On the Eigenvalue Problem for a Certain Class of Jacobi Matrices

František Štampach

Faculty of Nuclear Sciences and Physical Engineering, CTU in Prague

International Workshop on Operator Theory and its Applications

July 4, 2011

Outline

(1) Function \mathfrak{F}

- Definition of \mathfrak{F}
- Properties of \mathfrak{F}
- Equivalent definitions
- Two examples
(2) \mathfrak{F} connections
- \mathfrak{F} and OPs
- \mathfrak{F} and continued fractions
- The symmetric Jacobi matrix
- Characteristic function in terms of \mathfrak{F}
(3) The Characteristic Function
(4) Main results
- Zeros of the characteristic function as eigenvalues
- Eigenvalues as zeros of the characteristic function
(5) Green Function and Weyl m-function
(6) Examples
- Ex. 1 - unbounded operator
- Ex. 2 - compact operator
- Ex. 3 - compact operator with zero diagonal

Function \mathfrak{F}

Definition

Let me define $\mathfrak{F}: D \rightarrow \mathbb{C}$ by relation

$$
\mathfrak{F}(x)=1+\sum_{m=1}^{\infty}(-1)^{m} \sum_{k_{1}=1}^{\infty} \sum_{k_{2}=k_{1}+2}^{\infty} \ldots \sum_{k_{m}=k_{m-1}+2}^{\infty} x_{k_{1}} x_{k_{1}+1} x_{k_{2}} x_{k_{2}+1} \ldots x_{k_{m}} x_{k_{m}+1}
$$

where

$$
D=\left\{\left\{x_{k}\right\}_{k=1}^{\infty} \subset \mathbb{C} ; \sum_{k=1}^{\infty}\left|x_{k} x_{k+1}\right|<\infty\right\}
$$

For a finite number of complex variables let me identify $\mathfrak{F}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ with $\mathfrak{F}(x)$ where $x=\left(x_{1}, x_{2}, \ldots, x_{n}, 0,0,0, \ldots\right)$.

- \mathfrak{F} is well defined on D due to estimation

$$
|\mathfrak{F}(x)| \leq \exp \left(\sum_{k=1}^{\infty}\left|x_{k} x_{k+1}\right|\right) .
$$

- Note that the domain D is not a linear space. One has, however, $\ell^{2}(\mathbb{N}) \subset D$.

Properties of \mathfrak{F}

- For all $x \in D$ and $k=1,2, \ldots$ one has

Recursive relation

$$
\mathfrak{F}(x)=\mathfrak{F}\left(x_{1}, \ldots, x_{k}\right) \mathfrak{F}\left(T^{k} x\right)-\mathfrak{F}\left(x_{1}, \ldots, x_{k-1}\right) x_{k} x_{k+1} \mathfrak{F}\left(T^{k+1} x\right)
$$

where T denotes the truncation operator from the left defined on the space of all sequences:

$$
T\left(\left\{x_{k}\right\}_{k=1}^{\infty}\right)=\left\{x_{k+1}\right\}_{k=1}^{\infty}
$$

- Especially for $k=1$, one gets the simple relation

$$
\mathfrak{F}(x)=\mathfrak{F}(T x)-x_{1} x_{2} \mathfrak{F}\left(T^{2} x\right)
$$

- Moreover, for x finite the relation has the form

$$
\mathfrak{F}\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right)=\mathfrak{F}\left(x_{2}, x_{3}, \ldots, x_{n}\right)-x_{1} x_{2} \mathfrak{F}\left(x_{3}, \ldots, x_{n}\right) .
$$

- Functions \mathfrak{F} restricted on $\ell^{2}(\mathbb{N})$ is a continuous functional on $\ell^{2}(\mathbb{N})$. Further, for $x \in D$, it holds

$$
\lim _{n \rightarrow \infty} \mathfrak{F}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\mathfrak{F}(x) \quad \text { and } \quad \lim _{n \rightarrow \infty} \mathfrak{F}\left(T^{n} x\right)=1
$$

Equivalent definitions of $\mathfrak{F}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$

- Initial values $\mathfrak{F}(\emptyset)=\mathfrak{F}\left(x_{1}\right)=1$ together with relation

$$
\mathfrak{F}\left(x_{1}, \ldots, x_{n-1}, x_{n}\right)=\mathfrak{F}\left(x_{1}, \ldots, x_{n-2}, x_{n-1}\right)-x_{n-1} x_{n} \mathfrak{F}\left(x_{1}, \ldots, x_{n-3}, x_{n-2}\right)
$$

determine recursively and unambiguously $\mathfrak{F}\left(x_{1}, \ldots, x_{n}\right)$ for any finite number of variables.

