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Hahn-Exton q-Bessel function

It is one of the three deeply investigated q-analogues to the ordinary Bessel function Jν(z),

Jν(z; q) = zν
(qν+1; q)∞
(q; q)∞

1φ1

(
0; qν+1; q, qz2

)
=

(qν+1; q)∞
(q; q)∞

∞∑
n=0

(−1)n qn(n+1)/2

(q; q)n (qν+1; q)n
z2n+ν .

We always assume 0 < q < 1. It holds

lim
q→1−

Jν (z(1− q)/2; q) = Jν(z).

The Hahn-Exton q-Bessel function has been intensively studied in past (difference eq.,
orthogonality properties, asymptotic formulas, zeros, etc.), for instance by Koelink,
Swarttouw, Ismail, Annaby, etal.
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q-Lommel polynomials

The basic recurrence relation for (ordinary) Bessel functions reads

Jν+1(z) =
2ν
z

Jν(z)− Jν−1(z).

As first observed by Lommel in 1871, by iterating this rule one reveals

Jν+n(z) = Rn,ν(z)Jν(z)− Rn−1,ν+1(z)Jν−1(z), for n ∈ Z+,

where Rn,ν(z) are polynomials in z−1 known today as Lommel polynomials.

Similarly the recurrence relation for the Hahn-Exton q-Bessel functions reads

Jν+1(z; q) =
(

1− qν

z
+ z
)

Jν(z; q)− Jν−1(z; q)

By iterating this rule one arrives at the expression

Jν+n(z; q) = Rn,ν(z; q)Jν(z; q)− Rn−1,ν+1(z; q)Jν−1(z; q), for n ∈ Z+,

where by q-Lommel polynomials we understand the function Rn,ν(z; q) which is a Laurent
polynomial in z and polynomial in qν .

q-Lommel polynomials have been intensively studied in 90’s by Koelink, Van Aschee,
Swarttouw, and others.
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Monic q-Lommel polynomials

With some abuse of notation we call functions hn,ν(w ; q) := Rn,ν(w−1; q) q-Lommel
polynomials as well.

q-Lommel polynomials satisfy the three-term recurrence

hn−1,ν(w ; q)− (w−1 + w(1− qν+n))hn,ν(w ; q) + hn+1,ν(w ; q) = 0,

with initial conditions h−1,ν(w ; q) = 0 and h0,ν(w ; q) = 1.

Thus, by the Favard’s theorem, sequence hn,ν(w ; q) forms the orthogonal polynomial
sequence in qν . We use slightly different parametrization: x := qν and a := w−2.

Hence the monic version of q-Lommel polynomials Fn(a; q, x) is determined by the
recurrence

un+1 = (x − (a + 1)q−n)un − aq−2n+1un−1

with initial setting F−1(a; q, x) = 0 and F0(a; q, x) = 1.
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Known results on orthogonality

Proposition

The Hamburger as well as the Stieltjes moment problem associated with polynomials Fn(a; q, x) is
indeterminate if and only if q < a < 1/q.

Sketch of the proof:

i) Hamburger indeterminacy: Based on the fact that values of Fn(a; q, 0) as well as the value of
the first associate polynomials at x = 0 can be expressed explicitly. Then one verifies the
corresponding orthogonal polynomials Pn(a; q, 0) and Qn(a; q, 0) of the first and second kind
are both square summable iff q < a < 1/q.

ii) Stieltjes indeterminacy: It follows from the fact that

lim
n→∞

Pn(a; q, 0)
Qn(a; q, 0)

< 0.

Orthogonality relation [Koelink99]

For a > 0 and m, n ∈ Z+, it holds

∞∑
k=1

1φ1(0; aq; q, qξk )

∂x |x=ξk 1φ1(0; aq; q, x)
Fn(a; q, ξk )Fm(a; q, ξk ) = −anq−n2

δmn.
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Formula for the generating function

Generating function

For |t | < min(1, a−1), it holds

∞∑
n=0

q
(

n
2

)
Fn(a; q, x)(−t)n =

1
(1− t)(1− at) 2φ2(0, q; qt , qat ; q, xt).

