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The beginning of Hardy inequalities

The classical Hardy inequalities

The classical p-Hardy inequalities (p > 1):
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The constants are sharp.

» Origins in 1906—-1928, [Kufner-Maligranda-Persson, 2006].
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2) Continuous:

oo | 4 X 1% p P e}
veecze) | [TIL [Metta ax< (JEL) [T etopax
o IxJo p—1 0

The constants are sharp.

» Origins in 1906—-1928, [Kufner-Maligranda-Persson, 2006].
» Credited to G. H. Hardy.
» But many other mathematicians contributed (E. Landau, G. Pdlya, I. Schur, M. Riesz,...).

Franti$ek Stampach (CTU in Prague) On discrete Hardy inequalities 3/33



The (pre)history of Hardy inequalities

» Hardy’s original motivation was to find a "simple" proof of the weak form the ¢2-Hilbert

inequality:

Vv € £3(N)
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» 4 more proofs came afterwards: by H. Weyl in 1908 with the sharp constant =,
by F. Wiener in 1910,
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HI proved by D. Hilbert in 1906 with constant 2.

4 more proofs came afterwards: by H. Weyl in 1908 with the sharp constant ,
by F. Wiener in 1910,
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v

v

In today’s language:

m+n
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T euing ofHardy nequaics |
The (pre)history of Hardy inequalities

» Hardy’s original motivation was to find a "simple" proof of the weak form the ¢/2-Hilbert
inequality:

oo
VmV,
Vv € #(N) > m’"+’;7 Z [Vn[?

m,n=1

» Hl proved by D. Hilbert in 1906 with constant 2.

» 4 more proofs came afterwards: by H. Weyl in 1908 with the sharp constant =,
by F. Wiener in 1910,
and two more by |. Schur in 1911.

» In today’s language:

= — (1N i i
IH|l =, where H = <m+”>m,n:1 is the Hilbert matrix.
» A fifth simple proof introduced by Hardy in 1920 using the weak form of the ¢2-Hardy
inequality
oo 1 n 2 [o'e]
S a3 w] 4> wf
n=1"" k=1 n=1

appearing (almost, implicitly) in his paper in 1919 (the convergence already in 1915).
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The (pre)history of Hardy inequalities

» In a 1919 letter, M. Riezs sent to G. Hardy a proof of the inequality

(e} 1 n P p2 P oo p
Z E Z k| = p—1 Z Ian
n=1 k=1 n=1

with the non-optimal constant.
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The (pre)history of Hardy inequalities

» In a 1919 letter, M. Riezs sent to G. Hardy a proof of the inequality

oo 1 n P p2 P oo p
dop2w| < p=g) 2wl
n=1 k=1 n=1

with the non-optimal constant.

» In 1920, Hardy showed that the constant must be < (p¢(p))P and conjectured the sharp
constant.

» In a 1921 letter, E. Landau sent to G. Hardy a proof of the inequality with the sharp constant.

...from now on, we consider only p = 2.
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The discrete vs. continuous Hardy inequality

The discrete vs. continuous Hardy inequality

Discrete Continuous
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1
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n
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=1

2 o
<4 lwf
n=1

Introduce v, := up — Up_1
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The discrete vs. continuous Hardy inequality

Discrete Continuous
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Claim:
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The discrete vs. continuous Hardy inequality

Proof: discrete Hardy — continuous Hardy
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The optimal discrete Hardy inequality

Criticality of the continuous Hardy weight

> Not only the constant }, but the whole weight w(x) = 4‘7 in the inequality

oo oo 2
/O |@’(X)|2dX2%/O [POIF 4y,

X2

cannot be improved.
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The optimal discrete Hardy inequality

Criticality of the continuous Hardy weight

> Not only the constant }, but the whole weight w(x) = 4‘7 in the inequality
oo 1 oo 2
/ |<,o’(x)|2dx2 7/ de’
0 4 Jo X2

cannot be improved.
» The classical Hardy weight is critical (for —A on Ry).
> |t means that if, for w > 0, it holds that

[T leacz [T woaletapax, v e 6 (0,00),
0 0

and ;
w(x)>—, aex>0,
()_4x2

then :
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() 4x2

» The situation on the discrete side is different!
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The optimal discrete Hardy weight

Theorem [Keller-Pinchover-Pogorzelski, 2018]

For all u € C¢(N), up := 0, one has

oo oo
D lun = un—a? =D Wi un?
n=1 n=1

KPP /n—A1 /n+1 1
wp =2 — - — .
n n n 7 ae

where
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The optimal discrete Hardy weight

Theorem [Keller-Pinchover-Pogorzelski, 2018]

For all u € C¢(N), up := 0, one has

oo oo
D lun = un—a? =D Wi un?
n=1 n=1

KPP . [n—1 /n+1

The weight wXPP is critical (even optimal).

where

» The claim is a particular case of a more abstract result formulated in the graph setting
[Keller-Pinchover-Pogorzelski, 2018].
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The optimal discrete Hardy inequality

The remainder term in the optimal discrete Hardy inequality

Theorem [Krej&iFik-S., 2022]
For all u € C¢(N), up = 0, we have the identity

2

4n+1u 4 nu
Vo " Va1 !

oo oo (oo}
Doty —unfP = Wi unl? + )
n=1 n=1

n=1
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The optimal discrete Hardy inequality

The remainder term in the optimal discrete Hardy inequality

Theorem [Krej&iFik-S., 2022]
For all u € C¢(N), up = 0, we have the identity

2

4n+1u 4 nu
Vo ™ Vg ™

oo oo (oo}
D lun—t = un? = Wi lunl? +
n=1 n=1 n=1

It immediately follows the discrete Hardy inequality

o0 o0
Z |Upn—1 — unl® > Z whPP |unl?.
n=1 n=1
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The optimal discrete Hardy inequality

The remainder term in the optimal discrete Hardy inequality

Theorem [Krej&iFik-S., 2022]

For all u € C¢(N), up = 0, we have the identity
4/n+1 U 4 n u
Vo " Va1 !