- Other equivalent definitions of $\mathfrak{F}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ were found:

$$
\mathfrak{F}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\operatorname{det} X_{n}=\operatorname{det}\left(\begin{array}{ccccc}
1 & x_{1} & & & \\
x_{2} & 1 & x_{2} & & \\
& \ddots & \ddots & \ddots & \\
& & x_{n-1} & 1 & x_{n-1} \\
& & & x_{n} & 1
\end{array}\right)
$$

- If $\mathfrak{F}\left(x_{1}, x_{2}, \ldots, x_{k}\right) \neq 0$ for $k=1,2, \ldots, n-1$ then it holds

$$
\mathfrak{F}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\prod_{k=1}^{n}\left(e_{k}, x_{k}^{-1} e_{k}\right)^{-1}
$$

Two examples

(1) The case of geometric sequence:

Let $t, w \in \mathbb{C},|t|<1$, then it holds

$$
\mathfrak{F}\left(\left\{t^{k-1} w\right\}_{k=1}^{\infty}\right)=1+\sum_{m=1}^{\infty}(-1)^{m} \frac{t^{m(2 m-1)} w^{2 m}}{\left(1-t^{2}\right)\left(1-t^{4}\right) \ldots\left(1-t^{2 m}\right)}
$$

The function on the RHS can be identified with a q-hypergeometric series ${ }_{0} \phi_{1}\left(; 0 ; t^{2},-t w^{2}\right)$ [Gasper\&Rahman04].
(2) The case of Bessel functions:

Let $w \in \mathbb{C}$ and $\nu \notin-\mathbb{N}$, then it holds

$$
J_{\nu}(2 w)=\frac{w^{\nu}}{\Gamma(\nu+1)} \mathfrak{F}\left(\left\{\frac{w}{\nu+k}\right\}_{k=1}^{\infty}\right)
$$

Recursive relation for \mathfrak{F} written in this special case has the form

$$
w J_{\nu-1}(2 w)-\nu J_{\nu}(2 w)+w J_{\nu+1}(2 w)=0 .
$$

The function \mathfrak{F} is related to various fields of mathematics:

- the theory of Orthogonal Polynomials [Akhiezer, Chihara, Ismail]
- the theory of Continued Fractions
- the eigenvalue problem for certain class of Jacobi matrices

For $\lambda_{n} \in \mathbb{R}$ and $w_{n}>0$, OPs can be defined recursively by

$$
w_{n-1} y_{n-1}(x)+\lambda_{n} y_{n}(x)+w_{n} y_{n+1}(x)=x y_{n}(x), \quad n=1,2, \ldots
$$

and OPs of the first kind $P_{n}(x)$ satisfy initial conditions $P_{0}(x)=1, P_{1}(x)=\left(x-\lambda_{1}\right) / w_{1}$, while OPs of the second kind $Q_{n}(x)$ satisfy $Q_{0}(x)=0, Q_{1}(x)=1 / w_{1}$. OPs are related to \mathfrak{F} through identities

$$
\begin{gathered}
P_{n}(z)=\prod_{k=1}^{n}\left(\frac{z-\lambda_{k}}{w_{k}}\right) \mathfrak{F}\left(\left\{\frac{\gamma_{l}^{2}}{\lambda_{l}-z}\right\}_{l=1}^{n}\right), \quad n=0,1 \ldots, \\
Q_{n}(z)=\frac{1}{w_{1}} \prod_{k=2}^{n}\left(\frac{z-\lambda_{k}}{w_{k}}\right) \mathfrak{F}\left(\left\{\frac{\gamma_{l}^{2}}{\lambda_{l}-z}\right\}_{l=2}^{n}\right), \quad n=0,1 \ldots
\end{gathered}
$$

where the sequence $\left\{\gamma_{n}\right\}$ can be defined recursively as $\gamma_{1}=1, \gamma_{k+1}=w_{k} / \gamma_{k}$.

