One-parameter generalization of some classes of orthogonal polynomials

František Štampach

Faculty of Nuclear Sciences and Physical Engineering, CTU in Prague Faculty of Information Technology, CTU in Prague

Outline

(1) Motivation - What the OPs are good for?
(2) Askey scheme
(3) Having a class of OPs, what we want to know?

4 Generalized Charlier OPs
(5) Generalized AI-Salam-Carlitz I OPs

Definition

- A sequence of polynomials $\left\{P_{n}\right\}_{n=0}^{\infty}$ with real coefficients and P_{n} of degree n, for which there exists positive Borel measure μ on \mathbb{R} such that

$$
\int_{\mathbb{R}} P_{m}(x) P_{n}(x) d \mu(x)=c_{n} \delta_{m n}, \quad m, n \in \mathbb{Z}_{+}
$$

where $c_{n}>0$, is called orthogonal polynomial sequence (=OPs).

Definition

- A sequence of polynomials $\left\{P_{n}\right\}_{n=0}^{\infty}$ with real coefficients and P_{n} of degree n, for which there exists positive Borel measure μ on \mathbb{R} such that

$$
\int_{\mathbb{R}} P_{m}(x) P_{n}(x) d \mu(x)=c_{n} \delta_{m n}, \quad m, n \in \mathbb{Z}_{+}
$$

where $c_{n}>0$, is called orthogonal polynomial sequence (=OPs).

- Examples: Hermite, Laguerre, Jacobi (the very classical)

Definition

- A sequence of polynomials $\left\{P_{n}\right\}_{n=0}^{\infty}$ with real coefficients and P_{n} of degree n, for which there exists positive Borel measure μ on \mathbb{R} such that

$$
\int_{\mathbb{R}} P_{m}(x) P_{n}(x) d \mu(x)=c_{n} \delta_{m n}, \quad m, n \in \mathbb{Z}_{+}
$$

where $c_{n}>0$, is called orthogonal polynomial sequence (=OPs).

- Examples: Hermite, Laguerre, Jacobi (the very classical)
- Theory of OPs is deeply developed. OPs are closely related with spectral theory of linear operators, measure theory, continued fractions, moment problem, complex function theory, etc.

Definition

- A sequence of polynomials $\left\{P_{n}\right\}_{n=0}^{\infty}$ with real coefficients and P_{n} of degree n, for which there exists positive Borel measure μ on \mathbb{R} such that

$$
\int_{\mathbb{R}} P_{m}(x) P_{n}(x) d \mu(x)=c_{n} \delta_{m n}, \quad m, n \in \mathbb{Z}_{+}
$$

where $c_{n}>0$, is called orthogonal polynomial sequence (=OPs).

- Examples: Hermite, Laguerre, Jacobi (the very classical)
- Theory of OPs is deeply developed. OPs are closely related with spectral theory of linear operators, measure theory, continued fractions, moment problem, complex function theory, etc.
- Basic references:
N. I. Akhiezer: The Classical Moment Problem and Some Related Questions in Analysis, (Oliver \& Boyd, Edinburgh, 1965).
T. S. Chihara: An Introduction to Orthogonal Polynomials, (Gordon and Breach, Science Publishers, Inc., New York, 1978).
M. E. H. Ismail Classical and Quantum Orthogonal Polynomials in One Variable, (Cambridge Univ. Press., Cambridge, 2005).

Applications of OPs in Mathematics 1/2

Numerical Analysis:

Applications of OPs in Mathematics $1 / 2$

Numerical Analysis:

- Approximation theory: Monic Chebyshev polynomials \tilde{T}_{n} possess "min-max" property on $[-1,1]$:

$$
\tilde{T}_{n}=\arg \min _{P \in \mathbb{P}_{n}} \max _{x \in[-1,1]}|P(x)|
$$

where \mathbb{P}_{n} denotes the set of monic polynomials of degree $\leq n$. In consequence, expansions of functions that are smooth on $[-1,1]$ in series of Chebyshev polynomials usually converge extremely rapidly, [Mason and Handscomb, 2003].

