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Two doubly-infinite Jacobi matrices

We analyze the spectral properties of Jacobi operators A and B acting on vectors of the standard
basis of `2(Z) as:

Aen = q−n+1en−1 + q−nen+1, n ∈ Z,

and

Ben = en−1 + αq−nen + en+1, n ∈ Z,

where q ∈ (0, 1) and α ∈ R.

The semi-infinite parts of A and B has been studied before mainly within the theory of Orthogonal
Polynomials:

A with n < 0 [Al-Salam, Ismail 83]: Rogers–Ramanujan’s functions and continued fractions.

A with n > 0 [Chen, Ismail 98, FS 16]: Indeterminate moment problem, Nevanlinna functions.

B with n ≷ 0 [Ismail, Mulla 87]: q-Chebyshev polynomials.

The spectrum of any associated semi-infinite Jacobi operator is never known explicitly (α 6= 0) but
is expressible in terms of zeros of certain special functions.functions
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Special functions 1/2 - basic hypergeometric series

Let 0 < q < 1, r , s ∈ Z+. Recall the basic hypergeometric function

rφs

[
a1, a2, . . . ar
b1, b2, . . . bs

; q, z
]

is defined by the power series

∞∑
n=0

(a1; q)n(a2; q)n . . . (ar ; q)n

(b1; q)n(b2; q)n . . . (bs; q)n

(−1)(s−r+1)nq(s−r+1)n(n−1)/2

(q; q)n
zn

where z, a1, a2, . . . , ar ∈ C, b1, b2, . . . , bs ∈ C \ qZ− and

(a; q)0 = 1, (a; q)n = (1− a)(1− aq) . . . (1− aqn−1)

is the q-Pochhammer symbol.

Here we will need only 0φ1 and 1φ1.
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Special functions 2/2 - theta functions

The theta function:

θq(z) := (z; q)∞(q/z; q)∞ =
1

(q; q)∞

∞∑
n=−∞

qn(n−1)/2(−z)n

Jacobi’s theta functions:

ϑ1(z | q) = iq1/4e−iz (q2; q2)∞ θq2

(
e2iz

)
ϑ2(z | q) = q1/4e−iz (q2; q2)∞ θq2

(
−e2iz

)
ϑ3(z | q) = (q2; q2)∞ θq2

(
−qe2iz

)
ϑ4(z | q) = (q2; q2)∞ θq2

(
qe2iz

)
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Operators associated with the Jacobi matrix A

Operator A with Dom A = span{en | n ∈ Z} acting as

Aen = q−n+1en−1 + q−nen+1

has deficiency indices (1, 1).

Thus, there is a one-parameter family of self-adjoint extensions At , t ∈ R ∪ {∞}.
Let D := {ψ ∈ `2 | Aψ ∈ `2}. By using the theory of self-adjoint extensions and simple
structure of matrix A one gets:

Proposition (self-adjoint extensions)

For t ∈ R ∪ {∞}, operators At , acting as Atψ = Aψ, with domains

Dom At =
{
ψ ∈ D | lim

n→∞
q−n (ψ2n+1 + tψ2n) = 0 ∧ lim

n→∞
q−n (qψ2n−1 − tψ2n) = 0

}
,

if t ∈ R, or
Dom A∞ =

{
ψ ∈ D | lim

n→∞
q−nψ2n = 0

}
,

are all self-adjoint extensions of A.

In addition,

σc(At ) = σess(At ) = {0}, ∀t ∈ R ∪ {∞}.
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Solutions of the eigenvalue equation

The q-exponential function:

Eq(z) =
∞∑

n=0

qn2/4

(q; q)n
zn = 1φ1

(
0;−q1/2; q1/2,−q1/4z

)

Sequences ψ±, where

ψ±n := (±i)nqn/2Eq2
(
±ixqn) ,

are two linearly independent solutions of the difference equation Aψ = xψ.

By inspection of the asymptotic behavior of ψ±n , as n→ ±∞, one gets:

ψ± ∈ `2(+∞), however, ψ± /∈ `2(−∞).

