# Spectral analysis of two doubly infinite Jacobi operators

František Štampach jointly with Mourad E. H. Ismail

Stockholm University

# Spectral Theory and Applications

conference in memory of Boris Pavlov

March 13, 2016



Spectral resolution of A

Spectral resolution of B

František Štampach (Stockholm University)

We analyze the spectral properties of Jacobi operators A and B acting on vectors of the standard basis of  $\ell^2(\mathbb{Z})$  as:

$$Ae_n=q^{-n+1}e_{n-1}+q^{-n}e_{n+1},\quad n\in\mathbb{Z},$$

and

$$Be_n = e_{n-1} + \alpha q^{-n} e_n + e_{n+1}, \quad n \in \mathbb{Z},$$

where  $q \in (0, 1)$  and  $\alpha \in \mathbb{R}$ .

We analyze the spectral properties of Jacobi operators A and B acting on vectors of the standard basis of  $\ell^2(\mathbb{Z})$  as:

$$Ae_n=q^{-n+1}e_{n-1}+q^{-n}e_{n+1},\quad n\in\mathbb{Z},$$

and

$$Be_n = e_{n-1} + \alpha q^{-n} e_n + e_{n+1}, \quad n \in \mathbb{Z},$$

where  $q \in (0, 1)$  and  $\alpha \in \mathbb{R}$ .

The semi-infinite parts of *A* and *B* has been studied before mainly within the theory of Orthogonal Polynomials:

We analyze the spectral properties of Jacobi operators A and B acting on vectors of the standard basis of  $\ell^2(\mathbb{Z})$  as:

$$Ae_n=q^{-n+1}e_{n-1}+q^{-n}e_{n+1},\quad n\in\mathbb{Z},$$

and

$$Be_n = e_{n-1} + \alpha q^{-n} e_n + e_{n+1}, \quad n \in \mathbb{Z},$$

where  $q \in (0, 1)$  and  $\alpha \in \mathbb{R}$ .

The semi-infinite parts of *A* and *B* has been studied before mainly within the theory of Orthogonal Polynomials:

• A with n < 0 [Al-Salam, Ismail 83]: Rogers–Ramanujan's functions and continued fractions.

We analyze the spectral properties of Jacobi operators A and B acting on vectors of the standard basis of  $\ell^2(\mathbb{Z})$  as:

$$Ae_n=q^{-n+1}e_{n-1}+q^{-n}e_{n+1},\quad n\in\mathbb{Z},$$

and

$$Be_n = e_{n-1} + \alpha q^{-n} e_n + e_{n+1}, \quad n \in \mathbb{Z},$$

where  $q \in (0, 1)$  and  $\alpha \in \mathbb{R}$ .

The semi-infinite parts of *A* and *B* has been studied before mainly within the theory of Orthogonal Polynomials:

- A with n < 0 [Al-Salam, Ismail 83]: Rogers–Ramanujan's functions and continued fractions.
- A with n > 0 [Chen, Ismail 98, FS 16]: Indeterminate moment problem, Nevanlinna functions.

We analyze the spectral properties of Jacobi operators A and B acting on vectors of the standard basis of  $\ell^2(\mathbb{Z})$  as:

$$Ae_n=q^{-n+1}e_{n-1}+q^{-n}e_{n+1},\quad n\in\mathbb{Z},$$

and

$$Be_n = e_{n-1} + \alpha q^{-n} e_n + e_{n+1}, \quad n \in \mathbb{Z},$$

where  $q \in (0, 1)$  and  $\alpha \in \mathbb{R}$ .

The semi-infinite parts of *A* and *B* has been studied before mainly within the theory of Orthogonal Polynomials:

- A with n < 0 [Al-Salam, Ismail 83]: Rogers–Ramanujan's functions and continued fractions.
- A with n > 0 [Chen, Ismail 98, FS 16]: Indeterminate moment problem, Nevanlinna functions.
- *B* with  $n \ge 0$  [Ismail, Mulla 87]: *q*-Chebyshev polynomials.

We analyze the spectral properties of Jacobi operators A and B acting on vectors of the standard basis of  $\ell^2(\mathbb{Z})$  as:

$$Ae_n=q^{-n+1}e_{n-1}+q^{-n}e_{n+1},\quad n\in\mathbb{Z},$$

and

$$Be_n = e_{n-1} + \alpha q^{-n} e_n + e_{n+1}, \quad n \in \mathbb{Z},$$

where  $q \in (0, 1)$  and  $\alpha \in \mathbb{R}$ .

The semi-infinite parts of *A* and *B* has been studied before mainly within the theory of Orthogonal Polynomials:

- A with n < 0 [Al-Salam, Ismail 83]: Rogers–Ramanujan's functions and continued fractions.
- A with n > 0 [Chen, Ismail 98, FS 16]: Indeterminate moment problem, Nevanlinna functions.
- *B* with  $n \ge 0$  [Ismail, Mulla 87]: *q*-Chebyshev polynomials.

