_{1} F_{1}$, especially Regular Coulomb Wave Function
- Basic Hypergeometric Functions ${ }_{1} \phi_{1}$

Methods of deriving formulas:

- Simplifying the definition relation for \mathfrak{F} directly.

\mathfrak{F} and Special Functions

Various special functions are expressible in terms of \mathfrak{F} applied to a suitable sequence, e.g.:

- Bessel Functions and q-Bessel Functions
- Confluent Hypergeometric Functions ${ }_{1} F_{1}$, especially Regular Coulomb Wave Function
- Basic Hypergeometric Functions ${ }_{1} \phi_{1}$

Methods of deriving formulas:

- Simplifying the definition relation for \mathfrak{F} directly.
- Using the following proposition.

Various special functions are expressible in terms of \mathfrak{F} applied to a suitable sequence, e.g.:

- Bessel Functions and q-Bessel Functions
- Confluent Hypergeometric Functions ${ }_{1} F_{1}$, especially Regular Coulomb Wave Function
- Basic Hypergeometric Functions ${ }_{1} \phi_{1}$

Methods of deriving formulas:

- Simplifying the definition relation for \mathfrak{F} directly.
- Using the following proposition.

Proposition

Let $x=\left\{x_{n}\right\}_{n=1}^{\infty} \subset \mathbb{C} \backslash\{0\}$ satisfies $\sum_{n}\left|x_{n} x_{n+1}\right|<\infty$ and $\mathfrak{F}(x) \neq 0$ then any solution of recurrence

$$
\begin{equation*}
F_{n}-F_{n+1}+x_{n} x_{n+1} F_{n+2}=0, \quad n \in \mathbb{N} . \tag{1}
\end{equation*}
$$

is a linear combination of solutions

$$
F_{n}:=\mathfrak{F}\left(T^{n-1} x\right)=\mathfrak{F}\left(\left\{x_{k}\right\}_{k=n}^{\infty}\right), \quad n \in \mathbb{N}
$$

and

$$
G_{n}:=\left(\prod_{k=1}^{n-2} \frac{1}{x_{k} x_{k+1}}\right) \mathfrak{F}\left(\left\{x_{k}\right\}_{k=1}^{n-2}\right), \quad n \in\{2,3, \ldots\}, \quad G_{1}:=0
$$

Moreover, solution F is the unique solution of (1) satisfying boundary condition $\lim _{n \rightarrow \infty} F_{n}=1$.

Bessel functions

Let $w, \alpha \in \mathbb{C}, z-r \alpha \notin \alpha \mathbb{N}$, and $r \in \mathbb{Z}_{+}$then it holds

$$
\mathfrak{F}\left(\left\{\frac{w}{\alpha k-z}\right\}_{k=r+1}^{\infty}\right)=\left(\frac{w}{\alpha}\right)^{-r+z / \alpha} \Gamma\left(1+r-\frac{z}{\alpha}\right) J_{r-z / \alpha}\left(\frac{2 w}{\alpha}\right)
$$

For $r=0$, the above function is characteristic function form Jacobi operator J of the form

$$
J=\left(\begin{array}{ccccc}
\alpha & w & & & \\
w & 2 \alpha & w & & \\
& w & 3 \alpha & w & \\
& & \ddots & \ddots & \ddots
\end{array}\right)
$$

Bessel functions

Let $w, \alpha \in \mathbb{C}, z-r \alpha \notin \alpha \mathbb{N}$, and $r \in \mathbb{Z}_{+}$then it holds

$$
\mathfrak{F}\left(\left\{\frac{w}{\alpha k-z}\right\}_{k=r+1}^{\infty}\right)=\left(\frac{w}{\alpha}\right)^{-r+z / \alpha} \Gamma\left(1+r-\frac{z}{\alpha}\right) J_{r-z / \alpha}\left(\frac{2 w}{\alpha}\right)
$$

For $r=0$, the above function is characteristic function form Jacobi operator J of the form

$$
J=\left(\begin{array}{ccccc}
\alpha & w & & & \\
w & 2 \alpha & w & & \\
& w & 3 \alpha & w & \\
& & \ddots & \ddots & \ddots
\end{array}\right)
$$

The previous results now reads

$$
\operatorname{spec}(J)=\left\{z \in \mathbb{C} ; J_{-\frac{z}{\alpha}}\left(\frac{2 w}{\alpha}\right)=0\right\}
$$

Bessel functions

Let $w, \alpha \in \mathbb{C}, z-r \alpha \notin \alpha \mathbb{N}$, and $r \in \mathbb{Z}_{+}$then it holds

$$
\mathfrak{F}\left(\left\{\frac{w}{\alpha k-z}\right\}_{k=r+1}^{\infty}\right)=\left(\frac{w}{\alpha}\right)^{-r+z / \alpha} \Gamma\left(1+r-\frac{z}{\alpha}\right) J_{r-z / \alpha}\left(\frac{2 w}{\alpha}\right)
$$

For $r=0$, the above function is characteristic function form Jacobi operator J of the form

$$
J=\left(\begin{array}{ccccc}
\alpha & w & & & \\
w & 2 \alpha & w & & \\
& w & 3 \alpha & w & \\
& & \ddots & \ddots & \ddots
\end{array}\right)
$$

