How Pusheen uses computer to do mathematics

František Štampach

STIGMA, Kruh u Jilemnice, Czech Republic

May 21, 2015

Contents

(1) 1089 and 2178 , the magic numbers!

(2) CoCon 2015

Reverse multiples

- Such fundamental objects like integers are still a field of significant interest particularly for Number theorists or Computational mathematicians,

$$
\mathbb{N}=\{1,2,3, \ldots\}
$$

Reverse multiples

- Such fundamental objects like integers are still a field of significant interest particularly for Number theorists or Computational mathematicians,

$$
\mathbb{N}=\{1,2,3, \ldots\}
$$

- Question: Is there an integer n such that if it is written in the reverse order (in decimal base), the resulting number is a multiple of n ?

Reverse multiples

- Such fundamental objects like integers are still a field of significant interest particularly for Number theorists or Computational mathematicians,

$$
\mathbb{N}=\{1,2,3, \ldots\}
$$

- Question: Is there an integer n such that if it is written in the reverse order (in decimal base), the resulting number is a multiple of n ?
- A while for hard-thinking...

Reverse multiples

- Such fundamental objects like integers are still a field of significant interest particularly for Number theorists or Computational mathematicians,

$$
\mathbb{N}=\{1,2,3, \ldots\}
$$

- Question: Is there an integer n such that if it is written in the reverse order (in decimal base), the resulting number is a multiple of n ?
- A while for hard-thinking...
- Got it! For example:

$$
\text { if } n=3, \quad \text { then } \quad 3=1 \times 3
$$

Reverse multiples

- Such fundamental objects like integers are still a field of significant interest particularly for Number theorists or Computational mathematicians,

$$
\mathbb{N}=\{1,2,3, \ldots\}
$$

- Question: Is there an integer n such that if it is written in the reverse order (in decimal base), the resulting number is a multiple of n ?
- A while for hard-thinking...
- Got it! For example:

$$
\text { if } n=3, \quad \text { then } \quad 3=1 \times 3
$$

or

$$
\text { if } n=757, \quad \text { then } \quad 757=1 \times 757
$$

Reverse multiples

- Such fundamental objects like integers are still a field of significant interest particularly for Number theorists or Computational mathematicians,

$$
\mathbb{N}=\{1,2,3, \ldots\}
$$

- Question: Is there an integer n such that if it is written in the reverse order (in decimal base), the resulting number is a multiple of n ?
- A while for hard-thinking...
- Got it! For example:

$$
\text { if } n=3, \quad \text { then } \quad 3=1 \times 3
$$

or

$$
\text { if } n=757, \quad \text { then } \quad 757=1 \times 757
$$

- We observed that if n is a palindromic number then

$$
\operatorname{rev}_{10}(n)=1 \times n
$$

where $\operatorname{rev}_{10}(n)$ denotes the reverse order number n in the decimal base, i.e.,

$$
\text { if } n=\left(\alpha_{N} \ldots \alpha_{1} \alpha_{0}\right)_{10}, \text { then } \operatorname{rev}_{10}(n)=\left(\alpha_{0} \alpha_{1} \ldots \alpha_{N}\right)_{10}
$$

Palindromic numbers

- Palindromic numbers represent another field of interest within the realm of \mathbb{N}.

Palindromic numbers

- Palindromic numbers represent another field of interest within the realm of \mathbb{N}.
- Several first (decimal) palindromic numbers are:
$1,2,3,4,5,6,7,8,9,11,22,33,44,55,66,77,88,99,101,111,121,131, \ldots$.

Palindromic numbers

- Palindromic numbers represent another field of interest within the realm of \mathbb{N}.
- Several first (decimal) palindromic numbers are:

$$
1,2,3,4,5,6,7,8,9,11,22,33,44,55,66,77,88,99,101,111,121,131, \ldots
$$

People are interested particularly in:

- Palindromic primes:

$$
2,3,5,7,11,101,131,151,181,191,313,353,373,383,727,757,787, \ldots .
$$

Palindromic numbers

- Palindromic numbers represent another field of interest within the realm of \mathbb{N}.
- Several first (decimal) palindromic numbers are:

$$
1,2,3,4,5,6,7,8,9,11,22,33,44,55,66,77,88,99,101,111,121,131, \ldots
$$

People are interested particularly in:

- Palindromic primes:

$$
2,3,5,7,11,101,131,151,181,191,313,353,373,383,727,757,787, \ldots .
$$

"It is not known if there are infinitely many of them."

