Spectral analysis of two doubly infinite Jacobi operators

Franti$ek Stampach (Stockholm University)

Frantisek Stampach
jointly with Mourad E. H. Ismail

Stockholm University

Spectral Theory and Applications

conference in memory of Boris Paviov
March 13, 2016

Jacobi operators (Spectr. Theor. Appl.)

March 13, 2016



Contents

@ Introduction

(Stockholm University) i s (Spectr. Theor. Appl.)



Two doubly-infinite Jacobi matrices

We analyze the spectral properties of Jacobi operators A and B acting on vectors of the standard
basis of £2(Z) as:

Aep = q_IH—1 en—1 + q_nen+17 nez, J

and

Ben=ep,_1+aq "en+en1, NEZ, J

where g € (0,1) and o € R.
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Two doubly-infinite Jacobi matrices

We analyze the spectral properties of Jacobi operators A and B acting on vectors of the standard
basis of £2(Z) as:

Aep = q_n+1 en—1 + q_nen+17 nez, J

and

Ben=ep,_1+aq "en+en1, NEZ, J

where g € (0,1) and o € R.

The semi-infinite parts of A and B has been studied before mainly within the theory of Orthogonal
Polynomials:

@ Awith n < 0 [Al-Salam, Ismail 83]: Rogers—Ramanujan’s functions and continued fractions.
@ Awith n > 0 [Chen, Ismail 98, FS 16]: Indeterminate moment problem, Nevanlinna functions.
@ Bwith n = 0 [Ismail, Mulla 87]: g-Chebyshev polynomials.

The spectrum of any associated semi-infinite Jacobi operator is never known explicitly (o # 0) but
is expressible in terms of zeros of certain special functions.functions
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Special functions 1/2 - basic hypergeometric series

@ Let0 < g< 1, r,s € Z,. Recall the basic hypergeometric function

ais, a, ar .
l’¢ b1 ) b27 bs’ 9.z
is defined by the power series
S (81 Q)n(@ei @ (@i ()G HINTIE
=5 (b1:Q)n(b2; q)n - .. (bs; Q)n (9:9)n

where z,ay,ap,...,ar €C, by,bp,...,bs € C\ g%~ and
(@qo=1, (@@Pn=01-a)(1-aq)...(1—aqg"")

is the g-Pochhammer symbol.
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Special functions 1/2 - basic hypergeometric series

@ Let0 < g< 1, r,s € Z,. Recall the basic hypergeometric function

l’¢ b1 ) b27 b 9.z
is defined by the power series
S (81 Q)n(@ei @ (@i ()G HINTIE
=5 (b1:Q)n(b2; q)n - .. (bs; Q)n (G Q)n

where z,ay,ap,...,ar €C, by,bp,...,bs € C\ g%~ and

(@qo=1 (aqn=(1-a(-aq)...(1-ag"")

is the g-Pochhammer symbol.
@ Here we will need only g1 and 1¢.
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Special functions 2/2 - theta functions

@ The theta function:

09(2) == (z: Q)0 (q/2; q)m:m S g2y J

Franti$ek Stampach (Stockholm University) Jacobi operators (Spectr. Theor. Appl.) March 13, 2016 5/20



Special functions 2/2 - theta functions

@ The theta function:

04(2) = (2, §)o0(9/Zi @)oo = ———— (q " Z gn=1/2(_z)n J

@ Jacobi’s theta functions:

91(2] q) =iq"/*e7%(q? P)os B2 (627)
92(2 | ) = q'/*e (P P)oe 2 (67
95(2 | @) = (% P)oc e (—9e%)

94(2 | 4) = (% ¢P)oo b2 (96°7)
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Operators associated with the Jacobi matrix .4

@ Operator A with Dom A = span{ep | n € Z} acting as
Aen=q "e,_1 +q "en

has deficiency indices (1, 1).
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Operators associated with the Jacobi matrix .4

@ Operator A with Dom A = span{ep | n € Z} acting as
Aen=q "e,_1 +q "en

has deficiency indices (1, 1).
@ Thus, there is a one-parameter family of self-adjoint extensions A;, t € R U {co}.
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Operators associated with the Jacobi matrix .4

@ Operator A with Dom A = span{ep | n € Z} acting as
Aen=q "e,_1 +q "en

has deficiency indices (1, 1).
@ Thus, there is a one-parameter family of self-adjoint extensions A;, t € R U {co}.

