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Function F

Definition

Let me define F : D → C by relation

F(x) = 1 +
∞∑

m=1

(−1)m
∞∑

k1=1

∞∑
k2=k1+2

. . .

∞∑
km=km−1+2

xk1 xk1+1xk2 xk2+1 . . . xkm xkm+1,

where

D =

{
{xk}∞k=1 ⊂ C;

∞∑
k=1

|xk xk+1| <∞
}
.

For a finite number of complex variables let me identify F(x1, x2, . . . , xn) with F(x) where
x = (x1, x2, . . . , xn, 0, 0, 0, . . . ).

F is well defined on D due to estimation

|F(x)| ≤ exp

( ∞∑
k=1

|xk xk+1|
)
.

Note that the domain D is not a linear space. One has, however, `2(N) ⊂ D.
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Properties of F

For all x ∈ D and k = 1, 2, . . . one has

Recursive relation

F(x) = F(x1, . . . , xk )F(T k x)− F(x1, . . . , xk−1)xk xk+1F(T k+1x)

where T denotes the truncation operator from the left defined on the space of all sequences:

T ({xk}∞k=1) = {xk+1}∞k=1.

Especially for k = 1, one gets the simple relation

F(x) = F(Tx)− x1x2 F(T 2x).

Moreover, for x finite the relation has the form

F(x1, x2, x3, . . . , xn) = F(x2, x3, . . . , xn)− x1x2 F(x3, . . . , xn).

Functions F restricted on `2(N) is a continuous functional on `2(N). Further, for x ∈ D, it holds

lim
n→∞

F(x1, x2, . . . , xn) = F(x) and lim
n→∞

F(T nx) = 1.
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Equivalent definitions of F(x1, x2, . . . , xn)

Initial values F(∅) = F(x1) = 1 together with relation

F(x1, . . . , xn−1, xn) = F(x1, . . . , xn−2, xn−1)− xn−1xn F(x1, . . . , xn−3, xn−2)

determine recursively and unambiguously F(x1, . . . , xn) for any finite number of variables.

Other equivalent definitions of F(x1, x2, . . . , xn) were found:

F(x1, x2, . . . , xn) = det Xn = det


1 x1
x2 1 x2

. . .
. . .

. . .
xn−1 1 xn−1

xn 1



If F(x1, x2, . . . , xk ) 6= 0 for k = 1, 2, . . . , n − 1 then it holds

F(x1, x2, . . . , xn) =
n∏

k=1

(ek ,X
−1
k ek )−1.
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Two examples

1 The case of geometric sequence:

Let t ,w ∈ C, |t | < 1, then it holds

F
({

tk−1w
}∞

k=1

)
= 1 +

∞∑
m=1

(−1)m tm(2m−1)w2m

(1− t2)(1− t4) . . . (1− t2m)
.

The function on the RHS can be identified with a q-hypergeometric series 0φ1(; 0; t2,−tw2)
[Gasper&Rahman04].

2 The case of Bessel functions:

Let w ∈ C and ν /∈ −N, then it holds

Jν(2w) =
wν

Γ(ν + 1)
F

({
w

ν + k

}∞
k=1

)
.

Recursive relation for F written in this special case has the form

wJν−1(2w)− νJν(2w) + wJν+1(2w) = 0.
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F connections

The function F is related to various fields of mathematics:

the theory of Orthogonal Polynomials [Akhiezer, Chihara, Ismail]

the theory of Continued Fractions

the eigenvalue problem for certain class of Jacobi matrices

For λn ∈ R and wn > 0, OPs can be defined recursively by

wn−1yn−1(x) + λnyn(x) + wnyn+1(x) = xyn(x), n = 1, 2, . . .

and OPs of the first kind Pn(x) satisfy initial conditions P0(x) = 1, P1(x) = (x − λ1)/w1, while
OPs of the second kind Qn(x) satisfy Q0(x) = 0, Q1(x) = 1/w1. OPs are related to F through
identities

Pn(z) =
n∏

k=1

(
z − λk

wk

)
F

({
γ2

l
λl − z

}n

l=1

)
, n = 0, 1 . . . ,

Qn(z) =
1

w1

n∏
k=2

(
z − λk

wk

)
F

({
γ2

l
λl − z

}n

l=2

)
, n = 0, 1 . . .

where the sequence {γn} can be defined recursively as γ1 = 1, γk+1 = wk/γk .
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F connections

The function F is concerned with various fields of mathematics:

the theory of Orthogonal Polynomials

the theory of Continued Fractions [Teschl, Ifantis, Stieltjes]

the eigenvalue problem for certain class of Jacobi matrices

Function F is related to a continued fraction. For a given x ∈ D such that F(x) 6= 0, it holds

F(Tx)

F(x)
=

1

1−
x1x2

1−
x2x3

1−
x3x4

1− . . .

