Spectral analysis of two doubly infinite Jacobi operators

František Štampach
jointly with Mourad E. H. Ismail

Stockholm University

Spectral Theory and Applications

conference in memory of Boris Pavlov

$$
\text { March 13, } 2016
$$

(1) Introduction

(2) Spectral resolution of A

(3) Spectral resolution of B

Two doubly-infinite Jacobi matrices

We analyze the spectral properties of Jacobi operators A and B acting on vectors of the standard basis of $\ell^{2}(\mathbb{Z})$ as:

$$
A e_{n}=q^{-n+1} e_{n-1}+q^{-n} e_{n+1}, \quad n \in \mathbb{Z}
$$

and

$$
B e_{n}=e_{n-1}+\alpha q^{-n} e_{n}+e_{n+1}, \quad n \in \mathbb{Z},
$$

where $q \in(0,1)$ and $\alpha \in \mathbb{R}$.

Two doubly-infinite Jacobi matrices

We analyze the spectral properties of Jacobi operators A and B acting on vectors of the standard basis of $\ell^{2}(\mathbb{Z})$ as:

$$
A e_{n}=q^{-n+1} e_{n-1}+q^{-n} e_{n+1}, \quad n \in \mathbb{Z}
$$

and

$$
B e_{n}=e_{n-1}+\alpha q^{-n} e_{n}+e_{n+1}, \quad n \in \mathbb{Z},
$$

where $q \in(0,1)$ and $\alpha \in \mathbb{R}$.
The semi-infinite parts of A and B has been studied before mainly within the theory of Orthogonal Polynomials:

Two doubly-infinite Jacobi matrices

We analyze the spectral properties of Jacobi operators A and B acting on vectors of the standard basis of $\ell^{2}(\mathbb{Z})$ as:

$$
A e_{n}=q^{-n+1} e_{n-1}+q^{-n} e_{n+1}, \quad n \in \mathbb{Z}
$$

and

$$
B e_{n}=e_{n-1}+\alpha q^{-n} e_{n}+e_{n+1}, \quad n \in \mathbb{Z},
$$

where $q \in(0,1)$ and $\alpha \in \mathbb{R}$.
The semi-infinite parts of A and B has been studied before mainly within the theory of Orthogonal Polynomials:

- A with $n<0$ [AI-Salam, Ismail 83]: Rogers-Ramanujan's functions and continued fractions.

Two doubly-infinite Jacobi matrices

We analyze the spectral properties of Jacobi operators A and B acting on vectors of the standard basis of $\ell^{2}(\mathbb{Z})$ as:

$$
A e_{n}=q^{-n+1} e_{n-1}+q^{-n} e_{n+1}, \quad n \in \mathbb{Z}
$$

and

$$
B e_{n}=e_{n-1}+\alpha q^{-n} e_{n}+e_{n+1}, \quad n \in \mathbb{Z}
$$

where $q \in(0,1)$ and $\alpha \in \mathbb{R}$.
The semi-infinite parts of A and B has been studied before mainly within the theory of Orthogonal Polynomials:

- A with $n<0$ [Al-Salam, Ismail 83]: Rogers-Ramanujan's functions and continued fractions.
- A with $n>0$ [Chen, Ismail 98, FS 16]: Indeterminate moment problem, Nevanlinna functions.

Two doubly-infinite Jacobi matrices

We analyze the spectral properties of Jacobi operators A and B acting on vectors of the standard basis of $\ell^{2}(\mathbb{Z})$ as:

$$
A e_{n}=q^{-n+1} e_{n-1}+q^{-n} e_{n+1}, \quad n \in \mathbb{Z}
$$

and

$$
B e_{n}=e_{n-1}+\alpha q^{-n} e_{n}+e_{n+1}, \quad n \in \mathbb{Z}
$$

where $q \in(0,1)$ and $\alpha \in \mathbb{R}$.
The semi-infinite parts of A and B has been studied before mainly within the theory of Orthogonal Polynomials:

- A with $n<0$ [AI-Salam, Ismail 83]: Rogers-Ramanujan's functions and continued fractions.
- A with $n>0$ [Chen, Ismail 98, FS 16]: Indeterminate moment problem, Nevanlinna functions.
- B with $n \gtrless 0$ [Ismail, Mulla 87]: q-Chebyshev polynomials.

Two doubly-infinite Jacobi matrices

We analyze the spectral properties of Jacobi operators A and B acting on vectors of the standard basis of $\ell^{2}(\mathbb{Z})$ as:

$$
A e_{n}=q^{-n+1} e_{n-1}+q^{-n} e_{n+1}, \quad n \in \mathbb{Z}
$$

and

$$
B e_{n}=e_{n-1}+\alpha q^{-n} e_{n}+e_{n+1}, \quad n \in \mathbb{Z},
$$

where $q \in(0,1)$ and $\alpha \in \mathbb{R}$.
The semi-infinite parts of A and B has been studied before mainly within the theory of Orthogonal Polynomials:

- A with $n<0$ [Al-Salam, Ismail 83]: Rogers-Ramanujan's functions and continued fractions.
- A with $n>0$ [Chen, Ismail 98, FS 16]: Indeterminate moment problem, Nevanlinna functions.
- B with $n \gtrless 0$ [Ismail, Mulla 87]: q-Chebyshev polynomials.