2

oo oo (oo}
> lun 1~ el = S WPl + >
n=1 n=1 n=1

It immediately follows the discrete Hardy inequality

oo oo
Z |up—1 — Un|2 > Z Wr}i(PP|Un|2~
n=1 n=1

Proof:
1) Elementary manipulations and summation by parts (assumes the remainder to be known).
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The optimal discrete Hardy inequality

The remainder term in the optimal discrete Hardy inequality

Theorem [Krej&iFik-S., 2022]

For all u € C¢(N), up = 0, we have the identity
4/n+1 U 4 n u
Vo " Va1 !

2

oo oo (oo}
> lun 1~ el = S WPl + >
n=1 n=1 n=1

It immediately follows the discrete Hardy inequality

oo oo
Z |up—1 — Un|2 > Z Wr}i(PP|Un|2~
n=1 n=1

Proof:
1) Elementary manipulations and summation by parts (assumes the remainder to be known).
2) A factorization method (to be shown).

» Discrete (Dirichlet) Laplacian on N: (AU)p :=Up—1 —2Up + Upy1 | Uy :=0.
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The optimal discrete Hardy inequality

The remainder term in the optimal discrete Hardy inequality

Theorem [Krej&iFik-S., 2022]

For all u € C¢(N), up = 0, we have the identity
4/n+1 U 4 n u
Vo " Va1 !

2

oo oo (oo}
> lun 1~ el = S WPl + >
n=1 n=1 n=1

It immediately follows the discrete Hardy inequality

oo oo
Z |up—1 — Un|2 > Z Wr}i(PP|Un|2~
n=1 n=1

Proof:
1) Elementary manipulations and summation by parts (assumes the remainder to be known).
2) A factorization method (to be shown).

» Discrete (Dirichlet) Laplacian on N: ’ (AU)p :=Up—1 —2Up + Upy1 | Uy :=0.
» Note that

oo [ee)

Z‘Unq —Un|2 > ZW”|U”|2 < —A—w2>0.

n=1 n=1
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The optimal discrete Hardy inequality

Proof of the identity: the idea of a factorization
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» Operator —A — w has a tridiagonal matrix representation.
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» Operator —A — w has a tridiagonal matrix representation.

> Ansatz: Seek a real bidiagonal A € B(¢2(N)) such thatm
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The optimal discrete Hardy inequality

Proof of the identity: the idea of a factorization

» Operator —A — w has a tridiagonal matrix representation.

> Ansatz: Seek a real bidiagonal A € B(¢2(N)) such thatm

» If such A exists, it has to act as follows:

1
(Au)n = anln — — Upy1.
an
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The optimal discrete Hardy inequality

Proof of the identity: the idea of a factorization

» Operator —A — w has a tridiagonal matrix representation.

> Ansatz: Seek a real bidiagonal A € B(¢2(N)) such thatm

» If such A exists, it has to act as follows:
1
(Au)n = anln — — Upy1.
an

» Then
(A" Au)n = —Up 1+ (@B +8,%) th = Uns1, (24 :=0),
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The optimal discrete Hardy inequality

Proof of the identity: the idea of a factorization

» Operator —A — w has a tridiagonal matrix representation.

> Ansatz: Seek a real bidiagonal A € B(¢2(N)) such thatm

» If such A exists, it has to act as follows:
1
(Au)n = anln — — Upy1.
an

» Then
(A" Au)n = —Up 1+ (@B +8,%) th = Uns1, (24 :=0),

((—A = W)u), = —Un_ + (2~ Wn)ln — Uny 1
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The optimal discrete Hardy inequality

Proof of the identity: the idea of a factorization

» Operator —A — w has a tridiagonal matrix representation.

> Ansatz: Seek a real bidiagonal A € B(¢2(N)) such thatm

> If such A exists, it has to act as follows:
(Au)n = anun — alnu,7+1.
» Then
(A*Au)p = —Up—1 + (a,21 + a;_21> Un = Uny1, (&24:=0),
((=A =w)u), = —Up_1 + (2 — Wn)Un — Upy1
» Comparing the diagonal terms and taking w = wXPP yields:
& =2

1 n+1 n—1
2+ =1y , n>2.
a4 n n
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The optimal discrete Hardy inequality

Proof of the identity: the idea of a factorization

» Operator —A — w has a tridiagonal matrix representation.

» Ansatz: Seek a real bidiagonal A € B(¢2(N)) such that

> If such A exists, it has to act as follows:
(Au)n = anun — alnu,7+1.
» Then
(A*Au)p = —Up—1 + (a,21 + a;_21> Un = Uny1, (&24:=0),
((=A =w)u), = —Up_1 + (2 — Wn)Un — Upy1
» Comparing the diagonal terms and taking w = wXPP yields:

& =2

1 /n+1 /n—1 n> 2.
a%

_4n+1

“V

Franti$ek Stampach (CTU in Prague) On discrete Hardy inequalities 14/33
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Solution:




The optimal discrete Hardy inequality

The proof of criticality of wKPP

The identified remainder yields an elementary proof for the criticality of wXPP:

w™ critical — ’ If wis a Hardy weightand w > w* — w = w*.
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The optimal discrete Hardy inequality

The proof of criticality of wKPP

The identified remainder yields an elementary proof for the criticality of wXPP:

w™ critical — ’ If wis a Hardy weightand w > w* — w = w*.

» Suppose

o0 oo
Z |tn — Up—1[* > Z Wi un|?
n=1 n=1
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The optimal discrete Hardy inequality

The proof of criticality of wKPP

The identified remainder yields an elementary proof for the criticality of wXPP:

w™ critical — ’ If wis a Hardy weightand w > w* — w = w*.

» Suppose

o0 oo
Z |tn — Up—1[* > Z Wi un|?
n=1 n=1

and subtract

> > > n+1 n
D luny = unf? = Wi |ual? + > \4/ L, U~ Wm“nﬂ
n=1 n=1 n=1
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The optimal discrete Hardy inequality

The proof of criticality of wKPP

The identified remainder yields an elementary proof for the criticality of wXPP:

w™ critical — ’ If wis a Hardy weightand w > w* — w = w*.