.

Example:
Jν+1(z)

Jν(z)
=

z

2(ν + 1)−
z2

2(ν + 2)−
z2

2(ν + 3)−
z2

2(ν + 4)− . . .

.
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F connections

The function F is concerned with various fields of mathematics:

the theory of Orthogonal Polynomials

the theory of Continued Fractions

the eigenvalue problem for certain class of Jacobi matrices

Let us denote

J :=


λ1 w1
w1 λ2 w2

w2 λ3 w3

. . .
. . .

. . .


where w ≡ {wn}∞n=1 ⊂ C \ {0} and λ ≡ {λn}∞n=1 ⊂ C.

Let J0x := J x with x ∈ span{e1, e2, . . . } =: Dom(J0) and J := J0.

Let Jn be the n-th truncation of J ,

Jn =


λ1 w1
w1 λ2 w2

. . .
. . .

. . .
wn−2 λn−1 wn−1

wn−1 λn

 .
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Characteristic function in terms of F

The characteristic function of a finite complex Jacobi matrix can be expressed in terms of F:

Proposition

Let n ∈ N a z ∈ C, then it holds

det(Jn − zIn) =

( n∏
k=1

(λn − z)

)
F

(
γ2

1
λ1 − z

,
γ2

2
λ2 − z

, . . . ,
γ2

n

λn − z

)

where the sequence {γn} can be defined recursively as γ1 = 1, γk+1 = wk/γk .

The proof is based on the decomposition

Jn = GnJ̃nGn

where Gn = diag(γ1, γ2, . . . , γn) is a diagonal matrix and

J̃n =


λ̃1 1
1 λ̃2 1

. . .
. . .

. . .
1 λ̃n−1 1

1 λ̃n


with λ̃k = λk/γ

2
k .
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The Characteristic Function

In the rest, let me suppose:

the set of all accumulation points der(λ) of the sequence λ ≡ {λn} is finite.

Let for at least one z ∈ C \ λ it holds

∞∑
n=1

∣∣∣∣∣ w2
n

(λn − z)(λn+1 − z)

∣∣∣∣∣ <∞.
(Then it holds for all z ∈ C \ λ and the convergence of the sum is local uniform on C \ λ.)

Under these assumptions, the function

FJ (z) := F

({
γ2

n

λn − z

}∞
n=1

)

is well defined on C \ λ and is an analytic function on C \ λ with poles in points z ∈ λ \ der(λ) of
finite order less or equal to rz =

∑∞
k=1 δ(z,λk ).
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Removing Singularities

Further, we slightly extend the definition of FJ (z). For ξ ∈ C \ der(λ) and k ∈ N0 let us define

FξJ,k (z) :=



(z − ξ)rξF

({
γ2

n
λn−z

}∞
n=k+1

)
, if z 6= ξ

limz→ξ(z − ξ)rξF

({
γ2

n
λn−z

}∞
n=k+1

)
, if z = ξ

where

rξ =
∞∑

k=1

δ(λk ,ξ) ∈ N0.

If k = 0 we write FξJ (z) instead of FξJ,0(z).

If ξ /∈ λ then FξJ (z) ≡ FJ (z).

Function F z
J (z) is well defined on C \ der(λ).

Let us denote
Z(J ) := {z ∈ C : F z

J (z) = 0}.
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Zeros of the Characteristic Function as Eigenvalues

Proposition

If F z
J (z) = 0 for some z ∈ C \ der(λ), then z is an eigenvalue of J and vector ξ(z) ≡ {ξk (z)}∞k=1,

where

ξk (z) :=
k∏

l=1

(
wl−1

z − λl

)
F z

J,k (z), (w0 := 1)

is the respective eigenvector.

Hence the inclusion

Z(J ) \ der(λ) ⊂ specp(J) \ der(λ)

holds.
Moreover, for z /∈ der(λ), vector ξ(z) satisfies the formula

∞∑
k=1

(ξk (z))2 = ξ′0(z)ξ1(z)− ξ0(z)ξ′1(z).

Consequently, if λ and w are real sequences and z ∈ specp(J) \ der(λ) then

‖ξ(z)‖2 = ξ′0(z)ξ1(z).
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The opposite inclusion

Proposition

Let ρ(J) 6= ∅. If F z
J (z) 6= 0, for some z /∈ der(λ), then z ∈ ρ(J).

Consequently, one has

specp(J) \ der(λ) = spec(J) \ der(λ) = Z(J ) \ der(λ).