Palindromic numbers

- Palindromic numbers represent another field of interest within the realm of \mathbb{N}.
- Several first (decimal) palindromic numbers are:

$$
1,2,3,4,5,6,7,8,9,11,22,33,44,55,66,77,88,99,101,111,121,131, \ldots
$$

People are interested particularly in:

- Palindromic primes:

$$
2,3,5,7,11,101,131,151,181,191,313,353,373,383,727,757,787, \ldots
$$

"It is not known if there are infinitely many of them."

- Palindromic squares:
$1,4,9,121,484,676,10201,12321,14641,40804,44944,69696,94249, \ldots$

Palindromic numbers

- Palindromic numbers represent another field of interest within the realm of \mathbb{N}.
- Several first (decimal) palindromic numbers are:

$$
1,2,3,4,5,6,7,8,9,11,22,33,44,55,66,77,88,99,101,111,121,131, \ldots
$$

People are interested particularly in:

- Palindromic primes:

$$
2,3,5,7,11,101,131,151,181,191,313,353,373,383,727,757,787, \ldots
$$

"It is not known if there are infinitely many of them."

- Palindromic squares:
$1,4,9,121,484,676,10201,12321,14641,40804,44944,69696,94249, \ldots$
- Palindromic cubes and higher powers...

Palindromic numbers

- Palindromic numbers represent another field of interest within the realm of \mathbb{N}.
- Several first (decimal) palindromic numbers are:

$$
1,2,3,4,5,6,7,8,9,11,22,33,44,55,66,77,88,99,101,111,121,131, \ldots
$$

People are interested particularly in:

- Palindromic primes:

$$
2,3,5,7,11,101,131,151,181,191,313,353,373,383,727,757,787, \ldots
$$

"It is not known if there are infinitely many of them."

- Palindromic squares:
$1,4,9,121,484,676,10201,12321,14641,40804,44944,69696,94249, \ldots$
- Palindromic cubes and higher powers... Conjecture (G. J. Simons): "There is no palindrome of the form n^{ℓ} for $\ell>4$."

Palindromic numbers

- Palindromic numbers represent another field of interest within the realm of \mathbb{N}.
- Several first (decimal) palindromic numbers are:

$$
1,2,3,4,5,6,7,8,9,11,22,33,44,55,66,77,88,99,101,111,121,131, \ldots
$$

People are interested particularly in:

- Palindromic primes:

$$
2,3,5,7,11,101,131,151,181,191,313,353,373,383,727,757,787, \ldots
$$

"It is not known if there are infinitely many of them."

- Palindromic squares:
$1,4,9,121,484,676,10201,12321,14641,40804,44944,69696,94249, \ldots$
- Palindromic cubes and higher powers... Conjecture (G. J. Simons): "There is no palindrome of the form n^{ℓ} for $\ell>4$." Conjecture (N. J. A. Sloane?): "If k^{4} is a palindrome, then $k=100 \ldots 001$."

Back to reverse multiples

Formal definition

Let $g \geq 2$ and $1 \leq k<g$. A number n is called a (g, k)-reverse multiple iff

$$
\operatorname{rev}_{g}(n)=k \times n
$$

Back to reverse multiples

Formal definition

Let $g \geq 2$ and $1 \leq k<g$. A number n is called a (g, k)-reverse multiple iff

$$
\operatorname{rev}_{g}(n)=k \times n
$$

- We have already observed the following characterization of $(10,1)$-reverse multiples.

Back to reverse multiples

Formal definition

Let $g \geq 2$ and $1 \leq k<g$. A number n is called a (g, k)-reverse multiple iff

$$
\operatorname{rev}_{g}(n)=k \times n
$$

- We have already observed the following characterization of $(10,1)$-reverse multiples.

Theorem

An integer is $(10,1)$-reverse multiple iff it is a palindromic number.

Back to reverse multiples

Formal definition

Let $g \geq 2$ and $1 \leq k<g$. A number n is called a (g, k)-reverse multiple iff

$$
\operatorname{rev}_{g}(n)=k \times n
$$

- We have already observed the following characterization of $(10,1)$-reverse multiples.

Theorem

An integer is $(10,1)$-reverse multiple iff it is a palindromic number.

- But what if the quotient $k \neq 1$? Does any such number exists?

