The Nevanlinna parametrization and orthognality relations for q-Lommel polynomials in the indeterminate case

František Štampach

Faculty of Information Technology, CTU in Prague

OTAMP 2014

July 7-11, 2014

Hahn-Exton q-Bessel function and q-Lommel polynomials

- 2 Nevalinna functions for q-Lommel polynomials
- N-extremal measures of orthogonality
- Remark: Spectral properties of the corresponding Jacobi matrix

Hahn-Exton *q*-Bessel function

• It is one of the three deeply investigated q-analogues to the ordinary Bessel function $J_{\nu}(z)$,

$$\begin{aligned} J_{\nu}(z;q) &= z^{\nu} \frac{(q^{\nu+1};q)_{\infty}}{(q;q)_{\infty}} \,_{1}\phi_{1}\left(0;q^{\nu+1};q,qz^{2}\right) \\ &= \frac{(q^{\nu+1};q)_{\infty}}{(q;q)_{\infty}} \sum_{n=0}^{\infty} \frac{(-1)^{n} \, q^{n(n+1)/2}}{(q;q)_{n} \, (q^{\nu+1};q)_{n}} z^{2n+\nu}. \end{aligned}$$

• It is one of the three deeply investigated q-analogues to the ordinary Bessel function $J_{\nu}(z)$,

$$J_{\nu}(z;q) = z^{\nu} \frac{(q^{\nu+1};q)_{\infty}}{(q;q)_{\infty}} {}_{1}\phi_{1}\left(0;q^{\nu+1};q,qz^{2}\right)$$
$$= \frac{(q^{\nu+1};q)_{\infty}}{(q;q)_{\infty}} \sum_{n=0}^{\infty} \frac{(-1)^{n} q^{n(n+1)/2}}{(q;q)_{n} (q^{\nu+1};q)_{n}} z^{2n+\nu}$$

• We always assume 0 < q < 1. It holds

$$\lim_{q\to 1-} J_{\nu}\left(z(1-q)/2;q\right) = J_{\nu}(z).$$

• It is one of the three deeply investigated q-analogues to the ordinary Bessel function $J_{\nu}(z)$,

$$\begin{aligned} J_{\nu}(z;q) &= z^{\nu} \frac{(q^{\nu+1};q)_{\infty}}{(q;q)_{\infty}} \,_{1}\phi_{1}\left(0;q^{\nu+1};q,qz^{2}\right) \\ &= \frac{(q^{\nu+1};q)_{\infty}}{(q;q)_{\infty}} \sum_{n=0}^{\infty} \frac{(-1)^{n} \, q^{n(n+1)/2}}{(q;q)_{n} \, (q^{\nu+1};q)_{n}} z^{2n+\nu}. \end{aligned}$$

• We always assume 0 < q < 1. It holds

$$\lim_{q\to 1-} J_{\nu}(z(1-q)/2;q) = J_{\nu}(z).$$

• The Hahn-Exton *q*-Bessel function has been intensively studied in past (difference eq., orthogonality properties, asymptotic formulas, zeros, etc.), for instance by Koelink, Swarttouw, Ismail, Annaby, etal.

$$J_{\nu+1}(z) = rac{2
u}{z} J_{
u}(z) - J_{
u-1}(z).$$

$$J_{\nu+1}(z) = rac{2
u}{z} J_{\nu}(z) - J_{\nu-1}(z).$$

As first observed by Lommel in 1871, by iterating this rule one reveals

$$J_{\nu+n}(z) = R_{n,\nu}(z)J_{\nu}(z) - R_{n-1,\nu+1}(z)J_{\nu-1}(z), \text{ for } n \in \mathbb{Z}_+,$$

where $R_{n,\nu}(z)$ are polynomials in z^{-1} known today as Lommel polynomials.

$$J_{\nu+1}(z) = rac{2
u}{z} J_{
u}(z) - J_{
u-1}(z).$$

As first observed by Lommel in 1871, by iterating this rule one reveals

$$J_{\nu+n}(z) = R_{n,\nu}(z)J_{\nu}(z) - R_{n-1,\nu+1}(z)J_{\nu-1}(z), \text{ for } n \in \mathbb{Z}_+,$$

where $R_{n,\nu}(z)$ are polynomials in z^{-1} known today as Lommel polynomials.