The spectrum of any associated semi-infinite Jacobi operator is never known explicitly $(\alpha \neq 0)$ but is expressible in terms of zeros of certain special functions.functions

Special functions $1 / 2$ - basic hypergeometric series

- Let $0<q<1, r, s \in \mathbb{Z}_{+}$. Recall the basic hypergeometric function

$$
r \phi_{s}\left[\begin{array}{llll}
a_{1}, & a_{2}, & \ldots & a_{r} \\
b_{1}, & b_{2}, & \ldots & b_{s}
\end{array} ; q, z\right]
$$

is defined by the power series

$$
\sum_{n=0}^{\infty} \frac{\left(a_{1} ; q\right)_{n}\left(a_{2} ; q\right)_{n} \ldots\left(a_{r} ; q\right)_{n}}{\left(b_{1} ; q\right)_{n}\left(b_{2} ; q\right)_{n} \ldots\left(b_{s} ; q\right)_{n}} \frac{(-1)^{(s-r+1) n} q^{(s-r+1) n(n-1) / 2}}{(q ; q)_{n}} z^{n}
$$

where $z, a_{1}, a_{2}, \ldots, a_{r} \in \mathbb{C}, b_{1}, b_{2}, \ldots, b_{s} \in \mathbb{C} \backslash q^{\mathbb{Z}_{-}}$and

$$
(a ; q)_{0}=1, \quad(a ; q)_{n}=(1-a)(1-a q) \ldots\left(1-a q^{n-1}\right)
$$

is the q-Pochhammer symbol.

Special functions 1/2-basic hypergeometric series

- Let $0<q<1, r, s \in \mathbb{Z}_{+}$. Recall the basic hypergeometric function

$$
r \phi_{s}\left[\begin{array}{llll}
a_{1}, & a_{2}, & \ldots & a_{r} \\
b_{1}, & b_{2}, & \ldots & b_{s}
\end{array} ; q, z\right]
$$

is defined by the power series

$$
\sum_{n=0}^{\infty} \frac{\left(a_{1} ; q\right)_{n}\left(a_{2} ; q\right)_{n} \ldots\left(a_{r} ; q\right)_{n}}{\left(b_{1} ; q\right)_{n}\left(b_{2} ; q\right)_{n} \ldots\left(b_{s} ; q\right)_{n}} \frac{(-1)^{(s-r+1) n} q^{(s-r+1) n(n-1) / 2}}{(q ; q)_{n}} z^{n}
$$

where $z, a_{1}, a_{2}, \ldots, a_{r} \in \mathbb{C}, b_{1}, b_{2}, \ldots, b_{s} \in \mathbb{C} \backslash q^{\mathbb{Z}_{-}}$and

$$
(a ; q)_{0}=1, \quad(a ; q)_{n}=(1-a)(1-a q) \ldots\left(1-a q^{n-1}\right)
$$

is the q-Pochhammer symbol.

- Here we will need only ${ }_{0} \phi_{1}$ and ${ }_{1} \phi_{1}$.

Special functions 2/2-theta functions

- The theta function:

$$
\theta_{q}(z):=(z ; q)_{\infty}(q / z ; q)_{\infty}=\frac{1}{(q ; q)_{\infty}} \sum_{n=-\infty}^{\infty} q^{n(n-1) / 2}(-z)^{n}
$$

Special functions 2/2-theta functions

- The theta function:

$$
\theta_{q}(z):=(z ; q)_{\infty}(q / z ; q)_{\infty}=\frac{1}{(q ; q)_{\infty}} \sum_{n=-\infty}^{\infty} q^{n(n-1) / 2}(-z)^{n}
$$

- Jacobi's theta functions:

$$
\begin{aligned}
& \vartheta_{1}(z \mid q)=\mathrm{i} q^{1 / 4} e^{-\mathrm{i} z}\left(q^{2} ; q^{2}\right)_{\infty} \theta_{q^{2}}\left(e^{2 \mathrm{i} z}\right) \\
& \vartheta_{2}(z \mid q)=q^{1 / 4} e^{-\mathrm{i} z}\left(q^{2} ; q^{2}\right)_{\infty} \theta_{q^{2}}\left(-e^{2 \mathrm{i} z}\right) \\
& \vartheta_{3}(z \mid q)=\left(q^{2} ; q^{2}\right)_{\infty} \theta_{q^{2}}\left(-q e^{2 \mathrm{i} z}\right) \\
& \vartheta_{4}(z \mid q)=\left(q^{2} ; q^{2}\right)_{\infty} \theta_{q^{2}}\left(q e^{2 \mathrm{i} z}\right)
\end{aligned}
$$

(4) Introduction

(2) Spectral resolution of A

(3) Spectral resolution of B

Operators associated with the Jacobi matrix \mathcal{A}

- Operator A with $\operatorname{Dom} A=\operatorname{span}\left\{e_{n} \mid n \in \mathbb{Z}\right\}$ acting as

$$
A e_{n}=q^{-n+1} e_{n-1}+q^{-n} e_{n+1}
$$

has deficiency indices $(1,1)$.

Operators associated with the Jacobi matrix \mathcal{A}

- Operator A with $\operatorname{Dom} A=\operatorname{span}\left\{e_{n} \mid n \in \mathbb{Z}\right\}$ acting as

$$
A e_{n}=q^{-n+1} e_{n-1}+q^{-n} e_{n+1}
$$

has deficiency indices $(1,1)$.

- Thus, there is a one-parameter family of self-adjoint extensions $A_{t}, t \in \mathbb{R} \cup\{\infty\}$.

Operators associated with the Jacobi matrix \mathcal{A}

- Operator A with $\operatorname{Dom} A=\operatorname{span}\left\{e_{n} \mid n \in \mathbb{Z}\right\}$ acting as

$$
A e_{n}=q^{-n+1} e_{n-1}+q^{-n} e_{n+1}
$$

has deficiency indices $(1,1)$.

- Thus, there is a one-parameter family of self-adjoint extensions $A_{t}, t \in \mathbb{R} \cup\{\infty\}$.
- Let $D:=\left\{\psi \in \ell^{2} \mid \mathcal{A} \psi \in \ell^{2}\right\}$. By using the theory of self-adjoint extensions and simple structure of matrix \mathcal{A} one gets:

Operators associated with the Jacobi matrix \mathcal{A}

- Operator A with $\operatorname{Dom} A=\operatorname{span}\left\{e_{n} \mid n \in \mathbb{Z}\right\}$ acting as

$$
A e_{n}=q^{-n+1} e_{n-1}+q^{-n} e_{n+1}
$$

has deficiency indices $(1,1)$.