Back to reverse multiples

Formal definition

Let $g \geq 2$ and $1 \leq k<g$. A number n is called a (g, k)-reverse multiple iff

$$
\operatorname{rev}_{g}(n)=k \times n
$$

- We have already observed the following characterization of $(10,1)$-reverse multiples.

Theorem

An integer is $(10,1)$-reverse multiple iff it is a palindromic number.

- But what if the quotient $k \neq 1$? Does any such number exists?
- A while for hard-thinking ...

Back to reverse multiples

Formal definition

Let $g \geq 2$ and $1 \leq k<g$. A number n is called a (g, k)-reverse multiple iff

$$
\operatorname{rev}_{g}(n)=k \times n
$$

- We have already observed the following characterization of $(10,1)$-reverse multiples.

Theorem

An integer is $(10,1)$-reverse multiple iff it is a palindromic number.

- But what if the quotient $k \neq 1$? Does any such number exists?
- A while for hard-thinking ...
- ... well, we probably have nothing ...

Back to reverse multiples

Formal definition

Let $g \geq 2$ and $1 \leq k<g$. A number n is called a (g, k)-reverse multiple iff

$$
\operatorname{rev}_{g}(n)=k \times n
$$

- We have already observed the following characterization of $(10,1)$-reverse multiples.

Theorem

An integer is $(10,1)$-reverse multiple iff it is a palindromic number.

- But what if the quotient $k \neq 1$? Does any such number exists?
- A while for hard-thinking ...
- ... well, we probably have nothing ...
- ... so, we write a program!
- Between numbers 1 - 999 we find no $(10, k)$-reverse multiples (with $k>1)$.
- Between numbers 1 - 999 we find no $(10, k)$-reverse multiples (with $k>1)$.
- Between 4-digit numbers we have two solutions:
- Between numbers 1 - 999 we find no $(10, k)$-reverse multiples (with $k>1)$.
- Between 4-digit numbers we have two solutions:

$$
9801=9 \times 1089 \quad \text { and } \quad 8712=4 \times 2178 .
$$

- Between numbers 1 - 999 we find no $(10, k)$-reverse multiples (with $k>1)$.
- Between 4-digit numbers we have two solutions:

$$
9801=9 \times 1089 \quad \text { and } \quad 8712=4 \times 2178 .
$$

- For $10^{4} \leq n<10^{8}$, we find:
- Between numbers 1 - 999 we find no $(10, k)$-reverse multiples (with $k>1)$.
- Between 4-digit numbers we have two solutions:

$$
9801=9 \times 1089 \text { and } \quad 8712=4 \times 2178
$$

- For $10^{4} \leq n<10^{8}$, we find:

$$
\begin{aligned}
98901 & =9 \times 10989 \\
989901 & =9 \times 109989 \\
9899901 & =9 \times 1099989 \\
98999901 & =9 \times 10999989 \\
98019801 & =9 \times 10891089
\end{aligned}
$$

- Between numbers 1 - 999 we find no $(10, k)$-reverse multiples (with $k>1)$.
- Between 4-digit numbers we have two solutions:

$$
9801=9 \times 1089 \text { and } \quad 8712=4 \times 2178
$$

- For $10^{4} \leq n<10^{8}$, we find:

$$
\begin{aligned}
98901 & =9 \times 10989 \\
989901 & =9 \times 109989 \\
9899901 & =9 \times 1099989 \\
98999901 & =9 \times 10999989 \\
98019801 & =9 \times 10891089
\end{aligned}
$$

- Between numbers 1 - 999 we find no $(10, k)$-reverse multiples (with $k>1)$.
- Between 4-digit numbers we have two solutions:

$$
9801=9 \times 1089 \text { and } \quad 8712=4 \times 2178
$$

- For $10^{4} \leq n<10^{8}$, we find:

$$
\begin{aligned}
98901 & =9 \times 10989 \\
989901 & =9 \times 109989 \\
9899901 & =9 \times 1099989 \\
98999901 & =9 \times 10999989 \\
98019801 & =9 \times 10891089
\end{aligned}
$$

$$
\begin{aligned}
87912 & =4 \times 21978 \\
879912 & =4 \times 219978 \\
8799912 & =4 \times 2199978 \\
87999912 & =4 \times 21999978 \\
87128712 & =4 \times 21782178
\end{aligned}
$$

- Can you see some pattern?