@ Let D:= {1 € {2 | Ay € £?}. By using the theory of self-adjoint extensions and simple
structure of matrix .4 one gets:
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Operators associated with the Jacobi matrix .4

@ Operator A with Dom A = span{ep | n € Z} acting as
Aen=q "e,_1 +q "en

has deficiency indices (1, 1).

@ Thus, there is a one-parameter family of self-adjoint extensions A;, t € R U {co}.

@ Let D:= {1 € {2 | Ay € £?}. By using the theory of self-adjoint extensions and simple
structure of matrix .4 one gets:

Proposition (self-adjoint extensions)

For t € RU {oo}, operators Ay, acting as Ay = Ay, with domains

Dom A; = {1/’ €D lim g~ " (Yani1 +tp2n) =0 A lim g~ " (qeban—1 — tipon) = 0},

if t e R, or
_ ; —ny,
Doono—{T/JED|n|Im q ngn_O},

are all self-adjoint extensions of A.
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Operators associated with the Jacobi matrix .4

@ Operator A with Dom A = span{ep | n € Z} acting as
Aen=q "e,_1 +q "en

has deficiency indices (1, 1).

@ Thus, there is a one-parameter family of self-adjoint extensions A;, t € R U {co}.

@ Let D:= {1 € {2 | Ay € £?}. By using the theory of self-adjoint extensions and simple
structure of matrix .4 one gets:

Proposition (self-adjoint extensions)

For t € RU {oo}, operators Ay, acting as Ay = Ay, with domains

Dom A; = {1/’ €D lim g~ " (Yani1 +tp2n) =0 A lim g~ " (qeban—1 — tipon) = 0},

if t e R, or
_ ; —ny,
Doono—{T/JED|n|Im q ngn_O},

are all self-adjoint extensions of A.

@ In addition,

oc(Ar) = oess(Ar) = {0}, VteRU {co}. J
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Solutions of the eigenvalue equation

@ The g-exponential function:

Eq(2) = Z( q)n 2" = by (0;—q1/2;q1/2,—q1/4z)
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Solutions of the eigenvalue equation

@ The g-exponential function:
Eq(2) = ~——2"=1¢1 (0,—¢"/%q"/?, —q'/z
‘ Z < (a; q)n ( )
@ Sequences ¥+, where

Ui = (£1)"q"?Ep (£ixq") J

are two linearly independent solutions of the difference equation Ay = x3.
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Solutions of the eigenvalue equation

@ The g-exponential function:

£a(2) = Z(q q)nz =161 (0:-9"%¢"/%,~q"/*2)
@ Sequences ¥+, where
Ui = (£1)"q"?Ep (£ixq") J

are two linearly independent solutions of the difference equation Ay = x3.
@ By inspection of the asymptotic behavior of 1/)?,[, as n — oo, one gets:

T € P(400), however, y¥ ¢ 2(—o0).

Franti$ek Stampach (Stockholm University) Jacobi operators (Spectr. Theor. Appl.) March 13, 2016 8/20



Solutions of the eigenvalue equation

@ The g-exponential function:

£a(2) = Z(q q)nz =161 (0:-9"%¢"/%,~q"/*2)
@ Sequences ¥+, where
Ui = (£1)"q"?Ep (£ixq") J

are two linearly independent solutions of the difference equation Ay = x3.
@ By inspection of the asymptotic behavior of 1/)?,[, as n — oo, one gets:

¥F € £2(+00), however, ¢ ¢ 2(—oc0).
@ Hence, one expects there are non-trivial coefficients a = a(x) and b = b(x) such that

ayT + by~ € £P(—c0).
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The ¢2-solution

Proposition

For all x € C \ {0}, the sequence
P(x) = 0q (=iq~"/2x) $)(x) + 6 (ia7"/2x) ) (),

is the non-trivial solution of .A¢ = x¢ which belongs to ¢2(Z).
In addition, within the space #2(Z), this solution is given uniquely up to a multiplicative constant.
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P(x) = 0q (=iq~"/2x) $)(x) + 6 (ia7"/2x) ) (),

is the non-trivial solution of .A¢ = x¢ which belongs to ¢2(Z).
In addition, within the space #2(Z), this solution is given uniquely up to a multiplicative constant.

Moreover,
#n(x) = (15 9)o0 X"q" "D/ 00y (=0 ¢, g72"x2)

and
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The ¢2-solution

Proposition

For all x € C \ {0}, the sequence
P(x) = 0q (=iq~"/2x) $)(x) + 6 (ia7"/2x) ) (),

is the non-trivial solution of .A¢ = x¢ which belongs to ¢2(Z).
In addition, within the space #2(Z), this solution is given uniquely up to a multiplicative constant.