The previous results now reads

$$
\operatorname{spec}(J)=\left\{z \in \mathbb{C} ; J_{-\frac{z}{\alpha}}\left(\frac{2 w}{\alpha}\right)=0\right\}
$$

and the formula for the k th entry of the respective eigenvector is

$$
v_{k}(z)=(-1)^{k} J_{k-\frac{z}{\alpha}}\left(\frac{2 w}{\alpha}\right) .
$$

q-Bessel functions

- For $w, \nu \in \mathbb{C}, \nu+n \notin-\mathbb{Z}_{+}, 0<q<1$, and $n \in \mathbb{Z}$, it holds

$$
\mathfrak{F}\left(\left\{\frac{w}{[\nu+k]_{q}}\right\}_{k=n}^{\infty}\right)={ }_{o \phi_{1}}\left(; q^{\nu+n} ; q,-w^{2}(1-q)^{2} q^{\nu+n-\frac{1}{2}}\right)
$$

where $[\alpha]_{q}$ stands for q-deformed number, i.e.,

$$
[\alpha]_{q}:=\frac{q^{\frac{\alpha}{2}}-q^{-\frac{\alpha}{2}}}{q^{\frac{1}{2}}-q^{-\frac{1}{2}}}
$$

q-Bessel functions

- For $w, \nu \in \mathbb{C}, \nu+n \notin-\mathbb{Z}_{+}, 0<q<1$, and $n \in \mathbb{Z}$, it holds

$$
\mathfrak{F}\left(\left\{\frac{w}{[\nu+k]_{q}}\right\}_{k=n}^{\infty}\right)={ }_{o \phi_{1}}\left(; q^{\nu+n} ; q,-w^{2}(1-q)^{2} q^{\nu+n-\frac{1}{2}}\right)
$$

where $[\alpha]_{q}$ stands for q-deformed number, i.e.,

$$
[\alpha]_{q}:=\frac{q^{\frac{\alpha}{2}}-q^{-\frac{\alpha}{2}}}{q^{\frac{1}{2}}-q^{-\frac{1}{2}}}
$$

- By using definitions

$$
J_{\nu}(x ; q):=\frac{\left(q^{\nu+1} ; q\right)_{\infty}}{(q ; q)_{\infty}}\left(\frac{x}{2}\right)^{\nu}{ }_{0} \phi_{1}\left(; q^{\nu+1} ; q,-\frac{x^{2}}{4} q^{\nu+1}\right)
$$

and

$$
\Gamma_{q}(x)=\frac{(q ; q)_{\infty}}{\left(q^{x} ; q\right)_{\infty}}(1-q)^{1-x}
$$

the identity can be rewritten into the form

q-Bessel functions

- For $w, \nu \in \mathbb{C}, \nu+n \notin-\mathbb{Z}_{+}, 0<q<1$, and $n \in \mathbb{Z}$, it holds

$$
\mathfrak{F}\left(\left\{\frac{w}{[\nu+k]_{q}}\right\}_{k=n}^{\infty}\right)={ }_{0} \phi_{1}\left(; q^{\nu+n} ; q,-w^{2}(1-q)^{2} q^{\nu+n-\frac{1}{2}}\right)
$$

where $[\alpha]_{q}$ stands for q-deformed number, i.e.,

$$
[\alpha]_{q}:=\frac{q^{\frac{\alpha}{2}}-q^{-\frac{\alpha}{2}}}{q^{\frac{1}{2}}-q^{-\frac{1}{2}}}
$$

- By using definitions

$$
J_{\nu}(x ; q):=\frac{\left(q^{\nu+1} ; q\right)_{\infty}}{(q ; q)_{\infty}}\left(\frac{x}{2}\right)^{\nu}{ }_{0} \phi_{1}\left(; q^{\nu+1} ; q,-\frac{x^{2}}{4} q^{\nu+1}\right)
$$

and

$$
\Gamma_{q}(x)=\frac{(q ; q)_{\infty}}{\left(q^{x} ; q\right)_{\infty}}(1-q)^{1-x}
$$

the identity can be rewritten into the form

$$
\mathfrak{F}\left(\left\{\frac{w}{[\nu+k]_{q}}\right\}_{k=1}^{\infty}\right)=\Gamma_{q}(\nu+1)\left(w q^{-\frac{1}{4}}\right)^{-\nu} J_{\nu}\left(2 w(1-q) q^{-\frac{1}{4}} ; q\right)
$$

Confluent Hypergeometric Function ${ }_{1} F_{1}$

For $\mu, \nu, z \in \mathbb{C}, \mu-1 \notin \frac{1}{2} \mathbb{Z}_{+}$, confluent hypergeometric function ${ }_{1} F_{1}$ satisfies the three term recurrence of the form

$$
\begin{aligned}
{ }_{1} F_{1}(\mu+\nu-1 ; 2 \mu-2 ; 2 z) & =\left(1+\frac{\nu z}{\mu(\mu-1)}\right){ }_{1} F_{1}(\mu+\nu ; 2 \mu ; 2 z) \\
& +\frac{z^{2}\left(\mu^{2}-\nu^{2}\right)}{\mu^{2}\left(4 \mu^{2}-1\right)}{ }_{1} F_{1}(\mu+\nu+1 ; 2 \mu+2 ; 2 z)
\end{aligned}
$$