- Between numbers 1 - 999 we find no $(10, k)$-reverse multiples (with $k>1)$.
- Between 4-digit numbers we have two solutions:

$$
9801=9 \times 1089 \text { and } \quad 8712=4 \times 2178
$$

- For $10^{4} \leq n<10^{8}$, we find:

$$
\begin{aligned}
98901 & =9 \times 10989 \\
989901 & =9 \times 109989 \\
9899901 & =9 \times 1099989 \\
98999901 & =9 \times 10999989 \\
98019801 & =9 \times 10891089
\end{aligned}
$$

$$
\begin{aligned}
87912 & =4 \times 21978 \\
879912 & =4 \times 219978 \\
8799912 & =4 \times 2199978 \\
87999912 & =4 \times 21999978 \\
87128712 & =4 \times 21782178
\end{aligned}
$$

- Can you see some pattern?
- There is something, indeed...

- First, we observe that the quotient k is either 4 or 9 (or 1).
- First, we observe that the quotient k is either 4 or 9 (or 1).
- An this is true, indeed...
- First, we observe that the quotient k is either 4 or 9 (or 1).
- An this is true, indeed...

Theorem [A. L. Young FQ92]

If n is a $(10, k)$-reverse multiple, then k is 1,4 , or 9 .

- First, we observe that the quotient k is either 4 or 9 (or 1).
- An this is true, indeed...

Theorem [A. L. Young FQ92]

If n is a $(10, k)$-reverse multiple, then k is 1,4 , or 9 .

- Further, numbers 1089 and 2178 seems to play a special role.
- First, we observe that the quotient k is either 4 or 9 (or 1).
- An this is true, indeed...

Theorem [A. L. Young FQ92]

If n is a $(10, k)$-reverse multiple, then k is 1,4 , or 9 .

- Further, numbers 1089 and 2178 seems to play a special role.
- It seems that if we insert some 9 s between, for example, 10 and 89 , then we get a (10,9)-reverse multiple. And similarly for 2178.
- First, we observe that the quotient k is either 4 or 9 (or 1).
- An this is true, indeed...

Theorem [A. L. Young FQ92]

If n is a $(10, k)$-reverse multiple, then k is 1,4 , or 9 .

- Further, numbers 1089 and 2178 seems to play a special role.
- It seems that if we insert some 9 s between, for example, 10 and 89 , then we get a (10,9)-reverse multiple. And similarly for 2178.
- And this is true, indeed.
- First, we observe that the quotient k is either 4 or 9 (or 1).
- An this is true, indeed...

Theorem [A. L. Young FQ92]

If n is a $(10, k)$-reverse multiple, then k is 1,4 , or 9 .

- Further, numbers 1089 and 2178 seems to play a special role.
- It seems that if we insert some 9 s between, for example, 10 and 89 , then we get a (10,9)-reverse multiple. And similarly for 2178.
- And this is true, indeed.
- By this way, however, we do not get all of them.
- First, we observe that the quotient k is either 4 or 9 (or 1).
- An this is true, indeed...

Theorem [A. L. Young FQ92]

If n is a $(10, k)$-reverse multiple, then k is 1,4 , or 9 .

- Further, numbers 1089 and 2178 seems to play a special role.
- It seems that if we insert some 9 s between, for example, 10 and 89 , then we get a (10,9)-reverse multiple. And similarly for 2178.
- And this is true, indeed.
- By this way, however, we do not get all of them.
- Lets take a look to another numbers...

- 9-digit:

219999978
217802178

- 9-digit:

219999978
217802178

- 10-digit:

2199999978
2178002178
2197821978

- 9-digit:

219999978
217802178

- 10-digit:

2199999978
2178002178
2197821978

- 11-digit:

21999999978
21780002178
21978021978

- 9-digit:

219999978
217802178

- 10-digit:

2199999978
2178002178
2197821978

219999999978
217800002178
21997800219978
2199997821999978
217821782178

- 11-digit:

21999999978
21780002178
21978021978

- 9-digit:

219999978
217802178

- 10-digit:

2199999978
2178002178
2197821978

- 11-digit:

21999999978
21780002178
21978021978

- Are you still able to follow the pattern?