• Similarly the recurrence relation for the Hahn-Exton q-Bessel functions reads

$$J_{\nu+1}(z;q) = \left(\frac{1-q^{\nu}}{z}+z\right) J_{\nu}(z;q) - J_{\nu-1}(z;q)$$

$$J_{\nu+1}(z) = \frac{2\nu}{z} J_{\nu}(z) - J_{\nu-1}(z).$$

As first observed by Lommel in 1871, by iterating this rule one reveals

$$J_{\nu+n}(z) = R_{n,\nu}(z)J_{\nu}(z) - R_{n-1,\nu+1}(z)J_{\nu-1}(z), \text{ for } n \in \mathbb{Z}_+,$$

where $R_{n,\nu}(z)$ are polynomials in z^{-1} known today as Lommel polynomials.

• Similarly the recurrence relation for the Hahn-Exton q-Bessel functions reads

$$J_{\nu+1}(z;q) = \left(\frac{1-q^{\nu}}{z}+z\right) J_{\nu}(z;q) - J_{\nu-1}(z;q)$$

By iterating this rule one arrives at the expression

$$J_{\nu+n}(z;q) = R_{n,\nu}(z;q) J_{\nu}(z;q) - R_{n-1,\nu+1}(z;q) J_{\nu-1}(z;q), \text{ for } n \in \mathbb{Z}_+,$$

where by *q*-Lommel polynomials we understand the function $R_{n,\nu}(z;q)$ which is a Laurent polynomial in *z* and polynomial in q^{ν} .

$$J_{\nu+1}(z) = rac{2
u}{z} J_{
u}(z) - J_{
u-1}(z).$$

As first observed by Lommel in 1871, by iterating this rule one reveals

$$J_{\nu+n}(z) = R_{n,\nu}(z)J_{\nu}(z) - R_{n-1,\nu+1}(z)J_{\nu-1}(z), \text{ for } n \in \mathbb{Z}_+,$$

where $R_{n,\nu}(z)$ are polynomials in z^{-1} known today as Lommel polynomials.

• Similarly the recurrence relation for the Hahn-Exton q-Bessel functions reads

$$J_{\nu+1}(z;q) = \left(\frac{1-q^{\nu}}{z}+z\right) J_{\nu}(z;q) - J_{\nu-1}(z;q)$$

By iterating this rule one arrives at the expression

$$J_{\nu+n}(z;q) = R_{n,\nu}(z;q) J_{\nu}(z;q) - R_{n-1,\nu+1}(z;q) J_{\nu-1}(z;q), \text{ for } n \in \mathbb{Z}_+,$$

where by *q*-Lommel polynomials we understand the function $R_{n,\nu}(z;q)$ which is a Laurent polynomial in *z* and polynomial in q^{ν} .

• *q*-Lommel polynomials have been intensively studied in 90's by Koelink, Van Aschee, Swarttouw, and others.

Monic *q*-Lommel polynomials

With some abuse of notation we call functions h_{n,ν}(w; q) := R_{n,ν}(w⁻¹; q) q-Lommel polynomials as well.

Monic *q*-Lommel polynomials

- With some abuse of notation we call functions h_{n,ν}(w; q) := R_{n,ν}(w⁻¹; q) q-Lommel polynomials as well.
- q-Lommel polynomials satisfy the three-term recurrence

$$h_{n-1,\nu}(w;q) - (w^{-1} + w(1 - q^{\nu+n}))h_{n,\nu}(w;q) + h_{n+1,\nu}(w;q) = 0,$$

with initial conditions $h_{-1,\nu}(w; q) = 0$ and $h_{0,\nu}(w; q) = 1$.

- With some abuse of notation we call functions h_{n,ν}(w; q) := R_{n,ν}(w⁻¹; q) q-Lommel polynomials as well.
- q-Lommel polynomials satisfy the three-term recurrence

$$h_{n-1,\nu}(w;q) - (w^{-1} + w(1-q^{\nu+n}))h_{n,\nu}(w;q) + h_{n+1,\nu}(w;q) = 0,$$

with initial conditions $h_{-1,\nu}(w; q) = 0$ and $h_{0,\nu}(w; q) = 1$.