Sketch of the proof:
By denoting the LHS of the above formula V (t), one finds V fulfills first order q-difference equation

(1− t)(1− at)V (t) = 1− xtV (qt)

with initial condition V (0) = 1. This can be solved explicitly by iteration and one arrives at the
function on RHS of the generating formula (at least formally).
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Nevanlinna parametrization - the general theory

Recall Nevanlinna functions A, B, C, and D defined by

A(z) = z
∞∑

n=0

Qn(0)Qn(z), B(z) = −1 + z
∞∑

n=0

Qn(0)Pn(z),

C(z) = 1 + z
∞∑

n=0

Pn(0)Qn(z), D(z) = z
∞∑

n=0

Pn(0)Pn(z),

where Pn and Qn are orthogonal polynomials of the first and second kind, respectively.

By the Nevanlinna theorem, all measures of orthogonality µϕ for which∫
R

Pn(x)Pm(x)dµϕ(x) = δmn, m, n ∈ Z+,

are parametrized according to

∫
R

dµϕ(x)
z − x

=
A(z)ϕ(z)− C(z)
B(z)ϕ(z)− D(z)

, z ∈ C \ R,

where ϕ ∈ P ∪ {∞} and P is the space of Pick functions.
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Nevanlinna functions for q-Lommel polynomials - computation

For the computation of Nevalinna functions we need just two ingredients:

1. explicit formulas for orthogonal polynomials of the first and second kind at x = 0,
2. the generating function formula.

Let us assume 1 6= a ∈ (q, q−1). Then by the very definition of function A we have

A(a; q, z) =
zq

1− a

∞∑
n=1

(−1)n+1(a−n − 1)q
(

n
2

)
Fn−1(a; q, qz)

=
zq

1− a


1
a

∞∑
n=0

q
(

n
2

)
Fn(a; q, qz)

(
−

q
a

)n

︸ ︷︷ ︸
gerating function formula with t=q/a

−
∞∑

n=0

q
(

n
2

)
Fn(w ; q, qz)(−q)n

︸ ︷︷ ︸
...and similarly with t=q



By this way (and using simple identity for q-hypergeometric series) one arrives at the formula

A(a; q, z) =
1

1− a

[
1φ1(0; aq; q, qz)− 1φ1(0; a−1q; q, a−1qz)

]
.

Similar computation leads to formulas for B, C, and D, and the result is . . .
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An explicit form of the Nevanlinna functions

There are two special functions arising naturally in the formulas for Nevanlinna functions:

ϕa(z) = 1φ1(0; qa; q, z) and ψa(z) = 1φ1(0; qa−1; q, a−1z)

Theorem

Let 1 6= a ∈ (q, q−1). Then the entire functions from the Nevanlinna parametrization are as
follows:

A(a, q; z) =
1

1− a
[ϕa(qz)− ψa(qz)] , B(a, q; z) =

1
1− a

[aψa(z)− ϕa(z)] ,

C(a, q; z) =
1

1− a
[ψa(qz)− aϕa(qz)] , D(a, q; z) =

a
1− a

[ϕa(z)− ψa(z)] .
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An explicit form of the Nevanlinna functions in the case a = 1

For the sake of completeness we present Nevanlinna functions in the special case with a = 1 in
terms of functions:

ϕ1(z) = 1φ1(0; q; q, z) and χ1(z) =
∂

∂p

∣∣∣∣
p=q

1φ1(0; p; q, z)

Theorem

For a = 1, Nevanlinna functions take the form

A(1, q; z) = −2q χ1(qz)− z
∂

∂z
ϕ1(qz), B(1, q; z) = 2q χ1(z) + z2 ∂

∂z

(
z−1ϕ1(z)

)
,

C(1, q; z) = 2q χ1(qz) +
∂

∂z

(
zϕ1(qz)

)
, D(1; q, z) = −2q χ1(z)− z

∂

∂z
ϕ1(z).
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N-extremal measures for q-Lommel polynomials

Recall N-extremal measures µt correspond to the choice

ϕ = t , t ∈ R ∪ {∞},

for the Pick function ϕ in the Nevanlinna parametrization of the Stieltjes transform of µt .