The final result

To understand the pattern of general $(10,4)$-reverse multiple, it is better to start from the middle:

The final result

To understand the pattern of general $(10,4)$-reverse multiple, it is better to start from the middle:

Case 1:

The final result

To understand the pattern of general $(10,4)$-reverse multiple, it is better to start from the middle:

Case 1:

The final result

To understand the pattern of general $(10,4)$-reverse multiple, it is better to start from the middle:

Case 1:

$$
\cdots \underbrace{0 \ldots 021}_{m_{2}} \underbrace{9 \ldots 9}_{k_{1}} 78 \underbrace{0 . \ldots 0}_{m_{1}} 21 \underbrace{9 . \ldots 9}_{k_{1}} 78 \underbrace{90 \ldots 0}_{m_{2}} \ldots
$$

The final result

To understand the pattern of general $(10,4)$-reverse multiple, it is better to start from the middle:

Case 1:

The final result

To understand the pattern of general $(10,4)$-reverse multiple, it is better to start from the middle:

Case 1:

The final result

To understand the pattern of general $(10,4)$-reverse multiple, it is better to start from the middle:

Case 1:

Case 2:

The final result

To understand the pattern of general $(10,4)$-reverse multiple, it is better to start from the middle:

Case 1:

Case 2:

The final result

To understand the pattern of general $(10,4)$-reverse multiple, it is better to start from the middle:

Case 1:

Case 2:

$$
\cdots 21 \underbrace{9 \ldots 9}_{k_{2}} 78 \underbrace{0 \ldots 0}_{m_{1}} 2 \underbrace{9 \ldots 9}_{k_{1}} 78 \underbrace{0 \ldots 0}_{m_{1}} 2 \underbrace{9 \ldots 9}_{k_{2}} 78 \cdots
$$

The final result

To understand the pattern of general $(10,4)$-reverse multiple, it is better to start from the middle:

Case 1:

Case 2:

The final result

To understand the pattern of general $(10,4)$-reverse multiple, it is better to start from the middle:

Case 1:

Case 2:

$$
\cdots 21 \underbrace{9 \ldots 9}_{k_{2}} 78 \underbrace{0 \ldots . .0}_{m_{1}} 1 \underbrace{9 \ldots 9}_{k_{1}} 78 \underbrace{0_{k_{2}} \ldots 0}_{m_{1}} 2 \underbrace{9 \ldots 9}_{k_{2}} 78
$$

The final result

To understand the pattern of general $(10,4)$-reverse multiple, it is better to start from the middle:

Case 1:

$$
\cdots \underbrace{0 \ldots 0}_{m_{2}} 21 \underbrace{9 \ldots 9}_{k_{1}} 18 \underbrace{\ldots \ldots 0}_{m_{1}} \underbrace{9 \ldots 9}_{k_{1}} \underbrace{0 . . .0}_{m_{2}} \cdots
$$

Case 2:

$$
\cdots 21 \underbrace{9 \ldots 9}_{k_{2}} 78 \underbrace{0 \ldots .0}_{m_{1}} 21 \underbrace{9 \ldots 9}_{k_{1}} 78 \underbrace{0 \ldots 0}_{m_{1}} 2 \underbrace{9 \ldots 9}_{k_{2}} 78
$$

...and similarly for the case of (10, 9)-reverse multiples with numbers 1089.

Summary

Theorem

An integer n is a $(10, k)$ multiple if and only if one of the following condition holds:

Summary

Theorem

An integer n is a $(10, k)$ multiple if and only if one of the following condition holds:
(1) $k=1$ and n is palindromic.

Summary

Theorem

An integer n is a $(10, k)$ multiple if and only if one of the following condition holds:
(1) $k=1$ and n is palindromic.
(2) $k=4$ and n has the form as indicated in the Case 1 or Case 2 .

Summary

Theorem

An integer n is a $(10, k)$ multiple if and only if one of the following condition holds:
(1) $k=1$ and n is palindromic.
(2) $k=4$ and n has the form as indicated in the Case 1 or Case 2 .
(3) $k=9$ and n has the form as indicated in the Case 1 or Case 2 where 2178 is replace by 1089 .

Summary

Theorem

An integer n is a $(10, k)$ multiple if and only if one of the following condition holds:
(1) $k=1$ and n is palindromic.
(2) $k=4$ and n has the form as indicated in the Case 1 or Case 2 .
(3) $k=9$ and n has the form as indicated in the Case 1 or Case 2 where 2178 is replace by 1089 .

