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Definition

A sequence of polynomials {Pn}∞n=0 with real coefficients and Pn of degree n, for which there
exists positive Borel measure µ on R such that

∫
R

Pm(x)Pn(x)dµ(x) = cnδmn, m, n ∈ Z+,

where cn > 0, is called orthogonal polynomial sequence (=OPs).

Examples: Hermite, Laguerre, Jacobi (the very classical)

Theory of OPs is deeply developed. OPs are closely related with spectral theory of linear
operators, measure theory, continued fractions, moment problem, complex function theory,
etc.

Basic references:

N. I. Akhiezer: The Classical Moment Problem and Some Related Questions in Analysis,
(Oliver & Boyd, Edinburgh, 1965).

T. S. Chihara: An Introduction to Orthogonal Polynomials, (Gordon and Breach, Science
Publishers, Inc., New York, 1978).

M. E. H. Ismail Classical and Quantum Orthogonal Polynomials in One Variable, (Cambridge
Univ. Press., Cambridge, 2005).
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Applications of OPs in Mathematics 1/2

Numerical Analysis:

Approximation theory: Monic Chebyshev polynomials T̃n possess “min-max” property on
[−1, 1]:

T̃n = arg min
P∈Pn

max
x∈[−1,1]

|P(x)|

where Pn denotes the set of monic polynomials of degree ≤ n. In consequence, expansions
of functions that are smooth on [−1, 1] in series of Chebyshev polynomials usually converge
extremely rapidly, [Mason and Handscomb, 2003].
Differential equations: Linear ordinary differential equations can be solved directly in series of
Chebyshev polynomials (or other OPs) by a method originated by [Clenshaw, 1957]. This
process has been generalized to spectral methods for solving partial differential equations,
[Mason and Handscomb, 2003].

Other Applications:
Integrable systems: Toda equation provides important model of a completely integrable
system. A wide class of exact solutions of the Toda equation can be expressed in terms of
various special functions, and in particular OPs, [Nakamura, 1996]. For instance,

Vn(x) = 2nHn−1(x)Hn+1(x)/H2
n (x),

where Hn are Hermite OPs, satisfies Toda equation

d2

dx2
log Vn(x) = Vn+1(x)− 2Vn(x) + Vn−1(x).
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Applications of OPs in Mathematics 2/2

Complex function theory: The Askey-Gasper inequality for Jacobi OPs

n∑
k=0

P(α,0)
k (x) ≥ 0, (x ∈ [−1, 1], α > −1, n ∈ Z+)

was used in de Branges’ proof the long-standing Bieberbach conjecture, [de Branges, 1985].

Random matrix theory: Hermite polynomials (and their certain analogs) play an important
role in random matrix theory [Fyodorov, 2005].

Group representations: Group-theoretic interpretations of OPs, [Vilenkin and Klimyk,
1991-93].

Markov chains: Models for birth and death processes, [McGregor, 1958, Valent, 2005].

Riemann-Hilbert problems: [Ismail, 2005].

Coding Theory: Application of Krawtchouk and q-Racah OPs, [Bannai, 1990].
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Applications of OPs in Physics

Quantum mechanics: Eigenfunctions of certain QM systems involve OPs. For example,

Hermite OPs in the case of harmonic oscillator Hamiltonian,

Legendre OPs in the case of three-dimensional Schrödinger operator with spherically
symmetric potential.

Other examples can be found in [Seaborn, 1991].

Other physical applications:
Electrostatics models: For interpretations of zeros of OPs as equilibrium positions of charges
in electrostatic problems (assuming logarithmic interaction), see [Ismail, 2000].

More precisely, put at 1 and −1 two positive charges p and q, and with these fixed charges
put n positive unit charges on (−1, 1) at the points x1, . . . , xn. The mutual energy of all these
charges is

U(x1, . . . , xn) = p
n∑

i=1

log
1

|1− xi |
+ q

n∑
i=1

log
1

|1 + xi |
+
∑
i<j

log
1

|xi − xj |

and the equilibrium problem asks for finding x1, . . . , xn for which the energy is minimal. The
unique minimum occurs for the zeros of the Jacobi polynomial P(2p−1,2q−1)

n .