\mathfrak{F} connections

The function \mathfrak{F} is concerned with various fields of mathematics:

- the theory of Orthogonal Polynomials
- the theory of Continued Fractions [Teschl, Ifantis, Stieltjes]
- the eigenvalue problem for certain class of Jacobi matrices

Function \mathfrak{F} is related to a continued fraction. For a given $x \in D$ such that $\mathfrak{F}(x) \neq 0$, it holds

$$
\frac{\mathfrak{F}(T x)}{\mathfrak{F}(x)}=\frac{1}{1-\frac{x_{1} x_{2}}{1-\frac{x_{2} x_{3}}{1-\frac{x_{3} x_{4}}{1-\ldots}}}} .
$$

Example:

$$
\frac{J_{\nu+1}(z)}{J_{\nu}(z)}=\frac{z}{2(\nu+1)-\frac{z^{2}}{2(\nu+2)-\frac{z^{2}}{2(\nu+3)-\frac{z^{2}}{2(\nu+4)-\ldots}}}} .
$$

\mathfrak{F} connections

The function \mathfrak{F} is concerned with various fields of mathematics:

- the theory of Orthogonal Polynomials
- the theory of Continued Fractions
- the eigenvalue problem for certain class of Jacobi matrices
- Let us denote

$$
\mathcal{J}:=\left(\begin{array}{cccc}
\lambda_{1} & w_{1} & & \\
w_{1} & & & \\
w_{1} & \lambda_{2} & w_{2} & \\
& w_{2} & \lambda_{3} & \\
& \ddots & w_{3} & \\
& \ddots & \ddots
\end{array}\right)
$$

where $w \equiv\left\{w_{n}\right\}_{n=1}^{\infty} \subset \mathbb{C} \backslash\{0\}$ and $\lambda \equiv\left\{\lambda_{n}\right\}_{n=1}^{\infty} \subset \mathbb{C}$.

- Let $J_{0} x:=\mathcal{J} x$ with $x \in \operatorname{span}\left\{e_{1}, e_{2}, \ldots\right\}=: \operatorname{Dom}\left(J_{0}\right)$ and $J:=\bar{J}_{0}$.
- Let J_{n} be the n-th truncation of \mathcal{J},

$$
J_{n}=\left(\begin{array}{ccccc}
\lambda_{1} & w_{1} & & & \\
w_{1} & \lambda_{2} & w_{2} & & \\
& \ddots & \ddots & \ddots & \\
& & w_{n-2} & \lambda_{n-1} & w_{n-1} \\
& & & w_{n-1} & \lambda_{n}
\end{array}\right)
$$

Characteristic function in terms of \mathfrak{F}

The characteristic function of a finite complex Jacobi matrix can be expressed in terms of \mathfrak{F} :

Proposition

Let $n \in \mathbb{N}$ a $z \in \mathbb{C}$, then it holds

$$
\operatorname{det}\left(J_{n}-z I_{n}\right)=\left(\prod_{k=1}^{n}\left(\lambda_{n}-z\right)\right) \mathfrak{F}\left(\frac{\gamma_{1}^{2}}{\lambda_{1}-z}, \frac{\gamma_{2}^{2}}{\lambda_{2}-z}, \ldots, \frac{\gamma_{n}^{2}}{\lambda_{n}-z}\right)
$$

where the sequence $\left\{\gamma_{n}\right\}$ can be defined recursively as $\gamma_{1}=1, \gamma_{k+1}=w_{k} / \gamma_{k}$.

- The proof is based on the decomposition

$$
J_{n}=G_{n} \tilde{J}_{n} G_{n}
$$

where $G_{n}=\operatorname{diag}\left(\gamma_{1}, \gamma_{2}, \ldots, \gamma_{n}\right)$ is a diagonal matrix and

$$
\tilde{J}_{n}=\left(\begin{array}{ccccc}
\tilde{\lambda}_{1} & 1 & & & \\
1 & \tilde{\lambda}_{2} & 1 & & \\
& \ddots & \ddots & \ddots & \\
& & 1 & \tilde{\lambda}_{n-1} & 1 \\
& & & 1 & \tilde{\lambda}_{n}
\end{array}\right)
$$

with $\tilde{\lambda}_{k}=\lambda_{k} / \gamma_{k}^{2}$.