Applications of OPs in Mathematics 1/2

Numerical Analysis:

- Approximation theory: Monic Chebyshev polynomials \tilde{T}_{n} possess "min-max" property on $[-1,1]$:

$$
\tilde{T}_{n}=\arg \min _{P \in \mathbb{P}_{n}} \max _{x \in[-1,1]}|P(x)|
$$

where \mathbb{P}_{n} denotes the set of monic polynomials of degree $\leq n$. In consequence, expansions of functions that are smooth on $[-1,1]$ in series of Chebyshev polynomials usually converge extremely rapidly, [Mason and Handscomb, 2003].

- Differential equations: Linear ordinary differential equations can be solved directly in series of Chebyshev polynomials (or other OPs) by a method originated by [Clenshaw, 1957]. This process has been generalized to spectral methods for solving partial differential equations, [Mason and Handscomb, 2003].

Applications of OPs in Mathematics 1/2

Numerical Analysis:

- Approximation theory: Monic Chebyshev polynomials \tilde{T}_{n} possess "min-max" property on $[-1,1]$:

$$
\tilde{T}_{n}=\arg \min _{P \in \mathbb{P}_{n}} \max _{x \in[-1,1]}|P(x)|
$$

where \mathbb{P}_{n} denotes the set of monic polynomials of degree $\leq n$. In consequence, expansions of functions that are smooth on $[-1,1]$ in series of Chebyshev polynomials usually converge extremely rapidly, [Mason and Handscomb, 2003].

- Differential equations: Linear ordinary differential equations can be solved directly in series of Chebyshev polynomials (or other OPs) by a method originated by [Clenshaw, 1957]. This process has been generalized to spectral methods for solving partial differential equations, [Mason and Handscomb, 2003].

Other Applications:

Applications of OPs in Mathematics 1/2

Numerical Analysis:

- Approximation theory: Monic Chebyshev polynomials \tilde{T}_{n} possess "min-max" property on $[-1,1]$:

$$
\tilde{T}_{n}=\arg \min _{P \in \mathbb{P}_{n}} \max _{x \in[-1,1]}|P(x)|
$$

where \mathbb{P}_{n} denotes the set of monic polynomials of degree $\leq n$. In consequence, expansions of functions that are smooth on $[-1,1]$ in series of Chebyshev polynomials usually converge extremely rapidly, [Mason and Handscomb, 2003].

- Differential equations: Linear ordinary differential equations can be solved directly in series of Chebyshev polynomials (or other OPs) by a method originated by [Clenshaw, 1957]. This process has been generalized to spectral methods for solving partial differential equations, [Mason and Handscomb, 2003].

Other Applications:

- Integrable systems: Toda equation provides important model of a completely integrable system. A wide class of exact solutions of the Toda equation can be expressed in terms of various special functions, and in particular OPs, [Nakamura, 1996]. For instance,

$$
V_{n}(x)=2 n H_{n-1}(x) H_{n+1}(x) / H_{n}^{2}(x)
$$

where H_{n} are Hermite OPs, satisfies Toda equation

$$
\frac{d^{2}}{d x^{2}} \log V_{n}(x)=V_{n+1}(x)-2 V_{n}(x)+V_{n-1}(x)
$$

Applications of OPs in Mathematics 2/2

- Complex function theory: The Askey-Gasper inequality for Jacobi OPs

$$
\sum_{k=0}^{n} P_{k}^{(\alpha, 0)}(x) \geq 0, \quad\left(x \in[-1,1], \alpha>-1, n \in \mathbb{Z}_{+}\right)
$$

was used in de Branges' proof the long-standing Bieberbach conjecture, [de Branges, 1985].

Applications of OPs in Mathematics 2/2

- Complex function theory: The Askey-Gasper inequality for Jacobi OPs

$$
\sum_{k=0}^{n} P_{k}^{(\alpha, 0)}(x) \geq 0, \quad\left(x \in[-1,1], \alpha>-1, n \in \mathbb{Z}_{+}\right)
$$

was used in de Branges' proof the long-standing Bieberbach conjecture, [de Branges, 1985].

- Random matrix theory: Hermite polynomials (and their certain analogs) play an important role in random matrix theory [Fyodorov, 2005].