» Suppose

o0 o0
Z |un — Up_1 |2 > Z Wn|Un‘2
n=1 n=1

and subtract

2
4n+1u J N u
n " Vg1
2
4n+1u J N u
n " Vnfi1

o0 o0 oo
Dol = unfP = Wi unl +
n=1 n=1 n=1

> |t yields the inequality

0> Z wn — wkPP) |un\2—z
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The optimal discrete Hardy inequality

The proof of criticality of wKPP

The identified remainder yields an elementary proof for the criticality of wXPP:

w™ critical — ’ If wis a Hardy weightand w > w* — w = w*.

» Suppose

o0 o0
Z |un — Up_1 |2 > Z Wn|Un‘2
n=1 n=1

and subtract

2
4n+1u J N u
n " Vg1
2
4n+1u J N u
n " Vnfi1

oo
0> (wn—wyF)n.
n=1

o0 o0 oo
Dol = unfP = Wi unl +
n=1 n=1 n=1

> |t yields the inequality

0> Z wn — wkPP) |un\2—z

» By setting un := +/n, we get
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The optimal discrete Hardy inequality

The proof of criticality of wKPP

The identified remainder yields an elementary proof for the criticality of wXPP:

w™ critical — ’ If wis a Hardy weightand w > w* — w = w*.

» Suppose

o0 o0
Z |un — Up_1 |2 > Z Wn|Un‘2
n=1 n=1

and subtract

2
4n+1u J N u
n " Vg1
2
4n+1u J N u
n " Vnfi1

oo
0> (wn—wyF)n.
n=1

o0 o0 oo
Dol = unfP = Wi unl +
n=1 n=1 n=1

v

It yields the inequality

0> Z wn — wkPP) |un\2—z

v

By setting un := v/n, we get

» If moreover w > wXPP it follows m
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The optimal discrete Hardy inequality

The proof of criticality of wKPP

The identified remainder yields an elementary proof for the criticality of wXPP:

w™ critical — ’ If wis a Hardy weightand w > w* — w = w*.

» Suppose

o0 o0
Z |un — Up_1 |2 > Z Wn|Un‘2
n=1 n=1

and subtract

2
4n+1u J N u
n " Vg1
2
4n+1u J N u
n " Vnfi1

oo
0> (wn—wyF)n.
n=1

o0 o0 oo
Dol = unfP = Wi unl +
n=1 n=1 n=1

v

It yields the inequality

0>Z (wn — wiPP)y |un\2—z

v

By setting un := v/n, we get

» If moreover w > wXPP it follows m

» But beware the cheating u ¢ Cc(N)! ~» A suitable regularization solves the issue.
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The optimal discrete Hardy inequality

A generalization of the identity

Theorem [Laptev-Krejgitik-S., 2022]
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The optimal discrete Hardy inequality

A generalization of the identity

Theorem [Laptev-Krejgitik-S., 2022]
If g > 0 is a sequence such that —Ag > 0, then, for any u € C¢(N) with ug = 0, we have

oo
Z|Unfun—1‘ ZWn|Un|2
n=1

where
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A generalization of the identity

Theorem [Laptev-Krejgitik-S., 2022]
If g > 0 is a sequence such that —Ag > 0, then, for any u € C¢(N) with ug = 0, we have

oo
Z|Unfun—1‘ ZWn|Un|2
n=1

where

In particular, w is a Hardy weight.
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A generalization of the identity

Theorem [Laptev-Krejgitik-S., 2022]

If g > 0 is a sequence such that —Ag > 0, then, for any u € C¢(N) with ug = 0, we have

oo
Z|Unfun—1‘ ZWn|Un|2
n=1

where (—Ag)n

On

Wp =

In particular, w is a Hardy weight.
Moreover, if there exists €NV € Co(N) such that ¢V < éN+1 ¢N 5 1 as N — oo, and

Jim Zgngn 1

Ve[ =0,

then w is critical.
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The optimal discrete Hardy inequality

A generalization of the identity

Theorem [Laptev-Krejgitik-S., 2022]

If g > 0 is a sequence such that —Ag > 0, then, for any u € C¢(N) with ug = 0, we have

9n—1 Un — gn U1
9n 9n—1

Wp = 7(_Ag)n .

On

2

oo oo o0
Z |Un — Up—1 ‘2 = Z Wn|Un|2 + Z
n=1 n=1 n=2

where

In particular, w is a Hardy weight.

Moreover, if there exists €NV € Co(N) such that ¢V < éN+1 ¢N 5 1 as N — oo, and
2

& - frlyq‘

Jim ngngnq =0,
e

then w is critical.

Remark: The identity can be further generalized in at least two respects [Huang-Ye].
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The optimal discrete Hardy inequality

Application: more critical Hardy weights

Franti$ek Stampach (CTU in Prague) On discrete Hardy inequalities 17/33



The optimal discrete Hardy inequality

Application: more critical Hardy weights

> If gn :=n9, for 0 < g < 1/2, in the previous theorem, we get the inequality

oo} [e o]
Z |un — Up—1 |2 > Z Wn(Q)|U"|2
n=1 n=1

with the critical Hardy weight

wn(Q) ::27(1,%)q7<1+%)q
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Application: more critical Hardy weights

> If gn :=n9, for 0 < g < 1/2, in the previous theorem, we get the inequality

oo oo
Z |un — Up—1 |2 > Z Wn(Q)|U"|2
n=1

n=1

with the critical Hardy weight

wn(Q) ::27(1,%)q7<1+%)q

» w(1/2) = wKPP is the Keller—Pinchover—Pogorzelski weight.
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The optimal discrete Hardy inequality

Application: more critical Hardy weights

> If gn :=n9, for 0 < g < 1/2, in the previous theorem, we get the inequality

oo oo
Z |un — Up—1 |2 > Z Wn(Q)|U"|2
n=1

n=1

with the critical Hardy weight

wn(Q) ::27(1,%)q7<1+%)q

» w(1/2) = wKPP is the Keller—Pinchover—Pogorzelski weight.
» For 0 < g < 1/2, no weight w(q) and w(1/2) is better than the other in the sense:

wi(q) > wy(1/2) while wn(q) < wn(1/2), VYn>>1.
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The optimal discrete Hardy inequality

Application: more critical Hardy weights

> If gn :=n9, for 0 < g < 1/2, in the previous theorem, we get the inequality

oo oo
Z |un — Up—1 |2 > Z Wn(Q)|U"|2
n=1

n=1

with the critical Hardy weight

wn(Q) ::27(1,%)q7(1+%)q

» w(1/2) = wKPP is the Keller—Pinchover—Pogorzelski weight.
» For 0 < g < 1/2, no weight w(q) and w(1/2) is better than the other in the sense:

wi(q) > wy(1/2) while wn(q) < wn(1/2), VYn>>1.

