The Nevanlinna parametrization and orthognality relations for q-Lommel polynomials in the indeterminate case

František Štampach

Faculty of Information Technology, CTU in Prague

OTAMP 2014

July 7-11, 2014

Contents

(1) Hahn-Exton q-Bessel function and q-Lommel polynomials
(2) Nevalinna functions for q-Lommel polynomials
(3) N-extremal measures of orthogonality

4 Remark: Spectral properties of the corresponding Jacobi matrix

Hahn-Exton q-Bessel function

- It is one of the three deeply investigated q-analogues to the ordinary Bessel function $J_{\nu}(z)$,

$$
\begin{aligned}
J_{\nu}(z ; q) & =z^{\nu} \frac{\left(q^{\nu+1} ; q\right)_{\infty}}{(q ; q)_{\infty}}{ }_{1} \phi_{1}\left(0 ; q^{\nu+1} ; q, q z^{2}\right) \\
& =\frac{\left(q^{\nu+1} ; q\right)_{\infty}}{(q ; q)_{\infty}} \sum_{n=0}^{\infty} \frac{(-1)^{n} q^{n(n+1) / 2}}{(q ; q)_{n}\left(q^{\nu+1} ; q\right)_{n}} z^{2 n+\nu}
\end{aligned}
$$

Hahn-Exton q-Bessel function

- It is one of the three deeply investigated q-analogues to the ordinary Bessel function $J_{\nu}(z)$,

$$
\begin{aligned}
J_{\nu}(z ; q) & =z^{\nu} \frac{\left(q^{\nu+1} ; q\right)_{\infty}}{(q ; q)_{\infty}}{ }_{1} \phi_{1}\left(0 ; q^{\nu+1} ; q, q z^{2}\right) \\
& =\frac{\left(q^{\nu+1} ; q\right)_{\infty}}{(q ; q)_{\infty}} \sum_{n=0}^{\infty} \frac{(-1)^{n} q^{n(n+1) / 2}}{(q ; q)_{n}\left(q^{\nu+1} ; q\right)_{n}} z^{2 n+\nu}
\end{aligned}
$$

- We always assume $0<q<1$. It holds

$$
\lim _{q \rightarrow 1-} J_{\nu}(z(1-q) / 2 ; q)=J_{\nu}(z)
$$

Hahn-Exton q-Bessel function

- It is one of the three deeply investigated q-analogues to the ordinary Bessel function $J_{\nu}(z)$,

$$
\begin{aligned}
J_{\nu}(z ; q) & =z^{\nu} \frac{\left(q^{\nu+1} ; q\right)_{\infty}}{(q ; q)_{\infty}} 1_{1} \phi_{1}\left(0 ; q^{\nu+1} ; q, q z^{2}\right) \\
& =\frac{\left(q^{\nu+1} ; q\right)_{\infty}}{(q ; q)_{\infty}} \sum_{n=0}^{\infty} \frac{(-1)^{n} q^{n(n+1) / 2}}{(q ; q)_{n}\left(q^{\nu+1} ; q\right)_{n}} z^{2 n+\nu}
\end{aligned}
$$

- We always assume $0<q<1$. It holds

$$
\lim _{q \rightarrow 1-} J_{\nu}(z(1-q) / 2 ; q)=J_{\nu}(z)
$$

- The Hahn-Exton q-Bessel function has been intensively studied in past (difference eq., orthogonality properties, asymptotic formulas, zeros, etc.), for instance by Koelink, Swarttouw, Ismail, Annaby, etal.

q-Lommel polynomials

- The basic recurrence relation for (ordinary) Bessel functions reads

$$
J_{\nu+1}(z)=\frac{2 \nu}{z} J_{\nu}(z)-J_{\nu-1}(z)
$$

q-Lommel polynomials

- The basic recurrence relation for (ordinary) Bessel functions reads

$$
J_{\nu+1}(z)=\frac{2 \nu}{z} J_{\nu}(z)-J_{\nu-1}(z)
$$

As first observed by Lommel in 1871, by iterating this rule one reveals

$$
J_{\nu+n}(z)=R_{n, \nu}(z) J_{\nu}(z)-R_{n-1, \nu+1}(z) J_{\nu-1}(z), \text { for } n \in \mathbb{Z}_{+},
$$

where $R_{n, \nu}(z)$ are polynomials in z^{-1} known today as Lommel polynomials.

q-Lommel polynomials

- The basic recurrence relation for (ordinary) Bessel functions reads

$$
J_{\nu+1}(z)=\frac{2 \nu}{z} J_{\nu}(z)-J_{\nu-1}(z)
$$

As first observed by Lommel in 1871, by iterating this rule one reveals

$$
J_{\nu+n}(z)=R_{n, \nu}(z) J_{\nu}(z)-R_{n-1, \nu+1}(z) J_{\nu-1}(z), \text { for } n \in \mathbb{Z}_{+},
$$

where $R_{n, \nu}(z)$ are polynomials in z^{-1} known today as Lommel polynomials.