The spectrum of any associated semi-infinite Jacobi operator is never known explicitly ( $\alpha \neq 0$ ) but is expressible in terms of zeros of certain special functions.functions

František Štampach (Stockholm University)

• Let 0 < q < 1,  $r, s \in \mathbb{Z}_+$ . Recall the basic hypergeometric function

$${}^{r\phi_{s}}\begin{bmatrix}a_{1}, & a_{2}, & \dots & a_{r}\\b_{1}, & b_{2}, & \dots & b_{s}\end{bmatrix}; q, z$$

is defined by the power series

$$\sum_{n=0}^{\infty} \frac{(a_1;q)_n(a_2;q)_n\dots(a_r;q)_n}{(b_1;q)_n(b_2;q)_n\dots(b_s;q)_n} \frac{(-1)^{(s-r+1)n}q^{(s-r+1)n(n-1)/2}}{(q;q)_n} z^n$$

where  $z, a_1, a_2, \ldots, a_r \in \mathbb{C}, b_1, b_2, \ldots, b_s \in \mathbb{C} \setminus q^{\mathbb{Z}_-}$  and

$$(a;q)_0 = 1, (a;q)_n = (1-a)(1-aq)\dots(1-aq^{n-1})$$

is the *q*-Pochhammer symbol.

• Let 0 < q < 1,  $r, s \in \mathbb{Z}_+$ . Recall the basic hypergeometric function

$${}_{r\phi_{s}}\begin{bmatrix}a_{1}, a_{2}, \ldots & a_{r}\\b_{1}, b_{2}, \ldots & b_{s}\end{bmatrix}$$

is defined by the power series

$$\sum_{n=0}^{\infty} \frac{(a_1; q)_n(a_2; q)_n \dots (a_r; q)_n}{(b_1; q)_n(b_2; q)_n \dots (b_s; q)_n} \frac{(-1)^{(s-r+1)n}q^{(s-r+1)n(n-1)/2}}{(q; q)_n} z^n$$

where  $z, a_1, a_2, \ldots, a_r \in \mathbb{C}, \, b_1, b_2, \ldots, b_s \in \mathbb{C} \setminus q^{\mathbb{Z}_-}$  and

$$(a;q)_0 = 1, (a;q)_n = (1-a)(1-aq)\dots(1-aq^{n-1})$$

is the *q*-Pochhammer symbol.

• Here we will need only  $_0\phi_1$  and  $_1\phi_1$ .

• The theta function:

$$heta_q(z) := (z;q)_\infty (q/z;q)_\infty = rac{1}{(q;q)_\infty} \sum_{n=-\infty}^\infty q^{n(n-1)/2} (-z)^n$$

• The theta function:

$$heta_q(z) := (z;q)_\infty (q/z;q)_\infty = rac{1}{(q;q)_\infty} \sum_{n=-\infty}^\infty q^{n(n-1)/2} (-z)^n$$

• Jacobi's theta functions:

$$\begin{split} \vartheta_{1}(z \mid q) &= \mathrm{i}q^{1/4}e^{-\mathrm{i}z}(q^{2};q^{2})_{\infty} \,\,\theta_{q^{2}}\left(e^{2\mathrm{i}z}\right) \\ \vartheta_{2}(z \mid q) &= q^{1/4}e^{-\mathrm{i}z}(q^{2};q^{2})_{\infty} \,\,\theta_{q^{2}}\left(-e^{2\mathrm{i}z}\right) \\ \vartheta_{3}(z \mid q) &= (q^{2};q^{2})_{\infty} \,\,\theta_{q^{2}}\left(-qe^{2\mathrm{i}z}\right) \\ \vartheta_{4}(z \mid q) &= (q^{2};q^{2})_{\infty} \,\,\theta_{q^{2}}\left(qe^{2\mathrm{i}z}\right) \end{split}$$



2 Spectral resolution of A

Spectral resolution of B

• Operator A with Dom  $A = \operatorname{span} \{ e_n \mid n \in \mathbb{Z} \}$  acting as

$$Ae_n = q^{-n+1}e_{n-1} + q^{-n}e_{n+1}$$

has deficiency indices (1, 1).

• Operator A with Dom  $A = \operatorname{span}\{e_n \mid n \in \mathbb{Z}\}$  acting as

$$Ae_n = q^{-n+1}e_{n-1} + q^{-n}e_{n+1}$$

has deficiency indices (1, 1).

• Thus, there is a one-parameter family of self-adjoint extensions  $A_t$ ,  $t \in \mathbb{R} \cup \{\infty\}$ .

• Operator A with Dom  $A = \operatorname{span} \{ e_n \mid n \in \mathbb{Z} \}$  acting as

$$Ae_n = q^{-n+1}e_{n-1} + q^{-n}e_{n+1}$$

has deficiency indices (1, 1).

- Thus, there is a one-parameter family of self-adjoint extensions  $A_t$ ,  $t \in \mathbb{R} \cup \{\infty\}$ .
- Let D := {ψ ∈ ℓ<sup>2</sup> | Aψ ∈ ℓ<sup>2</sup>}. By using the theory of self-adjoint extensions and simple structure of matrix A one gets:

• Operator A with Dom  $A = \operatorname{span}\{e_n \mid n \in \mathbb{Z}\}$  acting as

$$Ae_n = q^{-n+1}e_{n-1} + q^{-n}e_{n+1}$$

has deficiency indices (1, 1).

