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Motivation

Motivation

Chebychev’s question (1874, most likely inspired by work of I. J. Bienaymé, 1853):
If for some positive function f ,∫

R
xnf(x)dx =

∫
R
xne−x

2
dx, ∀n = 0, 1, . . .

can we then conclude that f(x) = e−x
2
?

In today’s language: Is the normal density uniquely determined by its moment sequence?

Answer: yes in the sense that f(x) = e−x
2

a.e. w.r.t. Lebesque measure on R.

Relevant questions immediately appear:
What happens if one replaces the normal density by something else?

The general answer to Chebychev’s question is no. Suppose, e.g., X ∼ N(0, σ2) and
consider densities of exp(X) (lognormal distribution), then we lost the uniqueness.

And what if one replaces the RHS by a sequence of real numbers sn? Does there even exist
a distribution (measure) whose n-th moment is equal to sn?

Answer: In general, no.
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If for some positive function f ,∫

R
xnf(x)dx =

∫
R
xne−x

2
dx, ∀n = 0, 1, . . .

can we then conclude that f(x) = e−x
2
?

In today’s language: Is the normal density uniquely determined by its moment sequence?

Answer: yes in the sense that f(x) = e−x
2

a.e. w.r.t. Lebesque measure on R.

Relevant questions immediately appear:
What happens if one replaces the normal density by something else?

The general answer to Chebychev’s question is no. Suppose, e.g., X ∼ N(0, σ2) and
consider densities of exp(X) (lognormal distribution), then we lost the uniqueness.

And what if one replaces the RHS by a sequence of real numbers sn? Does there even exist
a distribution (measure) whose n-th moment is equal to sn?

Answer: In general, no.
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František Štampach (Stockholm University) The Moment Problem November 2, 2016 5 / 30



What the moment problem is?

What is the moment problem

Let I ⊂ R be a closed interval. For a positive measure µ on I the nth moment is defined as∫
I
xndµ(x), (provided the integral exists).

Suppose a real sequence {sn}n≥0 is given. The moment problem on I consists of solving the
following three problems:

1 Does there exist a positive measure on I with moments {sn}n≥0?
If so,

2 is this positive measure uniquely determined by moments {sn}n≥0? (determinate case)
If this is not the case,

3 how one can describe all positive measures on I with moments {sn}n≥0? (indeterminate
case)

uniqueness ' determinate case vs. non-uniqueness ' indeterminate case

One can restrict oneself to cases:

I = R - Hamburger moment problem (MH = set of solutions)

I = [0,+∞) - Stieltjes moment problem (MS = set of solutions)

I = [0, 1] - Hausdorff moment problem
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What the moment problem is?

Hausdorff moment problem

Theorem (Hausdorff, 1923)

The moment problem has a solution on [0, 1] iff sequence {sn}n≥0 is completely monotonic, i.e.,

(−1)k(∆ks)n ≥ 0

for all k, n ∈ Z+, where (∆s)n = sn+1 − sn.

and moreover ...

The Hausdorff moment problem is always determinate.

Further, we will discuss the Stieltjes and Hamburger moment problem only...
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Existence and uniqueness of the solution - operator approach
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Existence and uniqueness of the solution - operator approach

Existence of the solution (necessary condition)

For {sn}n≥0, we denote HN (s) the N ×N Hankel matrix with entries

(HN (s))ij := si+j i, j ∈ {0, 1, . . . N − 1}.

Define two sesquilinear forms HN and SN on CN by

HN (x, y) :=

N−1∑
i=0

N−1∑
j=0

xiyjsi+j and SN (x, y) :=

N−1∑
i=0

N−1∑
j=0

xiyjsi+j+1.

Hence HN (x, y) = (x,HN (s)y) and SN (x, y) = (x,HN (Ts)y) ((., .) Euclidean inner
product).
Let µ ∈MH or µ ∈MS with infinite support. By observing that

HN (y, y) =

∫ ∣∣∣∣N−1∑
i=0

yix
i

∣∣∣∣2dµ(x) and SN (y, y) =

∫
x

∣∣∣∣N−1∑
i=0

yix
i

∣∣∣∣2dµ(x),

one immediately gets the following.

Necessary condition for the existence:

A necessary condition for the Hamburger moment problem to have a solution (with infinite support)
is the sesquilinear form HN is PD for all N ∈ Z+. A necessary condition for the Stieltjes moment
problem to have a solution (with infinite support) is both sesquilinear forms HN and SN are PD for
all N ∈ Z+.
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Existence and uniqueness of the solution - operator approach

Existence of the solution (sufficient condition)

Let {sn}n≥0 is give such that HN (s) are PD for all N ∈ N.

