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0 Hahn-Exton g-Bessel function and g-Lommel polynomials
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Hahn-Exton g-Bessel function

@ ltis one of the three deeply investigated g-analogues to the ordinary Bessel function J, (2),

v+1.
Z'JW 191 (0; " q, qzz)

(@1 Qoo o= (1) g"mD/2 2n+v
V4 .
(@ 9)oe 25 (@ A)n (7111 )n

Ju(z:9)
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Ju(z:9)

@ We always assume 0 < g < 1. It holds

qingf Jv (2(1=-9)/2:9) = Ju(2).
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Hahn-Exton g-Bessel function

@ ltis one of the three deeply investigated g-analogues to the ordinary Bessel function J, (2),

v+1.
P v (0 0.02)

(qu+1 : q)oo el (_1 )n qn(n+1)/2 -
V4 .
(@ 9)oe 25 (@ A)n (7111 )n

Ju(z:9)

@ We always assume 0 < g < 1. It holds
lim J,(z(1 —q)/2;9) = Ju(2).
q—1—

@ The Hahn-Exton g-Bessel function has been intensively studied in past (difference eq.,
orthogonality properties, asymptotic formulas, zeros, etc.), for instance by Koelink,
Swarttouw, Ismail, Annaby, etal.
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g-Lommel polynomials

@ The basic recurrence relation for (ordinary) Bessel functions reads

(@)= 2 du(2) b 1(2).
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g-Lommel polynomials

@ The basic recurrence relation for (ordinary) Bessel functions reads
2v
JV+1 (Z) = ? JV(Z) - JV71 (Z)

As first observed by Lommel in 1871, by iterating this rule one reveals

Ju+n(z) = Rn’,,(Z)JV(Z) - Rn71,u+1 (Z)JV71 (Z), forne Z;, J

where Rp, ., (z) are polynomials in z~1 known today as Lommel polynomials.
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g-Lommel polynomials

@ The basic recurrence relation for (ordinary) Bessel functions reads
2v
JV+1 (Z) = ? JV(Z) - JV71 (Z)

As first observed by Lommel in 1871, by iterating this rule one reveals

Ju+n(z) = Rn’,,(Z)JV(Z) - Rn71,u+1 (Z)JV71 (Z), forne Z;, J

where Rp, ., (z) are polynomials in z~1 known today as Lommel polynomials.

@ Similarly the recurrence relation for the Hahn-Exton g-Bessel functions reads

_qV
z

Joi1(2:q) = (1 + z) Jul(2:G) — dy_1(2:q)
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g-Lommel polynomials

@ The basic recurrence relation for (ordinary) Bessel functions reads
2v
JV+1 (Z) = 7 JV(Z) - JV71 (Z)

As first observed by Lommel in 1871, by iterating this rule one reveals

Ju+n(z) = Rn’,,(Z)J,/(Z) - Rn71,u+1 (Z)JV71 (Z), forne Z;, J

where Rp, ., (z) are polynomials in z~1 known today as Lommel polynomials.

@ Similarly the recurrence relation for the Hahn-Exton g-Bessel functions reads

1-q”
z

Joi1(ziq) = (

By iterating this rule one arrives at the expression

+ z) Ju(z:9) — J—1(z:q)

Juv4n(2:9) = Anv(2:Q)v(2:G) = Bp1,041(2: Q) —1(2:), forne Zy, |

where by g-Lommel polynomials we understand the function Ry .. (z; g) which is a Laurent
polynomial in z and polynomial in g¥.
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g-Lommel polynomials

@ The basic recurrence relation for (ordinary) Bessel functions reads
2v
JV+1 (Z) = 7 JV(Z) - JV71 (Z)

As first observed by Lommel in 1871, by iterating this rule one reveals

Ju+n(z) = Rn’,,(Z)J,/(Z) - Rn71,u+1 (Z)JV71 (Z), forne Z;, J

where Rp, ., (z) are polynomials in z~1 known today as Lommel polynomials.