Confluent Hypergeometric Function ${ }_{1} F_{1}$

For $\mu, \nu, z \in \mathbb{C}, \mu-1 \notin \frac{1}{2} \mathbb{Z}_{+}$, confluent hypergeometric function ${ }_{1} F_{1}$ satisfies the three term recurrence of the form

$$
\begin{aligned}
{ }_{1} F_{1}(\mu+\nu-1 ; 2 \mu-2 ; 2 z) & =\left(1+\frac{\nu z}{\mu(\mu-1)}\right){ }_{1} F_{1}(\mu+\nu ; 2 \mu ; 2 z) \\
& +\frac{z^{2}\left(\mu^{2}-\nu^{2}\right)}{\mu^{2}\left(4 \mu^{2}-1\right)}{ }_{1} F_{1}(\mu+\nu+1 ; 2 \mu+2 ; 2 z)
\end{aligned}
$$

From this, one can verify, the function

$$
F_{n}:=e^{-z} \prod_{k=n}^{\infty}\left(1+\frac{\nu z}{(\mu+k)(\mu+k+1)}\right)^{-1}{ }_{1} F_{1}(\mu+n+\nu ; 2 \mu+2 n ; 2 z)
$$

fulfills $\lim _{n \rightarrow \infty} F_{n}=1$ together with the recurrence rule

$$
F_{n}-F_{n+1}+\frac{w_{n}^{2}}{\left(1 / z+\lambda_{n}\right)\left(1 / z+\lambda_{n+1}\right)} F_{n+2}=0
$$

where

$$
\lambda_{n}=\frac{\nu}{(\mu+n)(\mu+n+1)}
$$

and

$$
w_{n}^{2}=\frac{\nu^{2}-(\mu+n+1)^{2}}{(\mu+n+1)^{2}\left(4(\mu+n+1)^{2}-1\right)}
$$

Confluent Hypergeometric Function ${ }_{1} F_{1}$

By the proposition on the uniqueness of the solution the recurrence equations one gets identity

$$
\mathfrak{F}\left(\left\{\frac{\gamma_{k}^{2}}{\lambda_{k}+1 / z}\right\}_{k=n}^{\infty}\right)=e^{-z} \prod_{k=n}^{\infty}\left(1+\frac{\nu z}{(\mu+k)(\mu+k+1)}\right)^{-1}{ }_{1} F_{1}(\mu+n+\nu ; 2 \mu+2 n ; 2 z)
$$

where, for $n \in \mathbb{Z}$, one has to set

$$
\lambda_{n}:=\frac{\nu}{(\mu+n)(\mu+n+1)}
$$

and

$$
w_{n}:=\frac{i}{\mu+n+1} \sqrt{\frac{(\mu+n+1)^{2}-\nu^{2}}{(2 \mu+2 n+1)(2 \mu+2 n+3)}}
$$

Parameters $\mu, \nu \in \mathbb{C}$ are restricted as follows: $2 \mu+2 n \notin-\mathbb{Z}_{+}$and $|\mu+k| \neq|\nu|$ for $k-n \in \mathbb{N}$.

- The regular Coulomb wave function $F_{L}(\eta, \rho)$ is one of two linearly independent solutions of the second-order differential equation

$$
\frac{d^{2} u}{d \rho^{2}}+\left[1-\frac{2 \eta}{\rho}-\frac{L(L+1)}{\rho^{2}}\right] u=0
$$

where $\rho>0, \eta \in \mathbb{R}$, and $L \in \mathbb{Z}_{+}$.

- The regular Coulomb wave function $F_{L}(\eta, \rho)$ is one of two linearly independent solutions of the second-order differential equation

$$
\frac{d^{2} u}{d \rho^{2}}+\left[1-\frac{2 \eta}{\rho}-\frac{L(L+1)}{\rho^{2}}\right] u=0
$$

where $\rho>0, \eta \in \mathbb{R}$, and $L \in \mathbb{Z}_{+}$.

- $F_{L}(\eta, \rho)$ can be decomposed as follows,

$$
F_{L}(\eta, \rho)=C_{L}(\eta) \rho^{L+1} \phi_{L}(\eta, \rho)
$$

where

$$
C_{L}(\eta)=\sqrt{\frac{2 \pi \eta}{e^{2 \pi \eta}-1}} \frac{\sqrt{\left(1+\eta^{2}\right)\left(4+\eta^{2}\right) \ldots\left(L^{2}+\eta^{2}\right)}}{(2 L+1)!!L!}
$$

and

$$
\phi_{L}(\eta, \rho)=e^{-i \rho}{ }_{1} F_{1}(L+1-i \eta, 2 L+2,2 i \rho) .
$$

- The regular Coulomb wave function $F_{L}(\eta, \rho)$ is one of two linearly independent solutions of the second-order differential equation

$$
\frac{d^{2} u}{d \rho^{2}}+\left[1-\frac{2 \eta}{\rho}-\frac{L(L+1)}{\rho^{2}}\right] u=0
$$

where $\rho>0, \eta \in \mathbb{R}$, and $L \in \mathbb{Z}_{+}$.