Let C[x] be the ring of complex polynomials.
For P,Q ∈ C[x],

P (x) =

N−1∑
k=0

akx
k, and Q(x) =

N−1∑
k=0

bkx
k,

define positive definite inner product

〈P,Q〉 := HN (a, b).

By using standard procedure, we can complete C[x] to a Hilbert space H(s).

Define densely defined operator A on H(s) with Dom(A) = C[x] by

A[P (x)] = xP (x).

Since
〈P,A[Q]〉 = SN (a, b) = 〈A[P ], Q〉,

A is a symmetric operator.
In particular,

〈1, An1〉 = 〈1, xn〉 = sn, n ∈ N0.
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For P,Q ∈ C[x],

P (x) =

N−1∑
k=0

akx
k, and Q(x) =

N−1∑
k=0

bkx
k,

define positive definite inner product

〈P,Q〉 := HN (a, b).

By using standard procedure, we can complete C[x] to a Hilbert space H(s).

Define densely defined operator A on H(s) with Dom(A) = C[x] by

A[P (x)] = xP (x).

Since
〈P,A[Q]〉 = SN (a, b) = 〈A[P ], Q〉,

A is a symmetric operator.
In particular,

〈1, An1〉 = 〈1, xn〉 = sn, n ∈ N0.
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Existence and uniqueness of the solution - operator approach

Existence of the solution (sufficient condition)

A has a self-adjoint extension since it commutes with a complex conjugation operator C on
C[x] (von Neumann).

If each SN is PD, then

〈P,A[P ]〉 = SN (a, a) ≥ 0, ∀P ∈ C[x],

and it follows A has a non-negative self-adjoint extension AF , the Friedrichs extension.

Let A′ be a self-adjoint extension of A. By the spectral theorem there is a projection valued
spectral measure EA′ and positive measure

µ(·) = 〈1, EA′ (·)1〉.

Hence, for a suitable function f , it holds

〈1, f(A′)1〉 =

∫
R
f(x)dµ(x).

Especially, for f(x) = xn, one finds

sn = 〈1, An1〉 = 〈1, (A′)n1〉 =

∫
R
xndµ(x).
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František Štampach (Stockholm University) The Moment Problem November 2, 2016 11 / 30



Existence and uniqueness of the solution - operator approach

Existence of the solution (sufficient condition)

A has a self-adjoint extension since it commutes with a complex conjugation operator C on
C[x] (von Neumann).

If each SN is PD, then

〈P,A[P ]〉 = SN (a, a) ≥ 0, ∀P ∈ C[x],

and it follows A has a non-negative self-adjoint extension AF , the Friedrichs extension.

Let A′ be a self-adjoint extension of A. By the spectral theorem there is a projection valued
spectral measure EA′ and positive measure

µ(·) = 〈1, EA′ (·)1〉.

Hence, for a suitable function f , it holds

〈1, f(A′)1〉 =

∫
R
f(x)dµ(x).

Especially, for f(x) = xn, one finds

sn = 〈1, An1〉 = 〈1, (A′)n1〉 =

∫
R
xndµ(x).
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Existence and uniqueness of the solution - operator approach

Existence of the solution

We see a self-adjoint extension of A yields a solution of the Hamburger moment problem.

If, additionally, each SN is PD, AF is a non-negative self-adjoint extension of A and for the
corresponding measure one has supp(µ) ⊂ [0,∞). So there is a solution of the Stieltjes
moment problem.

Hence we arrive at the theorem on the existence of the solution.

Theorem (existence):

i) A necessary and sufficient condition forMH 6= ∅ (with infinite support) is

detHN (s) > 0 ∀N ∈ N.

ii) A necessary and sufficient condition forMS 6= ∅ (with infinite support) is

detHN (s) > 0 ∧ detSN (s) > 0 ∀N ∈ N.

Historically, this result has not been obtained by using the spectral theorem that was invented
later.
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Existence and uniqueness of the solution - operator approach

Uniqueness

In view of the connection of the moment problem and self-adjoint extensions, the following
result is reasonable.