- Similarly the recurrence relation for the Hahn-Exton q-Bessel functions reads

$$
J_{\nu+1}(z ; q)=\left(\frac{1-q^{\nu}}{z}+z\right) J_{\nu}(z ; q)-J_{\nu-1}(z ; q)
$$

- The basic recurrence relation for (ordinary) Bessel functions reads

$$
J_{\nu+1}(z)=\frac{2 \nu}{z} J_{\nu}(z)-J_{\nu-1}(z)
$$

As first observed by Lommel in 1871, by iterating this rule one reveals

$$
J_{\nu+n}(z)=R_{n, \nu}(z) J_{\nu}(z)-R_{n-1, \nu+1}(z) J_{\nu-1}(z), \text { for } n \in \mathbb{Z}_{+}
$$

where $R_{n, \nu}(z)$ are polynomials in z^{-1} known today as Lommel polynomials.

- Similarly the recurrence relation for the Hahn-Exton q-Bessel functions reads

$$
J_{\nu+1}(z ; q)=\left(\frac{1-q^{\nu}}{z}+z\right) J_{\nu}(z ; q)-J_{\nu-1}(z ; q)
$$

By iterating this rule one arrives at the expression

$$
J_{\nu+n}(z ; q)=R_{n, \nu}(z ; q) J_{\nu}(z ; q)-R_{n-1, \nu+1}(z ; q) J_{\nu-1}(z ; q), \text { for } n \in \mathbb{Z}_{+}
$$

where by q-Lommel polynomials we understand the function $R_{n, \nu}(z ; q)$ which is a Laurent polynomial in z and polynomial in q^{ν}.

- The basic recurrence relation for (ordinary) Bessel functions reads

$$
J_{\nu+1}(z)=\frac{2 \nu}{z} J_{\nu}(z)-J_{\nu-1}(z)
$$

As first observed by Lommel in 1871, by iterating this rule one reveals

$$
J_{\nu+n}(z)=R_{n, \nu}(z) J_{\nu}(z)-R_{n-1, \nu+1}(z) J_{\nu-1}(z), \text { for } n \in \mathbb{Z}_{+},
$$

where $R_{n, \nu}(z)$ are polynomials in z^{-1} known today as Lommel polynomials.

- Similarly the recurrence relation for the Hahn-Exton q-Bessel functions reads

$$
J_{\nu+1}(z ; q)=\left(\frac{1-q^{\nu}}{z}+z\right) J_{\nu}(z ; q)-J_{\nu-1}(z ; q)
$$

By iterating this rule one arrives at the expression

$$
J_{\nu+n}(z ; q)=R_{n, \nu}(z ; q) J_{\nu}(z ; q)-R_{n-1, \nu+1}(z ; q) J_{\nu-1}(z ; q), \text { for } n \in \mathbb{Z}_{+},
$$

where by q-Lommel polynomials we understand the function $R_{n, \nu}(z ; q)$ which is a Laurent polynomial in z and polynomial in q^{ν}.

- q-Lommel polynomials have been intensively studied in 90's by Koelink, Van Aschee, Swarttouw, and others.

Monic q-Lommel polynomials

- With some abuse of notation we call functions $h_{n, \nu}(w ; q):=R_{n, \nu}\left(w^{-1} ; q\right) q$-Lommel polynomials as well.

Monic q-Lommel polynomials

- With some abuse of notation we call functions $h_{n, \nu}(w ; q):=R_{n, \nu}\left(w^{-1} ; q\right) q$-Lommel polynomials as well.
- q-Lommel polynomials satisfy the three-term recurrence

$$
h_{n-1, \nu}(w ; q)-\left(w^{-1}+w\left(1-q^{\nu+n}\right)\right) h_{n, \nu}(w ; q)+h_{n+1, \nu}(w ; q)=0
$$

with initial conditions $h_{-1, \nu}(w ; q)=0$ and $h_{0, \nu}(w ; q)=1$.

Monic q-Lommel polynomials

- With some abuse of notation we call functions $h_{n, \nu}(w ; q):=R_{n, \nu}\left(w^{-1} ; q\right) q$-Lommel polynomials as well.
- q-Lommel polynomials satisfy the three-term recurrence

$$
h_{n-1, \nu}(w ; q)-\left(w^{-1}+w\left(1-q^{\nu+n}\right)\right) h_{n, \nu}(w ; q)+h_{n+1, \nu}(w ; q)=0
$$

with initial conditions $h_{-1, \nu}(w ; q)=0$ and $h_{0, \nu}(w ; q)=1$.

- Thus, by the Favard's theorem, sequence $h_{n, \nu}(w ; q)$ forms the orthogonal polynomial sequence in q^{ν}. We use slightly different parametrization: $x:=q^{\nu}$ and $a:=w^{-2}$.