Hence, one expects there are non-trivial coefficients a = a(x) and b = b(x) such that

aψ+ + bψ− ∈ `2(−∞).
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The `2-solution

Proposition

For all x ∈ C \ {0}, the sequence

ϕ(x) := θq

(
−iq−1/2x

)
ψ(−)(x) + θq

(
iq−1/2x

)
ψ(+)(x),

is the non-trivial solution of Aφ = xφ which belongs to `2(Z).
In addition, within the space `2(Z), this solution is given uniquely up to a multiplicative constant.

Moreover,
ϕn(x) = (−1; q)∞ xnqn(n−1)/2

0φ1

(
−; 0; q2, q−2n+4x−2

)
and

‖ϕ(x)‖2
`2 = 4

(
q2; q2)2

∞(
q; q2

)2
∞

θq2

(
−z2

)
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The secular equation

Theorem (secular equation)

For t ∈ R ∪ {∞}, one has specc(At ) = {0} and specp(At ) coincides with the set of roots of the
secular equation:

xθq4

(
q2x2

)
+ tθq4

(
x2
)

= 0, for t ∈ R,

and
θq4

(
x2
)

= 0, for t =∞.

In addition, all eigenvalues of At are simple.

Corollary:

specp(A0) =
{
±q2n+1 | n ∈ Z

}
and specp(A∞) =

{
±q2n | n ∈ Z

}
.

How to solve the secular equation in general?

Reparametrize t = Φ(s) and use nice properties of Jacobi’s theta functions...
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Reparametrization t = Φ(s)

The function

Φ(s) := iq1/2 ϑ4
(
is | q2)

ϑ1
(
is | q2

)
is real-valued, strictly decreasing on (0,−2 ln q), and maps
[0,−2 ln q) onto R ∪ {∞}.

For the inverse function, one has

Φ−1(t) = C(q)

∫ ∞
t

dx√(
D(q) + x2

) (
q + x2

)
where

C(q) =
q1/2

ϑ2
(
0 | q2

)
ϑ3
(
0 | q2

)
and

D(q) =
qϑ2

3

(
0 | q2)

ϑ2
2

(
0 | q2

) .
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Reparametrization t = Φ(s)

The function

Φ(s) := iq1/2 ϑ4
(
is | q2)

ϑ1
(
is | q2

)
is real-valued, strictly decreasing on (0,−2 ln q), and maps
[0,−2 ln q) onto R ∪ {∞}.
For the inverse function, one has

Φ−1(t) = C(q)

∫ ∞
t

dx√(
D(q) + x2

) (
q + x2

)
where

C(q) =
q1/2

ϑ2
(
0 | q2

)
ϑ3
(
0 | q2

)
and

D(q) =
qϑ2

3

(
0 | q2)
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2

(
0 | q2

) .
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Spectrum fully explicitly

Using the reparametrization t = Φ(s), the secular equation simplifies to

θq2
(
e−sx

)
θq2
(
−esx

)
= 0.

Theorem

Let t ∈ R ∪ {∞}, then
specp(At ) = −e−sq2Z ∪ esq2Z

where
s = C(q)

∫ ∞
t

dx√(
D(q) + x2

) (
q + x2

) .
In addition, the family of corresponding eigenvectors {ϕ(±esq2N ) | N ∈ Z}, where

ϕn(x) = (−1; q)∞ xnqn(n−1)/2
0φ1

(
−; 0; q2, q−2n+4x−2

)
,

forms an orthogonal basis of `2(Z).
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The discrete Schrödinger operator B

The second Jacobi matrix B determines the unique operator

B = U + U∗ + αV

where U is the forward shift operator and V is the self-adjoint diagonal operator:

Uen = en+1 and Ven = q−nen, ∀n ∈ Z.

Proposition (essential spectrum)

The operator B is self-adjoint and one has

σess(B) = [−2, 2].
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Solutions of the eigenvalue equation

Using properties of the Hahn-Exton q-Bessel functions one verifies:

fn(z) := (−1)nα−nq
1
2 n(n+1)

(
z−1α−1qn+1; q

)
∞

1φ1

(
0; z−1α−1qn+1; q, zα−1qn+1

)
and

gn(z) := z−n
(

zαq1−n; q
)
∞

1φ1

(
0; zαq1−n; q, qz2

)
.

are two solutions of the equation
Bψ = (z + z−1)ψ.

for all α, z 6= 0.