Theorem (uniqueness):

i) A necessary and sufficient condition for the Hamburger moment problem to be determinate is
that the operator A is essentially self-adjoint (i.e., it has a unique self-adjoint extension).

ii) A necessary and sufficient condition for the Stieltjes moment problem to be determinate is that
the operator A has a unique non-negative self-adjoint extension.

It is not easy to prove the theorem.

In one direction, it is not clear that distinct self-adjoint extensions A′1 and A′2 give rise to
distinct measures µ1 and µ2.

The other direction is even less clear. For not only is it not obvious, it is false that every
solution of the moment problem arise from some measure given by spectral measure of some
self-adjoint extension.

A solution of the moment problem which comes from a self-adjoint extension of A is called
N-extremal solution (von Neumann [Simon], extremal [Shohat–Tamarkin]).
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Jacobi matrix and Orthogonal Polynomials
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Jacobi matrix and Orthogonal Polynomials

Jacobi matrix and Orthogonal Polynomials

Let each HN (s) is PD. The set {1, x, x2, . . . } ⊂ H(s) is total and linearly independent.

By applying the Gramm-Schmidt procedure, we obtain an orthonormal basis {Pn}∞n=0

of H(s).

By construction, Pn is a polynomial of degree n with real coefficients and

〈Pm, Pn〉 = δmn, ∀m,n ∈ N0.

These are well-known Orthogonal Polynomials.

{Pn}∞n=0 are determined by moment sequence {sn}∞s=0,

Pn(x) =
1√

det[Hn+1(s)Hn(s)]

∣∣∣∣∣∣∣∣∣∣∣

s0 s1 . . . sn
s1 s2 . . . sn+1

...
...

...
sn−1 sn . . . s2n−1

1 x . . . xn

∣∣∣∣∣∣∣∣∣∣∣
.
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Jacobi matrix and Orthogonal Polynomials

Since
span(1, x, . . . , xn) = span(P0, P1, . . . , Pn),

the polynomial xPn(x) has an expansion in P0, P1, . . . , Pn+1.

Moreover, if 0 ≤ j < n− 1, one has

〈Pj , xPn〉 = 〈xPj , Pn〉 = 0.

There are sequences {an}∞n=0, {bn}∞n=0, and {cn}∞n=0 such that

xPn(x) = cnPn+1(x) + bnPn(x) + an−1Pn−1(x), (P−1(x) := 0),

for n ∈ N0.

Furthermore, by the Gramm-Schmidt procedure, cn > 0, and

cn = 〈Pn+1, xPn〉 = 〈Pn, xPn+1〉 = an.

Thus, any sequence of orthogonal polynomials satisfies a three-term recurrence

xPn(x) = anPn+1(x) + bnPn(x) + an−1Pn−1(x)

where an > 0 and bn ∈ R.

And A has, in the basis {Pn}∞n=0, a symmetric tridiagonal matrix representation.
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Jacobi matrix and Orthogonal Polynomials

Under the unitary mapping
U : H(s) → `2(N0) : Pn 7→ en

the operator A is transformed to the operator U∗AU which we denote again by A only.

One has

A =


b0 a0

a1 b1 a1

a2 b2 b3
. . .

. . .
. . .

, DomA = span{en | n ∈ N0}.

Thus, to a given sequence of moments {sn}∞n=0, we can find real {bn}∞n=0 and positive
{an}∞n=0 which give rise to the operator A and the spectral measures of its self-adjoint
realization yield (some) solutions to the moment problem.

There are explicit formulas for the bn’s and an’s in terms of the determinants of the sn’s.

The set of moments {sn}∞n=0 is associated to the Jacobi matrix A through identity

sn = (e0, A
ne0).

Consequently, we obtained the following correspondences:

moment sequence ↔ Jacobi matrix
l l

Orthogonal Polynomials ↔ three-term recurrence

František Štampach (Stockholm University) The Moment Problem November 2, 2016 17 / 30



Jacobi matrix and Orthogonal Polynomials

Under the unitary mapping
U : H(s) → `2(N0) : Pn 7→ en

the operator A is transformed to the operator U∗AU which we denote again by A only.

One has

A =


b0 a0

a1 b1 a1

a2 b2 b3
. . .

. . .
. . .

, DomA = span{en | n ∈ N0}.

Thus, to a given sequence of moments {sn}∞n=0, we can find real {bn}∞n=0 and positive
{an}∞n=0 which give rise to the operator A and the spectral measures of its self-adjoint
realization yield (some) solutions to the moment problem.

There are explicit formulas for the bn’s and an’s in terms of the determinants of the sn’s.