- Thus, there is a one-parameter family of self-adjoint extensions $A_{t}, t \in \mathbb{R} \cup\{\infty\}$.
- Let $D:=\left\{\psi \in \ell^{2} \mid \mathcal{A} \psi \in \ell^{2}\right\}$. By using the theory of self-adjoint extensions and simple structure of matrix \mathcal{A} one gets:

Proposition (self-adjoint extensions)

For $t \in \mathbb{R} \cup\{\infty\}$, operators A_{t}, acting as $A_{t} \psi=\mathcal{A} \psi$, with domains

$$
\operatorname{Dom} A_{t}=\left\{\psi \in D \mid \lim _{n \rightarrow \infty} q^{-n}\left(\psi_{2 n+1}+t \psi_{2 n}\right)=0 \wedge \lim _{n \rightarrow \infty} q^{-n}\left(q \psi_{2 n-1}-t \psi_{2 n}\right)=0\right\}
$$

if $t \in \mathbb{R}$, or

$$
\operatorname{Dom} A_{\infty}=\left\{\psi \in D \mid \lim _{n \rightarrow \infty} q^{-n} \psi_{2 n}=0\right\}
$$

are all self-adjoint extensions of A.

Operators associated with the Jacobi matrix \mathcal{A}

- Operator A with $\operatorname{Dom} A=\operatorname{span}\left\{e_{n} \mid n \in \mathbb{Z}\right\}$ acting as

$$
A e_{n}=q^{-n+1} e_{n-1}+q^{-n} e_{n+1}
$$

has deficiency indices $(1,1)$.

- Thus, there is a one-parameter family of self-adjoint extensions $A_{t}, t \in \mathbb{R} \cup\{\infty\}$.
- Let $D:=\left\{\psi \in \ell^{2} \mid \mathcal{A} \psi \in \ell^{2}\right\}$. By using the theory of self-adjoint extensions and simple structure of matrix \mathcal{A} one gets:

Proposition (self-adjoint extensions)

For $t \in \mathbb{R} \cup\{\infty\}$, operators A_{t}, acting as $A_{t} \psi=\mathcal{A} \psi$, with domains

$$
\operatorname{Dom} A_{t}=\left\{\psi \in D \mid \lim _{n \rightarrow \infty} q^{-n}\left(\psi_{2 n+1}+t \psi_{2 n}\right)=0 \wedge \lim _{n \rightarrow \infty} q^{-n}\left(q \psi_{2 n-1}-t \psi_{2 n}\right)=0\right\}
$$

if $t \in \mathbb{R}$, or

$$
\operatorname{Dom} A_{\infty}=\left\{\psi \in D \mid \lim _{n \rightarrow \infty} q^{-n} \psi_{2 n}=0\right\}
$$

are all self-adjoint extensions of A.

- In addition,

$$
\sigma_{c}\left(A_{t}\right)=\sigma_{\operatorname{ess}}\left(A_{t}\right)=\{0\}, \quad \forall t \in \mathbb{R} \cup\{\infty\}
$$

Solutions of the eigenvalue equation

- The q-exponential function:

$$
\mathcal{E}_{q}(z)=\sum_{n=0}^{\infty} \frac{q^{n^{2} / 4}}{(q ; q)_{n}} z^{n}={ }_{1} \phi_{1}\left(0 ;-q^{1 / 2} ; q^{1 / 2},-q^{1 / 4} z\right)
$$

Solutions of the eigenvalue equation

- The q-exponential function:

$$
\mathcal{E}_{q}(z)=\sum_{n=0}^{\infty} \frac{q^{n^{2} / 4}}{(q ; q)_{n}} z^{n}={ }_{1} \phi_{1}\left(0 ;-q^{1 / 2} ; q^{1 / 2},-q^{1 / 4} z\right)
$$

- Sequences $\psi^{ \pm}$, where

$$
\psi_{n}^{ \pm}:=(\pm \mathrm{i})^{n} q^{n / 2} \mathcal{E}_{q^{2}}\left(\pm \mathrm{i} x q^{n}\right)
$$

are two linearly independent solutions of the difference equation $\mathcal{A} \psi=x \psi$.

Solutions of the eigenvalue equation

- The q-exponential function:

$$
\mathcal{E}_{q}(z)=\sum_{n=0}^{\infty} \frac{q^{n^{2} / 4}}{(q ; q)_{n}} z^{n}={ }_{1} \phi_{1}\left(0 ;-q^{1 / 2} ; q^{1 / 2},-q^{1 / 4} z\right)
$$

- Sequences $\psi^{ \pm}$, where

$$
\psi_{n}^{ \pm}:=(\pm \mathrm{i})^{n} q^{n / 2} \mathcal{E}_{q^{2}}\left(\pm \mathrm{i} x q^{n}\right)
$$

are two linearly independent solutions of the difference equation $\mathcal{A} \psi=x \psi$.

- By inspection of the asymptotic behavior of $\psi_{n}^{ \pm}$, as $n \rightarrow \pm \infty$, one gets:

$$
\psi^{ \pm} \in \ell^{2}(+\infty), \text { however, } \psi^{ \pm} \notin \ell^{2}(-\infty)
$$

Solutions of the eigenvalue equation

- The q-exponential function:

$$
\mathcal{E}_{q}(z)=\sum_{n=0}^{\infty} \frac{q^{n^{2} / 4}}{(q ; q)_{n}} z^{n}={ }_{1} \phi_{1}\left(0 ;-q^{1 / 2} ; q^{1 / 2},-q^{1 / 4} z\right)
$$

- Sequences $\psi^{ \pm}$, where

$$
\psi_{n}^{ \pm}:=(\pm \mathrm{i})^{n} q^{n / 2} \mathcal{E}_{q^{2}}\left(\pm \mathrm{i} x q^{n}\right)
$$

are two linearly independent solutions of the difference equation $\mathcal{A} \psi=x \psi$.