Fluid Dynamics: Legendre OPs [Paterson, 1983].

Statistical mechanics: Explicitly solvable models, [Baxter, 1981-82].
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Askey scheme

The Askey Scheme:

It is an extensive list of today’s well known classes of OPs (not all of them - hypergeometric
type or q-analogues).

They are listed with their basic characteristics.

Available for free on the web: http://aw.twi.tudelft.nl/∼koekoek/askey.html.
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Basic characteristics of OPs - illustrated on Hermite OPs

OPs can be defined by several equivalent ways. One possibility is the recursive definition via
three-term recurrence rule

Pn(x) = (x − cn)Pn−1(x)− λnPn−2(x),

with initial conditions P−1(x) = 0 and P0(x) = 1, where cn ∈ R and λn > 0 (Favard’s
Theorem, [Chihara, Thm. 4.4]).

For Hermite OPs Hn(x) the three-term recurrence reads

Hn+1(x) = 2xHn(x)− 2nHn−1(x).

Then one tries to deduce the following basic characteristics:
Expression of OPs in terms of special functions:

Hn(x) = (2x)n
2F0

(
−

n
2
,−

n − 1
2

,−;−x−2
)
,

(explicit expressions are usually not available).
Asymptotic formulas for large n:

e−
x2
2 Hn(x) ∼

2n
√
π

Γ

(
n + 1

2

)
cos

(
x
√

2n − n
π

2

)
.
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Basic characteristics of OPs - continuation

Differential equation:

y ′′(x)− 2xy ′(x) + 2ny(x) = 0, y(x) = Hn(x).

Structure relations:
1 forward-shift operator,

d
dx

Hn(x) = 2nHn−1(x),

2 backward-shift operator, (
d
dx

− 2x
)

Hn(x) = −Hn+1(x).

Rodriguez-type formula:

e−x2
Hn(x) = (−1)n dn

dxn
e−x2

.

Generating functions:
∞∑

n=0

Hn(x)

n!
tn = e2xt−t2

.

OG relations: ∫ ∞
−∞

Hm(x)Hn(x)e−x2
dx =

√
π2nn!δmn.

František Štampach (FNSPE & FIT, CTU) generalization of some OPs 11 / 22



Basic characteristics of OPs - continuation

Differential equation:

y ′′(x)− 2xy ′(x) + 2ny(x) = 0, y(x) = Hn(x).

Structure relations:
1 forward-shift operator,

d
dx

Hn(x) = 2nHn−1(x),

2 backward-shift operator, (
d
dx

− 2x
)

Hn(x) = −Hn+1(x).

Rodriguez-type formula:

e−x2
Hn(x) = (−1)n dn

dxn
e−x2

.

Generating functions:
∞∑

n=0

Hn(x)

n!
tn = e2xt−t2

.

OG relations: ∫ ∞
−∞

Hm(x)Hn(x)e−x2
dx =

√
π2nn!δmn.

František Štampach (FNSPE & FIT, CTU) generalization of some OPs 11 / 22



Basic characteristics of OPs - continuation

Differential equation:

y ′′(x)− 2xy ′(x) + 2ny(x) = 0, y(x) = Hn(x).

Structure relations:
1 forward-shift operator,

d
dx

Hn(x) = 2nHn−1(x),

2 backward-shift operator, (
d
dx

− 2x
)

Hn(x) = −Hn+1(x).

Rodriguez-type formula:

e−x2
Hn(x) = (−1)n dn

dxn
e−x2

.

Generating functions:
∞∑

n=0

Hn(x)

n!
tn = e2xt−t2

.

OG relations: ∫ ∞
−∞

Hm(x)Hn(x)e−x2
dx =

√
π2nn!δmn.

František Štampach (FNSPE & FIT, CTU) generalization of some OPs 11 / 22



Basic characteristics of OPs - continuation

Differential equation:

y ′′(x)− 2xy ′(x) + 2ny(x) = 0, y(x) = Hn(x).

Structure relations:
1 forward-shift operator,

d
dx

Hn(x) = 2nHn−1(x),

2 backward-shift operator, (
d
dx

− 2x
)

Hn(x) = −Hn+1(x).