The set of moments {sn}∞n=0 is associated to the Jacobi matrix A through identity

sn = (e0, A
ne0).

Consequently, we obtained the following correspondences:

moment sequence ↔ Jacobi matrix
l l

Orthogonal Polynomials ↔ three-term recurrence
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František Štampach (Stockholm University) The Moment Problem November 2, 2016 17 / 30



Jacobi matrix and Orthogonal Polynomials

Under the unitary mapping
U : H(s) → `2(N0) : Pn 7→ en

the operator A is transformed to the operator U∗AU which we denote again by A only.

One has

A =


b0 a0

a1 b1 a1

a2 b2 b3
. . .

. . .
. . .

, DomA = span{en | n ∈ N0}.

Thus, to a given sequence of moments {sn}∞n=0, we can find real {bn}∞n=0 and positive
{an}∞n=0 which give rise to the operator A and the spectral measures of its self-adjoint
realization yield (some) solutions to the moment problem.

There are explicit formulas for the bn’s and an’s in terms of the determinants of the sn’s.

The set of moments {sn}∞n=0 is associated to the Jacobi matrix A through identity

sn = (e0, A
ne0).

Consequently, we obtained the following correspondences:

moment sequence ↔ Jacobi matrix
l l

Orthogonal Polynomials ↔ three-term recurrence
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Sufficient conditions for determinacy

Sufficient conditions for determinacy - moment sequence

It is desirable to be able to decide whether the moment problem is determinate (or indeterminate)
just by looking at the moment sequence {sn}∞n=0, or the Jacobi matrix (seq. {an}∞n=0, {bn}∞n=0),
or orthogonal polynomials {Pn}∞n=0.

Theorem (Carleman, 1922, 1926):

If

1)
∞∑
n=1

1
2n
√
|s2n|

=∞ or 2)
∞∑
n=1

1

an
=∞

then the Hamburger moment problem is determinate.
If

∞∑
n=1

1
2n
√
|sn|

=∞

then both Hamburger and Stieltjes moment problems are determinate.

Hence, e.g., if {an}∞n=0 is bounded or there are R,C > 0 such that

|sn| ≤ CRnn!,

for all n sufficiently large, we have determinate Hamburger m.p. If

|sn| ≤ CRn(2n)!,

for all n sufficiently large, we have determinate Stieltjes m.p.
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Sufficient conditions for determinacy

Sufficient conditions for determinacy - Jacobi matrix

Theorem (Chihara, 1989):

Let

lim
n→∞

bn =∞ and lim
n→∞

a2
n

bnbn+1
= L <

1

4
.

then the Hamburger moment problem is determinate if

lim inf
n→∞

n
√
bn <

1 +
√

1− 4L

1−
√

1− 4L

and indeterminate if the opposite (strict) inequality holds.

Chihara uses totally different approach to the problem - concept of chain sequences.
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Sufficient conditions for determinacy

Sufficient conditions for determinacy - Orthogonal Polynomials

Recall {Pn}∞n=0 are determined by the three-term recurrence

xPn(x) = anPn+1(x) + bnPn(x) + an−1Pn−1(x)

with initial settings P0(x) = 1 and P1(x) =
1

b0
(x− a0).

Let us denote by {Qn}∞n=0 a polynomial sequence that solve the same recurrence as

{Pn}∞n=0 with initial conditions Q0(x) = 0 and Q1(x) =
1

b0
.

These two polynomial sequences are linearly independent and any solution of the three-term
recurrence is a linear combination of them.

Theorem (Hamburger, 1920-21):

The Hamburger moment problem is determinate if and only if

∞∑
n=0

(P 2
n(0) +Q2

n(0)) =∞.

Actually, one can write some x ∈ R instead of zero in the condition.

It is even necessary and sufficient that there exists a z ∈ C \ R such that both {Pn(z)}∞n=0

and {Qn(z)}∞n=0 does not belong to `2(Z+).
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The set of solutions of indeterminate moment problem

The set of solutions of indeterminate moment problem

The problem about describingMH was solved by Nevanlinna in 1922 using complex function
theory.