Thus, by the Favard's theorem, sequence h_{n,ν}(w; q) forms the orthogonal polynomial sequence in q^ν. We use slightly different parametrization: x := q^ν and a := w⁻².

- With some abuse of notation we call functions h_{n,ν}(w; q) := R_{n,ν}(w⁻¹; q) q-Lommel polynomials as well.
- q-Lommel polynomials satisfy the three-term recurrence

 $h_{n-1,\nu}(w;q) - (w^{-1} + w(1-q^{\nu+n}))h_{n,\nu}(w;q) + h_{n+1,\nu}(w;q) = 0,$

with initial conditions $h_{-1,\nu}(w; q) = 0$ and $h_{0,\nu}(w; q) = 1$.

- Thus, by the Favard's theorem, sequence h_{n,ν}(w; q) forms the orthogonal polynomial sequence in q^ν. We use slightly different parametrization: x := q^ν and a := w⁻².
- Hence the monic version of *q*-Lommel polynomials $F_n(a; q, x)$ is determined by the recurrence

$$u_{n+1} = (x - (a+1)q^{-n})u_n - aq^{-2n+1}u_{n-1}$$

with initial setting $F_{-1}(a; q, x) = 0$ and $F_0(a; q, x) = 1$.

The Hamburger as well as the Stieltjes moment problem associated with polynomials $F_n(a; q, x)$ is indeterminate if and only if q < a < 1/q.

Sketch of the proof:

The Hamburger as well as the Stieltjes moment problem associated with polynomials $F_n(a; q, x)$ is indeterminate if and only if q < a < 1/q.

Sketch of the proof:

i) Hamburger indeterminacy: Based on the fact that values of $F_n(a; q, 0)$ as well as the value of the first associate polynomials at x = 0 can be expressed explicitly. Then one verifies the corresponding orthogonal polynomials $P_n(a; q, 0)$ and $Q_n(a; q, 0)$ of the first and second kind are both square summable iff q < a < 1/q.

The Hamburger as well as the Stieltjes moment problem associated with polynomials $F_n(a; q, x)$ is indeterminate if and only if q < a < 1/q.

Sketch of the proof:

- i) Hamburger indeterminacy: Based on the fact that values of $F_n(a; q, 0)$ as well as the value of the first associate polynomials at x = 0 can be expressed explicitly. Then one verifies the corresponding orthogonal polynomials $P_n(a; q, 0)$ and $Q_n(a; q, 0)$ of the first and second kind are both square summable iff q < a < 1/q.
- ii) Stieltjes indeterminacy: It follows from the fact that

$$\lim_{n\to\infty}\frac{P_n(a;q,0)}{Q_n(a;q,0)}<0.$$

The Hamburger as well as the Stieltjes moment problem associated with polynomials $F_n(a; q, x)$ is indeterminate if and only if q < a < 1/q.

Sketch of the proof:

- i) Hamburger indeterminacy: Based on the fact that values of $F_n(a; q, 0)$ as well as the value of the first associate polynomials at x = 0 can be expressed explicitly. Then one verifies the corresponding orthogonal polynomials $P_n(a; q, 0)$ and $Q_n(a; q, 0)$ of the first and second kind are both square summable iff q < a < 1/q.
- ii) Stieltjes indeterminacy: It follows from the fact that

$$\lim_{n\to\infty}\frac{P_n(a;q,0)}{Q_n(a;q,0)}<0.$$

Orthogonality relation [Koelink99]

For a > 0 and $m, n \in \mathbb{Z}_+$, it holds

$$\sum_{k=1}^{\infty} \frac{{}_{1}\phi_{1}(0;aq;q,q\xi_{k})}{\partial_{x}|_{x=\xi_{k}}{}_{1}\phi_{1}(0;aq;q,x)} F_{n}(a;q,\xi_{k})F_{m}(a;q,\xi_{k}) = -a^{n}q^{-n^{2}}\delta_{mn}.$$

Hahn-Exton q-Bessel function and q-Lommel polynomials

Nevalinna functions for q-Lommel polynomials

N-extremal measures of orthogonality

Remark: Spectral properties of the corresponding Jacobi matrix

Generating function

For $|t| < \min(1, a^{-1})$, it holds

$$\sum_{n=0}^{\infty} q^{\binom{n}{2}} F_n(a;q,x)(-t)^n = \frac{1}{(1-t)(1-at)} {}_2\phi_2(0,q;qt,qat;q,xt).$$