Monic q-Lommel polynomials

- With some abuse of notation we call functions $h_{n, \nu}(w ; q):=R_{n, \nu}\left(w^{-1} ; q\right) q$-Lommel polynomials as well.
- q-Lommel polynomials satisfy the three-term recurrence

$$
h_{n-1, \nu}(w ; q)-\left(w^{-1}+w\left(1-q^{\nu+n}\right)\right) h_{n, \nu}(w ; q)+h_{n+1, \nu}(w ; q)=0
$$

with initial conditions $h_{-1, \nu}(w ; q)=0$ and $h_{0, \nu}(w ; q)=1$.

- Thus, by the Favard's theorem, sequence $h_{n, \nu}(w ; q)$ forms the orthogonal polynomial sequence in q^{ν}. We use slightly different parametrization: $x:=q^{\nu}$ and $a:=w^{-2}$.
- Hence the monic version of q-Lommel polynomials $F_{n}(a ; q, x)$ is determined by the recurrence

$$
u_{n+1}=\left(x-(a+1) q^{-n}\right) u_{n}-a q^{-2 n+1} u_{n-1}
$$

with initial setting $F_{-1}(a ; q, x)=0$ and $F_{0}(a ; q, x)=1$.

Known results on orthogonality

Proposition

The Hamburger as well as the Stieltjes moment problem associated with polynomials $F_{n}(a ; q, x)$ is indeterminate if and only if $q<a<1 / q$.

Sketch of the proof:

Known results on orthogonality

Proposition

The Hamburger as well as the Stieltjes moment problem associated with polynomials $F_{n}(a ; q, x)$ is indeterminate if and only if $q<a<1 / q$.

Sketch of the proof:
i) Hamburger indeterminacy: Based on the fact that values of $F_{n}(a ; q, 0)$ as well as the value of the first associate polynomials at $x=0$ can be expressed explicitly. Then one verifies the corresponding orthogonal polynomials $P_{n}(a ; q, 0)$ and $Q_{n}(a ; q, 0)$ of the first and second kind are both square summable iff $q<a<1 / q$.

Known results on orthogonality

Proposition

The Hamburger as well as the Stieltjes moment problem associated with polynomials $F_{n}(a ; q, x)$ is indeterminate if and only if $q<a<1 / q$.

Sketch of the proof:

i) Hamburger indeterminacy: Based on the fact that values of $F_{n}(a ; q, 0)$ as well as the value of the first associate polynomials at $x=0$ can be expressed explicitly. Then one verifies the corresponding orthogonal polynomials $P_{n}(a ; q, 0)$ and $Q_{n}(a ; q, 0)$ of the first and second kind are both square summable iff $q<a<1 / q$.
ii) Stieltjes indeterminacy: It follows from the fact that

$$
\lim _{n \rightarrow \infty} \frac{P_{n}(a ; q, 0)}{Q_{n}(a ; q, 0)}<0
$$

Known results on orthogonality

Proposition

The Hamburger as well as the Stieltjes moment problem associated with polynomials $F_{n}(a ; q, x)$ is indeterminate if and only if $q<a<1 / q$.

Sketch of the proof:
i) Hamburger indeterminacy: Based on the fact that values of $F_{n}(a ; q, 0)$ as well as the value of the first associate polynomials at $x=0$ can be expressed explicitly. Then one verifies the corresponding orthogonal polynomials $P_{n}(a ; q, 0)$ and $Q_{n}(a ; q, 0)$ of the first and second kind are both square summable iff $q<a<1 / q$.
ii) Stieltjes indeterminacy: It follows from the fact that

$$
\lim _{n \rightarrow \infty} \frac{P_{n}(a ; q, 0)}{Q_{n}(a ; q, 0)}<0
$$

Orthogonality relation [Koelink99]

For $a>0$ and $m, n \in \mathbb{Z}_{+}$, it holds

$$
\sum_{k=1}^{\infty} \frac{{ }^{\phi} \phi_{1}\left(0 ; a q ; q, q \xi_{k}\right)}{\left.\partial_{x}\right|_{x=\xi_{k} 1} \phi_{1}(0 ; a q ; q, x)} F_{n}\left(a ; q, \xi_{k}\right) F_{m}\left(a ; q, \xi_{k}\right)=-a^{n} q^{-n^{2}} \delta_{m n}
$$

Contents

(1) Hahn-Exton q-Bessel function and q-Lommel polynomials

(2) Nevalinna functions for q-Lommel polynomials

3 N -extremal measures of orthogonality

4 Remark: Spectral properties of the corresponding Jacobi matrix

Formula for the generating function

Generating function

For $|t|<\min \left(1, a^{-1}\right)$, it holds

$$
\sum_{n=0}^{\infty} q^{\binom{n}{2}} F_{n}(a ; q, x)(-t)^{n}=\frac{1}{(1-t)(1-a t)} 2 \phi_{2}(0, q ; q t, q a t ; q, x t)
$$

Formula for the generating function

Generating function

For $|t|<\min \left(1, a^{-1}\right)$, it holds

$$
\sum_{n=0}^{\infty} q^{\binom{n}{2}} F_{n}(a ; q, x)(-t)^{n}=\frac{1}{(1-t)(1-a t)} 2 \phi_{2}(0, q ; q t, q a t ; q, x t)
$$

Sketch of the proof:
By denoting the LHS of the above formula $V(t)$, one finds V fulfills first order q-difference equation

$$
(1-t)(1-a t) V(t)=1-x t V(q t)
$$

with initial condition $V(0)=1$. This can be solved explicitly by iteration and one arrives at the function on RHS of the generating formula (at least formally).