- By inspection of the asymptotic behavior of $\psi_{n}^{ \pm}$, as $n \rightarrow \pm \infty$, one gets:

$$
\psi^{ \pm} \in \ell^{2}(+\infty), \text { however, } \psi^{ \pm} \notin \ell^{2}(-\infty)
$$

- Hence, one expects there are non-trivial coefficients $a=a(x)$ and $b=b(x)$ such that

$$
a \psi^{+}+b \psi^{-} \in \ell^{2}(-\infty)
$$

The ℓ^{2}-solution

Proposition

For all $x \in \mathbb{C} \backslash\{0\}$, the sequence

$$
\varphi(x):=\theta_{q}\left(-\mathrm{i} q^{-1 / 2} x\right) \psi^{(-)}(x)+\theta_{q}\left(\mathrm{i}^{-1 / 2} x\right) \psi^{(+)}(x)
$$

is the non-trivial solution of $\mathcal{A} \phi=x \phi$ which belongs to $\ell^{2}(\mathbb{Z})$. In addition, within the space $\ell^{2}(\mathbb{Z})$, this solution is given uniquely up to a multiplicative constant.

The ℓ^{2}-solution

Proposition

For all $x \in \mathbb{C} \backslash\{0\}$, the sequence

$$
\varphi(x):=\theta_{q}\left(-\mathrm{i} q^{-1 / 2} x\right) \psi^{(-)}(x)+\theta_{q}\left(\mathrm{i}^{-1 / 2} x\right) \psi^{(+)}(x)
$$

is the non-trivial solution of $\mathcal{A} \phi=x \phi$ which belongs to $\ell^{2}(\mathbb{Z})$.
In addition, within the space $\ell^{2}(\mathbb{Z})$, this solution is given uniquely up to a multiplicative constant.
Moreover,

$$
\varphi_{n}(x)=(-1 ; q)_{\infty} x^{n} q^{n(n-1) / 2}{ }_{0} \phi_{1}\left(-; 0 ; q^{2}, q^{-2 n+4} x^{-2}\right)
$$

and

The ℓ^{2}-solution

Proposition

For all $x \in \mathbb{C} \backslash\{0\}$, the sequence

$$
\varphi(x):=\theta_{q}\left(-\mathrm{i} q^{-1 / 2} x\right) \psi^{(-)}(x)+\theta_{q}\left(\mathrm{i}^{-1 / 2} x\right) \psi^{(+)}(x)
$$

is the non-trivial solution of $\mathcal{A} \phi=x \phi$ which belongs to $\ell^{2}(\mathbb{Z})$.
In addition, within the space $\ell^{2}(\mathbb{Z})$, this solution is given uniquely up to a multiplicative constant.
Moreover,

$$
\varphi_{n}(x)=(-1 ; q)_{\infty} x^{n} q^{n(n-1) / 2}{ }_{0} \phi_{1}\left(-; 0 ; q^{2}, q^{-2 n+4} x^{-2}\right)
$$

and

$$
\|\varphi(x)\|_{\ell^{2}}^{2}=4 \frac{\left(q^{2} ; q^{2}\right)_{\infty}^{2}}{\left(q ; q^{2}\right)_{\infty}^{2}} \theta_{q^{2}}\left(-z^{2}\right)
$$

The secular equation

Theorem (secular equation)

For $t \in \mathbb{R} \cup\{\infty\}$, one has $\operatorname{spec}_{c}\left(A_{t}\right)=\{0\}$ and $\operatorname{spec}_{p}\left(A_{t}\right)$ coincides with the set of roots of the secular equation:

$$
x \theta_{q^{4}}\left(q^{2} x^{2}\right)+t \theta_{q^{4}}\left(x^{2}\right)=0, \quad \text { for } t \in \mathbb{R}
$$

and

$$
\theta_{q^{4}}\left(x^{2}\right)=0, \text { for } t=\infty .
$$

In addition, all eigenvalues of A_{t} are simple.

The secular equation

Theorem (secular equation)

For $t \in \mathbb{R} \cup\{\infty\}$, one has $\operatorname{spec}_{c}\left(A_{t}\right)=\{0\}$ and $\operatorname{spec}_{p}\left(A_{t}\right)$ coincides with the set of roots of the secular equation:

$$
x \theta_{q^{4}}\left(q^{2} x^{2}\right)+t \theta_{q^{4}}\left(x^{2}\right)=0, \text { for } t \in \mathbb{R},
$$

and

$$
\theta_{q^{4}}\left(x^{2}\right)=0, \text { for } t=\infty
$$

In addition, all eigenvalues of A_{t} are simple.

Corollary:

$$
\operatorname{spec}_{p}\left(A_{0}\right)=\left\{ \pm q^{2 n+1} \mid n \in \mathbb{Z}\right\} \quad \text { and } \quad \operatorname{spec}_{p}\left(A_{\infty}\right)=\left\{ \pm q^{2 n} \mid n \in \mathbb{Z}\right\}
$$

The secular equation

Theorem (secular equation)

For $t \in \mathbb{R} \cup\{\infty\}$, one has $\operatorname{spec}_{c}\left(A_{t}\right)=\{0\}$ and $\operatorname{spec}_{p}\left(A_{t}\right)$ coincides with the set of roots of the secular equation:

$$
x \theta_{q^{4}}\left(q^{2} x^{2}\right)+t \theta_{q^{4}}\left(x^{2}\right)=0, \text { for } t \in \mathbb{R},
$$

and

$$
\theta_{q^{4}}\left(x^{2}\right)=0, \text { for } t=\infty
$$

In addition, all eigenvalues of A_{t} are simple.

Corollary:

$$
\operatorname{spec}_{p}\left(A_{0}\right)=\left\{ \pm q^{2 n+1} \mid n \in \mathbb{Z}\right\} \quad \text { and } \quad \operatorname{spec}_{p}\left(A_{\infty}\right)=\left\{ \pm q^{2 n} \mid n \in \mathbb{Z}\right\}
$$

- How to solve the secular equation in general?