- Thus, there is a one-parameter family of self-adjoint extensions  $A_t$ ,  $t \in \mathbb{R} \cup \{\infty\}$ .
- Let D := {ψ ∈ ℓ<sup>2</sup> | Aψ ∈ ℓ<sup>2</sup>}. By using the theory of self-adjoint extensions and simple structure of matrix A one gets:

#### Proposition (self-adjoint extensions)

For  $t \in \mathbb{R} \cup \{\infty\}$ , operators  $A_t$ , acting as  $A_t \psi = A \psi$ , with domains

$$Dom A_{t} = \left\{ \psi \in D \mid \lim_{n \to \infty} q^{-n} \left( \psi_{2n+1} + t \psi_{2n} \right) = 0 \land \lim_{n \to \infty} q^{-n} \left( q \psi_{2n-1} - t \psi_{2n} \right) = 0 \right\},$$

if  $t \in \mathbb{R}$ , or

$$\operatorname{Dom} A_{\infty} = \Big\{ \psi \in D \mid \lim_{n \to \infty} q^{-n} \psi_{2n} = 0 \Big\},\,$$

are all self-adjoint extensions of A.

• Operator A with Dom  $A = \operatorname{span}\{e_n \mid n \in \mathbb{Z}\}$  acting as

$$Ae_n = q^{-n+1}e_{n-1} + q^{-n}e_{n+1}$$

has deficiency indices (1, 1).

- Thus, there is a one-parameter family of self-adjoint extensions  $A_t$ ,  $t \in \mathbb{R} \cup \{\infty\}$ .
- Let D := {ψ ∈ ℓ<sup>2</sup> | Aψ ∈ ℓ<sup>2</sup>}. By using the theory of self-adjoint extensions and simple structure of matrix A one gets:

#### Proposition (self-adjoint extensions)

For  $t \in \mathbb{R} \cup \{\infty\}$ , operators  $A_t$ , acting as  $A_t \psi = A \psi$ , with domains

$$Dom A_{t} = \Big\{ \psi \in D \mid \lim_{n \to \infty} q^{-n} (\psi_{2n+1} + t\psi_{2n}) = 0 \land \lim_{n \to \infty} q^{-n} (q\psi_{2n-1} - t\psi_{2n}) = 0 \Big\},\$$

if  $t \in \mathbb{R}$ , or

$$\operatorname{Dom} A_{\infty} = \Big\{ \psi \in D \mid \lim_{n \to \infty} q^{-n} \psi_{2n} = 0 \Big\},\,$$

are all self-adjoint extensions of A.

In addition,

$$\sigma_{c}(A_{t}) = \sigma_{\mathsf{ess}}(A_{t}) = \{0\}, \quad \forall t \in \mathbb{R} \cup \{\infty\}.$$

František Štampach (Stockholm University)

Jacobi operators (Spectr. Theor. Appl.)

$$\mathcal{E}_q(z) = \sum_{n=0}^{\infty} \frac{q^{n^2/4}}{(q;q)_n} z^n = {}_1\phi_1\left(0; -q^{1/2}; q^{1/2}, -q^{1/4}z\right)$$

$$\mathcal{E}_q(z) = \sum_{n=0}^{\infty} \frac{q^{n^2/4}}{(q;q)_n} z^n = {}_1\phi_1\left(0; -q^{1/2}; q^{1/2}, -q^{1/4}z\right)$$

• Sequences  $\psi^{\pm}$ , where

$$\psi_n^{\pm} := (\pm \mathrm{i})^n q^{n/2} \mathcal{E}_{q^2} (\pm \mathrm{i} x q^n) ,$$

are two linearly independent solutions of the difference equation  $\mathcal{A}\psi = x\psi$ .

$$\mathcal{E}_q(z) = \sum_{n=0}^{\infty} \frac{q^{n^2/4}}{(q;q)_n} z^n = {}_1\phi_1\left(0; -q^{1/2}; q^{1/2}, -q^{1/4}z\right)$$

• Sequences  $\psi^{\pm}$ , where

$$\psi_n^{\pm} := (\pm \mathrm{i})^n q^{n/2} \mathcal{E}_{q^2} (\pm \mathrm{i} x q^n) ,$$

are two linearly independent solutions of the difference equation  $A\psi = x\psi$ .

• By inspection of the asymptotic behavior of  $\psi_n^{\pm}$ , as  $n \to \pm \infty$ , one gets:

$$\psi^{\pm} \in \ell^2(+\infty)$$
, however,  $\psi^{\pm} \notin \ell^2(-\infty)$ .

$$\mathcal{E}_q(z) = \sum_{n=0}^{\infty} \frac{q^{n^2/4}}{(q;q)_n} z^n = {}_1\phi_1\left(0;-q^{1/2};q^{1/2},-q^{1/4}z\right)$$

• Sequences  $\psi^{\pm}$ , where

$$\psi_n^{\pm} := (\pm \mathrm{i})^n q^{n/2} \mathcal{E}_{q^2} (\pm \mathrm{i} x q^n) ,$$

are two linearly independent solutions of the difference equation  $A\psi = x\psi$ .

• By inspection of the asymptotic behavior of  $\psi_n^{\pm}$ , as  $n \to \pm \infty$ , one gets:

$$\psi^{\pm} \in \ell^2(+\infty)$$
, however,  $\psi^{\pm} \notin \ell^2(-\infty)$ .