Nevanlinna parametrization - the general theory

- Recall Nevanlinna functions A, B, C, and D defined by

$$
\begin{gathered}
A(z)=z \sum_{n=0}^{\infty} Q_{n}(0) Q_{n}(z), \\
C(z)=1+z \sum_{n=0}^{\infty} P_{n}(0) Q_{n}(z), \\
D(z)=z \sum_{n=0}^{\infty} P_{n}(0) P_{n}(z),
\end{gathered}
$$

where P_{n} and Q_{n} are orthogonal polynomials of the first and second kind, respectively.

Nevanlinna parametrization - the general theory

- Recall Nevanlinna functions A, B, C, and D defined by

$$
\begin{gathered}
A(z)=z \sum_{n=0}^{\infty} Q_{n}(0) Q_{n}(z), \\
C(z)=1+z \sum_{n=0}^{\infty} P_{n}(0) Q_{n}(z), \\
D(z)=-1+z \sum_{n=0}^{\infty} P_{n=0}^{\infty} Q_{n}(0) P_{n}(z),
\end{gathered}
$$

where P_{n} and Q_{n} are orthogonal polynomials of the first and second kind, respectively.

- By the Nevanlinna theorem, all measures of orthogonality μ_{φ} for which

$$
\int_{\mathbb{R}} P_{n}(x) P_{m}(x) d \mu_{\varphi}(x)=\delta_{m n}, \quad m, n \in \mathbb{Z}_{+}
$$

are parametrized according to

$$
\int_{\mathbb{R}} \frac{d \mu_{\varphi}(x)}{z-x}=\frac{A(z) \varphi(z)-C(z)}{B(z) \varphi(z)-D(z)}, \quad z \in \mathbb{C} \backslash \mathbb{R}
$$

where $\varphi \in \mathcal{P} \cup\{\infty\}$ and \mathcal{P} is the space of Pick functions.

For the computation of Nevalinna functions we need just two ingredients:

1. explicit formulas for orthogonal polynomials of the first and second kind at $x=0$,
2. the generating function formula.

For the computation of Nevalinna functions we need just two ingredients:

1. explicit formulas for orthogonal polynomials of the first and second kind at $x=0$,
2. the generating function formula.

- Let us assume $1 \neq a \in\left(q, q^{-1}\right)$. Then by the very definition of function A we have

Nevanlinna functions for q-Lommel polynomials - computation

For the computation of Nevalinna functions we need just two ingredients:

1. explicit formulas for orthogonal polynomials of the first and second kind at $x=0$,
2. the generating function formula.

- Let us assume $1 \neq a \in\left(q, q^{-1}\right)$. Then by the very definition of function A we have

$$
A(a ; q, z)=\frac{z q}{1-a} \sum_{n=1}^{\infty}(-1)^{n+1}\left(a^{-n}-1\right) q^{\binom{n}{2}} F_{n-1}(a ; q, q z)
$$

Nevanlinna functions for q-Lommel polynomials - computation

For the computation of Nevalinna functions we need just two ingredients:

1. explicit formulas for orthogonal polynomials of the first and second kind at $x=0$,
2. the generating function formula.

- Let us assume $1 \neq a \in\left(q, q^{-1}\right)$. Then by the very definition of function A we have

$$
\begin{aligned}
& A(a ; q, z)=\frac{z q}{1-a} \sum_{n=1}^{\infty}(-1)^{n+1}\left(a^{-n}-1\right) q^{\binom{n}{2}} F_{n-1}(a ; q, q z) \\
& =\frac{z q}{1-a}[\frac{1}{a} \underbrace{\sum_{n=0}^{\infty} q^{\binom{n}{2}} F_{n}(a ; q, q z)\left(-\frac{q}{a}\right)^{n}}_{\text {gerating function formula with } t=q / a}-\underbrace{\sum_{n=0}^{\infty} q^{\binom{n}{2}} F_{n}(w ; q, q z)(-q)^{n}}_{\text {...and similarly with } t=q}]
\end{aligned}
$$

Nevanlinna functions for q-Lommel polynomials - computation

For the computation of Nevalinna functions we need just two ingredients:

1. explicit formulas for orthogonal polynomials of the first and second kind at $x=0$,
2. the generating function formula.