The secular equation

Theorem (secular equation)

For $t \in \mathbb{R} \cup\{\infty\}$, one has $\operatorname{spec}_{c}\left(A_{t}\right)=\{0\}$ and $\operatorname{spec}_{p}\left(A_{t}\right)$ coincides with the set of roots of the secular equation:

$$
x \theta_{q^{4}}\left(q^{2} x^{2}\right)+t \theta_{q^{4}}\left(x^{2}\right)=0, \text { for } t \in \mathbb{R}
$$

and

$$
\theta_{q^{4}}\left(x^{2}\right)=0, \text { for } t=\infty
$$

In addition, all eigenvalues of A_{t} are simple.

Corollary:

$$
\operatorname{spec}_{p}\left(A_{0}\right)=\left\{ \pm q^{2 n+1} \mid n \in \mathbb{Z}\right\} \quad \text { and } \quad \operatorname{spec}_{p}\left(A_{\infty}\right)=\left\{ \pm q^{2 n} \mid n \in \mathbb{Z}\right\}
$$

- How to solve the secular equation in general?
- Reparametrize $t=\Phi(s)$ and use nice properties of Jacobi's theta functions...

Reparametrization $t=\Phi(s)$

- The function

$$
\Phi(s):=\mathrm{i} q^{1 / 2} \frac{\vartheta_{4}\left(\mathrm{is} \mid q^{2}\right)}{\vartheta_{1}\left(\mathrm{is} \mid q^{2}\right)}
$$

is real-valued, strictly decreasing on $(0,-2 \ln q)$, and maps $[0,-2 \ln q$) onto $\mathbb{R} \cup\{\infty\}$.

Reparametrization $t=\Phi(s)$

- The function

$$
\Phi(s):=\mathrm{i} q^{1 / 2} \frac{\vartheta_{4}\left(\mathrm{is} \mid q^{2}\right)}{\vartheta_{1}\left(\mathrm{is} \mid q^{2}\right)}
$$

is real-valued, strictly decreasing on ($0,-2 \ln q$), and maps $[0,-2 \ln q$) onto $\mathbb{R} \cup\{\infty\}$.

- For the inverse function, one has

$$
\Phi^{-1}(t)=C(q) \int_{t}^{\infty} \frac{\mathrm{d} x}{\sqrt{\left(D(q)+x^{2}\right)\left(q+x^{2}\right)}}
$$

where

$$
C(q)=\frac{q^{1 / 2}}{\vartheta_{2}\left(0 \mid q^{2}\right) \vartheta_{3}\left(0 \mid q^{2}\right)}
$$

and

$$
D(q)=\frac{q \vartheta_{3}^{2}\left(0 \mid q^{2}\right)}{\vartheta_{2}^{2}\left(0 \mid q^{2}\right)}
$$

Spectrum fully explicitly

- Using the reparametrization $t=\Phi(s)$, the secular equation simplifies to

$$
\theta_{q^{2}}\left(e^{-s} x\right) \theta_{q^{2}}\left(-e^{s} x\right)=0
$$

Spectrum fully explicitly

- Using the reparametrization $t=\Phi(s)$, the secular equation simplifies to

$$
\theta_{q^{2}}\left(e^{-s} x\right) \theta_{q^{2}}\left(-e^{s} x\right)=0
$$

Theorem

Let $t \in \mathbb{R} \cup\{\infty\}$, then

$$
\operatorname{spec}_{p}\left(A_{t}\right)=-e^{-s} q^{2 \mathbb{Z}} \cup e^{s} q^{2 \mathbb{Z}}
$$

where

$$
s=C(q) \int_{t}^{\infty} \frac{\mathrm{d} x}{\sqrt{\left(D(q)+x^{2}\right)\left(q+x^{2}\right)}}
$$

In addition, the family of corresponding eigenvectors $\left\{\varphi\left(\pm e^{s} q^{2 N}\right) \mid N \in \mathbb{Z}\right\}$, where

$$
\varphi_{n}(x)=(-1 ; q)_{\infty} x^{n} q^{n(n-1) / 2}{ }_{0} \phi_{1}\left(-; 0 ; q^{2}, q^{-2 n+4} x^{-2}\right)
$$

forms an orthogonal basis of $\ell^{2}(\mathbb{Z})$.

(1) Introduction

2 Spectral resolution of A
(3) Spectral resolution of B

The discrete Schrödinger operator B

The second Jacobi matrix \mathcal{B} determines the unique operator

$$
B=U+U^{*}+\alpha V
$$

where U is the forward shift operator and V is the self-adjoint diagonal operator:

$$
U e_{n}=e_{n+1} \quad \text { and } \quad V e_{n}=q^{-n} e_{n}, \quad \forall n \in \mathbb{Z}
$$

The discrete Schrödinger operator B

The second Jacobi matrix \mathcal{B} determines the unique operator

$$
B=U+U^{*}+\alpha V
$$

where U is the forward shift operator and V is the self-adjoint diagonal operator:

$$
U e_{n}=e_{n+1} \quad \text { and } \quad V e_{n}=q^{-n} e_{n}, \quad \forall n \in \mathbb{Z}
$$

Proposition (essential spectrum)

The operator B is self-adjoint and one has

$$
\sigma_{\mathrm{ess}}(B)=[-2,2] .
$$

Solutions of the eigenvalue equation

- Using properties of the Hahn-Exton q-Bessel functions one verifies:

$$
f_{n}(z):=(-1)^{n} \alpha^{-n} q^{\frac{1}{2} n(n+1)}\left(z^{-1} \alpha^{-1} q^{n+1} ; q\right)_{\infty}{ }^{1} \phi_{1}\left(0 ; z^{-1} \alpha^{-1} q^{n+1} ; q, z \alpha^{-1} q^{n+1}\right)
$$

and

$$
g_{n}(z):=z^{-n}\left(z \alpha q^{1-n} ; q\right)_{\infty}{ }^{1} \phi_{1}\left(0 ; z \alpha q^{1-n} ; q, q z^{2}\right)
$$

are two solutions of the equation

$$
\mathcal{B} \psi=\left(z+z^{-1}\right) \psi .
$$

for all $\alpha, z \neq 0$.