Generating function

For $|t| < \min(1, a^{-1})$, it holds

$$\sum_{n=0}^{\infty} q^{\binom{n}{2}} F_n(a;q,x) (-t)^n = \frac{1}{(1-t)(1-at)} {}_2\phi_2(0,q;qt,qat;q,xt).$$

Sketch of the proof:

By denoting the LHS of the above formula V(t), one finds V fulfills first order q-difference equation

$$(1-t)(1-at)V(t) = 1 - xtV(qt)$$

with initial condition V(0) = 1. This can be solved explicitly by iteration and one arrives at the function on RHS of the generating formula (at least formally).

• Recall Nevanlinna functions A, B, C, and D defined by

$$\begin{aligned} A(z) &= z \sum_{n=0}^{\infty} Q_n(0) Q_n(z), \qquad B(z) = -1 + z \sum_{n=0}^{\infty} Q_n(0) P_n(z), \\ C(z) &= 1 + z \sum_{n=0}^{\infty} P_n(0) Q_n(z), \qquad D(z) = z \sum_{n=0}^{\infty} P_n(0) P_n(z), \end{aligned}$$

where P_n and Q_n are orthogonal polynomials of the first and second kind, respectively.

• Recall Nevanlinna functions A, B, C, and D defined by

$$\begin{aligned} A(z) &= z \sum_{n=0}^{\infty} Q_n(0) Q_n(z), \qquad B(z) = -1 + z \sum_{n=0}^{\infty} Q_n(0) P_n(z), \\ C(z) &= 1 + z \sum_{n=0}^{\infty} P_n(0) Q_n(z), \qquad D(z) = z \sum_{n=0}^{\infty} P_n(0) P_n(z), \end{aligned}$$

where P_n and Q_n are orthogonal polynomials of the first and second kind, respectively. • By the Nevanlinna theorem, all measures of orthogonality μ_{μ_0} for which

$$\int_{\mathbb{R}} P_n(x) P_m(x) d\mu_{\varphi}(x) = \delta_{mn}, \quad m, n \in \mathbb{Z}_+,$$

are parametrized according to

$$\int_{\mathbb{R}} \frac{d\mu_{\varphi}(x)}{z-x} = \frac{A(z)\varphi(z) - C(z)}{B(z)\varphi(z) - D(z)}, \quad z \in \mathbb{C} \setminus \mathbb{R},$$

where $\varphi \in \mathcal{P} \cup \{\infty\}$ and \mathcal{P} is the space of Pick functions.

- 1. explicit formulas for orthogonal polynomials of the first and second kind at x = 0,
- 2. the generating function formula.

- 1. explicit formulas for orthogonal polynomials of the first and second kind at x = 0,
- 2. the generating function formula.
- Let us assume $1 \neq a \in (q, q^{-1})$. Then by the very definition of function A we have

- 1. explicit formulas for orthogonal polynomials of the first and second kind at x = 0,
- 2. the generating function formula.
- Let us assume $1 \neq a \in (q, q^{-1})$. Then by the very definition of function A we have

$$A(a;q,z) = \frac{zq}{1-a} \sum_{n=1}^{\infty} (-1)^{n+1} (a^{-n} - 1)q^{\binom{n}{2}} F_{n-1}(a;q,qz)$$

- 1. explicit formulas for orthogonal polynomials of the first and second kind at x = 0,
- 2. the generating function formula.
- Let us assume $1 \neq a \in (q, q^{-1})$. Then by the very definition of function A we have

$$A(a; q, z) = \frac{zq}{1-a} \sum_{n=1}^{\infty} (-1)^{n+1} (a^{-n} - 1)q^{\binom{n}{2}} F_{n-1}(a; q, qz)$$
$$= \frac{zq}{1-a} \left[\frac{1}{a} \sum_{\substack{n=0\\ \text{gerating function formula with } t=q/a}^{\infty} (-\frac{q}{a})^n - \sum_{\substack{n=0\\ n=0}}^{\infty} q^{\binom{n}{2}} F_n(w; q, qz)(-q)^n \right]_{\dots, \text{and similarly with } t=q}$$