- Let us assume $1 \neq a \in\left(q, q^{-1}\right)$. Then by the very definition of function A we have

$$
\begin{aligned}
& A(a ; q, z)=\frac{z q}{1-a} \sum_{n=1}^{\infty}(-1)^{n+1}\left(a^{-n}-1\right) q^{\binom{n}{2}} F_{n-1}(a ; q, q z) \\
& \quad=\frac{z q}{1-a}[\underbrace{\frac{1}{a} \sum_{n=0}^{\infty} q^{\binom{n}{2}} F_{n}(a ; q, q z)\left(-\frac{q}{a}\right)^{n}}_{\text {gerating function formula with } t=q / a}-\underbrace{\sum_{n=0}^{\infty} q^{\binom{n}{2}} F_{n}(w ; q, q z)(-q)^{n}}_{\ldots \text {..and similarly with } t=q}]
\end{aligned}
$$

- By this way (and using simple identity for q-hypergeometric series) one arrives at the formula

$$
A(a ; q, z)=\frac{1}{1-a}\left[{ }_{1} \phi_{1}(0 ; a q ; q, q z)-{ }_{1} \phi_{1}\left(0 ; a^{-1} q ; q, a^{-1} q z\right)\right] .
$$

Nevanlinna functions for q-Lommel polynomials - computation

For the computation of Nevalinna functions we need just two ingredients:

1. explicit formulas for orthogonal polynomials of the first and second kind at $x=0$,
2. the generating function formula.

- Let us assume $1 \neq a \in\left(q, q^{-1}\right)$. Then by the very definition of function A we have

$$
\begin{aligned}
& A(a ; q, z)=\frac{z q}{1-a} \sum_{n=1}^{\infty}(-1)^{n+1}\left(a^{-n}-1\right) q^{\binom{n}{2}} F_{n-1}(a ; q, q z) \\
& \quad=\frac{z q}{1-a}[\underbrace{\frac{1}{a} \sum_{n=0}^{\infty} q^{\binom{n}{2}} F_{n}(a ; q, q z)\left(-\frac{q}{a}\right)^{n}}_{\text {gerating function formula with } t=q / a}-\underbrace{\sum_{n=0}^{\infty} q^{\binom{n}{2}} F_{n}(w ; q, q z)(-q)^{n}}_{\ldots \text {..and similarly with } t=q}]
\end{aligned}
$$

- By this way (and using simple identity for q-hypergeometric series) one arrives at the formula

$$
A(a ; q, z)=\frac{1}{1-a}\left[1 \phi_{1}(0 ; a q ; q, q z)-{ }_{1} \phi_{1}\left(0 ; a^{-1} q ; q, a^{-1} q z\right)\right] .
$$

- Similar computation leads to formulas for B, C, and D, and the result is \ldots

An explicit form of the Nevanlinna functions

There are two special functions arising naturally in the formulas for Nevanlinna functions:

$$
\varphi_{a}(z)={ }_{1} \phi_{1}(0 ; q a ; q, z) \quad \text { and } \quad \psi_{a}(z)={ }_{1} \phi_{1}\left(0 ; q a^{-1} ; q, a^{-1} z\right)
$$

An explicit form of the Nevanlinna functions

There are two special functions arising naturally in the formulas for Nevanlinna functions:

$$
\varphi_{a}(z)={ }_{1} \phi_{1}(0 ; q a ; q, z) \quad \text { and } \quad \psi_{a}(z)={ }_{1} \phi_{1}\left(0 ; q a^{-1} ; q, a^{-1} z\right)
$$

Theorem

Let $1 \neq a \in\left(q, q^{-1}\right)$. Then the entire functions from the Nevanlinna parametrization are as follows:

$$
\begin{array}{ll}
A(a, q ; z)=\frac{1}{1-a}\left[\varphi_{a}(q z)-\psi_{a}(q z)\right], & B(a, q ; z)=\frac{1}{1-a}\left[a \psi_{a}(z)-\varphi_{a}(z)\right], \\
C(a, q ; z)=\frac{1}{1-a}\left[\psi_{a}(q z)-a \varphi_{a}(q z)\right], & D(a, q ; z)=\frac{a}{1-a}\left[\varphi_{a}(z)-\psi_{a}(z)\right] .
\end{array}
$$

An explicit form of the Nevanlinna functions in the case $a=1$

For the sake of completeness we present Nevanlinna functions in the special case with $a=1$ in terms of functions:

$$
\varphi_{1}(z)={ }_{1} \phi_{1}(0 ; q ; q, z) \quad \text { and } \quad \chi_{1}(z)=\left.\frac{\partial}{\partial p}\right|_{p=q}{ }_{1} \phi_{1}(0 ; p ; q, z)
$$

An explicit form of the Nevanlinna functions in the case $a=1$

For the sake of completeness we present Nevanlinna functions in the special case with $a=1$ in terms of functions:

$$
\varphi_{1}(z)={ }_{1} \phi_{1}(0 ; q ; q, z) \quad \text { and } \quad \chi_{1}(z)=\left.\frac{\partial}{\partial p}\right|_{p=q}{ }_{1} \phi_{1}(0 ; p ; q, z)
$$