The Characteristic Function

In the rest, let me suppose:

- the set of all accumulation points $\operatorname{der}(\lambda)$ of the sequence $\lambda \equiv\left\{\lambda_{n}\right\}$ is finite.
- Let for at least one $z \in \mathbb{C} \backslash \bar{\lambda}$ it holds

$$
\sum_{n=1}^{\infty}\left|\frac{w_{n}^{2}}{\left(\lambda_{n}-z\right)\left(\lambda_{n+1}-z\right)}\right|<\infty
$$

(Then it holds for all $z \in \mathbb{C} \backslash \bar{\lambda}$ and the convergence of the sum is local uniform on $\mathbb{C} \backslash \bar{\lambda}$.)

Under these assumptions, the function

$$
F_{J}(z):=\mathfrak{F}\left(\left\{\frac{\gamma_{n}^{2}}{\lambda_{n}-z}\right\}_{n=1}^{\infty}\right)
$$

is well defined on $\mathbb{C} \backslash \bar{\lambda}$ and is an analytic function on $\mathbb{C} \backslash \bar{\lambda}$ with poles in points $z \in \lambda \backslash \operatorname{der}(\lambda)$ of finite order less or equal to $r_{z}=\sum_{k=1}^{\infty} \delta_{\left(z, \lambda_{k}\right)}$.

- Further, we slightly extend the definition of $F_{J}(z)$. For $\xi \in \mathbb{C} \backslash \operatorname{der}(\lambda)$ and $k \in \mathbb{N}_{0}$ let us define

$$
F_{J, k}^{\xi}(z):= \begin{cases}(z-\xi)^{r_{\xi}} \mathfrak{F}\left(\left\{\frac{\gamma_{n}^{2}}{\lambda_{n}-z}\right\}_{n=k+1}^{\infty}\right), & \text { if } z \neq \xi \\ \lim _{z \rightarrow \xi}(z-\xi)^{r_{\xi}} \mathfrak{F}\left(\left\{\frac{\gamma_{n}^{2}}{\lambda_{n}-z}\right\}_{n=k+1}^{\infty}\right), & \text { if } z=\xi\end{cases}
$$

where

$$
r_{\xi}=\sum_{k=1}^{\infty} \delta_{\left(\lambda_{k}, \xi\right)} \in \mathbb{N}_{0}
$$

- If $k=0$ we write $F_{j}^{\xi}(z)$ instead of $F_{J, 0}^{\xi}(z)$.
- If $\xi \notin \lambda$ then $F_{j}^{\xi}(z) \equiv F_{J}(z)$.
- Function $F_{J}^{z}(z)$ is well defined on $\mathbb{C} \backslash \operatorname{der}(\lambda)$.
- Let us denote

$$
\mathfrak{Z}(\mathcal{J}):=\left\{z \in \mathbb{C}: F_{J}^{z}(z)=0\right\}
$$

Zeros of the Characteristic Function as Eigenvalues

Proposition

If $F_{J}^{z}(z)=0$ for some $z \in \mathbb{C} \backslash \operatorname{der}(\lambda)$, then z is an eigenvalue of J and vector $\xi(z) \equiv\left\{\xi_{k}(z)\right\}_{k=1}^{\infty}$, where

$$
\xi_{k}(z):=\prod_{l=1}^{k}\left(\frac{w_{l-1}}{z-\lambda_{l}}\right) F_{J, k}^{z}(z), \quad\left(w_{0}:=1\right)
$$

is the respective eigenvector.

- Hence the inclusion

$$
\mathcal{Z}(\mathcal{J}) \backslash \operatorname{der}(\lambda) \subset \operatorname{spec}_{p}(J) \backslash \operatorname{der}(\lambda)
$$

holds.

- Moreover, for $z \notin \operatorname{der}(\lambda)$, vector $\xi(z)$ satisfies the formula

$$
\sum_{k=1}^{\infty}\left(\xi_{k}(z)\right)^{2}=\xi_{0}^{\prime}(z) \xi_{1}(z)-\xi_{0}(z) \xi_{1}^{\prime}(z)
$$

- Consequently, if λ and w are real sequences and $z \in \operatorname{spec}_{p}(J) \backslash \operatorname{der}(\lambda)$ then

$$
\|\xi(z)\|^{2}=\xi_{0}^{\prime}(z) \xi_{1}(z)
$$

The opposite inclusion

Proposition

Let $\rho(J) \neq \emptyset$. If $F_{J}^{z}(z) \neq 0$, for some $z \notin \operatorname{der}(\lambda)$, then $z \in \rho(J)$.