- $F_{L}(\eta, \rho)$ can be decomposed as follows,

$$
F_{L}(\eta, \rho)=C_{L}(\eta) \rho^{L+1} \phi_{L}(\eta, \rho)
$$

where

$$
C_{L}(\eta)=\sqrt{\frac{2 \pi \eta}{e^{2 \pi \eta}-1}} \frac{\sqrt{\left(1+\eta^{2}\right)\left(4+\eta^{2}\right) \ldots\left(L^{2}+\eta^{2}\right)}}{(2 L+1)!!L!}
$$

and

$$
\phi_{L}(\eta, \rho)=e^{-i \rho}{ }_{1} F_{1}(L+1-i \eta, 2 L+2,2 i \rho) .
$$

- Hence one can use the relation between \mathfrak{F} and ${ }_{1} F_{1}$ to find the following formula.

Regular Coulomb Wave Function

Proposition

For $\eta \in \mathbb{C}, \rho \in \mathbb{C} \backslash\{0\}, \eta \rho \neq-k(k+1), k \geq n+1$, and $n \in \mathbb{Z}_{+}$, one has

$$
\mathfrak{F}\left(\left\{\frac{\gamma_{k}^{2}}{\lambda_{k}+1 / \rho}\right\}_{k=n+1}^{\infty}\right)=\frac{\pi \eta \rho}{\cos \left(\frac{\pi}{2} \sqrt{1-4 \eta \rho}\right)} \prod_{k=1}^{n}\left[1+\frac{\eta \rho}{k(k+1)}\right] \phi_{n}(\eta, \rho)
$$

The entry sequences now reads

$$
w_{n}=\frac{\sqrt{(n+1)^{2}+\eta^{2}}}{(n+1) \sqrt{(2 n+1)(2 n+3)}} \quad \text { and } \quad \lambda_{n}:=\frac{\eta}{n(n+1)} .
$$

Regular Coulomb Wave Function

Proposition

For $\eta \in \mathbb{C}, \rho \in \mathbb{C} \backslash\{0\}, \eta \rho \neq-k(k+1), k \geq n+1$, and $n \in \mathbb{Z}_{+}$, one has

$$
\mathfrak{F}\left(\left\{\frac{\gamma_{k}^{2}}{\lambda_{k}+1 / \rho}\right\}_{k=n+1}^{\infty}\right)=\frac{\pi \eta \rho}{\cos \left(\frac{\pi}{2} \sqrt{1-4 \eta \rho}\right)} \prod_{k=1}^{n}\left[1+\frac{\eta \rho}{k(k+1)}\right] \phi_{n}(\eta, \rho)
$$

The entry sequences now reads

$$
w_{n}=\frac{\sqrt{(n+1)^{2}+\eta^{2}}}{(n+1) \sqrt{(2 n+1)(2 n+3)}} \quad \text { and } \quad \lambda_{n}:=\frac{\eta}{n(n+1)} .
$$

Consequently, for corresponding Jacobi matrix

$$
J_{L}=\left(\begin{array}{ccccc}
-\lambda_{L+1} & w_{L+1} & & & \\
w_{L+1} & -\lambda_{L+2} & w_{L+2} & & \\
& w_{L+2} & -\lambda_{L+3} & w_{L+3} & \\
& & \ddots & \ddots & \ddots
\end{array}\right)
$$

we get

$$
\operatorname{spec}\left(J_{L}\right)=\left\{1 / \rho: \phi_{L}(\eta, \rho)=0\right\} \cup\{0\}=\left\{1 / \rho: F_{L}(\eta, \rho)=0\right\} \cup\{0\}
$$

and

$$
v(1 / \rho)=\left(\sqrt{2 L+3} F_{L+1}(\eta, \rho), \sqrt{2 L+5} F_{L+2}(\eta, \rho), \sqrt{2 L+7} F_{L+3}(\eta, \rho), \ldots\right)^{T}
$$

q-hypergeometric function ${ }_{1} \phi_{1}$

Proposition

For $\delta, a \in \mathbb{C}$, and $n \in \mathbb{Z}_{+}$, it holds

$$
\mathfrak{F}\left(\left\{\frac{\gamma_{k}^{2}}{(a+1) q^{k-1}-z}\right\}_{k=n+1}^{\infty}\right)=\frac{\left(z^{-1} q^{n} ; q\right)_{\infty}}{\left((a+1) z^{-1} q^{n} ; q\right)_{\infty}}{ }^{1} \phi_{1}\left(z^{-1} q^{\delta}, z^{-1} q^{n} ; q, a z^{-1} q^{n}\right)
$$

where

$$
\gamma_{k}^{2} \gamma_{k+1}^{2}=w_{k}^{2}=-a q^{k+\delta-1}\left(1-q^{k-\delta}\right)
$$