Theorem

Let 1 6= a ∈ (q, q−1). Then all N-extremal measures µt = µt (a, q) are of the form

µt =
∑
x∈Zt

ρ(x) δx where
1

ρ(x)
=

a
1− a

(
ψa(x)ϕ′a(x)− ϕa(x)ψ′a(x)

)
,

Zt = Zt (a, q) = {x ∈ R | a(t + 1)ψa(x)− (t + a)ϕa(x) = 0},

and δx stands for the Dirac measure supported on {x}.

By using identity (which is AD − BC = 1)

ϕa(z)ψa(qz)− aψa(z)ϕa(qz) = 1− a, a 6= 1,

one finds the measure derived by Koelink is µ−1, and the orthogonality relation reads
∞∑

k=1

ϕa(qξk )

ϕ′a(ξk )
Fn(a; q, ξk )Fm(a; q, ξk ) = −anq−n2

δmn

where {ξk | k ∈ N} are all zeros of the function ϕa.
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Jacobi matrix related with q-Lommel polynomials

Coefficients from the three-term recurrence for q-Lommel polynomials define two-parameter
family of real symmetric Jacobi matrices

T ≡ T (a; q) =


β0 α0
α0 β1 α1

α1 β2 α2
. . .

. . .
. . .


where

αn =
√

aq−n−1/2, βn = (1 + a)q−n

With T we associate the pair of unbounded Jacobi operators Tmin and Tmax (by usual
construction).

The operator Tmin is self-adjoint if and only if 0 < a /∈ (q, q−1).

If a ∈ (q, q1) then Tmin has deficiency indices (1, 1). All mutually different self-adjoint
extensions of Tmin are parametrized by κ ∈ P1(R) ≡ R ∪ {∞}.
Previous results provide us with an explicit description of spectral properties of Jacobi
operators associated with T (in terms of special functions).
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Spectrum of Jacobi operators

Recall the previous notation:

ϕa(z) = 1φ1(0; qa; q, z) and ψa(z) = 1φ1(0; qa−1; q, a−1z).

Theorem

The set of zeros of ϕa coincide with the spectrum of T , provided a /∈ (q, q−1), or T F provided
1 6= a ∈ (q, q−1). The components of a corresponding eigenvector can be chosen as

uk (x) = ak/2ϕa(qk+1x), k ∈ Z+.

If 1 6= a ∈ (q, q−1) then x is an eigenvalue of T (κ) if and only if κϕa(x) + aψa(x) = 0. The
components of a corresponding eigenvector can be chosen as

uk (κ, x) = qk/2
(
κak/2ϕa(qk+1x) + a−k/2ψa(qk+1x)

)
, k ∈ Z+.

An immediate consequence is the orthogonality relation [Koelink&Swarttouw94]

∞∑
k=0

qk Jν(q(k+1)/2wm; q) Jν(q(k+1)/2wn; q) = −
q−1+ν/2

2wn
Jν(q1/2wn; q)

∂Jν(wn; q)
∂z

δm,n

where 0 < w1 < w2 < w3 < . . . are positive zeros of Jν(z; q), ν > −1, m, n ∈ N.
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components of a corresponding eigenvector can be chosen as

uk (κ, x) = qk/2
(
κak/2ϕa(qk+1x) + a−k/2ψa(qk+1x)

)
, k ∈ Z+.

An immediate consequence is the orthogonality relation [Koelink&Swarttouw94]

∞∑
k=0

qk Jν(q(k+1)/2wm; q) Jν(q(k+1)/2wn; q) = −
q−1+ν/2

2wn
Jν(q1/2wn; q)

∂Jν(wn; q)
∂z

δm,n

where 0 < w1 < w2 < w3 < . . . are positive zeros of Jν(z; q), ν > −1, m, n ∈ N.
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