References:

- A. L. Young: Trees For k-Reverse Multiples, Fib. Quart. 30 (1992).
- R. Webster, G. Williams: On the Trail of Reverse Divisors: 1089 and All that Follow, Math. Spec. 45 (2013).
- N. J. A. Sloane: 2178 And All That, Fib. Quart. 52 (2014).

A magic trick

- What is so special on numbers 1089 or 2178 ?

A magic trick

- What is so special on numbers 1089 or 2178 ?
- Well...they are magic!

A magic trick

- What is so special on numbers 1089 or 2178 ?
- Well...they are magic!
- Come on...we do serious math here!

A magic trick

- What is so special on numbers 1089 or 2178 ?
- Well...they are magic!
- Come on...we do serious math here!
- OK...

Definition

A number is called magic if it is used by magicians to do their tricks.

A magic trick

- What is so special on numbers 1089 or 2178 ?
- Well...they are magic!
- Come on...we do serious math here!
- OK...

Definition

A number is called magic if it is used by magicians to do their tricks.
1089 is magic, indeed! Proof:

A magic trick

- What is so special on numbers 1089 or 2178 ?
- Well...they are magic!
- Come on...we do serious math here!
- OK...

Definition

A number is called magic if it is used by magicians to do their tricks.
1089 is magic, indeed! Proof:

- Write down a non-palindromic 3-digit number $A B C$.

A magic trick

- What is so special on numbers 1089 or 2178 ?
- Well...they are magic!
- Come on...we do serious math here!
- OK...

Definition

A number is called magic if it is used by magicians to do their tricks.
1089 is magic, indeed! Proof:

- Write down a non-palindromic 3-digit number ABC.
- Reverse the order of digits CBA.

A magic trick

- What is so special on numbers 1089 or 2178 ?
- Well...they are magic!
- Come on...we do serious math here!
- OK...

Definition

A number is called magic if it is used by magicians to do their tricks.
1089 is magic, indeed! Proof:

- Write down a non-palindromic 3-digit number ABC.
- Reverse the order of digits CBA.
- Subtract the lower one from the bigger one getting $D E F$.

A magic trick

- What is so special on numbers 1089 or 2178 ?
- Well...they are magic!
- Come on...we do serious math here!
- OK...

Definition

A number is called magic if it is used by magicians to do their tricks.
1089 is magic, indeed! Proof:

- Write down a non-palindromic 3-digit number $A B C$.
- Reverse the order of digits CBA.
- Subtract the lower one from the bigger one getting $D E F$.
- Reverse the order once more, FED.

A magic trick

- What is so special on numbers 1089 or 2178 ?
- Well...they are magic!
- Come on...we do serious math here!
- OK...

Definition

A number is called magic if it is used by magicians to do their tricks.
1089 is magic, indeed! Proof:

- Write down a non-palindromic 3-digit number $A B C$.
- Reverse the order of digits CBA.
- Subtract the lower one from the bigger one getting $D E F$.
- Reverse the order once more, FED.
- Finally, compute $D E F+F E D=\ldots$

A magic trick

- What is so special on numbers 1089 or 2178 ?
- Well...they are magic!
- Come on...we do serious math here!
- OK...

Definition

A number is called magic if it is used by magicians to do their tricks.
1089 is magic, indeed! Proof:

- Write down a non-palindromic 3-digit number $A B C$.
- Reverse the order of digits CBA.
- Subtract the lower one from the bigger one getting DEF.
- Reverse the order once more, FED.
- Finally, compute $D E F+F E D=\ldots$
 and now you known why 1089 is magic!

Contents

(1) 1089 and 2178 , the magic numbers!

(2) CoCon 2015

A factorial decomposed into factorials

- There are still a huge number of open questions concerning integers.

A factorial decomposed into factorials

- There are still a huge number of open questions concerning integers.
- For instance, integer solutions of various Diophantine equation...

A factorial decomposed into factorials

- There are still a huge number of open questions concerning integers.
- For instance, integer solutions of various Diophantine equation...
- Consider the following problem: Is there any nontrivial solution of the equation

$$
n!=m!\cdot k!
$$

where $n, m, k \in \mathbb{N}$? If so, can you describe the set of all solutions?

A factorial decomposed into factorials

- There are still a huge number of open questions concerning integers.
- For instance, integer solutions of various Diophantine equation...
- Consider the following problem: Is there any nontrivial solution of the equation

$$
n!=m!\cdot k!
$$

where $n, m, k \in \mathbb{N}$? If so, can you describe the set of all solutions?