• Hence, one expects there are non-trivial coefficients a = a(x) and b = b(x) such that

$$a\psi^+ + b\psi^- \in \ell^2(-\infty).$$

# Proposition

For all  $x \in \mathbb{C} \setminus \{0\}$ , the sequence

$$\varphi(x) := \theta_q \left(-\mathrm{i} q^{-1/2} x\right) \psi^{(-)}(x) + \theta_q \left(\mathrm{i} q^{-1/2} x\right) \psi^{(+)}(x),$$

is the non-trivial solution of  $\mathcal{A}\phi = x\phi$  which belongs to  $\ell^2(\mathbb{Z})$ . In addition, within the space  $\ell^2(\mathbb{Z})$ , this solution is given uniquely up to a multiplicative constant.

# Proposition

For all  $x \in \mathbb{C} \setminus \{0\}$ , the sequence

$$\varphi(x) := \theta_q \left(-\mathrm{i} q^{-1/2} x\right) \psi^{(-)}(x) + \theta_q \left(\mathrm{i} q^{-1/2} x\right) \psi^{(+)}(x),$$

is the non-trivial solution of  $\mathcal{A}\phi = x\phi$  which belongs to  $\ell^2(\mathbb{Z})$ . In addition, within the space  $\ell^2(\mathbb{Z})$ , this solution is given uniquely up to a multiplicative constant.

Moreover,

$$\varphi_n(x) = (-1; q)_{\infty} x^n q^{n(n-1)/2} {}_0 \phi_1\left(-; 0; q^2, q^{-2n+4} x^{-2}\right)$$

and

# Proposition

For all  $x \in \mathbb{C} \setminus \{0\}$ , the sequence

$$\varphi(x) := \theta_q \left(-\mathrm{i} q^{-1/2} x\right) \psi^{(-)}(x) + \theta_q \left(\mathrm{i} q^{-1/2} x\right) \psi^{(+)}(x),$$

is the non-trivial solution of  $\mathcal{A}\phi = x\phi$  which belongs to  $\ell^2(\mathbb{Z})$ . In addition, within the space  $\ell^2(\mathbb{Z})$ , this solution is given uniquely up to a multiplicative constant.

Moreover,

$$\varphi_n(x) = (-1; q)_{\infty} x^n q^{n(n-1)/2} {}_0 \phi_1 \left(-; 0; q^2, q^{-2n+4} x^{-2}\right)$$

and

$$\|\varphi(x)\|_{\ell^{2}}^{2} = 4 \frac{(q^{2}; q^{2})_{\infty}^{2}}{(q; q^{2})_{\infty}^{2}} \theta_{q^{2}} \left(-z^{2}\right)$$

For  $t \in \mathbb{R} \cup \{\infty\}$ , one has spec<sub>c</sub>( $A_t$ ) = {0} and spec<sub>p</sub>( $A_t$ ) coincides with the set of roots of the secular equation:

$$x heta_{q^4}\left(q^2x^2
ight)+t heta_{q^4}\left(x^2
ight)=0, \ \ ext{for} \ t\in\mathbb{R},$$

and

$$heta_{q^4}\left(x^2
ight)=0, \ \ {
m for} \ t=\infty.$$

In addition, all eigenvalues of  $A_t$  are simple.

For  $t \in \mathbb{R} \cup \{\infty\}$ , one has spec<sub>c</sub>( $A_t$ ) = {0} and spec<sub>p</sub>( $A_t$ ) coincides with the set of roots of the secular equation:

$$x heta_{q^4}\left(q^2x^2
ight)+t heta_{q^4}\left(x^2
ight)=0, \ \ ext{for} \ t\in\mathbb{R},$$

and

$$heta_{q^4}\left(x^2\right)=0, \ \ ext{for} \ t=\infty.$$

In addition, all eigenvalues of  $A_t$  are simple.

Corollary:

$$\operatorname{spec}_{\rho}(A_0) = \left\{ \pm q^{2n+1} \mid n \in \mathbb{Z} \right\} \text{ and } \operatorname{spec}_{\rho}(A_{\infty}) = \left\{ \pm q^{2n} \mid n \in \mathbb{Z} \right\}.$$

For  $t \in \mathbb{R} \cup \{\infty\}$ , one has spec<sub>c</sub>( $A_t$ ) = {0} and spec<sub>p</sub>( $A_t$ ) coincides with the set of roots of the secular equation:

$$x heta_{q^4}\left(q^2x^2
ight)+t heta_{q^4}\left(x^2
ight)=0, \ \ ext{for} \ t\in\mathbb{R},$$

and

$$heta_{q^4}\left(x^2
ight)=0, \ \ ext{for} \ t=\infty.$$

In addition, all eigenvalues of  $A_t$  are simple.

Corollary:

$$\operatorname{spec}_{\rho}(A_0) = \left\{ \pm q^{2n+1} \mid n \in \mathbb{Z} \right\}$$
 and  $\operatorname{spec}_{\rho}(A_{\infty}) = \left\{ \pm q^{2n} \mid n \in \mathbb{Z} \right\}$ 

• How to solve the secular equation in general?