For the computation of Nevalinna functions we need just two ingredients:

- 1. explicit formulas for orthogonal polynomials of the first and second kind at x = 0,
- 2. the generating function formula.
- Let us assume $1 \neq a \in (q, q^{-1})$. Then by the very definition of function A we have

$$A(a;q,z) = \frac{zq}{1-a} \sum_{n=1}^{\infty} (-1)^{n+1} (a^{-n} - 1)q^{\binom{n}{2}} F_{n-1}(a;q,qz)$$
$$= \frac{zq}{1-a} \left[\frac{1}{a} \sum_{\substack{n=0\\ \text{gerating function formula with } t=q/a}^{\infty} (-\frac{q}{a})^n - \sum_{\substack{n=0\\ n=0}}^{\infty} q^{\binom{n}{2}} F_n(w;q,qz)(-q)^n \right]_{\dots\text{and similarly with } t=q}$$

• By this way (and using simple identity for q-hypergeometric series) one arrives at the formula

$$A(a;q,z) = \frac{1}{1-a} \left[{}_{1}\phi_{1}(0;aq;q,qz) - {}_{1}\phi_{1}(0;a^{-1}q;q,a^{-1}qz) \right].$$

For the computation of Nevalinna functions we need just two ingredients:

- 1. explicit formulas for orthogonal polynomials of the first and second kind at x = 0,
- 2. the generating function formula.
- Let us assume $1 \neq a \in (q, q^{-1})$. Then by the very definition of function A we have

$$A(a;q,z) = \frac{zq}{1-a} \sum_{n=1}^{\infty} (-1)^{n+1} (a^{-n} - 1)q^{\binom{n}{2}} F_{n-1}(a;q,qz)$$
$$= \frac{zq}{1-a} \left[\frac{1}{a} \sum_{\substack{n=0\\ \text{gerating function formula with } t=q/a}^{\infty} (-\frac{q}{a})^n - \sum_{\substack{n=0\\ n=0}}^{\infty} q^{\binom{n}{2}} F_n(w;q,qz)(-q)^n \right]_{\dots\text{and similarly with } t=q}$$

• By this way (and using simple identity for q-hypergeometric series) one arrives at the formula

$$A(a;q,z) = \frac{1}{1-a} \left[{}_{1}\phi_{1}(0;aq;q,qz) - {}_{1}\phi_{1}(0;a^{-1}q;q,a^{-1}qz) \right].$$

• Similar computation leads to formulas for B, C, and D, and the result is ...

An explicit form of the Nevanlinna functions

There are two special functions arising naturally in the formulas for Nevanlinna functions:

$$\varphi_a(z) = {}_1\phi_1(0; qa; q, z)$$
 and $\psi_a(z) = {}_1\phi_1(0; qa^{-1}; q, a^{-1}z)$

There are two special functions arising naturally in the formulas for Nevanlinna functions:

$$\varphi_a(z) = {}_1\phi_1(0; qa; q, z)$$
 and $\psi_a(z) = {}_1\phi_1(0; qa^{-1}; q, a^{-1}z)$

Theorem

Let $1 \neq a \in (q, q^{-1})$. Then the entire functions from the Nevanlinna parametrization are as follows:

$$A(a,q;z) = \frac{1}{1-a} \left[\varphi_a(qz) - \psi_a(qz) \right], \quad B(a,q;z) = \frac{1}{1-a} \left[a\psi_a(z) - \varphi_a(z) \right],$$
$$C(a,q;z) = \frac{1}{1-a} \left[\psi_a(qz) - a\varphi_a(qz) \right], \quad D(a,q;z) = \frac{a}{1-a} \left[\varphi_a(z) - \psi_a(z) \right].$$

An explicit form of the Nevanlinna functions in the case a = 1

For the sake of completeness we present Nevanlinna functions in the special case with a = 1 in terms of functions:

$$\varphi_1(z) = {}_1\phi_1(0; q; q, z) \quad \text{and} \quad \chi_1(z) = \frac{\partial}{\partial p}\Big|_{p=q} {}_1\phi_1(0; p; q, z)$$