- A while for hard-thinking...

A factorial decomposed into factorials

- There are still a huge number of open questions concerning integers.
- For instance, integer solutions of various Diophantine equation...
- Consider the following problem: Is there any nontrivial solution of the equation

$$
n!=m!\cdot k!
$$

where $n, m, k \in \mathbb{N}$? If $s o$, can you describe the set of all solutions?

- A while for hard-thinking...
- One thing can be done:

$$
\begin{aligned}
& \text { if } n=m!\text {, for some } m \in \mathbb{N} \text {, then } \\
& n!=n \cdot(n-1)!=m!\cdot(n-1)!
\end{aligned}
$$

A factorial decomposed into factorials

- There are still a huge number of open questions concerning integers.
- For instance, integer solutions of various Diophantine equation...
- Consider the following problem: Is there any nontrivial solution of the equation

$$
n!=m!\cdot k!
$$

where $n, m, k \in \mathbb{N}$? If $s o$, can you describe the set of all solutions?

- A while for hard-thinking...
- One thing can be done:

$$
\begin{aligned}
& \text { if } n=m!, \text { for some } m \in \mathbb{N}, \text { then } \\
& n!=n \cdot(n-1)!=m!\cdot(n-1)!
\end{aligned}
$$

- For example: since $120=5$!, one has

$$
120!=5!\cdot 119!
$$

A factorial decomposed into factorials

- There are still a huge number of open questions concerning integers.
- For instance, integer solutions of various Diophantine equation...
- Consider the following problem: Is there any nontrivial solution of the equation

$$
n!=m!\cdot k!
$$

where $n, m, k \in \mathbb{N}$? If so, can you describe the set of all solutions?

- A while for hard-thinking...
- One thing can be done:

$$
\begin{aligned}
& \text { if } n=m!\text {, for some } m \in \mathbb{N} \text {, then } \\
& n!=n \cdot(n-1)!=m!\cdot(n-1)!
\end{aligned}
$$

- For example: since $120=5$!, one has

$$
120!=5!\cdot 119!
$$

- Thus, there is an infinite number of solutions: numbers which are factorials of an integer.
- Besides the above mentioned solutions ($m!=n-1$), is there any other solution of

$$
n!=m!\cdot k!?
$$

- Besides the above mentioned solutions ($m!=n-1$), is there any other solution of

$$
n!=m!\cdot k!?
$$

- There is, indeed, since

$$
10!=6!\cdot 7!
$$

- Besides the above mentioned solutions ($m!=n-1$), is there any other solution of

$$
n!=m!\cdot k!?
$$

- There is, indeed, since

$$
10!=6!\cdot 7!
$$

- Question: What can be said about the set

$$
\mathcal{A}=\{n \in \mathbb{N} \mid \exists m, k \in\{2,3, \ldots, n-2\} \text { such that } n!=m!\cdot k!\} ?
$$

- Besides the above mentioned solutions ($m!=n-1$), is there any other solution of

$$
n!=m!\cdot k!?
$$

- There is, indeed, since

$$
10!=6!\cdot 7!
$$

- Question: What can be said about the set

$$
\mathcal{A}=\{n \in \mathbb{N} \mid \exists m, k \in\{2,3, \ldots, n-2\} \text { such that } n!=m!\cdot k!\} ?
$$

- We do not known much about \mathcal{A}. In fact, only

$$
10 \in \mathcal{A} .
$$

- Besides the above mentioned solutions ($m!=n-1$), is there any other solution of

$$
n!=m!\cdot k!?
$$

- There is, indeed, since

$$
10!=6!\cdot 7!
$$

- Question: What can be said about the set

$$
\mathcal{A}=\{n \in \mathbb{N} \mid \exists m, k \in\{2,3, \ldots, n-2\} \text { such that } n!=m!\cdot k!\} ?
$$

- We do not known much about \mathcal{A}. In fact, only

$$
10 \in \mathcal{A}
$$

- There are few more statements concerning the factors m and k. These results, however, only slightly restrict the set of possible solutions.
- Besides the above mentioned solutions ($m!=n-1$), is there any other solution of

$$
n!=m!\cdot k!?
$$

- There is, indeed, since

$$
10!=6!\cdot 7!
$$

- Question: What can be said about the set

$$
\mathcal{A}=\{n \in \mathbb{N} \mid \exists m, k \in\{2,3, \ldots, n-2\} \text { such that } n!=m!\cdot k!\} ?
$$

- We do not known much about \mathcal{A}. In fact, only

$$
10 \in \mathcal{A}
$$

- There are few more statements concerning the factors m and k. These results, however, only slightly restrict the set of possible solutions.
- For example, it can be shown (and it is not very hard) that if $n \in \mathcal{A}$, then $m+k>n+1$.