(But w(1/2) has the heaviest tail - is optimal at infinity - which w(q) are not.)
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The optimal discrete Hardy inequality

Application: spectral stability of the discrete Laplacian on N

Recall
o(—A) = gess(—A) = cac(—A) = [0,4].
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Application: spectral stability of the discrete Laplacian on N

Recall
o(—A) = gess(—A) = cac(—A) = [0,4].

Theorem [Laptev-Krejsifik-S., 2022]
Let v be a complex sequence and w a Hardy weight for —A on N. Then
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Application: spectral stability of the discrete Laplacian on N

Recall
o(—A) = gess(—A) = cac(—A) = [0,4].

Theorem [Laptev-Krejsifik-S., 2022]
Let v be a complex sequence and w a Hardy weight for —A on N. Then

1)

v|<w = o4(—-A—-v)=0 and o(—A — V) = gess(—A — v) =[0,4],
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The optimal discrete Hardy inequality

Application: spectral stability of the discrete Laplacian on N

Recall
o(—A) = gess(—A) = cac(—A) = [0,4].

Theorem [Laptev-Krejsifik-S., 2022]
Let v be a complex sequence and w a Hardy weight for —A on N. Then

1)

v|<w = o4(—-A—-v)=0 and o(—A — V) = gess(—A — v) =[0,4],
2)
Fe<)(v<ew) = op(—A—-v)=0 and o(—A —Vv) =occ(—A —v)=1]0,4].
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The optimal discrete Hardy inequality

Application: spectral stability of the discrete Laplacian on N

Recall
o(—A) = gess(—A) = cac(—A) = [0,4].

Theorem [Laptev-Krejsifik-S., 2022]
Let v be a complex sequence and w a Hardy weight for —A on N. Then

1)

v|<w = o4(—-A—-v)=0 and o(—A — V) = gess(—A — v) =[0,4],
2)
Fe<)(v<ew) = op(—A—-v)=0 and o(—A —Vv) =occ(—A —v)=1]0,4].

To get concrete conditions on the potential v, we can, for example, chose

Wp=2— 171 ‘77(1+1 ? 0< <1
n — n n ’ q_2
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Discrete Rellich inequalities

The improved discrete Rellich inequality on N

The continuous Rellich inequality [Rellich, 1954-56]:

oo [eS) 2
” 2 9 lo(x)]

dx > — dx

/0 | (x)| X > 16/0 a ,

for p € Cg°(0, 00) (or ¢ € H?(0, c0), ¢(0) = ¢’(0) = 0). Constant % is the best possible.
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Discrete Rellich inequalities

The improved discrete Rellich inequality on N

The continuous Rellich inequality [Rellich, 1954-56]:

oo [eS) 2
” 2 9 lo(x)]

dx > — dx

/0 | (x)| X > 16/0 a ,

for p € Cg°(0, 00) (or ¢ € H?(0, c0), ¢(0) = ¢’(0) = 0). Constant % is the best possible.

Theorem [Gerhat-KrejGifik-S., 2023]

For all u € Cg°(N) with up = uy = 0, the discrete Rellich inequality
oo (oo}
Dol=Awaf > > wi S unf?
n=1 n=2
holds with )
—A
weks — (2819 9. where g, =n/2.
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Discrete Rellich inequalities

The improved discrete Rellich inequality on N

The continuous Rellich inequality [Rellich, 1954-56]:

oo [eS) 2
” 2 9 lo(x)]

dx > — dx

/0 | (x)| X > 16/0 a ,

for p € Cg°(0, 00) (or ¢ € H?(0, c0), ¢(0) = ¢’(0) = 0). Constant % is the best possible.

Theorem [Gerhat-KrejGifik-S., 2023]

For all u € Cg°(N) with up = uy = 0, the discrete Rellich inequality

oo (oo}

Dol=Awaf > > wi S unf?

n=1 n=2
holds with )

—A
weks — (2819 9. where g, =n/2.
Remark:
wgKS > S vn>2

16n*’
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Discrete Rellich inequalities

The improved discrete Rellich inequality on N

The continuous Rellich inequality [Rellich, 1954-56]:

oo [eS) 2
” 2 9 lo(x)]

dx > — dx

/0 | (x)| X > 16/0 a ,

for p € Cg°(0, 00) (or ¢ € H?(0, c0), ¢(0) = ¢’(0) = 0). Constant % is the best possible.

Theorem [Gerhat-KrejGifik-S., 2023]

For all u € Cg°(N) with up = uy = 0, the discrete Rellich inequality

oo (oo}

Dol=Awaf > > wi S unf?

n=1 n=2
holds with )

weks — (2819 9. where g, =n/2.
Remark:
9 9 > ‘Un|2
GKS
W > T vn>2 s Z|( Au)p —6
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Discrete Rellich inequalities

Further remarks to the improved discrete Rellich inequality

» In the proof, the factorization method is employed to derive the identity

Franti$ek Stampach (CTU in Prague)

o0

>

n=1

o0 oo
(~Au)n? = 3" wSS|up2 + 37 [(Ru)al,
n=2 n=1
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Discrete Rellich inequalities

Further remarks to the improved discrete Rellich inequality

» In the proof, the factorization method is employed to derive the identity

o0 o0 oo
DoI=Awa =" wE S un® + > I(Ru)nl?,
n=1 n=2 n=1

» The remainder is determined by a second order difference operator R whose coefficients
are not known explicitly.
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Further remarks to the improved discrete Rellich inequality

» In the proof, the factorization method is employed to derive the identity

» The remainder is determined by a second order difference operator R whose coefficients

o0

>

n=1

o0 oo
(=AW =D~ WSS un* + > [(Ru)nl?,
n=2 n=1

are not known explicitly.