Moreover,
#n(x) = (15 9)o0 X"q" "D/ 00y (=0 ¢, g72"x2)
and )
(% 9%
o002, = 4T e (-#)

(9?2
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The secular equation

Theorem (secular equation)

For t € R U {oco}, one has spec,(A;) = {0} and spec,(A;) coincides with the set of roots of the
secular equation:
X0 (q2x2) + 0 (x2) =0, forteR,
and
o (xz) =0, fort=oco.

In addition, all eigenvalues of A; are simple.
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The secular equation

Theorem (secular equation)

For t € R U {oco}, one has spec,(A;) = {0} and spec,(A;) coincides with the set of roots of the
secular equation:

X0 (q2x2) + 0 (x2) =0, forteR,

and
o (xz) =0, fort=oco.

In addition, all eigenvalues of A; are simple.

Corollary:

spec,,(Ao) = {:l:qz’”r1 |ne Z} and  specy(Axc) = {:I:qzn |ne Z}.
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The secular equation

Theorem (secular equation)

For t € R U {oco}, one has spec,(A;) = {0} and spec,(A;) coincides with the set of roots of the
secular equation:

X0 (q2x2) + 0 (x2) =0, forteR,

and
o (xz) =0, fort=oco.

In addition, all eigenvalues of A; are simple.

Corollary:

spec,,(Ao) = {:l:qz’”r1 |ne Z} and  specy(Axc) = {:I:qzn |ne Z}.

@ How to solve the secular equation in general?
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The secular equation

Theorem (secular equation)

For t € R U {oco}, one has spec,(A;) = {0} and spec,(A;) coincides with the set of roots of the
secular equation:

X0 (q2x2) + 0 (x2) =0, forteR,

and
o (xz) =0, fort=oco.

In addition, all eigenvalues of A; are simple.

Corollary:

spec,,(Ao) = {:l:qz’”r1 |ne Z} and  specy(Axc) = {:I:qzn |ne Z}.

@ How to solve the secular equation in general?
@ Reparametrize t = ®(s) and use nice properties of Jacobi’s theta functions...
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Reparametrization t = ®(s)

@ The function

—igi2Pa(is1 &)
*(e) =iq 91 (is | )

is real-valued, strictly decreasing on (0, —21In g), and maps
[0,—2Ing) onto R U {oo}.
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Reparametrization t = ®(s)

@ The function

—igi2Pa(is1 &)
(o) =1iq 91 (is | ¢?)

is real-valued, strictly decreasing on (0, —21In g), and maps
[0,—2Ing) onto R U {oo}.

@ For the inverse function, one has

dx
W=ca / \/(D(q )+ x2) (g + x2)
where 1/2
c@) =50 qzq) 95 (0] )
" Dlg) = 251D,
95 (01 ?)

Franti$ek Stampach (Stockholm University) Jacobi operators (Spectr. Theor. Appl.) March 13, 2016 11/20



Spectrum fully explicitly

@ Using the reparametrization t = ®(s), the secular equation simplifies to

042 (€7°x) 042 (—€°x) = 0.
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Spectrum fully explicitly

@ Using the reparametrization t = ®(s), the secular equation simplifies to

042 (€7°x) 042 (—€°x) = 0.

Theorem

Lett € RU {oco}, then
spec,(Ar) = —e —Sg?% U e°g??

where
dx

/’ \/(D(Q) +32) (q+22)

In addition, the family of corresponding eigenvectors {¢(£e°g?N) | N € Z}, where

s=C(q)

en(X) = (=1:9)o0 x"q""= /2 45, ( ;0; 9%, g 2" x 72)

forms an orthogonal basis of £2(Z).
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The discrete Schrodinger operator B

The second Jacobi matrix B determines the unique operator

B=U+U*+aV J

where U is the forward shift operator and V is the self-adjoint diagonal operator:

Uen=ep,.1 and Ven=q "en, Vnez.
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The discrete Schrodinger operator B

The second Jacobi matrix 15 determines the unique operator

B=U+U*+aV J

where U is the forward shift operator and V is the self-adjoint diagonal operator:

Uen=ep,.1 and Ven=q "en, Vnez.