Solutions of the eigenvalue equation

- Using properties of the Hahn-Exton q-Bessel functions one verifies:

$$
f_{n}(z):=(-1)^{n} \alpha^{-n} q^{\frac{1}{2} n(n+1)}\left(z^{-1} \alpha^{-1} q^{n+1} ; q\right)_{\infty}{ }^{1} \phi_{1}\left(0 ; z^{-1} \alpha^{-1} q^{n+1} ; q, z \alpha^{-1} q^{n+1}\right)
$$

and

$$
g_{n}(z):=z^{-n}\left(z \alpha q^{1-n} ; q\right)_{\infty}{ }^{1} \phi_{1}\left(0 ; z \alpha q^{1-n} ; q, q z^{2}\right)
$$

are two solutions of the equation

$$
\mathcal{B} \psi=\left(z+z^{-1}\right) \psi .
$$

for all $\alpha, z \neq 0$.

- Note that

$$
z \mapsto z+z^{-1}: \begin{cases}\{z|0<|z|<1\} \rightarrow \mathbb{C} \backslash[-2,2], & \text { (outside } \left.\sigma_{\operatorname{ess}}(A)\right) \\ \left\{\mathrm{e}^{\mathrm{i} \theta} \mid \theta \in[0, \pi]\right\} \rightarrow[-2,2], & \text { (inside } \left.\sigma_{\operatorname{ess}}(A)\right)\end{cases}
$$

Solutions of the eigenvalue equation

- Using properties of the Hahn-Exton q-Bessel functions one verifies:

$$
f_{n}(z):=(-1)^{n} \alpha^{-n} q^{\frac{1}{2} n(n+1)}\left(z^{-1} \alpha^{-1} q^{n+1} ; q\right)_{\infty}{ }^{1} \phi_{1}\left(0 ; z^{-1} \alpha^{-1} q^{n+1} ; q, z \alpha^{-1} q^{n+1}\right)
$$

and

$$
g_{n}(z):=z^{-n}\left(z \alpha q^{1-n} ; q\right)_{\infty}{ }^{1} \phi_{1}\left(0 ; z \alpha q^{1-n} ; q, q z^{2}\right)
$$

are two solutions of the equation

$$
\mathcal{B} \psi=\left(z+z^{-1}\right) \psi .
$$

for all $\alpha, z \neq 0$.

- Note that

$$
z \mapsto z+z^{-1}: \begin{cases}\{z|0<|z|<1\} \rightarrow \mathbb{C} \backslash[-2,2], & \text { (outside } \left.\sigma_{\operatorname{ess}}(A)\right) \\ \left\{\mathrm{e}^{\mathrm{i} \theta} \mid \theta \in[0, \pi]\right\} \rightarrow[-2,2], & \text { (inside } \left.\sigma_{\operatorname{ess}}(A)\right)\end{cases}
$$

- The solutions $f(z)$ and $g(z)$ are linearly independent iff $z \notin \alpha^{-1} q^{\mathbb{Z}} \cup\{0\}$ since

$$
W(f, g)=-z^{-1} \theta_{q}(\alpha z)
$$

The point spectrum

Detailed asymptotic analysis of solutions f and g yields:

- If $0<|z|<1$ and $z \notin \alpha^{-1} q^{\mathbb{Z}} \cup\{0\}$, then

$$
f(z)\left\{\begin{array} { l }
{ \in \ell ^ { 2 } (+ \infty) } \\
{ \notin \ell ^ { 2 } (- \infty) }
\end{array} \quad g (z) \left\{\begin{array}{l}
\notin \ell^{2}(+\infty) \\
\in \ell^{2}(-\infty)
\end{array}\right.\right.
$$

The point spectrum

Detailed asymptotic analysis of solutions f and g yields:

- If $0<|z|<1$ and $z \notin \alpha^{-1} q^{\mathbb{Z}} \cup\{0\}$, then

$$
f(z)\left\{\begin{array} { l }
{ \in \ell ^ { 2 } (+ \infty) } \\
{ \notin \ell ^ { 2 } (- \infty) }
\end{array} \quad g (z) \left\{\begin{array}{l}
\notin \ell^{2}(+\infty) \\
\in \ell^{2}(-\infty)
\end{array}\right.\right.
$$

- If $|z|=1$ the asymptotic behavior of solutions is very different and, in the end, it implies that: For $\forall \alpha \in \mathbb{R}$ and $\forall x \in[-2,2]$, there is no non-trivial solution of $\mathcal{B} \psi=x \psi$ belonging to $\ell^{2}(\mathbb{Z})$.

The point spectrum

Detailed asymptotic analysis of solutions f and g yields:

- If $0<|z|<1$ and $z \notin \alpha^{-1} q^{\mathbb{Z}} \cup\{0\}$, then

$$
f(z)\left\{\begin{array} { l }
{ \in \ell ^ { 2 } (+ \infty) } \\
{ \notin \ell ^ { 2 } (- \infty) }
\end{array} \quad g (z) \left\{\begin{array}{l}
\notin \ell^{2}(+\infty) \\
\in \ell^{2}(-\infty)
\end{array}\right.\right.
$$

- If $|z|=1$ the asymptotic behavior of solutions is very different and, in the end, it implies that:

For $\forall \alpha \in \mathbb{R}$ and $\forall x \in[-2,2]$, there is no non-trivial solution of $\mathcal{B} \psi=x \psi$ belonging to $\ell^{2}(\mathbb{Z})$.