Corollary

Let ρ(J) 6= ∅. Then specp(J) \ der(λ) contains only simple isolated eigenvalues.
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Green Function

The Green function G(m, n; z) := (em, (J − z)−1en), m, n ∈ N, and especially the Weyl
m-function m(z) := G(1, 1; z) is also expressible in terms of F.

Let ρ(J) 6= ∅ then, for i, j ∈ N, one has

G(i, j; z) = −
1

wM

M∏
l=m

(
wl

z − λl

) F

({
γ2

l
λl−z

}m−1

l=1

)
F

({
γ2

l
λl−z

}∞
l=M+1

)

F

({
γ2

l
λl−z

}∞
l=1

)
where m := min(i, j) and M := max(i, j).

Especially, for the Weyl m-function, one gets the relation

m(z) =

F

({
γ2

j
λj−z

}∞
j=2

)

(λ1 − z)F

({
γ2

j
λj−z

}∞
j=1

) =
1

z − λ1 −
w2

1

z − λ2 −
w2

2
z − λ3 − · · ·

.
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Example 1 (unbounded operator)

Let λn = αn, α 6= 0 and wn = w 6= 0, n = 1, 2, . . . . With this choice one has

J =

 α w
w 2α w

w 3α w

. . .
. . .

. . .

 , γn =

{
1, if n odd
w , if n even.

The characteristic function can be expressed as

FJ (z) =
(w
α

) z
α

Γ
(

1−
z
α

)
J− z

α

(
2w
α

)
.

Since the term (w/α)
z
α Γ(1− z/α) does not effect zeros of FJ (z) and, moreover, the term

Γ(1− z/α) causes singularities in z = α, 2α, . . . , one arrives at the following expression

spec(J) = {z ∈ C; J− z
α

(
2w
α

)
= 0},

and since

ξk (z) =
(−1)k

w

(w
α

) z
α

Γ
(

1−
z
α

)
Jk− z

α

(
2w
α

)
, (for z /∈ αN ),

the formula for the k th entry of the respective eigenvector is

vk (z) = (−1)k Jk− z
α

(
2w
α

)
.
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Example 2 (compact operator 1/2)

Let λn = 1/n and wn = 1/
√

n(n + 1), n = 1, 2, . . . . Then matrix J has the form

J =


1 1/

√
2

1/
√

2 1/2 1/
√

6
1/
√

6 1/3 1/
√

12

. . .
. . .

. . .

 .

In this case one has

FJ (z) =
∞∑

s=0

1
zs

1
s!

s∏
j=1

1
1− jz

= z−
1
z Γ

(
1−

1
z

)
J− 1

z

(
2
z

)
.

By the main result, one gets

spec(J) =

{
1
z
∈ R : J−z (2z) = 0

}
∪ {0}

and the k th entry of the respective eigenvector has the form

vk (z) =
√

kJk− 1
z

(
2
z

)
.
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Example 2 (compact operator 2/2)

Let q ∈ (0, 1), λn = qn−1 and wn = (
√

q)n−1, n = 1, 2, . . . . Then matrix J has the form

J =


1 1
1 q

√
q

√
q q2 q

. . .
. . .

. . .

 .

The characteristic function FJ (z) can be identified with a basic hypergeometric series
0φ1(; 1/z; q, 1/z2) where

0φ1(; b; q, z) =
∞∑

k=0

qk(k−1)

(q; q)k (b; q)k
zk .

and

(α; q)k =

k−1∏
j=0

(
1− αqj

)
, k = 0, 1, 2, . . . .

Hence

spec(J) =

{
1
z
∈ R; 0φ1(; z; q, z2) = 0

}
∪ {0}.
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Example 3 (compact operator with zero diagonal)

Jacobi matrices J with zero diagonal, more precisely, matrices with λn = 0, n ∈ N and w ∈ `2(N),
can be investigated in more detail. This is a special case of compact Jacobi matrices and we have

F

({
γ2

n

z

}∞
n=1

)
=
∞∑

m=0

(−1)m

z2m

∞∑
k1=1

∞∑
k2=k1+2

· · ·
∞∑

km=km−1+2

w2
k1

w2
k2
. . .w2

km
,

which is the Laurent series for the function we are interested in. In the previous part we have
proved

spec(J) =

{
z ∈ R : F

({
γ2

n

z

}∞
n=1

)
= 0

}
∪ {0}.

Since the function is an even function in z the spectrum of J is symmetric with respect to 0.
Let λn = 0, wn = β/

√
(n + α)(n + α+ 1), α > −1, β > 0, n = 1, 2, . . . . Then the results

are

spec(J) =

{
2β
z
∈ R : Jα(z) = 0

}
∪ {0},

vk (z) =
√
α+ kJα+k

(
2β
z

)
.
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Thank you!
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