Applications of OPs in Mathematics 2/2

- Complex function theory: The Askey-Gasper inequality for Jacobi OPs

$$
\sum_{k=0}^{n} P_{k}^{(\alpha, 0)}(x) \geq 0, \quad\left(x \in[-1,1], \alpha>-1, n \in \mathbb{Z}_{+}\right)
$$

was used in de Branges' proof the long-standing Bieberbach conjecture, [de Branges, 1985].

- Random matrix theory: Hermite polynomials (and their certain analogs) play an important role in random matrix theory [Fyodorov, 2005].
- Group representations: Group-theoretic interpretations of OPs, [Vilenkin and Klimyk, 1991-93].

Applications of OPs in Mathematics 2/2

- Complex function theory: The Askey-Gasper inequality for Jacobi OPs

$$
\sum_{k=0}^{n} P_{k}^{(\alpha, 0)}(x) \geq 0, \quad\left(x \in[-1,1], \alpha>-1, n \in \mathbb{Z}_{+}\right)
$$

was used in de Branges' proof the long-standing Bieberbach conjecture, [de Branges, 1985].

- Random matrix theory: Hermite polynomials (and their certain analogs) play an important role in random matrix theory [Fyodorov, 2005].
- Group representations: Group-theoretic interpretations of OPs, [Vilenkin and Klimyk, 1991-93].
- Markov chains: Models for birth and death processes, [McGregor, 1958, Valent, 2005].

Applications of OPs in Mathematics 2/2

- Complex function theory: The Askey-Gasper inequality for Jacobi OPs

$$
\sum_{k=0}^{n} P_{k}^{(\alpha, 0)}(x) \geq 0, \quad\left(x \in[-1,1], \alpha>-1, n \in \mathbb{Z}_{+}\right)
$$

was used in de Branges' proof the long-standing Bieberbach conjecture, [de Branges, 1985].

- Random matrix theory: Hermite polynomials (and their certain analogs) play an important role in random matrix theory [Fyodorov, 2005].
- Group representations: Group-theoretic interpretations of OPs, [Vilenkin and Klimyk, 1991-93].
- Markov chains: Models for birth and death processes, [McGregor, 1958, Valent, 2005].
- Riemann-Hilbert problems: [Ismail, 2005].

Applications of OPs in Mathematics 2/2

- Complex function theory: The Askey-Gasper inequality for Jacobi OPs

$$
\sum_{k=0}^{n} P_{k}^{(\alpha, 0)}(x) \geq 0, \quad\left(x \in[-1,1], \alpha>-1, n \in \mathbb{Z}_{+}\right)
$$

was used in de Branges' proof the long-standing Bieberbach conjecture, [de Branges, 1985].

- Random matrix theory: Hermite polynomials (and their certain analogs) play an important role in random matrix theory [Fyodorov, 2005].
- Group representations: Group-theoretic interpretations of OPs, [Vilenkin and Klimyk, 1991-93].
- Markov chains: Models for birth and death processes, [McGregor, 1958, Valent, 2005].
- Riemann-Hilbert problems: [Ismail, 2005].
- Coding Theory: Application of Krawtchouk and q-Racah OPs, [Bannai, 1990].

Applications of OPs in Physics

Quantum mechanics: Eigenfunctions of certain QM systems involve OPs. For example,

Applications of OPs in Physics

Quantum mechanics: Eigenfunctions of certain QM systems involve OPs. For example,

- Hermite OPs in the case of harmonic oscillator Hamiltonian,

Applications of OPs in Physics

Quantum mechanics: Eigenfunctions of certain QM systems involve OPs. For example,

- Hermite OPs in the case of harmonic oscillator Hamiltonian,
- Legendre OPs in the case of three-dimensional Schrödinger operator with spherically symmetric potential.

Applications of OPs in Physics

Quantum mechanics: Eigenfunctions of certain QM systems involve OPs. For example,

- Hermite OPs in the case of harmonic oscillator Hamiltonian,
- Legendre OPs in the case of three-dimensional Schrödinger operator with spherically symmetric potential.
- Other examples can be found in [Seaborn, 1991].

Applications of OPs in Physics

Quantum mechanics: Eigenfunctions of certain QM systems involve OPs. For example,

- Hermite OPs in the case of harmonic oscillator Hamiltonian,
- Legendre OPs in the case of three-dimensional Schrödinger operator with spherically symmetric potential.
- Other examples can be found in [Seaborn, 1991].