For the sake of completeness we present Nevanlinna functions in the special case with a = 1 in terms of functions:

$$\varphi_1(z) = {}_1\phi_1(0;q;q,z) \text{ and } \chi_1(z) = \frac{\partial}{\partial p}\Big|_{p=q} {}_1\phi_1(0;p;q,z)$$

Theorem

For a = 1, Nevanlinna functions take the form

$$A(1,q;z) = -2q \chi_1(qz) - z \frac{\partial}{\partial z} \varphi_1(qz), \quad B(1,q;z) = 2q \chi_1(z) + z^2 \frac{\partial}{\partial z} (z^{-1} \varphi_1(z)),$$
$$C(1,q;z) = 2q \chi_1(qz) + \frac{\partial}{\partial z} (z\varphi_1(qz)), \quad D(1;q,z) = -2q \chi_1(z) - z \frac{\partial}{\partial z} \varphi_1(z).$$

Hahn-Exton q-Bessel function and q-Lommel polynomials

Nevalinna functions for q-Lommel polynomials

Remark: Spectral properties of the corresponding Jacobi matrix

N-extremal measures for *q*-Lommel polynomials

• Recall N-extremal measures μ_t correspond to the choice

 $\varphi = t, \quad t \in \mathbb{R} \cup \{\infty\},$

for the Pick function φ in the Nevanlinna parametrization of the Stieltjes transform of μ_t .

• Recall N-extremal measures μ_t correspond to the choice

$$\varphi = t, \quad t \in \mathbb{R} \cup \{\infty\},$$

for the Pick function φ in the Nevanlinna parametrization of the Stieltjes transform of μ_t .

Theorem

Let $1 \neq a \in (q, q^{-1})$. Then all N-extremal measures $\mu_t = \mu_t(a, q)$ are of the form

$$\mu_t = \sum_{x \in \mathfrak{Z}_t} \rho(x) \,\delta_x \text{ where } \frac{1}{\rho(x)} = \frac{a}{1-a} \big(\psi_a(x) \varphi_a'(x) - \varphi_a(x) \psi_a'(x) \big),$$

$$\mathfrak{Z}_t = \mathfrak{Z}_t(a,q) = \{ x \in \mathbb{R} \mid a(t+1)\psi_a(x) - (t+a)\varphi_a(x) = 0 \},\$$

and δ_x stands for the Dirac measure supported on $\{x\}$.

• Recall N-extremal measures μ_t correspond to the choice

$$\varphi = t, \quad t \in \mathbb{R} \cup \{\infty\},$$

for the Pick function φ in the Nevanlinna parametrization of the Stieltjes transform of μ_t .

Theorem

Let $1 \neq a \in (q, q^{-1})$. Then all N-extremal measures $\mu_t = \mu_t(a, q)$ are of the form

$$\mu_t = \sum_{x \in \mathfrak{Z}_t} \rho(x) \, \delta_x \quad \text{where} \quad \frac{1}{\rho(x)} = \frac{a}{1-a} \big(\psi_a(x) \varphi_a'(x) - \varphi_a(x) \psi_a'(x) \big),$$

$$\mathfrak{Z}_t = \mathfrak{Z}_t(a,q) = \{ x \in \mathbb{R} \mid a(t+1)\psi_a(x) - (t+a)\varphi_a(x) = 0 \},\$$

and δ_x stands for the Dirac measure supported on $\{x\}$.

• By using identity (which is AD - BC = 1)

$$\varphi_a(z)\psi_a(qz) - a\psi_a(z)\varphi_a(qz) = 1 - a, \quad a \neq 1,$$

one finds the measure derived by Koelink is μ_{-1} , and the orthogonality relation reads

$$\sum_{k=1}^{\infty} \frac{\varphi_a(q\xi_k)}{\varphi_a'(\xi_k)} F_n(a;q,\xi_k) F_m(a;q,\xi_k) = -a^n q^{-n^2} \delta_{mn}$$

where $\{\xi_k \mid k \in \mathbb{N}\}$ are all zeros of the function φ_a .