» The coefficients are given by two sequences which solve a system of nonlinear second order

difference equations.
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Discrete Rellich inequalities

Further remarks to the improved discrete Rellich inequality

v

» The remainder is determined by a second order difference operator R whose coefficients

In the proof, the factorization method is employed to derive the identity

o0

>

n=1

o0 oo
(=AW =D~ WSS un* + > [(Ru)nl?,
n=2 n=1

are not known explicitly.

v

difference equations.
wCKS is not critical.

v
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Discrete Rellich inequalities

Further remarks to the improved discrete Rellich inequality

» In the proof, the factorization method is employed to derive the identity
oo oo oo
Sol=auynP =" wSunP + > |(Ru)nl?,
n=1 n=2 n=1

» The remainder is determined by a second order difference operator R whose coefficients
are not known explicitly.

» The coefficients are given by two sequences which solve a system of nonlinear second order
difference equations.

» wCKS is not critical.
» Explicitly

WS = (1-2)" a1 1) e -a (14 1) (142) = e r 1 1
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Discrete Rellich inequalities

Further remarks to the improved discrete Rellich inequality

» In the proof, the factorization method is employed to derive the identity
oo oo oo
Sol=auynP =" wSunP + > |(Ru)nl?,
n=1 n=2 n=1

» The remainder is determined by a second order difference operator R whose coefficients
are not known explicitly.

» The coefficients are given by two sequences which solve a system of nonlinear second order
difference equations.

» wCKS is not critical.
» Explicitly

B = (128 (13) e a (e ) () =

» Recently improved by [Huang-Ye]:

=g 1+ (=) T (=) T () e

Franti$ek Stampach (CTU in Prague) On discrete Hardy inequalities 21/33



Discrete Rellich inequalities

Further remarks to the improved discrete Rellich inequality

» In the proof, the factorization method is employed to derive the identity
oo oo oo
Sol=auynP =" wSunP + > |(Ru)nl?,
n=1 n=2 n=1

» The remainder is determined by a second order difference operator R whose coefficients
are not known explicitly.

» The coefficients are given by two sequences which solve a system of nonlinear second order
difference equations.

» wCKS is not critical.
» Explicitly

o= (1-8) o (1-3) e (1) (108 = el

» Recently improved by [Huang-Ye]:

=g 1+ (=) T (=) T () e

» Neither wHY is critical.
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Discrete Rellich inequalities

What is a critical discrete Rellich weight?

Open Problem
Find a critical discrete Rellich weight.
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e Higher order Hardy-like inequalities
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Higher order Hardy-like inequalities

Higher order Hardy-like inequalities

The inequality [Birman 1961, Glazman 1965, Owen 1999, Gesztesy-etal. 2018]

@2 (20177 [ lp(x)?
/0 (O (x)2dx > {W [
holds for all » € C°(0, 00) (or » € H(0, 0o) with ©(0) = - - - = (¢=1(0) = 0).
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Higher order Hardy-like inequalities

Higher order Hardy-like inequalities

The inequality [Birman 1961, Glazman 1965, Owen 1999, Gesztesy-etal. 2018]

/oo (0 Pax > {@r eI
0 0

40! X2

holds for all » € C°(0, 00) (or » € H(0, 0o) with ©(0) = - - - = (¢=1(0) = 0).

Theorem [Huang-Ye]

Let ¢ € N. Then one has

oo 2 2
o ¢ (20)! |un|
Soun((-a)un > |G| S e
n=~{ n==¢
forallue Ce(N)withug =--- = up_1 =0.
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Higher order Hardy-like inequalities

A conjecture on higher order discrete Hardy-like inequalities

Recall
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Higher order Hardy-like inequalities

A conjecture on higher order discrete Hardy-like inequalities

Recall

_ (1)
=1 wkPP= %, with gn = n'/? is the critical Hardy weight.
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Higher order Hardy-like inequalities

A conjecture on higher order discrete Hardy-like inequalities

Recall
_ (1)
=1 wkPP= %, with gn = n'/? is the critical Hardy weight.
—A)2g®
r=2. wlkS_— %, with g2 = n3/2 is the improved Rellich weight.
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Higher order Hardy-like inequalities

A conjecture on higher order discrete Hardy-like inequalities

Recall
(1)

A)2g(
T @ with g2 = n?/2 is the improved Rellich weight.

Conjecture [Gerhat-Krejcifik-S., 2023]
Forall £ € Nand u € C¢(N) such that up = - - - = up_¢1 = 0, the inequality

oo (oo}
S Un((—A) u)n > > wiunl?
n==¢ n=¢

holds with 2A(0
w(®) — ‘(72()2)‘(]( l, where g} = ‘=172,
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Higher order Hardy-like inequalities

A conjecture on higher order discrete Hardy-like inequalities

Recall
(1)

A)2g(
T @ with g2 = n?/2 is the improved Rellich weight.

Conjecture [Gerhat-Krejcifik-S., 2023]
Forall £ € Nand u € C¢(N) such that up = - - - = up_¢1 = 0, the inequality

oo (oo}
S Un((—A) u)n > > wiunl?
n==¢ n=¢

holds with 2A(0
w(®) — ‘(72()2)‘(]( l, where g} = ‘=172,

Remark:

WO < [(2E)!r 1

" 4t | n2t
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Higher order Hardy-like inequalities

A conjecture on higher order discrete Hardy-like inequalities

Recall
(1)

A)2g(
T @ with g2 = n?/2 is the improved Rellich weight.

Conjecture [Gerhat-Krejcifik-S., 2023]
Forall £ € Nand u € C¢(N) such that up = - - - = up_¢1 = 0, the inequality

oo (oo}
S Un((—A) u)n > > wiunl?
n==¢ n=¢

holds with 2A(0
w(®) — ‘(72()2)‘(]( l, where g} = ‘=172,

Remark:

2 2
%) (2()! 1 © _ (2()! 1 1
wy > [4% T and  w,’ = | +0 ez ) n— oo.
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Discrete Hardy inequalities on lattices L_.d
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e Discrete Hardy inequalities on lattices 72
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Discrete Hardy inequalities on lattices L_.d

Classical (continuous) Hardy inequalities on R?