Other physical applications:

Applications of OPs in Physics

Quantum mechanics: Eigenfunctions of certain QM systems involve OPs. For example,

- Hermite OPs in the case of harmonic oscillator Hamiltonian,
- Legendre OPs in the case of three-dimensional Schrödinger operator with spherically symmetric potential.
- Other examples can be found in [Seaborn, 1991].

Other physical applications:

- Electrostatics models: For interpretations of zeros of OPs as equilibrium positions of charges in electrostatic problems (assuming logarithmic interaction), see [Ismail, 2000].
More precisely, put at 1 and -1 two positive charges p and q, and with these fixed charges put n positive unit charges on $(-1,1)$ at the points x_{1}, \ldots, x_{n}. The mutual energy of all these charges is

$$
U\left(x_{1}, \ldots, x_{n}\right)=p \sum_{i=1}^{n} \log \frac{1}{\left|1-x_{i}\right|}+q \sum_{i=1}^{n} \log \frac{1}{\left|1+x_{i}\right|}+\sum_{i<j} \log \frac{1}{\left|x_{i}-x_{j}\right|}
$$

and the equilibrium problem asks for finding x_{1}, \ldots, x_{n} for which the energy is minimal. The unique minimum occurs for the zeros of the Jacobi polynomial $P_{n}^{(2 p-1,2 q-1)}$.

Applications of OPs in Physics

Quantum mechanics: Eigenfunctions of certain QM systems involve OPs. For example,

- Hermite OPs in the case of harmonic oscillator Hamiltonian,
- Legendre OPs in the case of three-dimensional Schrödinger operator with spherically symmetric potential.
- Other examples can be found in [Seaborn, 1991].

Other physical applications:

- Electrostatics models: For interpretations of zeros of OPs as equilibrium positions of charges in electrostatic problems (assuming logarithmic interaction), see [Ismail, 2000].
More precisely, put at 1 and -1 two positive charges p and q, and with these fixed charges put n positive unit charges on $(-1,1)$ at the points x_{1}, \ldots, x_{n}. The mutual energy of all these charges is

$$
U\left(x_{1}, \ldots, x_{n}\right)=p \sum_{i=1}^{n} \log \frac{1}{\left|1-x_{i}\right|}+q \sum_{i=1}^{n} \log \frac{1}{\left|1+x_{i}\right|}+\sum_{i<j} \log \frac{1}{\left|x_{i}-x_{j}\right|}
$$

and the equilibrium problem asks for finding x_{1}, \ldots, x_{n} for which the energy is minimal. The unique minimum occurs for the zeros of the Jacobi polynomial $P_{n}^{(2 p-1,2 q-1)}$.

- Fluid Dynamics: Legendre OPs [Paterson, 1983].

Applications of OPs in Physics

Quantum mechanics: Eigenfunctions of certain QM systems involve OPs. For example,

- Hermite OPs in the case of harmonic oscillator Hamiltonian,
- Legendre OPs in the case of three-dimensional Schrödinger operator with spherically symmetric potential.
- Other examples can be found in [Seaborn, 1991].

Other physical applications:

- Electrostatics models: For interpretations of zeros of OPs as equilibrium positions of charges in electrostatic problems (assuming logarithmic interaction), see [Ismail, 2000].
More precisely, put at 1 and -1 two positive charges p and q, and with these fixed charges put n positive unit charges on $(-1,1)$ at the points x_{1}, \ldots, x_{n}. The mutual energy of all these charges is

$$
U\left(x_{1}, \ldots, x_{n}\right)=p \sum_{i=1}^{n} \log \frac{1}{\left|1-x_{i}\right|}+q \sum_{i=1}^{n} \log \frac{1}{\left|1+x_{i}\right|}+\sum_{i<j} \log \frac{1}{\left|x_{i}-x_{j}\right|}
$$

and the equilibrium problem asks for finding x_{1}, \ldots, x_{n} for which the energy is minimal. The unique minimum occurs for the zeros of the Jacobi polynomial $P_{n}^{(2 p-1,2 q-1)}$.

- Fluid Dynamics: Legendre OPs [Paterson, 1983].
- Statistical mechanics: Explicitly solvable models, [Baxter, 1981-82].