Hahn-Exton q-Bessel function and q-Lommel polynomials

2 Nevalinna functions for q-Lommel polynomials

N-extremal measures of orthogonality

Remark: Spectral properties of the corresponding Jacobi matrix

Jacobi matrix related with q-Lommel polynomials

 Coefficients from the three-term recurrence for q-Lommel polynomials define two-parameter family of real symmetric Jacobi matrices

$$\mathcal{T} \equiv \mathcal{T}(\boldsymbol{a}; \boldsymbol{q}) = \begin{pmatrix} \beta_0 & \alpha_0 & & \\ \alpha_0 & \beta_1 & \alpha_1 & & \\ & \alpha_1 & \beta_2 & \alpha_2 & \\ & & \ddots & \ddots & \ddots \end{pmatrix}$$

$$\alpha_n = \sqrt{a}q^{-n-1/2}, \quad \beta_n = (1+a)q^{-n}$$

$$\mathcal{T} \equiv \mathcal{T}(\boldsymbol{a}; \boldsymbol{q}) = \begin{pmatrix} \beta_0 & \alpha_0 & & \\ \alpha_0 & \beta_1 & \alpha_1 & & \\ & \alpha_1 & \beta_2 & \alpha_2 & \\ & & \ddots & \ddots & \ddots \end{pmatrix}$$

where

$$\alpha_n = \sqrt{a}q^{-n-1/2}, \quad \beta_n = (1+a)q^{-n}$$

• With T we associate the pair of unbounded Jacobi operators T_{min} and T_{max} (by usual construction).

$$\mathcal{T} \equiv \mathcal{T}(\boldsymbol{a}; \boldsymbol{q}) = \begin{pmatrix} \beta_0 & \alpha_0 & & \\ \alpha_0 & \beta_1 & \alpha_1 & \\ & \alpha_1 & \beta_2 & \alpha_2 & \\ & \ddots & \ddots & \ddots \end{pmatrix}$$

$$\alpha_n = \sqrt{a}q^{-n-1/2}, \quad \beta_n = (1+a)q^{-n}$$

- With T we associate the pair of unbounded Jacobi operators T_{min} and T_{max} (by usual construction).
- The operator T_{\min} is self-adjoint if and only if $0 < a \notin (q, q^{-1})$.

$$\mathcal{T} \equiv \mathcal{T}(\boldsymbol{a}; \boldsymbol{q}) = \begin{pmatrix} \beta_0 & \alpha_0 & & \\ \alpha_0 & \beta_1 & \alpha_1 & \\ & \alpha_1 & \beta_2 & \alpha_2 & \\ & \ddots & \ddots & \ddots \end{pmatrix}$$

$$\alpha_n = \sqrt{a}q^{-n-1/2}, \quad \beta_n = (1+a)q^{-n}$$

- With ${\cal T}$ we associate the pair of unbounded Jacobi operators ${\cal T}_{min}$ and ${\cal T}_{max}$ (by usual construction).
- The operator T_{\min} is self-adjoint if and only if $0 < a \notin (q, q^{-1})$.
- If a ∈ (q, q¹) then T_{min} has deficiency indices (1, 1). All mutually different self-adjoint extensions of T_{min} are parametrized by κ ∈ P¹(ℝ) ≡ ℝ ∪ {∞}.

$$\mathcal{T} \equiv \mathcal{T}(\boldsymbol{a}; \boldsymbol{q}) = \begin{pmatrix} \beta_0 & \alpha_0 & & \\ \alpha_0 & \beta_1 & \alpha_1 & \\ & \alpha_1 & \beta_2 & \alpha_2 & \\ & & \ddots & \ddots & \ddots \end{pmatrix}$$

$$\alpha_n = \sqrt{a}q^{-n-1/2}, \quad \beta_n = (1+a)q^{-n}$$

- With T we associate the pair of unbounded Jacobi operators T_{min} and T_{max} (by usual construction).
- The operator T_{\min} is self-adjoint if and only if $0 < a \notin (q, q^{-1})$.
- If a ∈ (q, q¹) then T_{min} has deficiency indices (1, 1). All mutually different self-adjoint extensions of T_{min} are parametrized by κ ∈ P¹(ℝ) ≡ ℝ ∪ {∞}.
- Previous results provide us with an explicit description of spectral properties of Jacobi operators associated with T (in terms of special functions).