A function φ is called Pick (or Nevanlinna–Pick or Herglotz–Nevanlinna) function if it is
holomorphic in C+ := {z ∈ C | =z > 0} and =φ(z) ≥ 0 for z ∈ C+.
Denote the set of Pick functions by P.
P ∪ {∞} denotes the one-point compactification of P (P inherits the topology of holomorphic
functions on C \ R)

Nevanlinna, 1922

The solutions of the Hamburger moment problem in the indeterminate case are parametrized via
homeomorphism φ 7→ µφ of P ∪ {∞} ontoMH given by∫

R

dµφ(x)

x− z
= −

A(z)φ(z)− C(z)

B(z)φ(z)−D(z)
, z ∈ C \ R,

where A, B, C, D are certain entire function determined by the problem (i.e., the moment
sequence, or orthogonal polynomials, ...).

A, B, C, D are called Nevanlinna functions and
(
A C
B D

)
the Nevanlinna matrix.

The solution µφ can be then expressed by using Stiltjes-Perron inversion formula.
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The set of solutions of indeterminate moment problem

Properties of MH

We take a closer look at the set of solutionsMH of an indeterminate Hamburger moment
problem.

MH is convex (therefore infinite).

MH is a compact infinite dimensional set.

The subsets of absolutely continuous, discrete and singular continuous solutions each are
dense inMH , [Berg and Christensen, 1981].

µ is an extreme point inMH if and only if polynomials C[x] are dense in L1(R, µ), [Naimark,
1946].

Extreme points are dense inMH .
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The set of solutions of indeterminate moment problem

An example due to Stieltjes

Note first that, for k ∈ Z+, ∫ ∞
0

uku− lnu sin(2π lnu)du = 0.

(Change of variables v = −(k + 1)/2 + lnu  an odd function integrated along R.)

Thus, for any ϑ ∈ [−1, 1], it holds

1
√
π

∫ ∞
0

uku− lnu [1 + ϑ sin(2π lnu)] du = e
1
4

(k+1)2 .

So sk = exp(1/4(k + 1)2) is a moment set for an indeterminate Stieltjes problem.
Moreover, denoting

dµϑ(u) =
1
√
π
u− lnu [1 + ϑ sin(2π lnu)] du,

then, for ϑ ∈ (−1, 1), function

fϑ(u) =
sin(2π lnu)

1 + ϑ sin(2π lnu)

is in L2(dµϑ) and it is orthogonal to all polynomials.
Hence polynomials are not dense in L2(dµϑ). This is a typical situation for solutions of
indeterminate moment problems which are not N-extremal.
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The set of solutions of indeterminate moment problem

Nevanlinna functions A,B,C, and D

In some sense, to solve indeterminate Hamburger moment problem means to find the
Nevanlinna functions A,B,C, and D (in particular B and D).

They can by computed by using orthogonal polynomials,

A(z) = z
∞∑
k=0

Qk(0)Qk(z), C(z) = 1 + z
∞∑
k=0

Pk(0)Qk(z)

B(z) = −1 + z
∞∑
k=0

Qk(0)Pk(z), D(z) = z
∞∑
k=0

Pk(0)Pk(z),

where sums converge locally uniformly in C.

More on A,B,C,D:

A,B,C,D are entire functions of order ≤ 1, if the order is 1, the exponential type is 0 [Riesz,
1923]

A,B,C,D have the same order, type and Phragmén-Lindenlöf indicator function [Berg and
Pedersen, 1994]
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The set of solutions of indeterminate moment problem

Important solutions 1/2

If φ(z) = t ∈ R ∪ {∞} then φ ∈ P ∪ {∞} and µt is a discrete measure of the form

µt =
∑
x∈Λt

ρ(x)δ(x).

Λt denotes the set of zeros of x 7→ B(x)t−D(x) (or x 7→ B(x) if t =∞) and

1

ρ(x)
=

∞∑
n=0

P 2
n(x) = B′(x)D(x)−B(x)D′(x), x ∈ R.

Measures µt, t ∈ R ∪ {∞}, are all N-extremal solutions.

They are the only solutions for which polynomials C[x] are dense in L2(R, µt) ({Pn} forms
an orthonormal basis of L2(R, µt)), [Riesz, 1923].

N-extremal solutions are indeed extreme points inMH - but not the only ones.
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The set of solutions of indeterminate moment problem

Important solutions 2/2

If we set

φ(z) =

{
β + iγ, =z > 0,

β − iγ, =z < 0,

for β ∈ R and γ > 0, then φ ∈ P and µβ,γ is absolutely continuous with density

dµβ,γ

dx
=

γ/π

(βB(x)−D(x))2 + (γB(x))2
, x ∈ R.

Polynomials C[x] are not dense in L1(R, µβ,γ).