- Consequently, one has

$$
\operatorname{spec}_{p}(J) \backslash \operatorname{der}(\lambda)=\operatorname{spec}(J) \backslash \operatorname{der}(\lambda)=\mathfrak{Z}(\mathcal{J}) \backslash \operatorname{der}(\lambda)
$$

Corollary

Let $\rho(J) \neq \emptyset$. Then $\operatorname{spec}_{p}(J) \backslash \operatorname{der}(\lambda)$ contains only simple isolated eigenvalues.

Green Function

The Green function $G(m, n ; z):=\left(e_{m},(J-z)^{-1} e_{n}\right), m, n \in \mathbb{N}$, and especially the Weyl m-function $m(z):=G(1,1 ; z)$ is also expressible in terms of \mathfrak{F}.

- Let $\rho(J) \neq \emptyset$ then, for $i, j \in \mathbb{N}$, one has

$$
G(i, j ; z)=-\frac{1}{w_{M}} \prod_{l=m}^{M}\left(\frac{w_{l}}{z-\lambda_{l}}\right) \frac{\mathfrak{F}\left(\left\{\frac{\gamma_{l}^{2}}{\lambda_{l}-z}\right\}_{l=1}^{m-1}\right) \mathfrak{F}\left(\left\{\frac{\gamma_{l}^{2}}{\lambda_{l}-z}\right\}_{l=M+1}^{\infty}\right)}{\mathfrak{F}\left(\left\{\frac{\gamma_{l}^{2}}{\lambda_{l}-z}\right\}_{l=1}^{\infty}\right)}
$$

where $m:=\min (i, j)$ and $M:=\max (i, j)$.

- Especially, for the Weyl m-function, one gets the relation

$$
m(z)=\frac{\mathfrak{F}\left(\left\{\frac{\gamma_{j}^{2}}{\lambda_{j}-z}\right\}_{j=2}^{\infty}\right)}{\left(\lambda_{1}-z\right) \mathfrak{F}\left(\left\{\frac{\gamma_{j}^{2}}{\lambda_{j}-z}\right\}_{j=1}^{\infty}\right)}=\frac{1}{z-\lambda_{1}-\frac{w_{1}^{2}}{z-\lambda_{2}-\frac{w_{2}^{2}}{z-\lambda_{3}-\cdots}}}
$$

Example 1 (unbounded operator)

- Let $\lambda_{n}=\alpha n, \alpha \neq 0$ and $w_{n}=w \neq 0, n=1,2, \ldots$. With this choice one has

$$
J=\left(\begin{array}{cccc}
\alpha & w & w & w \\
w & & & \\
& w & 3 \alpha & w \\
& \ddots & \ddots & \ddots
\end{array}\right), \quad \quad \gamma_{n}= \begin{cases}1, & \text { if } n \text { odd } \\
w, & \text { if } n \text { even. }\end{cases}
$$

- The characteristic function can be expressed as

$$
F_{J}(z)=\left(\frac{w}{\alpha}\right)^{\frac{z}{\alpha}} \Gamma\left(1-\frac{z}{\alpha}\right) J_{-\frac{z}{\alpha}}\left(\frac{2 w}{\alpha}\right) .
$$

- Since the term $(w / \alpha)^{\frac{z}{\alpha}} \Gamma(1-z / \alpha)$ does not effect zeros of $F_{J}(z)$ and, moreover, the term $\Gamma(1-z / \alpha)$ causes singularities in $z=\alpha, 2 \alpha, \ldots$, one arrives at the following expression

$$
\operatorname{spec}(J)=\left\{z \in \mathbb{C} ; J_{-\frac{z}{\alpha}}\left(\frac{2 w}{\alpha}\right)=0\right\}
$$

and since

$$
\xi_{k}(z)=\frac{(-1)^{k}}{w}\left(\frac{w}{\alpha}\right)^{\frac{z}{\alpha}} \Gamma\left(1-\frac{z}{\alpha}\right) J_{k-\frac{z}{\alpha}}\left(\frac{2 w}{\alpha}\right), \quad(\text { for } z \notin \alpha \mathbb{N}),
$$

the formula for the k th entry of the respective eigenvector is

$$
v_{k}(z)=(-1)^{k} J_{k-\frac{z}{\alpha}}\left(\frac{2 w}{\alpha}\right)
$$

Example 2 (compact operator 1/2)