Askey scheme

The Askey Scheme:

Roelof Koekoek
Peter A. Lesky
René F. Swarttouw
SPRINGER
MONOGRAPHS IN MATHEMATICS
Hypergeometric Orthogonal Polynomials and Their q-Analogues

[^0]
Askey scheme

The Askey Scheme:

- It is an extensive list of today's well known classes of OPs (not all of them - hypergeometric type or q-analogues).

Roelof Koekoek
Peter A. Lesky
Rene F. Swarttouw

SPRINGER

MONOGRAPHS IN MATHEMATICS
Hypergeometric Orthogonal Polynomials and Their q-Analogues

[^1]
Askey scheme

The Askey Scheme:

- It is an extensive list of today's well known classes of OPs (not all of them - hypergeometric type or q-analogues).
- They are listed with their basic characteristics.

Roelof Koekoek
Peter A. Lesky
René F. Swarttouw
SPRINGER
monographs in mathematics
Hypergeometric Orthogonal Polynomials and Their q-Analogues
4) Springer

Askey scheme

The Askey Scheme:

- It is an extensive list of today's well known classes of OPs (not all of them - hypergeometric type or q-analogues).
- They are listed with their basic characteristics.
- Available for free on the web: http://aw.twi.tudelft.nl/~koekoek/askey.html.

Roelof Koekoek

Peter A. Lesky
René F. Swarttouw

SPRINGER

monographis in mathematics
Hypergeometric Orthogonal Polynomials and Their q-Analogues

Q Springer

Askey scheme

q-Askey scheme

(4)

Basic characteristics of OPs - illustrated on Hermite OPs

- OPs can be defined by several equivalent ways. One possibility is the recursive definition via three-term recurrence rule

$$
P_{n}(x)=\left(x-c_{n}\right) P_{n-1}(x)-\lambda_{n} P_{n-2}(x),
$$

with initial conditions $P_{-1}(x)=0$ and $P_{0}(x)=1$, where $c_{n} \in \mathbb{R}$ and $\lambda_{n}>0$ (Favard's Theorem, [Chihara, Thm. 4.4]).

Basic characteristics of OPs - illustrated on Hermite OPs

- OPs can be defined by several equivalent ways. One possibility is the recursive definition via three-term recurrence rule

$$
P_{n}(x)=\left(x-c_{n}\right) P_{n-1}(x)-\lambda_{n} P_{n-2}(x),
$$

with initial conditions $P_{-1}(x)=0$ and $P_{0}(x)=1$, where $c_{n} \in \mathbb{R}$ and $\lambda_{n}>0$ (Favard's Theorem, [Chihara, Thm. 4.4]).

- For Hermite OPs $H_{n}(x)$ the three-term recurrence reads

$$
H_{n+1}(x)=2 x H_{n}(x)-2 n H_{n-1}(x) .
$$

Basic characteristics of OPs - illustrated on Hermite OPs

- OPs can be defined by several equivalent ways. One possibility is the recursive definition via three-term recurrence rule

$$
P_{n}(x)=\left(x-c_{n}\right) P_{n-1}(x)-\lambda_{n} P_{n-2}(x),
$$

with initial conditions $P_{-1}(x)=0$ and $P_{0}(x)=1$, where $c_{n} \in \mathbb{R}$ and $\lambda_{n}>0$ (Favard's Theorem, [Chihara, Thm. 4.4]).

- For Hermite OPs $H_{n}(x)$ the three-term recurrence reads

$$
H_{n+1}(x)=2 x H_{n}(x)-2 n H_{n-1}(x) .
$$

Then one tries to deduce the following basic characteristics:

Basic characteristics of OPs - illustrated on Hermite OPs

- OPs can be defined by several equivalent ways. One possibility is the recursive definition via three-term recurrence rule

$$
P_{n}(x)=\left(x-c_{n}\right) P_{n-1}(x)-\lambda_{n} P_{n-2}(x),
$$

with initial conditions $P_{-1}(x)=0$ and $P_{0}(x)=1$, where $c_{n} \in \mathbb{R}$ and $\lambda_{n}>0$ (Favard's Theorem, [Chihara, Thm. 4.4]).