@ Similarly the recurrence relation for the Hahn-Exton g-Bessel functions reads

Jyir(2:G) = (‘ L z) 4o(2:9) — dy1(2:9)

By iterating this rule one arrives at the expression

Juv4n(2:9) = Anv(2:Q)v(2:G) = Bp1,041(2: Q) —1(2:), forne Zy, |

where by g-Lommel polynomials we understand the function Ry .. (z; g) which is a Laurent
polynomial in z and polynomial in g¥.

@ g-Lommel polynomials have been intensively studied in 90’s by Koelink, Van Aschee,
Swarttouw, and others.
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Monic g-Lommel polynomials

@ With some abuse of notation we call functions hp_,,(w; q) := Rn.(w—'; g) g-Lommel
polynomials as well.
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Monic g-Lommel polynomials

@ With some abuse of notation we call functions hp_,,(w; q) := Rn.(w—'; g) g-Lommel
polynomials as well.

@ g-Lommel polynomials satisfy the three-term recurrence

B, (W @) — (W™ + w(1 = g""")hnu (W; Q) + hpet (W ) = 0,

with initial conditions h_4 ,(w; q) = 0 and hg ., (w; q) = 1.
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Monic g-Lommel polynomials

@ With some abuse of notation we call functions hp_,,(w; q) := Rn.(w—'; g) g-Lommel
polynomials as well.

@ g-Lommel polynomials satisfy the three-term recurrence
hn—1,u(W; q) - (W_1 + W(1 - qy+n))hn,u(W; Q) + hn+1,l/(W; Q) - 0’

with initial conditions h_4 ,(w; q) = 0 and hg ., (w; q) = 1.

@ Thus, by the Favard’s theorem, sequence hn, ., (w; q) forms the orthogonal polynomial
sequence in g¥. We use slightly different parametrization: x := g” and a:= w—2.
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Monic g-Lommel polynomials

@ With some abuse of notation we call functions hp_,,(w; q) := Rn.(w—'; g) g-Lommel
polynomials as well.

@ g-Lommel polynomials satisfy the three-term recurrence
hn—1,u(W; q) - (W_1 + W(1 - qy+n))hn,u(W; Q) + hn+1,l/(W; Q) - 0’

with initial conditions h_4 ,(w; q) = 0 and hg ., (w; q) = 1.

@ Thus, by the Favard’s theorem, sequence hn, ., (w; q) forms the orthogonal polynomial
sequence in g¥. We use slightly different parametrization: x := g” and a:= w—2.

@ Hence the monic version of g-Lommel polynomials Fn(a; g, x) is determined by the
recurrence

Uni1 = (x—(a+1)q "un — aq~ 2" up_y J

with initial setting F_1(a; q,x) = 0 and Fy(a; g, x) = 1.
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Known results on orthogonality

Proposition

The Hamburger as well as the Stielties moment problem associated with polynomials Fp(a; g, x) is
indeterminate if and only if g < a < 1/q.

Sketch of the proof:
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Known results on orthogonality

Proposition
The Hamburger as well as the Stielties moment problem associated with polynomials Fp(a; g, x) is
indeterminate if and only if g < a < 1/q.

Sketch of the proof:

i) Hamburger indeterminacy: Based on the fact that values of Fp(a; g, 0) as well as the value of
the first associate polynomials at x = 0 can be expressed explicitly. Then one verifies the
corresponding orthogonal polynomials Pp(a; g,0) and Qn(a; g, 0) of the first and second kind
are both square summable iff g < a < 1/q.

July 7-11, 2014 6/18
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Known results on orthogonality

Proposition
The Hamburger as well as the Stielties moment problem associated with polynomials Fp(a; g, x) is
indeterminate if and only if g < a < 1/q.