Consider —A on R, Recall o(—A) = oac(—A) = [0, o).
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Discrete Hardy inequalities on lattices L_.d

Classical (continuous) Hardy inequalities on R?
Consider —A on R, Recall o(—A) = oac(—A) = [0, o).

The role of dimension:
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Discrete Hardy inequalities on lattices L_.d

Classical (continuous) Hardy inequalities on R?
Consider —A on R, Recall o(—A) = oac(—A) = [0, o).

The role of dimension:
1) If d = 1,2, there is no Hardy inequality for —A, i.e.,

-A>V>0 — V=0
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Discrete Hardy inequalities on lattices L_.d

Classical (continuous) Hardy inequalities on R?

Consider —A on RY. Recall 6(—A) = gac(—A) = [0, c0).

The role of dimension:

1) If d = 1,2, there is no Hardy inequality for —A, i.e.,

2) If d > 3, then
Vo € C(RY) :

The constant is sharp.

Franti$ek Stampach (CTU in Prague)

-A>V>0 — V=0

/ IV (x)[2dx >
Rd

(d-2y

PR

4

L
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On discrete Hardy inequalities

27/33



Discrete Hardy inequalities on lattices L_.d

Classical (continuous) Hardy inequalities on R?
Consider —A on RY. Recall 6(—A) = gac(—A) = [0, c0).

The role of dimension:
1) If d = 1,2, there is no Hardy inequality for —A, i.e.,
-A>V>0 — V=0

2) If d > 3, then

(0-22 [ lebF,,
R

> (RY) Zdx >
vee OFEY): | [ Ivetofax > C o

The constant is sharp.

Remark: In R?, we have the inequality

2
[ Ivepac> ¢ B L
{IxI=1} 4 Jixiz1y x[2 log ||
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Discrete Hardy inequalities on lattices L_.d

Discrete Hardy inequalities on z¢

Discrete Laplacian on Z°:

j

d
(Au)n = (DfDju)n = > (Un—e — 2Un + Unte;)

1

d

j=1

where u € 2(29), n e 7, g; is the jth vector of standard basis of RY, and (Dju)n := Un—g; — Un.
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Discrete Hardy inequalities on z¢

Discrete Laplacian on Z°:

j

d
(Au)n = (DfDju)n = > (Un—e — 2Un + Unte;)

1

d

j=1

where u € (2(Z9), n € Z9, ¢ is the jth vector of standard basis of RY, and (D;u)n
» The role of dimensions is analogous to the continuous case.
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Discrete Hardy inequalities on lattices L_.d

Discrete Hardy inequalities on z¢

Discrete Laplacian on Z°:

d d
(Au)n = (DfDju)n = > (Un—e — 2Un + Unte;)
j=1 j=1

where u € (2(Z9), n € Z9, g is the jth vector of standard basis of RY, and (Dju)n := Un—e; — Un.
» The role of dimensions is analogous to the continuous case.
» For d = 1,2, there are no Hardy inequalities for —A on 79,
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Discrete Hardy inequalities on lattices :_.d

Discrete Hardy inequalities on Z¢

Discrete Laplacian on Z°:

d d
(Au)n = (DfDju)n = > (Un—e — 2Un + Unte;)
j=1 j=1

where u € (2(Z9), n € Z9, g is the jth vector of standard basis of RY, and (Dju)n := Un—e; — Un.
» The role of dimensions is analogous to the continuous case.
» For d = 1,2, there are no Hardy inequalities for —A on 79,

Remark: There exists C, > 0 such that [Kapitanski-Laptev, 2016]

— |un|?
> Un(—Au)n>Co >

2 )
nez? nez2 In[2 log® |n|

forallu e Ce({|n] > 2}).
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Discrete Hardy inequalities on lattices :_.d

Discrete Hardy inequalities on Z¢

Discrete Laplacian on Z°:

d d
(Au)n = (DfDju)n = > (Un—e — 2Un + Unte;)
j=1 j=1

where u € (2(Z9), n € Z9, g is the jth vector of standard basis of RY, and (Dju)n := Un—e; — Un.
» The role of dimensions is analogous to the continuous case.
» For d = 1,2, there are no Hardy inequalities for —A on 79,

Remark: There exists C, > 0 such that [Kapitanski-Laptev, 2016]

— |un|?
> Un(—Au)n>Co >

nez? nez2 |nf2 log? Il
forall u € Ce({|n] > 2}). It was recently shown [Huang-Ye] that

D Un(=Au)n > Y walunl?,

nez? nez?
with
o — 1 48(n} + nj) B 36 n ( 1 ) Al = oo.
42102 || Inl* |n[#|log|n| |n|*log? |n| )’
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Discrete Hardy inequalities on lattices

Discrete Hardy inequalities on Z9, d > 3
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Discrete Hardy inequalities on lattices L_.d

Discrete Hardy inequalities on Z9, d > 3

Let d > 3. Forall u € Cs(z9 \ {0}), it holds

2
_ u,
S Un(—Au)n>Cq > ||,:“2 ,

nezd nezd

where Cy > 0 stands for the best possible constant.
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Discrete Hardy inequalities on lattices L_.d

Discrete Hardy inequalities on Z9, d > 3

Theorem
Let d > 3. Forall u € Cs(z9 \ {0}), it holds

2
— u
> an(-au)n > Co 3

nezd nezd

where Cy > 0 stands for the best possible constant.

» Lower bound [Kapitanski-Laptev, 2016]:
4(d - 2) d—-2nv/2d -4

m2  d2 —6d+16 —4v/2d — 4
(Some earlier contributions also due to Rozenblum and Solomyak.)

Cq >
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Discrete Hardy inequalities on lattices L_.d

Discrete Hardy inequalities on Z9, d > 3

Theorem
Let d > 3. Forall u € Cs(z9 \ {0}), it holds

2
— u
> Un(-Bu) > Gy 3

nezd nezd

where Cy > 0 stands for the best possible constant.