Rodriguez-type formula:

e−x2
Hn(x) = (−1)n dn

dxn
e−x2

.

Generating functions:
∞∑

n=0

Hn(x)

n!
tn = e2xt−t2

.

OG relations: ∫ ∞
−∞

Hm(x)Hn(x)e−x2
dx =

√
π2nn!δmn.

František Štampach (FNSPE & FIT, CTU) generalization of some OPs 11 / 22



Basic characteristics of OPs - continuation

Differential equation:

y ′′(x)− 2xy ′(x) + 2ny(x) = 0, y(x) = Hn(x).

Structure relations:
1 forward-shift operator,

d
dx

Hn(x) = 2nHn−1(x),

2 backward-shift operator, (
d
dx

− 2x
)

Hn(x) = −Hn+1(x).

Rodriguez-type formula:

e−x2
Hn(x) = (−1)n dn

dxn
e−x2

.

Generating functions:
∞∑

n=0

Hn(x)

n!
tn = e2xt−t2

.

OG relations: ∫ ∞
−∞

Hm(x)Hn(x)e−x2
dx =

√
π2nn!δmn.

František Štampach (FNSPE & FIT, CTU) generalization of some OPs 11 / 22



Generalized Charlier OPs - definition & special function expression

Define polynomials Pn(α, β; x) recursively as solution of recurrence

un+1 = (x − n − β)un − (α+ nβ)un−1

with initial setting P−1(α, β; x) = 0 and P0(α, β; x) = 1.

By setting α = 0, one gets well known Charlier polynomials Pn(0, β; x) = C(β)
n (x),

C(β)
n (x) =

n∑
k=0

(n
k

)(x
k

)
k!(−β)n−k

Formula for Pn(α, β; x) in terms of confluent hypergeometric functions yields:

Pn(α, β; x) = e−β
[

Γ(x + 1)

Γ(x + 1− n)
1F1

(
−
α

β
− x ;−x ;β

)
1F1

(
−
α

β
− n; x − n + 1;β

)

−βn+1
Γ
(

n + 1 + α
β

)
Γ(x − n)

Γ
(
α
β

)
Γ(x + 2)

1F1

(
1−

α

β
; x + 2;β

)
1F1

(
−
α

β
− x ;−x + n + 1;β

)]
.

Especially, for α = 0, one has

C(β)
n (x) =

Γ(x + 1)

Γ(x + 1− n)
1F1(−n; x − n + 1;β) .
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Generalized Charlier OPs - generating function & asymptotics

Asymptotic formula for Pn(α, β; x) for n→∞:

Pn(α, β; x) = (−1)n Γ(n − x)

Γ(−x)
1F1

(
−
α

β
− x ;−x ;β

)
(1 + o(1)).

Generating function: for α/β > 0 one has

∞∑
n=0

Pn(α, β; x)

Γ (n + 1 + α/β)
wn

=
e−βw w−α/β(1 + w)x+α/β

Γ (α/β)

∫ w

0
eβt t−1+α/β(1 + t)−1−x−α/βdt , |w | < 1.

In the case of Charlier polynomials (α = 0), the generating function formula reads

∞∑
n=0

C(β)
n (x)

n!
wn = e−βw (1 + w)x , |w | < 1.

For α/β < 0 the generating function has not been found.
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Generalized Charlier OPs - structure relation

Structure relations: only “forward shift”,

Pn(α, β; x + 1)− Pn(α, β; x) =

(
n +

α

β

)
Pn−1(α, β; x)−

α

β
Pn−1(α+ β, β; x).

By applying limit α→ 0 in the last formula, one gets the forward shift formula for Charlier
polynomials,

C(β)
n (x + 1)− C(β)

n (x) = nC(β)
n−1(x).

The “backward shift” formula has not been found for Pn(α, β; x).

Consequently, the Rodriguez-type formula for Pn(α, β; x) have not been discovered.

The backward shift formula in the Charlier OPs case reads

βC(β)
n (x)− xC(β)

n (x − 1) = −C(β)
n+1(x).
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C(β)
n (x + 1)− C(β)

n (x) = nC(β)
n−1(x).