For  $t \in \mathbb{R} \cup \{\infty\}$ , one has spec<sub>c</sub>( $A_t$ ) = {0} and spec<sub>p</sub>( $A_t$ ) coincides with the set of roots of the secular equation:

$$x heta_{q^4}\left(q^2x^2
ight)+t heta_{q^4}\left(x^2
ight)=0, \ \ ext{for} \ t\in\mathbb{R},$$

and

$$heta_{q^4}\left(x^2
ight)=0, \ \ ext{for} \ t=\infty.$$

In addition, all eigenvalues of  $A_t$  are simple.

Corollary:

$$\operatorname{spec}_{\rho}(A_0) = \left\{ \pm q^{2n+1} \mid n \in \mathbb{Z} \right\}$$
 and  $\operatorname{spec}_{\rho}(A_{\infty}) = \left\{ \pm q^{2n} \mid n \in \mathbb{Z} \right\}$ .

- How to solve the secular equation in general?
- Reparametrize  $t = \Phi(s)$  and use nice properties of Jacobi's theta functions...

• The function

$$\Phi(\boldsymbol{s}) := \mathrm{i} q^{1/2} \frac{\vartheta_4\left(\mathrm{i} \boldsymbol{s} \mid \boldsymbol{q}^2\right)}{\vartheta_1\left(\mathrm{i} \boldsymbol{s} \mid \boldsymbol{q}^2\right)}$$

is real-valued, strictly decreasing on  $(0, -2 \ln q)$ , and maps  $[0, -2 \ln q)$  onto  $\mathbb{R} \cup \{\infty\}$ .



• The function

$$\Phi(s) := \mathrm{i} q^{1/2} \frac{\vartheta_4\left(\mathrm{i} s \mid q^2\right)}{\vartheta_1\left(\mathrm{i} s \mid q^2\right)}$$

is real-valued, strictly decreasing on  $(0, -2 \ln q)$ , and maps  $[0, -2 \ln q)$  onto  $\mathbb{R} \cup \{\infty\}$ .

• For the inverse function, one has

$$\Phi^{-1}(t) = C(q) \int_t^\infty \frac{\mathrm{d}x}{\sqrt{\left(D(q) + x^2\right)\left(q + x^2\right)}}$$

where

$$C(q) = \frac{q^{1/2}}{\vartheta_2\left(0 \mid q^2\right)\vartheta_3\left(0 \mid q^2\right)}$$

and

$$D(q) = \frac{q\vartheta_3^2\left(0 \mid q^2\right)}{\vartheta_2^2\left(0 \mid q^2\right)}.$$



• Using the reparametrization  $t = \Phi(s)$ , the secular equation simplifies to

$$\theta_{q^2}\left(e^{-s}x\right)\theta_{q^2}\left(-e^{s}x\right)=0.$$

• Using the reparametrization  $t = \Phi(s)$ , the secular equation simplifies to

$$\theta_{q^2}\left(e^{-s}x\right)\theta_{q^2}\left(-e^{s}x\right)=0.$$

#### Theorem

Let  $t \in \mathbb{R} \cup \{\infty\}$ , then

$$\operatorname{spec}_{p}(A_{t}) = -e^{-s}q^{2\mathbb{Z}} \cup e^{s}q^{2\mathbb{Z}}$$

where

$$s = C(q) \int_t^\infty \frac{\mathrm{d}x}{\sqrt{\left(D(q) + x^2\right)\left(q + x^2\right)}}$$

In addition, the family of corresponding eigenvectors  $\{\varphi(\pm e^{s}q^{2N}) \mid N \in \mathbb{Z}\}$ , where

$$\varphi_n(x) = (-1; q)_{\infty} x^n q^{n(n-1)/2} {}_0 \phi_1 \left(-; 0; q^2, q^{-2n+4} x^{-2}\right),$$

forms an orthogonal basis of  $\ell^2(\mathbb{Z})$ .

Introduction

Spectral resolution of A

Spectral resolution of B

The second Jacobi matrix  $\mathcal{B}$  determines the unique operator

$$B = U + U^* + \alpha V$$

where U is the forward shift operator and V is the self-adjoint diagonal operator:

$$Ue_n = e_{n+1}$$
 and  $Ve_n = q^{-n}e_n$ ,  $\forall n \in \mathbb{Z}$ .

The second Jacobi matrix  $\mathcal{B}$  determines the unique operator

$$B = U + U^* + \alpha V$$

where U is the forward shift operator and V is the self-adjoint diagonal operator:

$$Ue_n = e_{n+1}$$
 and  $Ve_n = q^{-n}e_n$ ,  $\forall n \in \mathbb{Z}$ .

#### Proposition (essential spectrum)

The operator B is self-adjoint and one has

$$\sigma_{\sf ess}(B) = [-2, 2].$$

• Using properties of the Hahn-Exton *q*-Bessel functions one verifies:

$$f_n(z) := (-1)^n \alpha^{-n} q^{\frac{1}{2}n(n+1)} \left( z^{-1} \alpha^{-1} q^{n+1}; q \right)_{\infty} {}_1 \phi_1 \left( 0; z^{-1} \alpha^{-1} q^{n+1}; q, z \alpha^{-1} q^{n+1} \right)$$

and

$$g_n(z) := z^{-n} \left( z \alpha q^{1-n}; q \right)_{\infty} \, _1\phi_1 \left( 0; z \alpha q^{1-n}; q, q z^2 \right).$$

are two solutions of the equation

$$\mathcal{B}\psi=(z+z^{-1})\psi.$$

for all  $\alpha, z \neq 0$ .