Proposition

For $\delta, a \in \mathbb{C}$, and $n \in \mathbb{Z}_{+}$, it holds

$$
\mathfrak{F}\left(\left\{\frac{\gamma_{k}^{2}}{(a+1) q^{k-1}-z}\right\}_{k=n+1}^{\infty}\right)=\frac{\left(z^{-1} q^{n} ; q\right)_{\infty}}{\left((a+1) z^{-1} q^{n} ; q\right)_{\infty}}{ }^{1} \phi_{1}\left(z^{-1} q^{\delta}, z^{-1} q^{n} ; q, a z^{-1} q^{n}\right)
$$

where

$$
\gamma_{k}^{2} \gamma_{k+1}^{2}=w_{k}^{2}=-a q^{k+\delta-1}\left(1-q^{k-\delta}\right)
$$

- Especially, for $n=\delta=0$, the identity simplifies to

$$
F_{J}(z)=\frac{\left(z^{-1} ; q\right)_{\infty}\left(a z^{-1} ; q\right)_{\infty}}{\left((a+1) z^{-1} ; q\right)_{\infty}}
$$

Proposition

For $\delta, a \in \mathbb{C}$, and $n \in \mathbb{Z}_{+}$, it holds

$$
\mathfrak{F}\left(\left\{\frac{\gamma_{k}^{2}}{(a+1) q^{k-1}-z}\right\}_{k=n+1}^{\infty}\right)=\frac{\left(z^{-1} q^{n} ; q\right)_{\infty}}{\left((a+1) z^{-1} q^{n} ; q\right)_{\infty}}{ }^{1} \phi_{1}\left(z^{-1} q^{\delta}, z^{-1} q^{n} ; q, a z^{-1} q^{n}\right)
$$

where

$$
\gamma_{k}^{2} \gamma_{k+1}^{2}=w_{k}^{2}=-a q^{k+\delta-1}\left(1-q^{k-\delta}\right)
$$

- Especially, for $n=\delta=0$, the identity simplifies to

$$
F_{J}(z)=\frac{\left(z^{-1} ; q\right)_{\infty}\left(a z^{-1} ; q\right)_{\infty}}{\left((a+1) z^{-1} ; q\right)_{\infty}}
$$

- The spectrum of corresponding J is then obtained fully explicitly,

$$
\operatorname{spec}(J)=\left\{q^{k}: k=0,1,2, \ldots\right\} \cup\left\{a q^{k}: k=0,1,2, \ldots\right\} \cup\{0\} .
$$

Proposition

For $\delta, a \in \mathbb{C}$, and $n \in \mathbb{Z}_{+}$, it holds

$$
\mathfrak{F}\left(\left\{\frac{\gamma_{k}^{2}}{(a+1) q^{k-1}-z}\right\}_{k=n+1}^{\infty}\right)=\frac{\left(z^{-1} q^{n} ; q\right)_{\infty}}{\left((a+1) z^{-1} q^{n} ; q\right)_{\infty}}{ }^{1} \phi_{1}\left(z^{-1} q^{\delta}, z^{-1} q^{n} ; q, a z^{-1} q^{n}\right)
$$

where

$$
\gamma_{k}^{2} \gamma_{k+1}^{2}=w_{k}^{2}=-a q^{k+\delta-1}\left(1-q^{k-\delta}\right)
$$

- Especially, for $n=\delta=0$, the identity simplifies to

$$
F_{J}(z)=\frac{\left(z^{-1} ; q\right)_{\infty}\left(a z^{-1} ; q\right)_{\infty}}{\left((a+1) z^{-1} ; q\right)_{\infty}}
$$

- The spectrum of corresponding J is then obtained fully explicitly,

$$
\operatorname{spec}(J)=\left\{q^{k}: k=0,1,2, \ldots\right\} \cup\left\{a q^{k}: k=0,1,2, \ldots\right\} \cup\{0\} .
$$

- For $a>0$, the operator J is not hermitian, however, $\operatorname{spec}(J)$ is real!
- For $\lambda_{n} \in \mathbb{R}$ and $w_{n}>0$, OPs can be defined recursively by

$$
w_{n-1} y_{n-1}(x)+\lambda_{n} y_{n}(x)+w_{n} y_{n+1}(x)=x y_{n}(x), \quad n=1,2, \ldots \quad\left(w_{0}:=-1\right)
$$

and OPs of the first kind $P_{n}(x)$ satisfy initial conditions $P_{0}(x)=0, P_{1}(x)=1$, while OPs of the second kind $Q_{n}(x)$ satisfy $Q_{0}(x)=1, Q_{1}(x)=0$.

Function \mathfrak{F} and Orthogonal Polynomials

- For $\lambda_{n} \in \mathbb{R}$ and $w_{n}>0$, OPs can be defined recursively by

$$
w_{n-1} y_{n-1}(x)+\lambda_{n} y_{n}(x)+w_{n} y_{n+1}(x)=x y_{n}(x), \quad n=1,2, \ldots \quad\left(w_{0}:=-1\right)
$$

and OPs of the first kind $P_{n}(x)$ satisfy initial conditions $P_{0}(x)=0, P_{1}(x)=1$, while OPs of the second kind $Q_{n}(x)$ satisfy $Q_{0}(x)=1, Q_{1}(x)=0$.