Proposition (essential spectrum)

The operator B is self-adjoint and one has

oess(B) = [-2,2].
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Solutions of the eigenvalue equation

@ Using properties of the Hahn-Exton g-Bessel functions one verifies:
fo(2) := (=1)" 7nq2n(n+1) <z a qn+1;q) 1 b1 (O;z*1a*1q”+1 g, Zaqq”“)
(oo}

and
. »—n 1—n. . 1—n. 2
on(2) = 27" (204" "q) 161 (0:209' " q,02°) .
are two solutions of the equation
Y= (z+2z ")y
forall a, z # 0.
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Solutions of the eigenvalue equation

@ Using properties of the Hahn-Exton g-Bessel functions one verifies:
fa(2) = (-1)"a 7nq2n(n+1) <z a qn+1;q) 1 b1 (0;271a71q"+1;q, Zaqq”“)
(oo}

and
on(2) = 27" (204" "q) 161 (0:209' " q,02°) .

are two solutions of the equation

b=(z+2"")y.
forall a, z # 0.
@ Note that
1. ) {z]0< |z <1} = C\[-2,2], (outside oess(A) )
Zrate { {6 [0 [0,7]) - [-2,2], (inside oess(4))
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Solutions of the eigenvalue equation

@ Using properties of the Hahn-Exton g-Bessel functions one verifies:
fa(2) = (1)~ gD <271a*1q”+1;q) ¥y (O;zqaqqnﬂ .q, 2a71qn+1>
o0

and
on(2) = 27" (204" "q) 161 (0:209' " q,02°) .

are two solutions of the equation

By =(z+2z ")y
forall a, z # 0.
@ Note that
1. ) {z]0< |z <1} = C\[-2,2], (outside oess(A) )
Zrate { {6 [0 [0,7]) - [-2,2], (inside oess(4))

@ The solutions f(z) and g(z) are linearly independent iff z ¢ o' g% U {0} since

W(f,g) = —z7 04 (a2).
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The point spectrum

Detailed asymptotic analysis of solutions f and g yields:
@ If0< |zl <1andz ¢ a "¢ U {0}, then

€ £2(+00) ¢ £2(+00)
f(2) { ¢ 2(—o0) 9(2) {E 2(o0)
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The point spectrum

Detailed asymptotic analysis of solutions f and g yields:
@ If0< |zl <1andz ¢ a "¢ U {0}, then

€ £2(+00) ¢ £2(+00)
f(z z
( ){Mg(m) 9D\ ¢ 2(Loo)
@ If |z| = 1 the asymptotic behavior of solutions is very different and, in the end, it implies that:
ForVa € R andVx € [—2,2], there is no non-trivial solution of B = xv belonging to ¢?(Z).
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The point spectrum

Detailed asymptotic analysis of solutions f and g yields:
@ If0< |zl <1andz ¢ a "¢ U {0}, then

€ £2(+00) ¢ £2(+00)
f(z z
( ){Mg(m) 9D\ ¢ 2(Loo)
@ If |z| = 1 the asymptotic behavior of solutions is very different and, in the end, it implies that:
ForVa € R andVx € [—2,2], there is no non-trivial solution of B = xv belonging to ¢?(Z).

Theorem (point spectrum)

If « # 0, then

(B)\[-2,2] = 0p(B) = {a™'q" +ag™™ | m > |logg |al] }

and all points from this set are simple eigenvalues of B.
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The point spectrum

Detailed asymptotic analysis of solutions f and g yields:
@ If0< |zl <1andz ¢ a "¢ U {0}, then

€ £3(+o0) ¢ £2(+o0)
f(2) { ¢ 2(—o0) 9(2) {e 2(o0)

@ If |z| = 1 the asymptotic behavior of solutions is very different and, in the end, it implies that:
ForVa € R andVx € [—2,2], there is no non-trivial solution of B = xv belonging to ¢?(Z).

Theorem (point spectrum)

If « # 0, then
o(B)\ [-2,2] = op(B) = {a~"q" + aq~™ | m > |logg |a }

and all points from this set are simple eigenvalues of B. Further, eigenvectors v, corresponding
to eigenvalues o= 'g™ + ag~"™, can be chosen as vy, = {Vm,j} with

0o
J=—o0’

Vi, = f (a*1q’") = (—1)a~IqdlU+) (=™ g)os, 10 <0; g "t g, ofzq’”*f*‘).
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The point spectrum

Detailed asymptotic analysis of solutions f and g yields:
@ If0< |zl <1andz ¢ a "¢ U {0}, then

€ £3(+o0) ¢ £2(+o0)
f(2) { ¢ 2(—o0) 9(2) {e 2(o0)

@ If |z| = 1 the asymptotic behavior of solutions is very different and, in the end, it implies that:
ForVa € R andVx € [—2,2], there is no non-trivial solution of B = xv belonging to ¢?(Z).