The solution µ0,1 is the one that maximizes certain entropy integral, (see Krein’s condition).
More general and additional information are provided in [Gabardo, 1992].
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(βB(x)−D(x))2 + (γB(x))2
, x ∈ R.

Polynomials C[x] are not dense in L1(R, µβ,γ).

The solution µ0,1 is the one that maximizes certain entropy integral, (see Krein’s condition).
More general and additional information are provided in [Gabardo, 1992].
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The set of solutions of indeterminate moment problem

Nevanlinna parametrization in the case of Stieltjes moment problem

Suppose {sn}∞n=0 is a sequence of Stieltjes moments such that the moment problem is
indeterminate in the sense of Hamburger.

To describeMS one can still use the Nevanlinna parametrization.

Just restrict oneself to consider only the Pick functions φ which have an analytic continuation
to C \ [0,∞) such that α ≤ φ(x) ≤ 0 for x < 0, [Pedersen, 1997]

The quantity α ≤ 0 plays an important role and can be obtain as the limit

α = lim
n→∞

Pn(0)

Qn(0)
.

The moment problem is determinate in the sense of Stieltjes if and only if α = 0.

The only N-extremal solutions supported within [0,∞) are µt with α ≤ t ≤ 0.

For the indeterminate Stieljes moment problem there is a slightly more elegant way how to
describeMS known as Krein parametrization, [Krein, 1967].
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František Štampach (Stockholm University) The Moment Problem November 2, 2016 29 / 30



The set of solutions of indeterminate moment problem

Nevanlinna parametrization in the case of Stieltjes moment problem

Suppose {sn}∞n=0 is a sequence of Stieltjes moments such that the moment problem is
indeterminate in the sense of Hamburger.

To describeMS one can still use the Nevanlinna parametrization.

Just restrict oneself to consider only the Pick functions φ which have an analytic continuation
to C \ [0,∞) such that α ≤ φ(x) ≤ 0 for x < 0, [Pedersen, 1997]

The quantity α ≤ 0 plays an important role and can be obtain as the limit

α = lim
n→∞

Pn(0)

Qn(0)
.

The moment problem is determinate in the sense of Stieltjes if and only if α = 0.

The only N-extremal solutions supported within [0,∞) are µt with α ≤ t ≤ 0.

For the indeterminate Stieljes moment problem there is a slightly more elegant way how to
describeMS known as Krein parametrization, [Krein, 1967].

František Štampach (Stockholm University) The Moment Problem November 2, 2016 29 / 30



The set of solutions of indeterminate moment problem

Nevanlinna parametrization in the case of Stieltjes moment problem

Suppose {sn}∞n=0 is a sequence of Stieltjes moments such that the moment problem is
indeterminate in the sense of Hamburger.

To describeMS one can still use the Nevanlinna parametrization.

Just restrict oneself to consider only the Pick functions φ which have an analytic continuation
to C \ [0,∞) such that α ≤ φ(x) ≤ 0 for x < 0, [Pedersen, 1997]

The quantity α ≤ 0 plays an important role and can be obtain as the limit

α = lim
n→∞

Pn(0)

Qn(0)
.

The moment problem is determinate in the sense of Stieltjes if and only if α = 0.

The only N-extremal solutions supported within [0,∞) are µt with α ≤ t ≤ 0.

For the indeterminate Stieljes moment problem there is a slightly more elegant way how to
describeMS known as Krein parametrization, [Krein, 1967].

František Štampach (Stockholm University) The Moment Problem November 2, 2016 29 / 30



The set of solutions of indeterminate moment problem

Nevanlinna parametrization in the case of Stieltjes moment problem

Suppose {sn}∞n=0 is a sequence of Stieltjes moments such that the moment problem is
indeterminate in the sense of Hamburger.

To describeMS one can still use the Nevanlinna parametrization.

Just restrict oneself to consider only the Pick functions φ which have an analytic continuation
to C \ [0,∞) such that α ≤ φ(x) ≤ 0 for x < 0, [Pedersen, 1997]

The quantity α ≤ 0 plays an important role and can be obtain as the limit

α = lim
n→∞

Pn(0)

Qn(0)
.

The moment problem is determinate in the sense of Stieltjes if and only if α = 0.

The only N-extremal solutions supported within [0,∞) are µt with α ≤ t ≤ 0.

For the indeterminate Stieljes moment problem there is a slightly more elegant way how to
describeMS known as Krein parametrization, [Krein, 1967].
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