- OPs are related to \mathfrak{F} through identities

$$
\begin{gathered}
P_{n+1}(z)=\prod_{k=1}^{n}\left(\frac{z-\lambda_{k}}{w_{k}}\right) \mathfrak{F}\left(\left\{\frac{\gamma_{l}^{2}}{\lambda_{l}-z}\right\}_{l=1}^{n}\right), \quad n=0,1 \ldots, \\
Q_{n+1}(z)=\frac{1}{w_{1}} \prod_{k=2}^{n}\left(\frac{z-\lambda_{k}}{w_{k}}\right) \mathfrak{F}\left(\left\{\frac{\gamma_{l}^{2}}{\lambda_{l}-z}\right\}_{l=2}^{n}\right), \quad n=0,1 \ldots
\end{gathered}
$$

Orthogonal relation for P_{n}

Proposition

Let J be self-adjoint and either J has discrete spectrum or it is a compact operator. Then, for $m, n \in \mathbb{N}$, the orthogonality relation

$$
\sum_{\lambda \in \mathfrak{Z}(J)} \frac{F_{J, 2}(\lambda)}{\left(\lambda-\lambda_{1}\right) F_{J}^{\prime}(\lambda)} P_{n}(\lambda) P_{m}(\lambda)=\delta_{m, n}
$$

holds, where $F_{J, k+1}$ is the characteristic function of the Jacobi operator defined by using shifted sequences $\left\{\lambda_{n+k}\right\}_{n=1}^{\infty}$ and $\left\{w_{n+k}\right\}_{n=1}^{\infty}$, i.e.,

$$
F_{J, k+1}(z)=\mathfrak{F}\left(\left\{\frac{\gamma_{I}^{2}}{\lambda_{I}-z}\right\}_{l=k}^{\infty}\right), \quad\left(F_{J, 1}=F_{J}\right)
$$

Show the Askey Scheme

Well known results on Lommel polynomials

- Explicit formula:

$$
R_{n, \nu}(x)=\sum_{k=0}^{[n / 2]}\binom{n-k}{k}(-1)^{k} \frac{\Gamma(\nu+n-k)}{\Gamma(\nu+k)}\left(\frac{2}{x}\right)^{n-2 k}
$$

Well known results on Lommel polynomials

- Explicit formula:

$$
R_{n, \nu}(x)=\sum_{k=0}^{[n / 2]}\binom{n-k}{k}(-1)^{k} \frac{\Gamma(\nu+n-k)}{\Gamma(\nu+k)}\left(\frac{2}{x}\right)^{n-2 k}
$$

- Relation to \mathfrak{F} :

$$
R_{n, \nu}(x)=\left(\frac{2}{x}\right)^{n} \frac{\Gamma(\nu+n)}{\Gamma(\nu)} \mathfrak{F}\left(\left\{\frac{x}{2(\nu+k)}\right\}_{k=0}^{n-1}\right)
$$

Well known results on Lommel polynomials

- Explicit formula:

$$
R_{n, \nu}(x)=\sum_{k=0}^{[n / 2]}\binom{n-k}{k}(-1)^{k} \frac{\Gamma(\nu+n-k)}{\Gamma(\nu+k)}\left(\frac{2}{x}\right)^{n-2 k}
$$

- Relation to \mathfrak{F} :

$$
R_{n, \nu}(x)=\left(\frac{2}{x}\right)^{n} \frac{\Gamma(\nu+n)}{\Gamma(\nu)} \mathfrak{F}\left(\left\{\frac{x}{2(\nu+k)}\right\}_{k=0}^{n-1}\right)
$$

- Due to general identity

$$
\mathfrak{F}\left(x_{1}, \ldots, x_{n}\right) \mathfrak{F}(T x)-\mathfrak{F}\left(x_{2}, \ldots, x_{n}\right) \mathfrak{F}(x)=\left(\prod_{k=1}^{n} x_{k} x_{k+1}\right) \mathfrak{F}\left(T^{n+1} x\right)
$$

which holds for any $x \in D$, one can rederive the well-known relation between Lommel polynomials and Bessel functions,

$$
R_{n, \nu}(x) J_{\nu}(x)-R_{n-1, \nu+1}(x) J_{\nu-1}(x)=J_{\nu+n}(x)
$$

where $n \in \mathbb{N}$, and $\nu, x \in \mathbb{C}$.

Well known results on Lommel polynomials

- Explicit formula:

$$
R_{n, \nu}(x)=\sum_{k=0}^{[n / 2]}\binom{n-k}{k}(-1)^{k} \frac{\Gamma(\nu+n-k)}{\Gamma(\nu+k)}\left(\frac{2}{x}\right)^{n-2 k}
$$

- Relation to \mathfrak{F} :

$$
R_{n, \nu}(x)=\left(\frac{2}{x}\right)^{n} \frac{\Gamma(\nu+n)}{\Gamma(\nu)} \mathfrak{F}\left(\left\{\frac{x}{2(\nu+k)}\right\}_{k=0}^{n-1}\right)
$$

- Due to general identity

$$
\mathfrak{F}\left(x_{1}, \ldots, x_{n}\right) \mathfrak{F}(T x)-\mathfrak{F}\left(x_{2}, \ldots, x_{n}\right) \mathfrak{F}(x)=\left(\prod_{k=1}^{n} x_{k} x_{k+1}\right) \mathfrak{F}\left(T^{n+1} x\right)
$$

which holds for any $x \in D$, one can rederive the well-known relation between Lommel polynomials and Bessel functions,

$$
R_{n, \nu}(x) J_{\nu}(x)-R_{n-1, \nu+1}(x) J_{\nu-1}(x)=J_{\nu+n}(x)
$$

where $n \in \mathbb{N}$, and $\nu, x \in \mathbb{C}$.