- Let $\lambda_{n}=1 / n$ and $w_{n}=1 / \sqrt{n(n+1)}, n=1,2, \ldots$ Then matrix J has the form

$$
J=\left(\begin{array}{ccccc}
1 & 1 / \sqrt{2} & & & \\
1 / \sqrt{2} & 1 / 2 & 1 / \sqrt{6} & & \\
& 1 / \sqrt{6} & 1 / 3 & 1 / \sqrt{12} & \\
& & \ddots & \ddots & \ddots .
\end{array}\right)
$$

- In this case one has

$$
F_{J}(z)=\sum_{s=0}^{\infty} \frac{1}{z^{s}} \frac{1}{s!} \prod_{j=1}^{s} \frac{1}{1-j z}=z^{-\frac{1}{2}} \Gamma\left(1-\frac{1}{z}\right) J_{-\frac{1}{z}}\left(\frac{2}{z}\right) .
$$

By the main result, one gets

$$
\operatorname{spec}(J)=\left\{\frac{1}{z} \in \mathbb{R}: J_{-z}(2 z)=0\right\} \cup\{0\}
$$

and the k th entry of the respective eigenvector has the form

$$
v_{k}(z)=\sqrt{k} J_{k-\frac{1}{2}}\left(\frac{2}{z}\right)
$$

Example 2 (compact operator 2/2)

- Let $q \in(0,1), \lambda_{n}=q^{n-1}$ and $w_{n}=(\sqrt{q})^{n-1}, n=1,2, \ldots$. Then matrix J has the form

$$
J=\left(\begin{array}{cccc}
1 & 1 & & \\
1 & q & \sqrt{a} & \\
& & \\
& \sqrt{a} & q^{2} & \\
& & & \\
& \ddots & \ddots & \ddots
\end{array}\right)
$$

- The characteristic function $F_{J}(z)$ can be identified with a basic hypergeometric series ${ }_{0} \phi_{1}\left(; 1 / z ; q, 1 / z^{2}\right)$ where

$$
{ }_{0} \phi_{1}(; b ; q, z)=\sum_{k=0}^{\infty} \frac{q^{k(k-1)}}{(q ; q)_{k}(b ; q)_{k}} z^{k}
$$

and

$$
(\alpha ; q)_{k}=\prod_{j=0}^{k-1}\left(1-\alpha q^{j}\right), k=0,1,2, \ldots
$$

- Hence

$$
\operatorname{spec}(J)=\left\{\frac{1}{z} \in \mathbb{R} ;{ }_{0} \phi_{1}\left(; z ; q, z^{2}\right)=0\right\} \cup\{0\}
$$

Example 3 (compact operator with zero diagonal)

Jacobi matrices J with zero diagonal, more precisely, matrices with $\lambda_{n}=0, n \in \mathbb{N}$ and $w \in \ell^{2}(\mathbb{N})$, can be investigated in more detail. This is a special case of compact Jacobi matrices and we have

$$
\mathfrak{F}\left(\left\{\frac{\gamma_{n}^{2}}{z}\right\}_{n=1}^{\infty}\right)=\sum_{m=0}^{\infty} \frac{(-1)^{m}}{z^{2} m} \sum_{k_{1}=1}^{\infty} \sum_{k_{2}=k_{1}+2}^{\infty} \ldots \sum_{k_{m}=k_{m-1}+2}^{\infty} w_{k_{1}}^{2} w_{k_{2}}^{2} \ldots w_{k_{m}}^{2}
$$

which is the Laurent series for the function we are interested in. In the previous part we have proved

$$
\operatorname{spec}(J)=\left\{z \in \mathbb{R}: \mathfrak{F}\left(\left\{\frac{\gamma_{n}^{2}}{z}\right\}_{n=1}^{\infty}\right)=0\right\} \cup\{0\}
$$

Since the function is an even function in z the spectrum of J is symmetric with respect to 0 .

- Let $\lambda_{n}=0, w_{n}=\beta / \sqrt{(n+\alpha)(n+\alpha+1)}, \alpha>-1, \beta>0, n=1,2, \ldots$. Then the results are

$$
\operatorname{spec}(J)=\left\{\frac{2 \beta}{z} \in \mathbb{R}: J_{\alpha}(z)=0\right\} \cup\{0\}
$$

$$
v_{k}(z)=\sqrt{\alpha+k} J_{\alpha+k}\left(\frac{2 \beta}{z}\right) .
$$

Thank you!