Sketch of the proof:

i) Hamburger indeterminacy: Based on the fact that values of Fp(a; g, 0) as well as the value of
the first associate polynomials at x = 0 can be expressed explicitly. Then one verifies the
corresponding orthogonal polynomials Pp(a; g,0) and Qn(a; g, 0) of the first and second kind
are both square summable iff g < a < 1/q.

ii) Stieltjes indeterminacy: It follows from the fact that

Pn(a; q, 0)

0
n%e Qn(@;q,0)
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Known results on orthogonality

Proposition
The Hamburger as well as the Stielties moment problem associated with polynomials Fp(a; g, x) is
indeterminate if and only if g < a < 1/q.

Sketch of the proof:

i) Hamburger indeterminacy: Based on the fact that values of Fp(a; g, 0) as well as the value of
the first associate polynomials at x = 0 can be expressed explicitly. Then one verifies the
corresponding orthogonal polynomials Pp(a; g,0) and Qn(a; g, 0) of the first and second kind
are both square summable iff g < a < 1/q.

ii) Stieltjes indeterminacy: It follows from the fact that

Pn(a; q, 0)

im ———————~ <0
n%e Qn(@;q,0)

Orthogonality relation [Koelink99]
Fora> 0and m,n € Z, it holds

161(0; aq; g, k) Py
Fn(a; q,&k)Fm(a; g, &) = —a dmn-
2 8x|x:§k1¢1(0;aCI§ 0, %) n(a q,&)Fm(a g, &) q mn

July 7-11, 2014
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e Nevalinna functions for g-Lommel polynomials
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Formula for the generating function

Generating function

For |t| < min(1,a~"), it holds

oo

> o) Fu(aig. (1) =

n=0

1
m 2¢2(0, g; gt, qat; g, xt).
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Formula for the generating function

Generating function

For |t| < min(1,a~"), it holds

o0 n 1
Z q(z) Fn(a q,x)(—1)" = m 2¢2(0, g; gt, qat; g, xt).
n=0

Sketch of the proof:
By denoting the LHS of the above formula V(t), one finds V fulfills first order g-difference equation

(1— 11 —at)V(t) = 1 — xtV(qt)

with initial condition V(0) = 1. This can be solved explicitly by iteration and one arrives at the
function on RHS of the generating formula (at least formally).
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Nevanlinna parametrization - the general theory

@ Recall Nevanlinna functions A, B, C, and D defined by

Az) = zf:on(O)on(z), =1 +zZ Qn(0)Pn(2),
n=0
C(z)=1+ zi Pn(0)Qn(2), D(z) =z Z Pn(0)Pn(2),
n=0 n=0

where P, and Q) are orthogonal polynomials of the first and second kind, respectively.
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Nevanlinna parametrization - the general theory

@ Recall Nevanlinna functions A, B, C, and D defined by

Az) = zion(O)On(z), =1 +z2 Qn(0)Pn(2),
n=0
C(z)=1+ zi Pn(0)Qn(2), D(z) =z Z Pn(0)Pn(2),
n=0 n=0

where P, and Q) are orthogonal polynomials of the first and second kind, respectively.
@ By the Nevanlinna theorem, all measures of orthogonality ., for which

/ Pn(X)Pm(x)due(Xx) = 0mn, m,n € Zy,
R

are parametrized according to

dup(x) _ A2)e(2) - C(2)
fo o = B@)e(z) D) ~<C\F J

where ¢ € P U {co} and P is the space of Pick functions.
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Nevanlinna functions for g-Lommel polynomials - computation

For the computation of Nevalinna functions we need just two ingredients:
1. explicit formulas for orthogonal polynomials of the first and second kind at x = 0,
2. the generating function formula.
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Nevanlinna functions for g-Lommel polynomials - computation

For the computation of Nevalinna functions we need just two ingredients:
1. explicit formulas for orthogonal polynomials of the first and second kind at x = 0,
2. the generating function formula.

@ Letusassume 1 # a < (g,g"). Then by the very definition of function A we have
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Nevanlinna functions for g-Lommel polynomials - computation

For the computation of Nevalinna functions we need just two ingredients:
1. explicit formulas for orthogonal polynomials of the first and second kind at x = 0,
2. the generating function formula.