• Using properties of the Hahn-Exton *q*-Bessel functions one verifies:

$$f_n(z) := (-1)^n \alpha^{-n} q^{\frac{1}{2}n(n+1)} \left( z^{-1} \alpha^{-1} q^{n+1}; q \right)_{\infty} {}_1 \phi_1 \left( 0; z^{-1} \alpha^{-1} q^{n+1}; q, z \alpha^{-1} q^{n+1} \right)$$

and

$$g_n(z) := z^{-n} \left( z \alpha q^{1-n}; q \right)_{\infty} {}_1 \phi_1 \left( 0; z \alpha q^{1-n}; q, q z^2 \right).$$

are two solutions of the equation

$$\mathcal{B}\psi=(z+z^{-1})\psi.$$

for all  $\alpha, z \neq 0$ .

Note that

$$z \mapsto z + z^{-1} : \begin{cases} \{z \mid 0 < |z| < 1\} \to \mathbb{C} \setminus [-2, 2], & \text{(outside } \sigma_{\text{ess}}(A) ) \\ \{e^{i\theta} \mid \theta \in [0, \pi]\} \to [-2, 2], & \text{(inside } \sigma_{\text{ess}}(A) ) \end{cases}$$

• Using properties of the Hahn-Exton *q*-Bessel functions one verifies:

$$f_n(z) := (-1)^n \alpha^{-n} q^{\frac{1}{2}n(n+1)} \left( z^{-1} \alpha^{-1} q^{n+1}; q \right)_{\infty} {}_1 \phi_1 \left( 0; z^{-1} \alpha^{-1} q^{n+1}; q, z \alpha^{-1} q^{n+1} \right)$$

and

$$g_n(z) := z^{-n} \left( z \alpha q^{1-n}; q \right)_{\infty} {}_1 \phi_1 \left( 0; z \alpha q^{1-n}; q, q z^2 \right).$$

are two solutions of the equation

$$\mathcal{B}\psi=(z+z^{-1})\psi.$$

for all  $\alpha, z \neq 0$ .

Note that

$$z \mapsto z + z^{-1} : \begin{cases} \{z \mid 0 < |z| < 1\} \to \mathbb{C} \setminus [-2, 2], & \text{(outside } \sigma_{\texttt{ess}}(A) ) \\ \{e^{i\theta} \mid \theta \in [0, \pi]\} \to [-2, 2], & \text{(inside } \sigma_{\texttt{ess}}(A) ) \end{cases}$$

• The solutions f(z) and g(z) are linearly independent iff  $z \notin \alpha^{-1}q^{\mathbb{Z}} \cup \{0\}$  since

$$W(f,g)=-z^{-1}\theta_q(\alpha z).$$

• If 0 < |z| < 1 and  $z \notin \alpha^{-1}q^{\mathbb{Z}} \cup \{0\}$ , then

$$f(z) \begin{cases} \in \ell^2(+\infty) \\ \notin \ell^2(-\infty) \end{cases} \qquad g(z) \begin{cases} \notin \ell^2(+\infty) \\ \in \ell^2(-\infty) \end{cases}$$

•

• If 0 < |z| < 1 and  $z \notin \alpha^{-1}q^{\mathbb{Z}} \cup \{0\}$ , then

$$f(z) \begin{cases} \in \ell^2(+\infty) \\ \notin \ell^2(-\infty) \end{cases} \qquad g(z) \begin{cases} \notin \ell^2(+\infty) \\ \in \ell^2(-\infty) \end{cases}$$

• If |z| = 1 the asymptotic behavior of solutions is very different and, in the end, it implies that: For  $\forall \alpha \in \mathbb{R}$  and  $\forall x \in [-2, 2]$ , there is no non-trivial solution of  $\mathcal{B}\psi = x\psi$  belonging to  $\ell^2(\mathbb{Z})$ .

• If 0 < |z| < 1 and  $z \notin \alpha^{-1}q^{\mathbb{Z}} \cup \{0\}$ , then

$$f(z) \begin{cases} \in \ell^2(+\infty) \\ \notin \ell^2(-\infty) \end{cases} \qquad g(z) \begin{cases} \notin \ell^2(+\infty) \\ \in \ell^2(-\infty) \end{cases}$$

• If |z| = 1 the asymptotic behavior of solutions is very different and, in the end, it implies that: For  $\forall \alpha \in \mathbb{R}$  and  $\forall x \in [-2, 2]$ , there is no non-trivial solution of  $\mathcal{B}\psi = x\psi$  belonging to  $\ell^2(\mathbb{Z})$ .

Theorem (point spectrum)

If  $\alpha \neq 0$ , then

$$\sigma(B) \setminus [-2,2] = \sigma_{\rho}(B) = \left\{ \alpha^{-1}q^{m} + \alpha q^{-m} \mid m > \lfloor \log_{q} |\alpha| \rfloor \right\}$$

and all points from this set are simple eigenvalues of *B*.