» Lower bound [Kapitanski-Laptev, 2016]:
4(d—2) d—2nv/2d—4
m2  d2 —6d+16 —4v/2d — 4

(Some earlier contributions also due to Rozenblum and Solomyak.)
» Asymptotic behavior [Gupta, 2023]:

Cq >

Cyqy~d, asd-— oo.
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Discrete Hardy inequalities on lattices L_.d

Discrete Hardy inequalities on Z9, d > 3

Theorem
Let d > 3. Forall u € Cs(z9 \ {0}), it holds

2
— u
> Un(-Bu) > Gy 3

nezd nezd

where Cy > 0 stands for the best possible constant.

» Lower bound [Kapitanski-Laptev, 2016]:
4(d—2) d—2nv/2d—4
m2  d2 —6d+16 —4v/2d — 4

(Some earlier contributions also due to Rozenblum and Solomyak.)
» Asymptotic behavior [Gupta, 2023]:

Cq >

Cyqy~d, asd-— oo.
The asymptotic behavior of the best constant in the continuous setting is ~ d?!
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Discrete Hardy inequalities on lattices L_.d

Discrete Hardy inequalities on Z9, d > 3

Theorem
Let d > 3. Forall u € Cs(z9 \ {0}), it holds

2
— u
> Un(-Bu) > Gy 3

nezd nezd

where Cy > 0 stands for the best possible constant.

» Lower bound [Kapitanski-Laptev, 2016]:
4(d—2) d—2nv/2d—4
m2  d2 —6d+16 —4v/2d — 4

(Some earlier contributions also due to Rozenblum and Solomyak.)
» Asymptotic behavior [Gupta, 2023]:

Cq >

Cyqy~d, asd-— oo.
The asymptotic behavior of the best constant in the continuous setting is ~ d?!

Open Problem

Cq =7
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Discrete Hardy inequalities on lattices L_.d

Critical discrete Hardy weights on 29, d > 3
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Discrete Hardy inequalities on lattices L_.d

Critical discrete Hardy weights on 29, d > 3

Theorem [Keller-Pinchover-Pogorzelski, 2018]

Let d > 3. There exists a critical (even optimal) Hardy weight w on Z¢ such that

Vu e Co(29\ {0}) : > Un(—Lu)n > > walupf?,

nezd nezd

and
(d—2)% 1

1
ani——s—O(—), [n| — oco.
4 |nP? nf®
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Discrete Hardy inequalities on lattices L_.d

Critical discrete Hardy weights on 29, d > 3

Theorem [Keller-Pinchover-Pogorzelski, 2018]

Let d > 3. There exists a critical (even optimal) Hardy weight w on Z¢ such that

Vu e Co(29\ {0}) : > Un(—Lu)n > > walupf?,

nezd nezd

(d—2)% 1 1
Wn:TW+O W , |n = oo.

and

» Weight w is not known explicitly but can be constructed from the Green kernel of —A.

Franti$ek Stampach (CTU in Prague) On discrete Hardy inequalities 30/33
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Critical discrete Hardy weights on 29, d > 3

Theorem [Keller-Pinchover-Pogorzelski, 2018]

Let d > 3. There exists a critical (even optimal) Hardy weight w on Z¢ such that

Vu e Co(29\ {0}) : > Un(—Lu)n > > walupf?,

nezd nezd

(d—2)% 1 1
Wn:TW+O W , |n = oo.

and

» Weight w is not known explicitly but can be constructed from the Green kernel of —A.
(There is even a generalization to a graph setting [Keller-Pinchover-Pogorzelski, 2018].)
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Discrete Hardy inequalities on lattices L_.d

Critical discrete Hardy weights on 29, d > 3

Theorem [Keller-Pinchover-Pogorzelski, 2018]

Let d > 3. There exists a critical (even optimal) Hardy weight w on Z¢ such that

Vu e Co(29\ {0}) : > Un(—Lu)n > > walupf?,

nezd nezd

(d—2)% 1 1
Wn:TW+O W , |n] = oo.

and

» Weight w is not known explicitly but can be constructed from the Green kernel of —A.
(There is even a generalization to a graph setting [Keller-Pinchover-Pogorzelski, 2018].)

» An alternative proof (not using the Green kernel), a weighted generalization of the result, and
more detailed asymptotics due to [Huang-Ye],

(d—2) 1 1 ( 1 )
Wp=-—"——+4+As—5+0(—=), |n .
"= o e O\ M

with an explicit constant Ag.
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Discrete Hardy inequalities on lattices

Conclusion

»d=1,¢=1:
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Conclusion

»d=1,¢4=1:
> The classical discrete Hardy weight on N (~ Z \ {0}) can be improved.
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Conclusion

»d=1,4=1:
> The classical discrete Hardy weight on N (~ Z \ {0}) can be improved.
» Critical (even optimal) weights are known explicitly.
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Conclusion

»d=1,4=1:
> The classical discrete Hardy weight on N (~ Z \ {0}) can be improved.
» Critical (even optimal) weights are known explicitly.
> The corresponding remainder terms known exactly.
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Discrete Hardy inequalities on lattices L_.d

Conclusion

»d=1,¢4=1:
> The classical discrete Hardy weight on N (~ Z \ {0}) can be improved.

» Critical (even optimal) weights are known explicitly.
> The corresponding remainder terms known exactly.

»d=1,/=2:

31/33
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Discrete Hardy inequalities on lattices L_.d

Conclusion

1,0=1:
The classical discrete Hardy weight on N (~ Z \ {0}) can be improved.

Critical (even optimal) weights are known explicitly.
The corresponding remainder terms known exactly.

> d

Yyvy

»d=1,/=2:
> The classical discrete Rellich weight on N can be improved.
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Discrete Hardy inequalities on lattices L_.d

Conclusion

»d=1,¢4=1:
> The classical discrete Hardy weight on N (~ Z \ {0}) can be improved

» Critical (even optimal) weights are known explicitly.

> The corresponding remainder terms known exactly.
»d=1,/=2:

> The classical discrete Rellich weight on N can be improved.

> No critical discrete Rellich was found.
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Conclusion

»d=1,4=1:
> The classical discrete Hardy weight on N (~ Z \ {0}) can be improved.
» Critical (even optimal) weights are known explicitly.
> The corresponding remainder terms known exactly.