@ Letusassume 1 # a < (g,g"). Then by the very definition of function A we have

?agyfﬂﬂwfmfﬂq@F@damqn

Alaq,2) = -
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Nevanlinna functions for g-Lommel polynomials - computation

For the computation of Nevalinna functions we need just two ingredients:
1. explicit formulas for orthogonal polynomials of the first and second kind at x = 0,
2. the generating function formula.

@ Letusassume 1 # a < (g,g"). Then by the very definition of function A we have

A@g.2)= 2 Z (1@ = 1)@ F, i@ 0,02)

— Z ()Fnaq,QZ( ) Zq()anq,qZ)( q)"

=0

gerating function formula with t=q/a ...and similarly with t=q
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Nevanlinna functions for g-Lommel polynomials - computation

For the computation of Nevalinna functions we need just two ingredients:
1. explicit formulas for orthogonal polynomials of the first and second kind at x = 0,
2. the generating function formula.

@ Letusassume 1 # a < (g,g"). Then by the very definition of function A we have

A@g.2)= 2 Z (1@ = 1)@ F, i@ 0,02)

— Z ()Fnaq,QZ( ) Zq()anq,qZ)( q)"

=0

gerating function formula with t=q/a ...and similarly with t=q

@ By this way (and using simple identity for g-hypergeometric series) one arrives at the formula

1
A(aiq,z) = T—a [1¢1 (0:a9:9,92) — 1¢1(0:a ' q: g, a*‘qZ)]- J
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Nevanlinna functions for g-Lommel polynomials - computation

For the computation of Nevalinna functions we need just two ingredients:
1. explicit formulas for orthogonal polynomials of the first and second kind at x = 0,
2. the generating function formula.

@ Letusassume 1 # a < (g,g"). Then by the very definition of function A we have

A@g.2)= 2 Z (1@ = 1)@ F, i@ 0,02)

— Z ()Fnaq,QZ( ) Zq()anq,qZ)( q)"

=0

gerating function formula with t=q/a ...and similarly with t=q

@ By this way (and using simple identity for g-hypergeometric series) one arrives at the formula

1
A(aiq,z) = T—a [1¢1 (0:a9:9,92) — 1¢1(0:a ' q: g, a*‘qZ)]- J

@ Similar computation leads to formulas for B, C, and D, and the resultis ...
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An explicit form of the Nevanlinna functions

There are two special functions arising naturally in the formulas for Nevanlinna functions:

pa(z) = 1¢1(0;9a,9,z) and  va(z) = 1¢1(0;9a ';q,a '2)
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An explicit form of the Nevanlinna functions

There are two special functions arising naturally in the formulas for Nevanlinna functions:

pa(z) = 1¢1(0;9a,9,z) and  va(z) = 1¢1(0;9a ';q,a '2)

Theorem

Let1 # ac (q,q~"). Then the entire functions from the Nevanlinna parametrization are as
follows:

A@,G:2) =+ [a(02) ~ ¥a(2)], B(a,q:z):11a[awa(z)—soa(z)1,

Cla,q:2) = 7 [Va(92) — apa(a2)], D(a,q;2) = — [¢a(2) — va(2)].
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An explicit form of the Nevanlinna functions in the case a = 1

For the sake of completeness we present Nevanlinna functions in the special case with a =1 in
terms of functions:

1}
©1(2) =1¢1(0:9:9,2) and xq(2) = — 161(0; p; g, 2)
9P p=q
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An explicit form of the Nevanlinna functions in the case a = 1

For the sake of completeness we present Nevanlinna functions in the special case with a =1 in
terms of functions:

1}
©1(2) =1¢1(0:9:9,2) and xq(2) = — 161(0; p; g, 2)
9P p=q

For a = 1, Nevanlinna functions take the form

P B
A(1,q:2) = —29x1(92) = 2 o~ v1(2),  B(1,4:2) =29x1(2) + zag (z7e1(2)),

C(1,:2) = 29x1(62) + 5~ (261(02)),  D(1:0,2) = ~2q1(2) ~ 25 &1(2).
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e N-extremal measures of orthogonality
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N-extremal measures for g-Lommel polynomials

@ Recall N-extremal measures u; correspond to the choice
p=t teRU{oo},
for the Pick function ¢ in the Nevanlinna parametrization of the Stieltjes transform of y;.
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N-extremal measures for g-Lommel polynomials

@ Recall N-extremal measures u; correspond to the choice
p=t teRU{oo},
for the Pick function ¢ in the Nevanlinna parametrization of the Stieltjes transform of y;.

Theorem
Let1 # ac (g,g~"). Then all N-extremal measures u; = (&, g) are of the form

b= 3 o) 8 where — = < (a0 — pal)500).
XE3t

=3t(a,9) = {x e R| a(t + 1)¢a(x) — (t + a)pa(x) = 0},
and dx stands for the Dirac measure supported on {x}.
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N-extremal measures for g-Lommel polynomials

@ Recall N-extremal measures u; correspond to the choice
p=t teRU{oo},
for the Pick function ¢ in the Nevanlinna parametrization of the Stieltjes transform of y;.

Theorem
Let1 # ac (g,g~"). Then all N-extremal measures u; = (&, g) are of the form

b= 3 o) 8 where — = < (a0 — pal)500).
XE3t

=3t(a,9) = {x e R| a(t + 1)¢a(x) — (t + a)pa(x) = 0},
and dx stands for the Dirac measure supported on {x}.

@ By using identity (which is AD — BC = 1)

va(2)¥a(qz) — apa(2)palqz) =1—a, a#1,
one finds the measure derived by Koelink is 11_1, and the orthogonality relation reads

> ﬁ,(éig) Fo(a: 4, &) Fm(@ 4.6) = —&"q ™" 6mn
k=1 *a

where {¢x | k € N} are all zeros of the function ¢a.
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° Remark: Spectral properties of the corresponding Jacobi matrix
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Jacobi matrix related wi Lommel polynomials

@ Coefficients from the three-term recurrence for g-Lommel polynomials define two-parameter
family of real symmetric Jacobi matrices

Bo o
ag Br1 oy
T=T(aq)= ar B2 ap

where
an = \/éq—n—1/2’ Bn = (1 + a)q—n
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Jacobi matrix related with g-Lommel polynomials

@ Coefficients from the three-term recurrence for g-Lommel polynomials define two-parameter
family of real symmetric Jacobi matrices

Bo o
ag Br1 oy
T=T(aq)= ar B2 ap

where
an = \/éq—n—1/2’ Bn = (1 + a)q—n

@ With 7 we associate the pair of unbounded Jacobi operators Tpin and Tmax (by usual
construction).
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Jacobi matrix related with g-Lommel polynomials

@ Coefficients from the three-term recurrence for g-Lommel polynomials define two-parameter
family of real symmetric Jacobi matrices

Bo o
ag Br1 oy
T=T(aq)= ar B2 ap

where
an = \/éq—n—1/2’ Bn = (1 + a)q—n

@ With 7 we associate the pair of unbounded Jacobi operators Tpin and Tmax (by usual
construction).