• If 0 < |z| < 1 and  $z \notin \alpha^{-1}q^{\mathbb{Z}} \cup \{0\}$ , then

$$f(z) \begin{cases} \in \ell^2(+\infty) \\ \notin \ell^2(-\infty) \end{cases} \qquad g(z) \begin{cases} \notin \ell^2(+\infty) \\ \in \ell^2(-\infty) \end{cases}$$

•

• If |z| = 1 the asymptotic behavior of solutions is very different and, in the end, it implies that: For  $\forall \alpha \in \mathbb{R}$  and  $\forall x \in [-2, 2]$ , there is no non-trivial solution of  $\mathcal{B}\psi = x\psi$  belonging to  $\ell^2(\mathbb{Z})$ .

Theorem (point spectrum)

If  $\alpha \neq 0$ , then

$$\sigma(B) \setminus [-2,2] = \sigma_{\rho}(B) = \left\{ \alpha^{-1}q^m + \alpha q^{-m} \mid m > \lfloor \log_q |\alpha| \rfloor \right\}$$

and all points from this set are simple eigenvalues of *B*. Further, eigenvectors  $\mathbf{v}_m$  corresponding to eigenvalues  $\alpha^{-1}q^m + \alpha q^{-m}$ , can be chosen as  $\mathbf{v}_m = \{\mathbf{v}_{m,j}\}_{i=-\infty}^{\infty}$ , with

$$v_{m,j} = f_j\left(\alpha^{-1}q^m\right) = (-1)^j \alpha^{-j} q^{\frac{1}{2}j(j+1)} (q^{-m+j+1};q)_{\infty \ 1} \phi_1\left(0;q^{-m+j+1};q,\alpha^{-2}q^{m+j+1}\right).$$

• If 0 < |z| < 1 and  $z \notin \alpha^{-1}q^{\mathbb{Z}} \cup \{0\}$ , then

$$f(z) \begin{cases} \in \ell^2(+\infty) \\ \notin \ell^2(-\infty) \end{cases} \qquad g(z) \begin{cases} \notin \ell^2(+\infty) \\ \in \ell^2(-\infty) \end{cases}$$

•

• If |z| = 1 the asymptotic behavior of solutions is very different and, in the end, it implies that: For  $\forall \alpha \in \mathbb{R}$  and  $\forall x \in [-2, 2]$ , there is no non-trivial solution of  $\mathcal{B}\psi = x\psi$  belonging to  $\ell^2(\mathbb{Z})$ .

Theorem (point spectrum)

If  $\alpha \neq 0$ , then

$$\sigma(B) \setminus [-2,2] = \sigma_{\rho}(B) = \left\{ \alpha^{-1}q^m + \alpha q^{-m} \mid m > \lfloor \log_q |\alpha| \rfloor \right\}$$

and all points from this set are simple eigenvalues of *B*. Further, eigenvectors  $\mathbf{v}_m$  corresponding to eigenvalues  $\alpha^{-1}q^m + \alpha q^{-m}$ , can be chosen as  $\mathbf{v}_m = \{\mathbf{v}_{m,j}\}_{i=-\infty}^{\infty}$ , with

$$v_{m,j} = f_j\left(\alpha^{-1}q^m\right) = (-1)^j \alpha^{-j} q^{\frac{1}{2}j(j+1)} (q^{-m+j+1};q)_{\infty \ 1} \phi_1\left(0;q^{-m+j+1};q,\alpha^{-2}q^{m+j+1}\right).$$

In addition,

$$\|\boldsymbol{v}_m\|_{\ell^2(\mathbb{Z})} = \frac{|\alpha|^{-m}q^{m(m+1)/2}}{\sqrt{1-\alpha^{-2}q^{2m}}} (q;q)_{\infty}, \quad m > \lfloor \log_q |\alpha| \rfloor.$$

## The absolutely continuous part of the spectral measure

Let us denote

$$E_{k,l}(\cdot) := \langle e_k, E_B(\cdot)e_l \rangle, \quad k, l \in \mathbb{Z},$$

where  $E_B$  stands for the spectral measure of B.

Let us denote

$$E_{k,l}(\cdot) := \langle e_k, E_B(\cdot)e_l \rangle, \quad k, l \in \mathbb{Z},$$

where  $E_B$  stands for the spectral measure of B.

• To determine the spectral measure in the essential spectrum we use the formula

$$E_{k,l}((a,b)) = \lim_{\delta \to 0+} \lim_{\epsilon \to 0+} \frac{1}{2\pi i} \int_{a+\delta}^{b-\delta} \left( G_{k,l}(x+i\epsilon) - G_{k,l}(x-i\epsilon) \right) dx,$$

where

$$G_{k,l}(z) := \langle e_k, (B-z)^{-1} e_l \rangle = \frac{1}{W(f,g)} \begin{cases} g_k(z)f_l(z), & k \leq l, \\ g_l(z)f_k(z), & k \geq l, \end{cases}$$

Let us denote

$$E_{k,l}(\cdot) := \langle e_k, E_B(\cdot)e_l \rangle, \quad k, l \in \mathbb{Z},$$

where  $E_B$  stands for the spectral measure of B.