The “backward shift” formula has not been found for Pn(α, β; x).

Consequently, the Rodriguez-type formula for Pn(α, β; x) have not been discovered.

The backward shift formula in the Charlier OPs case reads

βC(β)
n (x)− xC(β)

n (x − 1) = −C(β)
n+1(x).
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Generalized Charlier OPs - orthogonality

Let β > 0 and α+ β > 0. Then it holds:
Polynomials Pn(α, β; x) satisfy the orthogonality relation

∫
R

Pn(α, β; x)Pm(α, β; x)dµ(x) = βn
Γ
(
α
β

+ n + 1
)

Γ
(
α
β

+ 1
) δmn, m, n ∈ Z+.

dµ is a purely discrete probability measure supported by infinite set with no finite cluster point
given by

supp(dµ) =

{
x ∈ R : 1F̃1

(
−
α

β
− x ;−x ;β

)
= 0
}
.

Step function µ(x) has jumps at x ∈ supp(dµ) of magnitude

µ(x)− µ(x − 0) = −
1F̃1

(
−α
β
− x ; 1− x ;β

)
∂
∂x 1F̃1

(
−α
β
− x ;−x ;β

) .
The Stieltjes transform of dµ is given by

∫
R

dµ(x)

z − x
= −

1F̃1

(
−α
β
− z; 1− z;β

)
1F̃1

(
−α
β
− z;−z;β

) , (z /∈ supp(dµ)).
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Generalized Charlier OPs - orthogonality

By sending α→ 0, one reprove Charlier polynomials are orthogonal with respect to Poisson
probability distribution,

∞∑
k=0

e−ββk

k!
C(β)

m (k)C(β)
n (k) = βnn!δmn,

for β > 0.
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Generalized Al-Salam-Carlitz I - definition & special function expression

Define polynomials Un(a, δ; q, x) recursively as solution of recurrence

vn+1 =
(
x − (a + 1)qn) vn + aqn+δ−1(1− qn−δ)vn−1,

with initial setting U−1(a, δ; q, x) = 0 and U0(a, δ; q, x) = 1.

By setting δ = 0, one gets Al-Salam-Carlitz I polynomials U(a)
n (x ; q) = Un(a, 0; q, x).

Formula for Un(a, δ; q, x) in terms of q-confluent hypergeometric functions yields:

Un(a, δ; q, x) =
1(

ax−1qδ ; q
)
∞

[
xn(x−1; q)n 1φ1

(
x−1qδ ; x−1; q, ax−1

)
1φ1

(
qδ−n ; q1−nx ; q, aq

)

−
(−a)n+1qδ(n+1)−1+n(n−1)/2(q−δ ; q)n+1

xn+2(x−1q−1; q)n+2
1φ1

(
x−1qδ ; x−1qn+1; q, ax−1qn+1

)
1φ1

(
qδ+1; q2x ; q, aq

)]

Especially, for δ = 0, one has

U(a)
n (x ; q) = xn(x−1; q)n 1φ1

(
q−n; q1−nx ; q, aq

)
.
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Generalized Al-Salam-Carlitz I OPs - generating function & asymptotics

Asymptotic formula for Un(a, δ; q, x) with x 6= 0, for n→∞:

Un(a, δ; q, x) = xn(x−1; q)n 1φ1

(
x−1qδ; x−1; q, ax−1

)
(1 + o(1)).

Generating function: for δ < 0 and x 6= 0 one has

∞∑
n=0

Un(a, δ; q, x)

(q1−δ; q)n
tn = (1− q−δ)

∞∑
k=0

(aqδ t ; q)k (qδ t ; q)k

(xt ; q)k+1
q−kδ, |xt | < 1,

In the case of Al-Salam-Carlitz I polynomials (δ = 0), the generating function formula reads

∞∑
n=0

Un(a, 0; q, x)

(q; q)n
tn =

(at ; q)∞(t ; q)∞

(xt ; q)∞
, |xt | < 1.

For δ > 0 the generating function has not been found.
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Generalized Al-Salam-Carlitz OPs - structure relation

Structure relations: only “forward shift”,

Un(a, δ; q, x)− Un(a, δ; q, qx)

= x(1− qn−δ)Un−1(a, δ; q, x)− xqn(1− q−δ)Un−1(a, δ − 1; q, x).