Theorem (point spectrum)

If $\alpha \neq 0$, then

$$
\sigma(B) \backslash[-2,2]=\sigma_{p}(B)=\left\{\alpha^{-1} q^{m}+\alpha q^{-m} \mid m>\left\lfloor\log _{q}|\alpha|\right\rfloor\right\}
$$

and all points from this set are simple eigenvalues of B.

The point spectrum

Detailed asymptotic analysis of solutions f and g yields:

- If $0<|z|<1$ and $z \notin \alpha^{-1} q^{\mathbb{Z}} \cup\{0\}$, then

$$
f(z)\left\{\begin{array} { l }
{ \in \ell ^ { 2 } (+ \infty) } \\
{ \notin \ell ^ { 2 } (- \infty) }
\end{array} \quad g (z) \left\{\begin{array}{l}
\notin \ell^{2}(+\infty) \\
\in \ell^{2}(-\infty)
\end{array}\right.\right.
$$

- If $|z|=1$ the asymptotic behavior of solutions is very different and, in the end, it implies that:

For $\forall \alpha \in \mathbb{R}$ and $\forall x \in[-2,2]$, there is no non-trivial solution of $\mathcal{B} \psi=x \psi$ belonging to $\ell^{2}(\mathbb{Z})$.

Theorem (point spectrum)

If $\alpha \neq 0$, then

$$
\sigma(B) \backslash[-2,2]=\sigma_{p}(B)=\left\{\alpha^{-1} q^{m}+\alpha q^{-m} \mid m>\left\lfloor\log _{q}|\alpha|\right\rfloor\right\}
$$

and all points from this set are simple eigenvalues of B. Further, eigenvectors \mathbf{v}_{m} corresponding to eigenvalues $\alpha^{-1} q^{m}+\alpha q^{-m}$, can be chosen as $\mathbf{v}_{m}=\left\{v_{m, j}\right\}_{j=-\infty}^{\infty}$, with

$$
v_{m, j}=f_{j}\left(\alpha^{-1} q^{m}\right)=(-1)^{j} \alpha^{-j} q^{\frac{1}{2} j(j+1)}\left(q^{-m+j+1} ; q\right)_{\infty} \phi_{1}\left(0 ; q^{-m+j+1} ; q, \alpha^{-2} q^{m+j+1}\right)
$$

The point spectrum

Detailed asymptotic analysis of solutions f and g yields:

- If $0<|z|<1$ and $z \notin \alpha^{-1} q^{\mathbb{Z}} \cup\{0\}$, then

$$
f(z)\left\{\begin{array} { l }
{ \in \ell ^ { 2 } (+ \infty) } \\
{ \notin \ell ^ { 2 } (- \infty) }
\end{array} \quad g (z) \left\{\begin{array}{l}
\notin \ell^{2}(+\infty) \\
\in \ell^{2}(-\infty)
\end{array}\right.\right.
$$

- If $|z|=1$ the asymptotic behavior of solutions is very different and, in the end, it implies that:

For $\forall \alpha \in \mathbb{R}$ and $\forall x \in[-2,2]$, there is no non-trivial solution of $\mathcal{B} \psi=x \psi$ belonging to $\ell^{2}(\mathbb{Z})$.

Theorem (point spectrum)

If $\alpha \neq 0$, then

$$
\sigma(B) \backslash[-2,2]=\sigma_{p}(B)=\left\{\alpha^{-1} q^{m}+\alpha q^{-m} \mid m>\left\lfloor\log _{q}|\alpha|\right\rfloor\right\}
$$

and all points from this set are simple eigenvalues of B. Further, eigenvectors \mathbf{v}_{m} corresponding to eigenvalues $\alpha^{-1} q^{m}+\alpha q^{-m}$, can be chosen as $\mathbf{v}_{m}=\left\{v_{m, j}\right\}_{j=-\infty}^{\infty}$, with

$$
v_{m, j}=f_{j}\left(\alpha^{-1} q^{m}\right)=(-1)^{j} \alpha^{-j} q^{\frac{1}{2} j(j+1)}\left(q^{-m+j+1} ; q\right)_{\infty} \phi_{1}\left(0 ; q^{-m+j+1} ; q, \alpha^{-2} q^{m+j+1}\right)
$$

In addition,

$$
\left\|\boldsymbol{v}_{m}\right\|_{\ell^{2}(\mathbb{Z})}=\frac{|\alpha|^{-m} q^{m(m+1) / 2}}{\sqrt{1-\alpha^{-2} q^{2 m}}}(q ; q)_{\infty}, \quad m>\left\lfloor\log _{q}|\alpha|\right\rfloor
$$

The absolutely continuous part of the spectral measure

- Let us denote

$$
E_{k, l}(\cdot):=\left\langle e_{k}, E_{B}(\cdot) e_{l}\right\rangle, \quad k, I \in \mathbb{Z},
$$

where E_{B} stands for the spectral measure of B.

The absolutely continuous part of the spectral measure

- Let us denote

$$
E_{k, l}(\cdot):=\left\langle e_{k}, E_{B}(\cdot) e_{l}\right\rangle, \quad k, l \in \mathbb{Z},
$$

where E_{B} stands for the spectral measure of B.

- To determine the spectral measure in the essential spectrum we use the formula

$$
E_{k, I}((a, b))=\lim _{\delta \rightarrow 0+\epsilon \rightarrow 0+} \lim _{2 \pi \mathrm{i}} \frac{1}{a+\delta} \int_{a-\delta}^{b-}\left(G_{k, I}(x+\mathrm{i} \epsilon)-G_{k, l}(x-\mathrm{i} \epsilon)\right) \mathrm{d} x
$$

where

$$
G_{k, l}(z):=\left\langle e_{k},(B-z)^{-1} e_{l}\right\rangle=\frac{1}{W(f, g)} \begin{cases}g_{k}(z) f_{l}(z), & k \leq I \\ g_{l}(z) f_{k}(z), & k \geq l\end{cases}
$$

The absolutely continuous part of the spectral measure

- Let us denote

$$
E_{k, l}(\cdot):=\left\langle e_{k}, E_{B}(\cdot) e_{l}\right\rangle, \quad k, l \in \mathbb{Z}
$$

where E_{B} stands for the spectral measure of B.