• To determine the spectral measure in the essential spectrum we use the formula

$$\mathsf{E}_{k,l}((a,b)) = \lim_{\delta \to 0+} \lim_{\epsilon \to 0+} \frac{1}{2\pi \mathrm{i}} \int_{a+\delta}^{b-\delta} \left( \mathsf{G}_{k,l}(x+\mathrm{i}\epsilon) - \mathsf{G}_{k,l}(x-\mathrm{i}\epsilon) \right) \mathrm{d}x,$$

where

$$G_{k,l}(z) := \langle e_k, (B-z)^{-1} e_l \rangle = \frac{1}{W(f,g)} \begin{cases} g_k(z)f_l(z), & k \leq l, \\ g_l(z)f_k(z), & k \geq l, \end{cases}$$

#### Proposition

Let  $\alpha \neq 0$  and  $-2 \leq a < b \leq 2$ . Then for any  $k, l \in \mathbb{Z}$ , it holds

$$E_{k,l}\left([a,b]\right) = \frac{1}{2\pi} \int_{\phi_b}^{\phi_a} f_l\left(e^{i\phi}\right) f_k\left(e^{i\phi}\right) \left|\frac{\left(e^{2i\phi};q\right)_{\infty}}{\left(\alpha e^{i\phi},q\alpha^{-1}e^{-i\phi};q\right)_{\infty}}\right|^2 \mathrm{d}\phi$$

where  $\phi_a = \arccos(a/2)$  and  $\phi_b = \arccos(b/2)$ . Consequently,  $\sigma_{ac}(B) = [-2, 2]$ .

# Theorem

If  $\alpha \neq 0$ , then

$$\sigma_{ess}(B) = \sigma_{ac}(B) = [-2, 2],$$

and

$$\sigma_{\rho}(B) = \sigma_{d}(B) = \left\{ \alpha^{-1}q^{m} + \alpha q^{-m} \mid m > \lfloor \log_{q} |\alpha| \rfloor \right\}$$

### Theorem

If  $\alpha \neq 0$ , then

$$\sigma_{ess}(B) = \sigma_{ac}(B) = [-2, 2],$$

and

$$\sigma_{p}(B) = \sigma_{d}(B) = \left\{ \alpha^{-1} q^{m} + \alpha q^{-m} \mid m > \lfloor \log_{q} |\alpha| \rfloor \right\}.$$

In addition, for  $\mathcal{M} \subset \mathbb{R}$  a Borel set, we have

$$\begin{split} E_{k,l}(\mathcal{M}) &= \frac{1}{2\pi} \int_{2\cos\phi \in [-2,2]\cap\mathcal{A}} f_l\left(e^{\mathrm{i}\phi}\right) f_k\left(e^{\mathrm{i}\phi}\right) \left| \frac{\left(e^{2\mathrm{i}\phi};q\right)_{\infty}}{\left(\alpha e^{\mathrm{i}\phi},q\alpha^{-1}e^{-\mathrm{i}\phi};q\right)_{\infty}} \right|^2 \mathrm{d}\phi \\ &+ \frac{1}{(q;q)_{\infty}^2} \sum_{\substack{m > \lfloor \log |\alpha| \rfloor \\ \alpha^{-1}q^m + \alpha q^{-m} \in \mathcal{M}}} \left(1 - \alpha^{-2}q^{2m}\right) \alpha^{2m}q^{-m(m+1)}f_l\left(\alpha^{-1}q^m\right) f_k\left(\alpha^{-1}q^m\right). \end{split}$$

• Recall the Hanhn-Exton (or third Jackson's) q-Bessel function is defined as

$$J_{\nu}(z;q) = z^{\nu} \frac{(q^{\nu+1};q)_{\infty}}{(q;q)_{\infty}} {}_{1}\phi_{1}\left(0;q^{\nu+1};q,qz^{2}\right).$$

• Recall the Hanhn-Exton (or third Jackson's) q-Bessel function is defined as

$$J_{\nu}(z;q) = z^{\nu} \frac{(q^{\nu+1};q)_{\infty}}{(q;q)_{\infty}} {}_{1}\phi_{1}\left(0;q^{\nu+1};q,qz^{2}\right).$$

• Elements of the eigenvectors  $v_m$  are expressible in terms of Hanhn-Exton *q*-Bessel function and the formula for the norm of the eigenvectors yields

$$\sum_{n\in\mathbb{Z}}J_n^2(z;q) = \frac{1}{1-z^2}, \quad |z| < 1.$$

• Recall the Hanhn-Exton (or third Jackson's) q-Bessel function is defined as

$$J_{\nu}(z;q) = z^{\nu} \frac{(q^{\nu+1};q)_{\infty}}{(q;q)_{\infty}} {}_{1}\phi_{1}\left(0;q^{\nu+1};q,qz^{2}\right).$$

 Elements of the eigenvectors v<sub>m</sub> are expressible in terms of Hanhn-Exton q-Bessel function and the formula for the norm of the eigenvectors yields

$$\sum_{n\in\mathbb{Z}}J_n^2(z;q)=\frac{1}{1-z^2},\quad |z|<1.$$

• This formula seems to be new (Really?) and it generalizes the well-known summation formula for the Bessel functions of the first kind:

$$\sum_{n\in\mathbb{Z}}J_n^2(z)=1,\quad |z|<1.$$

# Thank you!