Theorem

For $a=1$, Nevanlinna functions take the form

$$
\begin{gathered}
A(1, q ; z)=-2 q \chi_{1}(q z)-z \frac{\partial}{\partial z} \varphi_{1}(q z), \quad B(1, q ; z)=2 q \chi_{1}(z)+z^{2} \frac{\partial}{\partial z}\left(z^{-1} \varphi_{1}(z)\right), \\
C(1, q ; z)=2 q \chi_{1}(q z)+\frac{\partial}{\partial z}\left(z \varphi_{1}(q z)\right), \quad D(1 ; q, z)=-2 q \chi_{1}(z)-z \frac{\partial}{\partial z} \varphi_{1}(z) .
\end{gathered}
$$

Contents

(1) Hahn-Exton q-Bessel function and q-Lommel polynomials

(2) Nevalinna functions for q-Lommel polynomials
(3) N -extremal measures of orthogonality
4. Remark: Spectral properties of the corresponding Jacobi matrix

N-extremal measures for q-Lommel polynomials

- Recall N -extremal measures μ_{t} correspond to the choice

$$
\varphi=t, \quad t \in \mathbb{R} \cup\{\infty\}
$$

for the Pick function φ in the Nevanlinna parametrization of the Stieltjes transform of μ_{t}.

N-extremal measures for q-Lommel polynomials

- Recall N -extremal measures μ_{t} correspond to the choice

$$
\varphi=t, \quad t \in \mathbb{R} \cup\{\infty\}
$$

for the Pick function φ in the Nevanlinna parametrization of the Stieltjes transform of μ_{t}.

Theorem

Let $1 \neq a \in\left(q, q^{-1}\right)$. Then all N-extremal measures $\mu_{t}=\mu_{t}(a, q)$ are of the form

$$
\begin{gathered}
\mu_{t}=\sum_{x \in \mathfrak{Z}_{t}} \rho(x) \delta_{x} \text { where } \frac{1}{\rho(x)}=\frac{a}{1-a}\left(\psi_{a}(x) \varphi_{a}^{\prime}(x)-\varphi_{a}(x) \psi_{a}^{\prime}(x)\right), \\
\mathfrak{Z}_{t}=\mathfrak{Z}_{t}(a, q)=\left\{x \in \mathbb{R} \mid a(t+1) \psi_{a}(x)-(t+a) \varphi_{a}(x)=0\right\},
\end{gathered}
$$

and δ_{x} stands for the Dirac measure supported on $\{x\}$.

N-extremal measures for q-Lommel polynomials

- Recall N -extremal measures μ_{t} correspond to the choice

$$
\varphi=t, \quad t \in \mathbb{R} \cup\{\infty\}
$$

for the Pick function φ in the Nevanlinna parametrization of the Stieltjes transform of μ_{t}.

Theorem

Let $1 \neq a \in\left(q, q^{-1}\right)$. Then all N-extremal measures $\mu_{t}=\mu_{t}(a, q)$ are of the form

$$
\begin{gathered}
\mu_{t}=\sum_{x \in \mathfrak{Z}_{t}} \rho(x) \delta_{x} \text { where } \frac{1}{\rho(x)}=\frac{a}{1-a}\left(\psi_{a}(x) \varphi_{a}^{\prime}(x)-\varphi_{a}(x) \psi_{a}^{\prime}(x)\right), \\
\mathfrak{Z}_{t}=\mathfrak{Z}_{t}(a, q)=\left\{x \in \mathbb{R} \mid a(t+1) \psi_{a}(x)-(t+a) \varphi_{a}(x)=0\right\},
\end{gathered}
$$

and δ_{x} stands for the Dirac measure supported on $\{x\}$.

- By using identity (which is $A D-B C=1$)

$$
\varphi_{a}(z) \psi_{a}(q z)-a \psi_{a}(z) \varphi_{a}(q z)=1-a, \quad a \neq 1
$$

one finds the measure derived by Koelink is μ_{-1}, and the orthogonality relation reads

$$
\sum_{k=1}^{\infty} \frac{\varphi_{a}\left(q \xi_{k}\right)}{\varphi_{a}^{\prime}\left(\xi_{k}\right)} F_{n}\left(a ; q, \xi_{k}\right) F_{m}\left(a ; q, \xi_{k}\right)=-a^{n} q^{-n^{2}} \delta_{m n}
$$

where $\left\{\xi_{k} \mid k \in \mathbb{N}\right\}$ are all zeros of the function φ_{a}.

Contents

(1) Hahn-Exton q-Bessel function and q-Lommel polynomials

(2) Nevalinna functions for q-Lommel polynomials
(3) N-extremal measures of orthogonality