Note that

z 7→ z + z−1 :

{
{z | 0 < |z| < 1} → C \ [−2, 2], (outside σess(A) )
{eiθ | θ ∈ [0, π]} → [−2, 2], (inside σess(A) )

The solutions f (z) and g(z) are linearly independent iff z /∈ α−1qZ ∪ {0} since

W (f , g) = −z−1θq (αz).
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The point spectrum

Detailed asymptotic analysis of solutions f and g yields:
If 0 < |z| < 1 and z /∈ α−1qZ ∪ {0}, then

f (z)

{
∈ `2(+∞)

/∈ `2(−∞)
g(z)

{
/∈ `2(+∞)

∈ `2(−∞)
.

If |z| = 1 the asymptotic behavior of solutions is very different and, in the end, it implies that:

For ∀α ∈ R and ∀x ∈ [−2, 2], there is no non-trivial solution of Bψ = xψ belonging to `2(Z).

Theorem (point spectrum)

If α 6= 0, then

σ(B) \ [−2, 2] = σp(B) =
{
α−1qm + αq−m | m > blogq |α|c

}
and all points from this set are simple eigenvalues of B.

Further, eigenvectors vm corresponding
to eigenvalues α−1qm + αq−m, can be chosen as vm = {vm,j}∞j=−∞, with

vm,j = fj
(
α−1qm

)
= (−1)jα−j q

1
2 j(j+1)(q−m+j+1; q)∞ 1φ1

(
0; q−m+j+1; q, α−2qm+j+1

)
.

In addition,

‖vm‖`2(Z) =
|α|−mqm(m+1)/2√

1− α−2q2m
(q; q)∞, m > blogq |α|c.
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The absolutely continuous part of the spectral measure

Let us denote
Ek,l (·) := 〈ek ,EB(·)el 〉, k , l ∈ Z,

where EB stands for the spectral measure of B.

To determine the spectral measure in the essential spectrum we use the formula

Ek,l ((a, b)) = lim
δ→0+

lim
ε→0+

1
2πi

∫ b−δ

a+δ

(
Gk,l (x + iε)− Gk,l (x − iε)

)
dx ,

where

Gk,l (z) := 〈ek , (B − z)−1el 〉 =
1

W (f , g)

{
gk (z)fl (z), k ≤ l,
gl (z)fk (z), k ≥ l,

Proposition

Let α 6= 0 and −2 ≤ a < b ≤ 2. Then for any k , l ∈ Z, it holds

Ek,l ([a, b]) =
1

2π

∫ φa

φb

fl
(

eiφ
)

fk
(

eiφ
) ∣∣∣∣∣

(
e2iφ; q

)
∞(

αeiφ, qα−1e−iφ; q
)
∞

∣∣∣∣∣
2

dφ

where φa = arccos (a/2) and φb = arccos (b/2). Consequently, σac(B) = [−2, 2].
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Summary

Theorem

If α 6= 0, then
σess(B) = σac(B) = [−2, 2],

and
σp(B) = σd (B) =

{
α−1qm + αq−m | m > blogq |α|c

}
.

In addition, forM⊂ R a Borel set, we have

Ek,l (M) =
1

2π

∫
2 cosφ∈[−2,2]∩A

fl
(

eiφ
)

fk
(

eiφ
) ∣∣∣∣∣

(
e2iφ; q

)
∞(

αeiφ, qα−1e−iφ; q
)
∞

∣∣∣∣∣
2

dφ

+
1

(q; q)2
∞

∑
m>blog |α|c

α−1qm+αq−m∈M

(
1− α−2q2m

)
α2mq−m(m+1)fl

(
α−1qm

)
fk
(
α−1qm

)
.
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One consequence for special functions

Recall the Hanhn-Exton (or third Jackson’s) q-Bessel function is defined as

Jν(z; q) = zν
(qν+1; q)∞

(q; q)∞
1φ1

(
0; qν+1; q, qz2

)
.

Elements of the eigenvectors vm are expressible in terms of Hanhn-Exton q-Bessel function
and the formula for the norm of the eigenvectors yields

∑
n∈Z

J2
n (z; q) =

1
1− z2

, |z| < 1.

This formula seems to be new (Really?) and it generalizes the well-known summation
formula for the Bessel functions of the first kind:∑

n∈Z
J2

n (z) = 1, |z| < 1.
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The end

Thank you!
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