Satan conjecture

- The systematic solution of the Diophantine equation $n!=m!\cdot k!$ is far from what is known today.

Satan conjecture

- The systematic solution of the Diophantine equation $n!=m!\cdot k!$ is far from what is known today.
- Even the special case of equation $n(n-1)=m$! is still out of reach [D. Berend, J. E. Harmse, TAMS06].

Satan conjecture

- The systematic solution of the Diophantine equation $n!=m!\cdot k!$ is far from what is known today.
- Even the special case of equation $n(n-1)=m$! is still out of reach [D. Berend, J. E. Harmse, TAMS06].
- Nevertheless, there is a strong belief that \mathcal{A} is finite.

Satan conjecture

- The systematic solution of the Diophantine equation $n!=m!\cdot k!$ is far from what is known today.
- Even the special case of equation $n(n-1)=m$! is still out of reach [D. Berend, J. E. Harmse, TAMS06].
- Nevertheless, there is a strong belief that \mathcal{A} is finite.
- And I have also encountered the heretic opinion that \mathcal{A} consists of the number 10 only!

Satan conjecture

- The systematic solution of the Diophantine equation $n!=m!\cdot k!$ is far from what is known today.
- Even the special case of equation $n(n-1)=m$! is still out of reach [D. Berend, J. E. Harmse, TAMS06].
- Nevertheless, there is a strong belief that \mathcal{A} is finite.
- And I have also encountered the heretic opinion that \mathcal{A} consists of the number 10 only!

Satan conjecture

$$
\mathcal{A}=\{10\} .
$$

...time for computers

- ... with the aid of computer one could possible disprove the Satan conjecture.

...time for computers

- ... with the aid of computer one could possible disprove the Satan conjecture.
- At the begging of 90 's, J. Shallit and M. Easter showed that between numbers

$$
1 \leq n \leq 18160
$$

only the number 10 belongs to \mathcal{A}. They investigate, however, a somewhat more general problem.

...time for computers

- ... with the aid of computer one could possible disprove the Satan conjecture.
- At the begging of 90 's, J. Shallit and M. Easter showed that between numbers

$$
1 \leq n \leq 18160
$$

only the number 10 belongs to \mathcal{A}. They investigate, however, a somewhat more general problem.

But then ...

...time for computers

- ... with the aid of computer one could possible disprove the Satan conjecture.
- At the begging of 90 's, J. Shallit and M. Easter showed that between numbers

$$
1 \leq n \leq 18160
$$

only the number 10 belongs to \mathcal{A}. They investigate, however, a somewhat more general problem.

But then ...

... a hero came!

...time for computers

- ... with the aid of computer one could possible disprove the Satan conjecture.
- At the begging of 90 's, J. Shallit and M. Easter showed that between numbers

$$
1 \leq n \leq 18160
$$

only the number 10 belongs to \mathcal{A}. They investigate, however, a somewhat more general problem.

But then

... a hero came!

- TK improved the above result for numbers: $1 \leq n \leq 30000$!

...time for computers

- ... with the aid of computer one could possible disprove the Satan conjecture.
- At the begging of 90 's, J. Shallit and M. Easter showed that between numbers

$$
1 \leq n \leq 18160
$$

only the number 10 belongs to \mathcal{A}. They investigate, however, a somewhat more general problem.

But then

... a hero came!

- TK improved the above result for numbers: $1 \leq n \leq 30000$!

Can you do that better?

CoCon 2015

Computational Contest 2015

- Can you significantly improve the range of numbers that do (not) belong to \mathcal{A} ?
- Can you disprove the Satan conjecture? What is the respective formula $x!y!=z!$?
- Apart from the computational properties, can you show something mathematically interesting about \mathcal{A} ?

The End

Starring:

The End

Starring:

Pusheen

The End

Starring:

Pusheen

TK

The End

Starring:

Pusheen

TK

Unhappy cat

The End

Starring:

Pusheen

TK

Unhappy cat

Thank you for your attention!