- For Hermite OPs $H_{n}(x)$ the three-term recurrence reads

$$
H_{n+1}(x)=2 x H_{n}(x)-2 n H_{n-1}(x) .
$$

Then one tries to deduce the following basic characteristics:

- Expression of OPs in terms of special functions:

$$
H_{n}(x)=(2 x)^{n}{ }_{2} F_{0}\left(-\frac{n}{2},-\frac{n-1}{2},-;-x^{-2}\right)
$$

(explicit expressions are usually not available).

Basic characteristics of OPs - illustrated on Hermite OPs

- OPs can be defined by several equivalent ways. One possibility is the recursive definition via three-term recurrence rule

$$
P_{n}(x)=\left(x-c_{n}\right) P_{n-1}(x)-\lambda_{n} P_{n-2}(x),
$$

with initial conditions $P_{-1}(x)=0$ and $P_{0}(x)=1$, where $c_{n} \in \mathbb{R}$ and $\lambda_{n}>0$ (Favard's Theorem, [Chihara, Thm. 4.4]).

- For Hermite OPs $H_{n}(x)$ the three-term recurrence reads

$$
H_{n+1}(x)=2 x H_{n}(x)-2 n H_{n-1}(x) .
$$

Then one tries to deduce the following basic characteristics:

- Expression of OPs in terms of special functions:

$$
H_{n}(x)=(2 x)^{n}{ }_{2} F_{0}\left(-\frac{n}{2},-\frac{n-1}{2},-;-x^{-2}\right)
$$

(explicit expressions are usually not available).

- Asymptotic formulas for large n :

$$
e^{-\frac{x^{2}}{2}} H_{n}(x) \sim \frac{2^{n}}{\sqrt{\pi}} \Gamma\left(\frac{n+1}{2}\right) \cos \left(x \sqrt{2 n}-n \frac{\pi}{2}\right)
$$

Basic characteristics of OPs - continuation

- Differential equation:

$$
y^{\prime \prime}(x)-2 x y^{\prime}(x)+2 n y(x)=0, \quad y(x)=H_{n}(x)
$$

Basic characteristics of OPs - continuation

- Differential equation:

$$
y^{\prime \prime}(x)-2 x y^{\prime}(x)+2 n y(x)=0, \quad y(x)=H_{n}(x)
$$

- Structure relations:
(1) forward-shift operator,

$$
\frac{d}{d x} H_{n}(x)=2 n H_{n-1}(x)
$$

(2) backward-shift operator,

$$
\left(\frac{d}{d x}-2 x\right) H_{n}(x)=-H_{n+1}(x)
$$

- Differential equation:

$$
y^{\prime \prime}(x)-2 x y^{\prime}(x)+2 n y(x)=0, \quad y(x)=H_{n}(x)
$$

- Structure relations:
(1) forward-shift operator,

$$
\frac{d}{d x} H_{n}(x)=2 n H_{n-1}(x)
$$

(2) backward-shift operator,

$$
\left(\frac{d}{d x}-2 x\right) H_{n}(x)=-H_{n+1}(x) .
$$

- Rodriguez-type formula:

$$
e^{-x^{2}} H_{n}(x)=(-1)^{n} \frac{d^{n}}{d x^{n}} e^{-x^{2}}
$$

- Differential equation:

$$
y^{\prime \prime}(x)-2 x y^{\prime}(x)+2 n y(x)=0, \quad y(x)=H_{n}(x)
$$

- Structure relations:
(1) forward-shift operator,

$$
\frac{d}{d x} H_{n}(x)=2 n H_{n-1}(x)
$$

(2) backward-shift operator,

$$
\left(\frac{d}{d x}-2 x\right) H_{n}(x)=-H_{n+1}(x) .
$$

- Rodriguez-type formula:

$$
e^{-x^{2}} H_{n}(x)=(-1)^{n} \frac{d^{n}}{d x^{n}} e^{-x^{2}}
$$

- Generating functions:

$$
\sum_{n=0}^{\infty} \frac{H_{n}(x)}{n!} t^{n}=e^{2 x t-t^{2}}
$$

Basic characteristics of OPs - continuation

- Differential equation:

$$
y^{\prime \prime}(x)-2 x y^{\prime}(x)+2 n y(x)=0, \quad y(x)=H_{n}(x)
$$

- Structure relations:
(1) forward-shift operator,

$$
\frac{d}{d x} H_{n}(x)=2 n H_{n-1}(x)
$$

(2) backward-shift operator,

$$
\left(\frac{d}{d x}-2 x\right) H_{n}(x)=-H_{n+1}(x)
$$

- Rodriguez-type formula:

$$
e^{-x^{2}} H_{n}(x)=(-1)^{n} \frac{d^{n}}{d x^{n}} e^{-x^{2}}
$$

- Generating functions:

$$
\sum_{n=0}^{\infty} \frac{H_{n}(x)}{n!} t^{n}=e^{2 x t-t^{2}}
$$

- OG relations:

$$
\int_{-\infty}^{\infty} H_{m}(x) H_{n}(x) e^{-x^{2}} d x=\sqrt{\pi} 2^{n} n!\delta_{m n}
$$

Generalized Charlier OPs - definition \& special function expression

- Define polynomials $P_{n}(\alpha, \beta ; x)$ recursively as solution of recurrence

$$
u_{n+1}=(x-n-\beta) u_{n}-(\alpha+n \beta) u_{n-1}
$$

with initial setting $P_{-1}(\alpha, \beta ; x)=0$ and $P_{0}(\alpha, \beta ; x)=1$.

Generalized Charlier OPs - definition \& special function expression

- Define polynomials $P_{n}(\alpha, \beta ; x)$ recursively as solution of recurrence

$$
u_{n+1}=(x-n-\beta) u_{n}-(\alpha+n \beta) u_{n-1}
$$

with initial setting $P_{-1}(\alpha, \beta ; x)=0$ and $P_{0}(\alpha, \beta ; x)=1$.

- By setting $\alpha=0$, one gets well known Charlier polynomials $P_{n}(0, \beta ; x)=C_{n}^{(\beta)}(x)$,

$$
C_{n}^{(\beta)}(x)=\sum_{k=0}^{n}\binom{n}{k}\binom{x}{k} k!(-\beta)^{n-k}
$$

Generalized Charlier OPs - definition \& special function expression

- Define polynomials $P_{n}(\alpha, \beta ; x)$ recursively as solution of recurrence

$$
u_{n+1}=(x-n-\beta) u_{n}-(\alpha+n \beta) u_{n-1}
$$

with initial setting $P_{-1}(\alpha, \beta ; x)=0$ and $P_{0}(\alpha, \beta ; x)=1$.

- By setting $\alpha=0$, one gets well known Charlier polynomials $P_{n}(0, \beta ; x)=C_{n}^{(\beta)}(x)$,

$$
C_{n}^{(\beta)}(x)=\sum_{k=0}^{n}\binom{n}{k}\binom{x}{k} k!(-\beta)^{n-k}
$$

- Formula for $P_{n}(\alpha, \beta ; x)$ in terms of confluent hypergeometric functions yields:

$$
\begin{aligned}
& P_{n}(\alpha, \beta ; x)=e^{-\beta}\left[\frac{\Gamma(x+1)}{\Gamma(x+1-n)}{ }_{1} F_{1}\left(-\frac{\alpha}{\beta}-x ;-x ; \beta\right){ }_{1} F_{1}\left(-\frac{\alpha}{\beta}-n ; x-n+1 ; \beta\right)\right. \\
& \left.-\beta^{n+1} \frac{\Gamma\left(n+1+\frac{\alpha}{\beta}\right) \Gamma(x-n)}{\Gamma\left(\frac{\alpha}{\beta}\right) \Gamma(x+2)}{ }_{1} F_{1}\left(1-\frac{\alpha}{\beta} ; x+2 ; \beta\right){ }_{1} F_{1}\left(-\frac{\alpha}{\beta}-x ;-x+n+1 ; \beta\right)\right] .
\end{aligned}
$$

Generalized Charlier OPs - definition \& special function expression

- Define polynomials $P_{n}(\alpha, \beta ; x)$ recursively as solution of recurrence

$$
u_{n+1}=(x-n-\beta) u_{n}-(\alpha+n \beta) u_{n-1}
$$

with initial setting $P_{-1}(\alpha, \beta ; x)=0$ and $P_{0}(\alpha, \beta ; x)=1$.