$$\varphi_a(z) = {}_1\phi_1(0; qa; q, z)$$
 and $\psi_a(z) = {}_1\phi_1(0; qa^{-1}; q, a^{-1}z).$

$$\varphi_a(z) = {}_1\phi_1(0; qa; q, z)$$
 and $\psi_a(z) = {}_1\phi_1(0; qa^{-1}; q, a^{-1}z).$

Theorem

The set of zeros of φ_a coincide with the spectrum of *T*, provided $a \notin (q, q^{-1})$, or T^F provided $1 \neq a \in (q, q^{-1})$. The components of a corresponding eigenvector can be chosen as

$$u_k(x) = a^{k/2} \varphi_a(q^{k+1}x), \quad k \in \mathbb{Z}_+.$$

$$\varphi_a(z) = {}_1\phi_1(0; qa; q, z)$$
 and $\psi_a(z) = {}_1\phi_1(0; qa^{-1}; q, a^{-1}z).$

Theorem

The set of zeros of φ_a coincide with the spectrum of *T*, provided $a \notin (q, q^{-1})$, or T^F provided $1 \neq a \in (q, q^{-1})$. The components of a corresponding eigenvector can be chosen as

$$u_k(x) = a^{k/2} \varphi_a(q^{k+1}x), \quad k \in \mathbb{Z}_+.$$

If $1 \neq a \in (q, q^{-1})$ then x is an eigenvalue of $T(\kappa)$ if and only if $\kappa \varphi_a(x) + a\psi_a(x) = 0$. The components of a corresponding eigenvector can be chosen as

$$u_k(\kappa, x) = q^{k/2} \left(\kappa a^{k/2} \varphi_a(q^{k+1}x) + a^{-k/2} \psi_a(q^{k+1}x) \right), \quad k \in \mathbb{Z}_+.$$

$$\varphi_a(z) = {}_1\phi_1(0; qa; q, z)$$
 and $\psi_a(z) = {}_1\phi_1(0; qa^{-1}; q, a^{-1}z).$

Theorem

The set of zeros of φ_a coincide with the spectrum of T, provided $a \notin (q, q^{-1})$, or T^F provided $1 \neq a \in (q, q^{-1})$. The components of a corresponding eigenvector can be chosen as

$$u_k(x) = a^{k/2} \varphi_a(q^{k+1}x), \quad k \in \mathbb{Z}_+.$$

If $1 \neq a \in (q, q^{-1})$ then x is an eigenvalue of $T(\kappa)$ if and only if $\kappa \varphi_a(x) + a\psi_a(x) = 0$. The components of a corresponding eigenvector can be chosen as

$$u_k(\kappa, x) = q^{k/2} \left(\kappa a^{k/2} \varphi_a(q^{k+1}x) + a^{-k/2} \psi_a(q^{k+1}x) \right), \quad k \in \mathbb{Z}_+.$$

An immediate consequence is the orthogonality relation [Koelink&Swarttouw94]

$$\sum_{k=0}^{\infty} q^k J_{\nu}(q^{(k+1)/2} w_m; q) J_{\nu}(q^{(k+1)/2} w_n; q) = -\frac{q^{-1+\nu/2}}{2w_n} J_{\nu}(q^{1/2} w_n; q) \frac{\partial J_{\nu}(w_n; q)}{\partial z} \,\delta_{m,n}$$

where $0 < w_1 < w_2 < w_3 < \ldots$ are positive zeros of $J_{\nu}(z;q), \nu > -1, m, n \in \mathbb{N}$.

Conclusion

References:

- F. Štampach, P. Šťovíček: The Hahn-Exton q-Bessel function as the characteristic function of a Jacobi matrix, arXiv:1404.7647 [math.SP].
- F. Štampach, P. Šťovíček: The Nevanlinna parametrization for q-Lommel polynomials in the indeterminate case, arXiv:1407.0217 [math.SP].

Conclusion

References:

- F. Štampach, P. Šťovíček: The Hahn-Exton q-Bessel function as the characteristic function of a Jacobi matrix, arXiv:1404.7647 [math.SP].
- F. Štampach, P. Šťovíček: The Nevanlinna parametrization for q-Lommel polynomials in the indeterminate case, arXiv:1407.0217 [math.SP].

Thank you!