4 Remark: Spectral properties of the corresponding Jacobi matrix

Jacobi matrix related with q-Lommel polynomials

- Coefficients from the three-term recurrence for q-Lommel polynomials define two-parameter family of real symmetric Jacobi matrices

$$
\mathcal{T} \equiv \mathcal{T}(a ; q)=\left(\begin{array}{ccccc}
\beta_{0} & \alpha_{0} & & & \\
\alpha_{0} & \beta_{1} & \alpha_{1} & & \\
& \alpha_{1} & \beta_{2} & \alpha_{2} & \\
& & \ddots & \ddots & \ddots
\end{array}\right)
$$

where

$$
\alpha_{n}=\sqrt{a} q^{-n-1 / 2}, \quad \beta_{n}=(1+a) q^{-n}
$$

Jacobi matrix related with q-Lommel polynomials

- Coefficients from the three-term recurrence for q-Lommel polynomials define two-parameter family of real symmetric Jacobi matrices

$$
\mathcal{T} \equiv \mathcal{T}(a ; q)=\left(\begin{array}{ccccc}
\beta_{0} & \alpha_{0} & & & \\
\alpha_{0} & \beta_{1} & \alpha_{1} & & \\
& \alpha_{1} & \beta_{2} & \alpha_{2} & \\
& & \ddots & \ddots & \ddots
\end{array}\right)
$$

where

$$
\alpha_{n}=\sqrt{a} q^{-n-1 / 2}, \quad \beta_{n}=(1+a) q^{-n}
$$

- With \mathcal{T} we associate the pair of unbounded Jacobi operators $T_{\min }$ and $T_{\max }$ (by usual construction).

Jacobi matrix related with q-Lommel polynomials

- Coefficients from the three-term recurrence for q-Lommel polynomials define two-parameter family of real symmetric Jacobi matrices

$$
\mathcal{T} \equiv \mathcal{T}(a ; q)=\left(\begin{array}{ccccc}
\beta_{0} & \alpha_{0} & & & \\
\alpha_{0} & \beta_{1} & \alpha_{1} & & \\
& \alpha_{1} & \beta_{2} & \alpha_{2} & \\
& & \ddots & \ddots & \ddots
\end{array}\right)
$$

where

$$
\alpha_{n}=\sqrt{a} q^{-n-1 / 2}, \quad \beta_{n}=(1+a) q^{-n}
$$

- With \mathcal{T} we associate the pair of unbounded Jacobi operators $T_{\min }$ and $T_{\text {max }}$ (by usual construction).
- The operator $T_{\text {min }}$ is self-adjoint if and only if $0<a \notin\left(q, q^{-1}\right)$.

Jacobi matrix related with q-Lommel polynomials

- Coefficients from the three-term recurrence for q-Lommel polynomials define two-parameter family of real symmetric Jacobi matrices

$$
\mathcal{T} \equiv \mathcal{T}(a ; q)=\left(\begin{array}{ccccc}
\beta_{0} & \alpha_{0} & & & \\
\alpha_{0} & \beta_{1} & \alpha_{1} & & \\
& \alpha_{1} & \beta_{2} & \alpha_{2} & \\
& & \ddots & \ddots & \ddots
\end{array}\right)
$$

where

$$
\alpha_{n}=\sqrt{a} q^{-n-1 / 2}, \quad \beta_{n}=(1+a) q^{-n}
$$

- With \mathcal{T} we associate the pair of unbounded Jacobi operators $T_{\text {min }}$ and $T_{\text {max }}$ (by usual construction).
- The operator $T_{\text {min }}$ is self-adjoint if and only if $0<a \notin\left(q, q^{-1}\right)$.
- If $a \in\left(q, q^{1}\right)$ then $T_{\text {min }}$ has deficiency indices (1, 1). All mutually different self-adjoint extensions of $T_{\text {min }}$ are parametrized by $\kappa \in P^{1}(\mathbb{R}) \equiv \mathbb{R} \cup\{\infty\}$.

Jacobi matrix related with q-Lommel polynomials

- Coefficients from the three-term recurrence for q-Lommel polynomials define two-parameter family of real symmetric Jacobi matrices

$$
\mathcal{T} \equiv \mathcal{T}(a ; q)=\left(\begin{array}{ccccc}
\beta_{0} & \alpha_{0} & & & \\
\alpha_{0} & \beta_{1} & \alpha_{1} & & \\
& \alpha_{1} & \beta_{2} & \alpha_{2} & \\
& & \ddots & \ddots & \ddots
\end{array}\right)
$$

where

$$
\alpha_{n}=\sqrt{a} q^{-n-1 / 2}, \quad \beta_{n}=(1+a) q^{-n}
$$

- With \mathcal{T} we associate the pair of unbounded Jacobi operators $T_{\min }$ and $T_{\max }$ (by usual construction).
- The operator $T_{\text {min }}$ is self-adjoint if and only if $0<a \notin\left(q, q^{-1}\right)$.
- If $a \in\left(q, q^{1}\right)$ then $T_{\text {min }}$ has deficiency indices (1, 1). All mutually different self-adjoint extensions of $T_{\text {min }}$ are parametrized by $\kappa \in P^{1}(\mathbb{R}) \equiv \mathbb{R} \cup\{\infty\}$.
- Previous results provide us with an explicit description of spectral properties of Jacobi operators associated with \mathcal{T} (in terms of special functions).