By applying limit α→ 0 in the last formula, one gets the forward shift formula for
Al-Salam-Carlitz I,

U(a)
n (x ; q)− U(a)

n (qx ; q) = x(1− qn)U(a)
n−1(x ; q).

The “backward shift” formula has not been found for Un(a, δ; q, x).

Consequently, the Rodriguez-type formula for Un(a, δ; q, x) have not been discovered.

The backward shift formula in the Al-Salam-Carlitz I OPs case reads

aU(a)
n (x ; q)− (1− x)(a− x)U(a)

n (q−1x ; q) = −xq−nU(a)
n+1(x ; q).
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Generalized Al-Salam-Carlitz I OPs - orthogonality

Let a, δ < 0 then it holds:

Polynomials Un(a, δ; q, x) satisfy the orthogonality relation

∫
R

Um(a, δ; q, x)Un(a, δ; q, x)dµ(x) = (−a)nqnδ+n(n−1)/2(q−δ; q)n+1δmn.

dµ is a purely discrete positive measure supported by infinite set, with 0 the only cluster
point, given by

supp(dµ) =
{

x−1 ∈ R : 2φ1

(
axqδ, xqδ; 0; q, q−δ

)
= 0
}
∪ {0},

Step function µ(x) has jumps at x ∈ supp(dµ) \ {0} of magnitude

µ(x)− µ(x − 0) =
2φ1
(
ax−1qδ, x−1qδ; 0; q, q1−δ)

x ∂
∂x

[
2φ1
(
ax−1qδ, x−1qδ; 0; q, q−δ

)] .
The Stieltjes transform of dµ is given by∫

R

dµ(x)

z − x
=

2φ1
(
ax−1qδ, x−1qδ; 0; q, q1−δ)

x 2φ1
(
ax−1qδ, x−1qδ; 0; q, q−δ

) , (z /∈ supp(dµ)).
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Step function µ(x) has jumps at x ∈ supp(dµ) \ {0} of magnitude

µ(x)− µ(x − 0) =
2φ1
(
ax−1qδ, x−1qδ; 0; q, q1−δ)

x ∂
∂x

[
2φ1
(
ax−1qδ, x−1qδ; 0; q, q−δ

)] .

The Stieltjes transform of dµ is given by∫
R

dµ(x)

z − x
=

2φ1
(
ax−1qδ, x−1qδ; 0; q, q1−δ)

x 2φ1
(
ax−1qδ, x−1qδ; 0; q, q−δ

) , (z /∈ supp(dµ)).
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Generalized Al-Salam-Carlitz I OPs - orthogonality
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There are other generalized classes of OPs

Lommel OPs, well known class from theory of Bessel functions, have been generalized
similarly (in one parameter).

Lommel OPs may be given explicitly in the form

Rn,ν(x) =

[n/2]∑
k=0

(n − k
k

)
(−1)k Γ(ν + n − k)

Γ(ν + k)

(
2
x

)n−2k
.

Explicit formulas and support of the measure of orthogonality for the generalization are
expressed in terms of (ir)regular Coulomb wave functions.

The last example generalizes Al-Salam-Carlitz II polynomials. Generalized OPs are defined
via recurrence

vn+1 =
(
x − q−n) vn −

1
2

sin(σ)q−2n+1(1− qn+γ−1)vn−1,

where γ > 0, σ ∈ (0, π/2), and q ∈ (0, 1).

This case is extremely interesting. The analysis of basic characteristics is much more difficult
then in previous cases.

Especially, concerning the measure of orthogonality, if q ≥ tan2(σ/2) then there is only one
OG measure. However, if q < tan2(σ/2) then there are infinitely many measures of
orthogonality (cf. indeterminate moment problem).
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Thank you, and enjoy Beskydy!

František Štampach (FNSPE & FIT, CTU) generalization of some OPs 22 / 22


	Motivation - What the OPs are good for?
	Askey scheme
	Having a class of OPs, what we want to know?
	Generalized Charlier OPs
	Generalized Al-Salam-Carlitz I OPs