Theorem (point spectrum)

If « # 0, then
o(B)\ [-2,2] = op(B) = {a~"q" + aq~™ | m > |logg |a }

and all points from this set are simple eigenvalues of B. Further, eigenvectors v, corresponding
to eigenvalues o= 'g™ + ag~"™, can be chosen as vy, = {Vm,j} with

j=—oo"
—f (a1 g™) = (—1)a—igallit) (g—m+i+. 0: g— M. —2_mtjti
Vmj=1{e 'q (=1Ya™q (q 1 @)oo 101 (0; G e Nemale] .

In addition,
‘a|7mqm(m+1)/2

lVmlle2(zy = W (9 @)oo, m> |logg |a].
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The absolutely continuous part of the spectral measure

@ Let us denote
Ek,(-) :== (ex, Eg(-)en, k,l€Z,

where Eg stands for the spectral measure of B.
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The absolutely continuous part of the spectral measure

@ Let us denote
Ek,(-) :== (ex, Eg(-)en, k,l€Z,
where Eg stands for the spectral measure of B.
@ To determine the spectral measure in the essential spectrum we use the formula

. N B el ) )
Eei((@.0) = imim o / (G i) = Gylx —i9) ax

where

Gk,(2) = (e, (B—2)""e) = W(1f 9 {

o(2)f(2), k<,
9(2)(2), k=1,
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The absolutely continuous part of the spectral measure

@ Let us denote
Ek,(-) :== (ex, Eg(-)en, k,l€Z,
where Eg stands for the spectral measure of B.
@ To determine the spectral measure in the essential spectrum we use the formula

. N B el ) )
Eei((@.0) = imim o / (G i) = Gylx —i9) ax

where
B o1 fad@h),
Giui(2) = (e (B=2)"e1) = 1 {g,(zm(z), k>,

Proposition

Leta#0and -2 < a< b < 2. Then for any k,/ € Z, it holds

Ek,([a, b]) = 217‘_ /:a fi (ei¢) fx (eid’)

where ¢, = arccos (a/2) and ¢, = arccos (b/2). Consequently, oac(B) = [-2, 2].

(e2i¢; q) -
(we'?,qa—e"1%;q)

2
do
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Summary

If a # 0, then

(fess(B) = Uac(B) = [_272]’

and
op(B) = 04(B) = {a'g" + aq ™" | m > [logglal] }
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Summary

If a # 0, then

(fess(B) = Uac(B) = [_272]’

and
op(B) = 04(B) = {a'g" + aq ™" | m > [logglal] }

In addition, for M C R a Borel set, we have

E _ 1 (%) 1. (% (629;q) _ 2
W= 2r /2005 o€[—2,2]nA : (e ) ‘ ( ) (a€i®, qa—Te~i¢; q)oo @@
" m > (1-a2¢") a?"q ™ (a7 q") f (a7'g").

m>[log || ]
a 'g"+aqg "eM
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One consequence for special functions

@ Recall the Hanhn-Exton (or third Jackson’s) g-Bessel function is defined as

(@ 9o

HED =2 G g

161 (0:9"'1q,q2%)
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One consequence for special functions

@ Recall the Hanhn-Exton (or third Jackson’s) g-Bessel function is defined as
(@ 9o
(@

@ Elements of the eigenvectors v, are expressible in terms of Hanhn-Exton g-Bessel function
and the formula for the norm of the eigenvectors yields

J(z:q) =2 161 (0:9"'1q,q2%)

1
ZJE(KQ):ﬁy lz| < 1. J

nezZ
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One consequence for special functions

@ Recall the Hanhn-Exton (or third Jackson’s) g-Bessel function is defined as
(@ 9o
(@

@ Elements of the eigenvectors v, are expressible in terms of Hanhn-Exton g-Bessel function
and the formula for the norm of the eigenvectors yields

J(z:q) =2 161 (0:9"'1q,q2%)

1
ZJE(KQ):ﬁy lz| < 1. }

nezZ

@ This formula seems to be new (Really?) and it generalizes the well-known summation
formula for the Bessel functions of the first kind:

Y SB()=1, |zI<1.

nezZ
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The end

Thank you!
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