- To determine the spectral measure in the essential spectrum we use the formula

$$
E_{k, I}((a, b))=\lim _{\delta \rightarrow 0+\epsilon \rightarrow 0+} \lim _{2 \pi \mathrm{i}} \frac{1}{2} \int_{a+\delta}^{b-\delta}\left(G_{k, I}(x+\mathrm{i} \epsilon)-G_{k, l}(x-\mathrm{i} \epsilon)\right) \mathrm{d} x
$$

where

$$
G_{k, l}(z):=\left\langle e_{k},(B-z)^{-1} e_{l}\right\rangle=\frac{1}{W(f, g)} \begin{cases}g_{k}(z) f_{l}(z), & k \leq l \\ g_{l}(z) f_{k}(z), & k \geq l\end{cases}
$$

Proposition

Let $\alpha \neq 0$ and $-2 \leq a<b \leq 2$. Then for any $k, l \in \mathbb{Z}$, it holds

$$
E_{k, l}([a, b])=\frac{1}{2 \pi} \int_{\phi_{b}}^{\phi_{a}} f_{l}\left(e^{\mathrm{i} \phi}\right) f_{k}\left(e^{\mathrm{i} \phi}\right)\left|\frac{\left(e^{2 \mathrm{i} \phi} ; q\right)_{\infty}}{\left(\alpha e^{\mathrm{i} \phi}, q \alpha^{-1} e^{-\mathrm{i} \phi} ; q\right)_{\infty}}\right|^{2} \mathrm{~d} \phi
$$

where $\phi_{a}=\arccos (a / 2)$ and $\phi_{b}=\arccos (b / 2)$. Consequently, $\sigma_{a c}(B)=[-2,2]$.

Summary

Theorem

If $\alpha \neq 0$, then

$$
\sigma_{e s s}(B)=\sigma_{a c}(B)=[-2,2],
$$

and

$$
\sigma_{p}(B)=\sigma_{d}(B)=\left\{\alpha^{-1} q^{m}+\alpha q^{-m} \mid m>\left\lfloor\log _{q}|\alpha|\right\rfloor\right\}
$$

Summary

Theorem

If $\alpha \neq 0$, then

$$
\sigma_{e s s}(B)=\sigma_{a c}(B)=[-2,2],
$$

and

$$
\sigma_{p}(B)=\sigma_{d}(B)=\left\{\alpha^{-1} q^{m}+\alpha q^{-m} \mid m>\left\lfloor\log _{q}|\alpha|\right\rfloor\right\}
$$

In addition, for $\mathcal{M} \subset \mathbb{R}$ a Borel set, we have

$$
\begin{aligned}
E_{k, l}(\mathcal{M}) & =\frac{1}{2 \pi} \int_{2 \cos \phi \in[-2,2] \cap \mathcal{A}} f_{l}\left(e^{\mathrm{i} \phi}\right) f_{k}\left(e^{\mathrm{i} \phi}\right)\left|\frac{\left(e^{2 \mathrm{i} \phi} ; q\right)_{\infty}}{\left(\alpha e^{\mathrm{i} \phi}, q \alpha^{-1} e^{-\mathrm{i} \phi} ; q\right)_{\infty}}\right|^{2} \mathrm{~d} \phi \\
& +\frac{1}{(q ; q)_{\infty}^{2}} \sum_{\substack{m>\lfloor\log |\alpha|\rfloor \\
\alpha^{-1} q^{m}+\alpha q^{-m} \in \mathcal{M}}}\left(1-\alpha^{-2} q^{2 m}\right) \alpha^{2 m} q^{-m(m+1)} f_{l}\left(\alpha^{-1} q^{m}\right) f_{k}\left(\alpha^{-1} q^{m}\right)
\end{aligned}
$$

One consequence for special functions

- Recall the Hanhn-Exton (or third Jackson's) q-Bessel function is defined as

$$
J_{\nu}(z ; q)=z^{\nu} \frac{\left(q^{\nu+1} ; q\right)_{\infty}}{(q ; q)_{\infty}} 1 \phi_{1}\left(0 ; q^{\nu+1} ; q, q z^{2}\right)
$$

One consequence for special functions

- Recall the Hanhn-Exton (or third Jackson's) q-Bessel function is defined as

$$
J_{\nu}(z ; q)=z^{\nu} \frac{\left(q^{\nu+1} ; q\right)_{\infty}}{(q ; q)_{\infty}} 1 \phi_{1}\left(0 ; q^{\nu+1} ; q, q z^{2}\right)
$$

- Elements of the eigenvectors \boldsymbol{v}_{m} are expressible in terms of Hanhn-Exton q-Bessel function and the formula for the norm of the eigenvectors yields

$$
\sum_{n \in \mathbb{Z}} J_{n}^{2}(z ; q)=\frac{1}{1-z^{2}}, \quad|z|<1
$$

One consequence for special functions

- Recall the Hanhn-Exton (or third Jackson's) q-Bessel function is defined as

$$
J_{\nu}(z ; q)=z^{\nu} \frac{\left(q^{\nu+1} ; q\right)_{\infty}}{(q ; q)_{\infty}} 1 \phi_{1}\left(0 ; q^{\nu+1} ; q, q z^{2}\right)
$$

- Elements of the eigenvectors \boldsymbol{v}_{m} are expressible in terms of Hanhn-Exton q-Bessel function and the formula for the norm of the eigenvectors yields

$$
\sum_{n \in \mathbb{Z}} J_{n}^{2}(z ; q)=\frac{1}{1-z^{2}}, \quad|z|<1
$$

- This formula seems to be new (Really?) and it generalizes the well-known summation formula for the Bessel functions of the first kind:

$$
\sum_{n \in \mathbb{Z}} J_{n}^{2}(z)=1, \quad|z|<1
$$

Thank you!