Spectrum of Jacobi operators

Recall the previous notation:

$$
\varphi_{a}(z)={ }_{1} \phi_{1}(0 ; q a ; q, z) \quad \text { and } \quad \psi_{a}(z)={ }_{1} \phi_{1}\left(0 ; q a^{-1} ; q, a^{-1} z\right) .
$$

Spectrum of Jacobi operators

Recall the previous notation:

$$
\varphi_{a}(z)={ }_{1} \phi_{1}(0 ; q a ; q, z) \quad \text { and } \quad \psi_{a}(z)={ }_{1} \phi_{1}\left(0 ; q a^{-1} ; q, a^{-1} z\right) .
$$

Theorem

The set of zeros of φ_{a} coincide with the spectrum of T, provided $a \notin\left(q, q^{-1}\right)$, or T^{F} provided $1 \neq a \in\left(q, q^{-1}\right)$. The components of a corresponding eigenvector can be chosen as

$$
u_{k}(x)=a^{k / 2} \varphi_{a}\left(q^{k+1} x\right), \quad k \in \mathbb{Z}_{+}
$$

Spectrum of Jacobi operators

Recall the previous notation:

$$
\varphi_{a}(z)={ }_{1} \phi_{1}(0 ; q a ; q, z) \quad \text { and } \quad \psi_{a}(z)={ }_{1} \phi_{1}\left(0 ; q a^{-1} ; q, a^{-1} z\right) .
$$

Theorem

The set of zeros of φ_{a} coincide with the spectrum of T, provided $a \notin\left(q, q^{-1}\right)$, or T^{F} provided $1 \neq a \in\left(q, q^{-1}\right)$. The components of a corresponding eigenvector can be chosen as

$$
u_{k}(x)=a^{k / 2} \varphi_{a}\left(q^{k+1} x\right), \quad k \in \mathbb{Z}_{+} .
$$

If $1 \neq a \in\left(q, q^{-1}\right)$ then x is an eigenvalue of $T(\kappa)$ if and only if $\kappa \varphi_{a}(x)+a \psi_{a}(x)=0$. The components of a corresponding eigenvector can be chosen as

$$
u_{k}(\kappa, x)=q^{k / 2}\left(\kappa a^{k / 2} \varphi_{a}\left(q^{k+1} x\right)+a^{-k / 2} \psi_{a}\left(q^{k+1} x\right)\right), \quad k \in \mathbb{Z}_{+}
$$

Spectrum of Jacobi operators

Recall the previous notation:

$$
\varphi_{a}(z)={ }_{1} \phi_{1}(0 ; q a ; q, z) \quad \text { and } \quad \psi_{a}(z)={ }_{1} \phi_{1}\left(0 ; q a^{-1} ; q, a^{-1} z\right) .
$$

Theorem

The set of zeros of φ_{a} coincide with the spectrum of T, provided $a \notin\left(q, q^{-1}\right)$, or T^{F} provided $1 \neq a \in\left(q, q^{-1}\right)$. The components of a corresponding eigenvector can be chosen as

$$
u_{k}(x)=a^{k / 2} \varphi_{a}\left(q^{k+1} x\right), \quad k \in \mathbb{Z}_{+} .
$$

If $1 \neq a \in\left(q, q^{-1}\right)$ then x is an eigenvalue of $T(\kappa)$ if and only if $\kappa \varphi_{a}(x)+a \psi_{a}(x)=0$. The components of a corresponding eigenvector can be chosen as

$$
u_{k}(\kappa, x)=q^{k / 2}\left(\kappa a^{k / 2} \varphi_{a}\left(q^{k+1} x\right)+a^{-k / 2} \psi_{a}\left(q^{k+1} x\right)\right), \quad k \in \mathbb{Z}_{+} .
$$

An immediate consequence is the orthogonality relation [Koelink\&Swarttouw94]

$$
\sum_{k=0}^{\infty} q^{k} J_{\nu}\left(q^{(k+1) / 2} w_{m} ; q\right) J_{\nu}\left(q^{(k+1) / 2} w_{n} ; q\right)=-\frac{q^{-1+\nu / 2}}{2 w_{n}} J_{\nu}\left(q^{1 / 2} w_{n} ; q\right) \frac{\partial J_{\nu}\left(w_{n} ; q\right)}{\partial z} \delta_{m, n}
$$

where $0<w_{1}<w_{2}<w_{3}<\ldots$ are positive zeros of $J_{\nu}(z ; q), \nu>-1, m, n \in \mathbb{N}$.

Conclusion

References:

- F. Štampach, P. Štovíček: The Hahn-Exton q-Bessel function as the characteristic function of a Jacobi matrix, arXiv:1404.7647 [math.SP].
- F. Štampach, P. Štovíček: The Nevanlinna parametrization for q-Lommel polynomials in the indeterminate case, arXiv:1407.0217 [math.SP].

Conclusion

References:

- F. Štampach, P. Štovíček: The Hahn-Exton q-Bessel function as the characteristic function of a Jacobi matrix, arXiv:1404.7647 [math.SP].
- F. Štampach, P. Štovíček: The Nevanlinna parametrization for q-Lommel polynomials in the indeterminate case, arXiv:1407.0217 [math.SP].

Thank you!