- OG relation:

$$
\sum_{k \in \pm \mathbb{N}} x_{k, \nu}^{-2} R_{n, \nu+1}\left(x_{k, \nu}\right) R_{m, \nu+1}\left(x_{k, \nu}\right)=\frac{2}{n+1+\nu} \delta_{m n}
$$

for $\nu>-1$ and $m, n \in \mathbb{Z}_{+}$.

The class of OG polynomials related to Regular Coulomb Wave Function

- Let

$$
w_{n}:=\frac{\sqrt{(n+1)^{2}+\eta^{2}}}{(n+1) \sqrt{(2 n+1)(2 n+3)}} \quad \text { and } \quad \lambda_{n}:=\frac{\eta}{n(n+1)}
$$

- Let

$$
w_{n}:=\frac{\sqrt{(n+1)^{2}+\eta^{2}}}{(n+1) \sqrt{(2 n+1)(2 n+3)}} \quad \text { and } \quad \lambda_{n}:=\frac{\eta}{n(n+1)} .
$$

- For $\eta \in \mathbb{R}, L \in \mathbb{Z}_{+}$, define the set of OG polynomials $\left\{P_{n}^{(L)}(\eta ; z)\right\}_{n=0}^{\infty}$ by recurrence rule

$$
z P_{n}^{(L)}(\eta ; z)=w_{n-1+L} P_{n-1}^{(L)}(\eta ; z)-\lambda_{n+L} P_{n}^{(L)}(\eta ; z)+w_{n+L} P_{n+1}^{(L)}(\eta ; z)
$$

with $P_{0}^{(L)}(\eta ; z)=0$ and $P_{1}^{(L)}(\eta ; z)=1$.

- Let

$$
w_{n}:=\frac{\sqrt{(n+1)^{2}+\eta^{2}}}{(n+1) \sqrt{(2 n+1)(2 n+3)}} \quad \text { and } \quad \lambda_{n}:=\frac{\eta}{n(n+1)} .
$$

- For $\eta \in \mathbb{R}, L \in \mathbb{Z}_{+}$, define the set of OG polynomials $\left\{P_{n}^{(L)}(\eta ; z)\right\}_{n=0}^{\infty}$ by recurrence rule

$$
z P_{n}^{(L)}(\eta ; z)=w_{n-1+L} P_{n-1}^{(L)}(\eta ; z)-\lambda_{n+L} P_{n}^{(L)}(\eta ; z)+w_{n+L} P_{n+1}^{(L)}(\eta ; z)
$$

with $P_{0}^{(L)}(\eta ; z)=0$ and $P_{1}^{(L)}(\eta ; z)=1$.

- Relation to \mathfrak{F} :

$$
P_{n}^{(L)}(\eta ; z)=\left(\prod_{k=1}^{n-1} \frac{z-\lambda_{k+L}}{w_{k+L}}\right) \mathfrak{F}\left(\left\{\frac{\gamma_{l+L}^{2}}{\lambda_{l+L}-z}\right\}_{I=1}^{n-1}\right)
$$

- Let

$$
w_{n}:=\frac{\sqrt{(n+1)^{2}+\eta^{2}}}{(n+1) \sqrt{(2 n+1)(2 n+3)}} \quad \text { and } \quad \lambda_{n}:=\frac{\eta}{n(n+1)} .
$$

- For $\eta \in \mathbb{R}, L \in \mathbb{Z}_{+}$, define the set of OG polynomials $\left\{P_{n}^{(L)}(\eta ; z)\right\}_{n=0}^{\infty}$ by recurrence rule

$$
z P_{n}^{(L)}(\eta ; z)=w_{n-1+L} P_{n-1}^{(L)}(\eta ; z)-\lambda_{n+L} P_{n}^{(L)}(\eta ; z)+w_{n+L} P_{n+1}^{(L)}(\eta ; z)
$$

with $P_{0}^{(L)}(\eta ; z)=0$ and $P_{1}^{(L)}(\eta ; z)=1$.

- Relation to \mathfrak{F} :

$$
P_{n}^{(L)}(\eta ; z)=\left(\prod_{k=1}^{n-1} \frac{z-\lambda_{k+L}}{w_{k+L}}\right) \mathfrak{F}\left(\left\{\frac{\gamma_{l+L}^{2}}{\lambda_{l+L}-z}\right\}_{l=1}^{n-1}\right)
$$

- Set

$$
R_{n}^{(L)}(\eta ; \rho):=P_{n}^{(L)}\left(\eta ; \rho^{-1}\right)
$$

The class of OG polynomials related to Regular Coulomb Wave Function

- Relation to Regular Coulomb Wave Function:

$$
O_{n+1}^{(L-1)}(\eta ; \rho) F_{L}(\eta, \rho)-O_{n}^{(L)}(\eta ; \rho) F_{L-1}(\eta, \rho)=\frac{L}{\sqrt{L^{2}+\eta^{2}}} F_{L+n}(\eta, \rho)
$$

where

$$
O_{n}^{(L-1)}(\eta ; \rho):=\frac{L}{\sqrt{L^{2}+\eta^{2}}} \sqrt{\frac{2 L+3}{2 L+2 n+1}} R_{n}^{(L)}(\eta ; \rho),
$$

and $n \in \mathbb{Z}_{+}, L \in \mathbb{N}, \eta, \rho \in \mathbb{C}$.