@ The operator Ty, is self-adjoint if and only if 0 < a ¢ (g,q1).
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Jacobi matrix related with g-Lommel polynomials

@ Coefficients from the three-term recurrence for g-Lommel polynomials define two-parameter
family of real symmetric Jacobi matrices

Bo o
ag Br1 oy
T=T(aq)= ar B2 ap

where
an = \/éq—n—1/2’ Bn = (1 + a)q—n
@ With 7 we associate the pair of unbounded Jacobi operators Tpin and Tmax (by usual
construction).
@ The operator Ty, is self-adjoint if and only if 0 < a ¢ (g,q1).

e Ifae (g,q")then Ty, has deficiency indices (1, 1). All mutually different self-adjoint
extensions of T, are parametrized by x € P'(R) = R U {oo}.
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Jacobi matrix related with g-Lommel polynomials

@ Coefficients from the three-term recurrence for g-Lommel polynomials define two-parameter
family of real symmetric Jacobi matrices

Bo o
ag Br1 oy
T=T(aq)= ar B2 ap

where
an = \/éq—n—1/2’ Bn = (1 + a)q—n

@ With 7 we associate the pair of unbounded Jacobi operators Tpin and Tmax (by usual
construction).

@ The operator Ty, is self-adjoint if and only if 0 < a ¢ (g,q1).

e Ifae (g,q")then Ty, has deficiency indices (1, 1). All mutually different self-adjoint
extensions of T, are parametrized by x € P'(R) = R U {oo}.

@ Previous results provide us with an explicit description of spectral properties of Jacobi
operators associated with 7 (in terms of special functions).
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Spectrum of Jacobi operators

Recall the previous notation:

pa(z) = 11(0;9a,9,2) and a(z) = 1¢1(0;9a ';q,a '2).
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Spectrum of Jacobi operators

Recall the previous notation:
pa(z) = 11(0;9a,9,2) and a(z) = 1¢1(0;9a ';q,a '2).

Theorem

The set of zeros of ¢, coincide with the spectrum of T, provided a ¢ (g, "), or TF provided
1#ac (q,97"). The components of a corresponding eigenvector can be chosen as

ue(x) = @/20a(q"'x), ke Zy.
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pa(z) = 11(0;9a,9,2) and a(z) = 1¢1(0;9a ';q,a '2).
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The set of zeros of ¢, coincide with the spectrum of T, provided a ¢ (g, "), or TF provided
1#ac (q,97"). The components of a corresponding eigenvector can be chosen as

uk(x) = a/20a(q""'x), ke

If 1 # a€ (q,g") then x is an eigenvalue of T(«) if and only if kpa(x) + aa(x) = 0. The
components of a corresponding eigenvector can be chosen as

Uk, x) = 472 (kaP0a(@ 1 x) + @/ 2pa(d X)), K € Zs,
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Spectrum of Jacobi operators

Recall the previous notation:
pa(z) = 11(0;9a,9,2) and a(z) = 1¢1(0;9a ';q,a '2).

Theorem

The set of zeros of ¢, coincide with the spectrum of T, provided a ¢ (g, "), or TF provided
1#ac (q,97"). The components of a corresponding eigenvector can be chosen as

uk(x) = a/20a(q""'x), ke

If 1 # a€ (q,g") then x is an eigenvalue of T(«) if and only if kpa(x) + aa(x) = 0. The
components of a corresponding eigenvector can be chosen as

Uk, x) = 472 (kaP0a(@ 1 x) + @/ 2pa(d X)), K € Zs,

An immediate consequence is the orthogonality relation [Koelink&Swarttouw94]

q—1+u/2

1/2,, .
2Wn JV(q anq)

5m,n

Z quu(q(kH)/sz; q) Ju(q(k+1)/2Wn; q)=—
k=0

AJdy(Wp; Q)
oz

where 0 < wy < wo < wg < ... are positive zeros of J,(z;q), v > —1, m,n € N.
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Conclusion
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o F étampach, P. Stovisek: The Nevanlinna parametrization for qg-Lommel polynomials in the
indeterminate case, arXiv:1407.0217 [math.SP].
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Conclusion

References:
o F. Stampach, P. Stovitek: The Hahn-Exton q-Bessel function as the characteristic function of
a Jacobi matrix, arxiv:1404.7647 [math.SP].

o F étampach, P. Stovisek: The Nevanlinna parametrization for qg-Lommel polynomials in the
indeterminate case, arXiv:1407.0217 [math.SP].

Thank you!
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