»d=1,/=2:
> The classical discrete Rellich weight on N can be improved.

> No critical discrete Rellich was found.
> No explicit remainder terms.
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Discrete Hardy inequalities on lattices L_.d

Conclusion

»d=1,¢4=1:
> The classical discrete Hardy weight on N (~ Z \ {0}) can be improved

» Critical (even optimal) weights are known explicitly.
> The corresponding remainder terms known exactly.

»d=1,/=2:
> The classical discrete Rellich weight on N can be improved.
> No critical discrete Rellich was found.
> No explicit remainder terms.

»d=1,0>2:
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Conclusion

»d=1,4=1:
> The classical discrete Hardy weight on N (~ Z \ {0}) can be improved.
» Critical (even optimal) weights are known explicitly.
> The corresponding remainder terms known exactly.

»d=1,/=2:
> The classical discrete Rellich weight on N can be improved.
> No critical discrete Rellich was found.
> No explicit remainder terms.

»d=1,4>2:
> It has not been proven whether the discrete higher order Hardy-like weight can be further improved.
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Conclusion

»d=1,4=1:
> The classical discrete Hardy weight on N (~ Z \ {0}) can be improved.
» Critical (even optimal) weights are known explicitly.
> The corresponding remainder terms known exactly.
»d=1,/=2:
> The classical discrete Rellich weight on N can be improved.
> No critical discrete Rellich was found.
> No explicit remainder terms.
»d=1,0>2:
> It has not been proven whether the discrete higher order Hardy-like weight can be further improved.
> A conjecture on improved weights exists but remains unproven.
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Discrete Hardy inequalities on lattices :_.d

Conclusion

»d=1,4=1:
> The classical discrete Hardy weight on N (~ Z \ {0}) can be improved.
» Critical (even optimal) weights are known explicitly.

The corresponding remainder terms known exactly.

»d=1,¢(=2:

The classical discrete Rellich weight on N can be improved.

No critical discrete Rellich was found.

No explicit remainder terms.

»d=1,¢(>2:

It has not been proven whether the discrete higher order Hardy-like weight can be further improved.

A conjecture on improved weights exists but remains unproven.

No critical weights known.

vvyy v

v
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Discrete Hardy inequalities on lattices :_.d

Conclusion

»d=1,4=1:
> The classical discrete Hardy weight on N (~ Z \ {0}) can be improved.
» Critical (even optimal) weights are known explicitly.
> The corresponding remainder terms known exactly.
»d=1,/=2:
> The classical discrete Rellich weight on N can be improved.
> No critical discrete Rellich was found.
> No explicit remainder terms.
d=1,0>2:
> It has not been proven whether the discrete higher order Hardy-like weight can be further improved.
> A conjecture on improved weights exists but remains unproven.
> No critical weights known.

d>2,0=1:

v

v
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Discrete Hardy inequalities on lattices :_.d

Conclusion

»d=1,4=1:
> The classical discrete Hardy weight on N (~ Z \ {0}) can be improved.
» Critical (even optimal) weights are known explicitly.
> The corresponding remainder terms known exactly.
»d=1,/=2:
> The classical discrete Rellich weight on N can be improved.
> No critical discrete Rellich was found.
> No explicit remainder terms.
d=1,0>2:
> It has not been proven whether the discrete higher order Hardy-like weight can be further improved.
> A conjecture on improved weights exists but remains unproven.
> No critical weights known.

d>2,¢=1:
> The discrete analogue of the classical Hardy inequality holds but sharp constants C, are unknown.

v

v
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Discrete Hardy inequalities on lattices :_.d

Conclusion

»d=1,¢4=1:
> The classical discrete Hardy weight on N (~ Z \ {0}) can be improved.
» Critical (even optimal) weights are known explicitly.
> The corresponding remainder terms known exactly.
»d=1,/=2:
> The classical discrete Rellich weight on N can be improved.
> No critical discrete Rellich was found.
> No explicit remainder terms.
d=1,0>2:
> It has not been proven whether the discrete higher order Hardy-like weight can be further improved.
> A conjecture on improved weights exists but remains unproven.
> No critical weights known.
da>2,(=1:
> The discrete analogue of the classical Hardy inequality holds but sharp constants C, are unknown.
> A relation of the optimal Hardy weight w to the Green kernel of —A is known.

v

v

Franti$ek Stampach (CTU in Prague) On discrete Hardy inequalities 31/33



Discrete Hardy inequalities on lattices :_.d

Conclusion

»d=1,¢4=1:
> The classical discrete Hardy weight on N (~ Z \ {0}) can be improved.
» Critical (even optimal) weights are known explicitly.
> The corresponding remainder terms known exactly.
»d=1,/=2:
> The classical discrete Rellich weight on N can be improved.
> No critical discrete Rellich was found.
> No explicit remainder terms.
d=1,0>2:
> It has not been proven whether the discrete higher order Hardy-like weight can be further improved.
> A conjecture on improved weights exists but remains unproven.
> No critical weights known.
da>2,(=1:
> The discrete analogue of the classical Hardy inequality holds but sharp constants C, are unknown.
> A relation of the optimal Hardy weight w to the Green kernel of —A is known.
> Asymptotic expansions of wj, for |[n| — oo, are known.

v

v
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Conclusion

»d=1,¢4=1:
> The classical discrete Hardy weight on N (~ Z \ {0}) can be improved.
» Critical (even optimal) weights are known explicitly.
> The corresponding remainder terms known exactly.
»d=1,/=2:
> The classical discrete Rellich weight on N can be improved.
> No critical discrete Rellich was found.
> No explicit remainder terms.
d=1,0>2:
> It has not been proven whether the discrete higher order Hardy-like weight can be further improved.
> A conjecture on improved weights exists but remains unproven.
> No critical weights known.
da>2,(=1:
The discrete analogue of the classical Hardy inequality holds but sharp constants Cy are unknown.
A relation of the optimal Hardy weight w to the Green kernel of —A is known.

Asymptotic expansions of wj, for |n| — oo, are known.
A description of w in more concrete terms and explicit lower bounds are missing.
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(Even more mysteries in: weighted generalizations, graph setting, ¢P-variants, etc.)
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Thank you!
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