The class of OG polynomials related to Regular Coulomb Wave Function

- Relation to Regular Coulomb Wave Function:

$$
O_{n+1}^{(L-1)}(\eta ; \rho) F_{L}(\eta, \rho)-O_{n}^{(L)}(\eta ; \rho) F_{L-1}(\eta, \rho)=\frac{L}{\sqrt{L^{2}+\eta^{2}}} F_{L+n}(\eta, \rho)
$$

where

$$
O_{n}^{(L-1)}(\eta ; \rho):=\frac{L}{\sqrt{L^{2}+\eta^{2}}} \sqrt{\frac{2 L+3}{2 L+2 n+1}} R_{n}^{(L)}(\eta ; \rho)
$$

and $n \in \mathbb{Z}_{+}, L \in \mathbb{N}, \eta, \rho \in \mathbb{C}$.

- OG relation:

$$
\sum_{\rho_{\eta, L}} \rho_{\eta, L}^{-2} R_{n}^{(L)}\left(\eta ; \rho_{\eta, L}\right) R_{m}^{(L)}\left(\eta ; \rho_{\eta, L}\right)=\frac{(L+1)^{2}+\eta^{2}}{(2 L+3)(L+1)^{2}} \delta_{m n}
$$

where $m, n \in \mathbb{N}, \eta \in \mathbb{R}$, and $L \in \mathbb{Z}_{+}$. The summation is over the set of all nonzero roots $\rho_{\eta, L}$ of $F_{L}(\eta, \rho)$.

The class of OG polynomials related to Regular Coulomb Wave Function

- Relation to Regular Coulomb Wave Function:

$$
O_{n+1}^{(L-1)}(\eta ; \rho) F_{L}(\eta, \rho)-O_{n}^{(L)}(\eta ; \rho) F_{L-1}(\eta, \rho)=\frac{L}{\sqrt{L^{2}+\eta^{2}}} F_{L+n}(\eta, \rho)
$$

where

$$
O_{n}^{(L-1)}(\eta ; \rho):=\frac{L}{\sqrt{L^{2}+\eta^{2}}} \sqrt{\frac{2 L+3}{2 L+2 n+1}} R_{n}^{(L)}(\eta ; \rho)
$$

and $n \in \mathbb{Z}_{+}, L \in \mathbb{N}, \eta, \rho \in \mathbb{C}$.

- OG relation:

$$
\sum_{\rho_{\eta, L}} \rho_{\eta, L}^{-2} R_{n}^{(L)}\left(\eta ; \rho_{\eta, L}\right) R_{m}^{(L)}\left(\eta ; \rho_{\eta, L}\right)=\frac{(L+1)^{2}+\eta^{2}}{(2 L+3)(L+1)^{2}} \delta_{m n}
$$

where $m, n \in \mathbb{N}, \eta \in \mathbb{R}$, and $L \in \mathbb{Z}_{+}$. The summation is over the set of all nonzero roots $\rho_{\eta, L}$ of $F_{L}(\eta, \rho)$.

- Explicit formula for $R_{n}^{(L)}(\eta ; \rho)$: ?

The class of OG polynomials related to Regular Coulomb Wave Function

- Relation to Regular Coulomb Wave Function:

$$
O_{n+1}^{(L-1)}(\eta ; \rho) F_{L}(\eta, \rho)-O_{n}^{(L)}(\eta ; \rho) F_{L-1}(\eta, \rho)=\frac{L}{\sqrt{L^{2}+\eta^{2}}} F_{L+n}(\eta, \rho)
$$

where

$$
O_{n}^{(L-1)}(\eta ; \rho):=\frac{L}{\sqrt{L^{2}+\eta^{2}}} \sqrt{\frac{2 L+3}{2 L+2 n+1}} R_{n}^{(L)}(\eta ; \rho)
$$

and $n \in \mathbb{Z}_{+}, L \in \mathbb{N}, \eta, \rho \in \mathbb{C}$.

- OG relation:

$$
\sum_{\rho_{\eta, L}} \rho_{\eta, L}^{-2} R_{n}^{(L)}\left(\eta ; \rho_{\eta, L}\right) R_{m}^{(L)}\left(\eta ; \rho_{\eta, L}\right)=\frac{(L+1)^{2}+\eta^{2}}{(2 L+3)(L+1)^{2}} \delta_{m n}
$$

where $m, n \in \mathbb{N}, \eta \in \mathbb{R}$, and $L \in \mathbb{Z}_{+}$. The summation is over the set of all nonzero roots $\rho_{\eta, L}$ of $F_{L}(\eta, \rho)$.

- Explicit formula for $R_{n}^{(L)}(\eta ; \rho)$: ?
- Rodrigez type formula for $R_{n}^{(L)}(\eta ; \rho)$:

Thank you!