- By setting $\alpha=0$, one gets well known Charlier polynomials $P_{n}(0, \beta ; x)=C_{n}^{(\beta)}(x)$,

$$
C_{n}^{(\beta)}(x)=\sum_{k=0}^{n}\binom{n}{k}\binom{x}{k} k!(-\beta)^{n-k}
$$

- Formula for $P_{n}(\alpha, \beta ; x)$ in terms of confluent hypergeometric functions yields:

$$
\begin{aligned}
& P_{n}(\alpha, \beta ; x)=e^{-\beta}\left[\frac{\Gamma(x+1)}{\Gamma(x+1-n)}{ }_{1} F_{1}\left(-\frac{\alpha}{\beta}-x ;-x ; \beta\right){ }_{1} F_{1}\left(-\frac{\alpha}{\beta}-n ; x-n+1 ; \beta\right)\right. \\
& \left.-\beta^{n+1} \frac{\Gamma\left(n+1+\frac{\alpha}{\beta}\right) \Gamma(x-n)}{\Gamma\left(\frac{\alpha}{\beta}\right) \Gamma(x+2)}{ }_{1} F_{1}\left(1-\frac{\alpha}{\beta} ; x+2 ; \beta\right){ }_{1} F_{1}\left(-\frac{\alpha}{\beta}-x ;-x+n+1 ; \beta\right)\right] .
\end{aligned}
$$

- Especially, for $\alpha=0$, one has

$$
C_{n}^{(\beta)}(x)=\frac{\Gamma(x+1)}{\Gamma(x+1-n)}{ }_{1} F_{1}(-n ; x-n+1 ; \beta)
$$

Generalized Charlier OPs - generating function \& asymptotics

- Asymptotic formula for $P_{n}(\alpha, \beta ; x)$ for $n \rightarrow \infty$:

$$
P_{n}(\alpha, \beta ; x)=(-1)^{n} \frac{\Gamma(n-x)}{\Gamma(-x)}{ }_{1} F_{1}\left(-\frac{\alpha}{\beta}-x ;-x ; \beta\right)(1+o(1)) .
$$

Generalized Charlier OPs - generating function \& asymptotics

- Asymptotic formula for $P_{n}(\alpha, \beta ; x)$ for $n \rightarrow \infty$:

$$
P_{n}(\alpha, \beta ; x)=(-1)^{n} \frac{\Gamma(n-x)}{\Gamma(-x)}{ }_{1} F_{1}\left(-\frac{\alpha}{\beta}-x ;-x ; \beta\right)(1+o(1)) .
$$

- Generating function: for $\alpha / \beta>0$ one has

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \frac{P_{n}(\alpha, \beta ; x)}{\Gamma(n+1+\alpha / \beta)} w^{n} \\
& \quad=\frac{e^{-\beta w} w^{-\alpha / \beta}(1+w)^{x+\alpha / \beta}}{\Gamma(\alpha / \beta)} \int_{0}^{w} e^{\beta t} t^{-1+\alpha / \beta}(1+t)^{-1-x-\alpha / \beta} d t, \quad|w|<1
\end{aligned}
$$

Generalized Charlier OPs - generating function \& asymptotics

- Asymptotic formula for $P_{n}(\alpha, \beta ; x)$ for $n \rightarrow \infty$:

$$
P_{n}(\alpha, \beta ; x)=(-1)^{n} \frac{\Gamma(n-x)}{\Gamma(-x)}{ }_{1} F_{1}\left(-\frac{\alpha}{\beta}-x ;-x ; \beta\right)(1+o(1)) .
$$

- Generating function: for $\alpha / \beta>0$ one has

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \frac{P_{n}(\alpha, \beta ; x)}{\Gamma(n+1+\alpha / \beta)} w^{n} \\
& \quad=\frac{e^{-\beta w} w^{-\alpha / \beta}(1+w)^{x+\alpha / \beta}}{\Gamma(\alpha / \beta)} \int_{0}^{w} e^{\beta t} t^{-1+\alpha / \beta}(1+t)^{-1-x-\alpha / \beta} d t, \quad|w|<1
\end{aligned}
$$

- In the case of Charlier polynomials ($\alpha=0$), the generating function formula reads

$$
\sum_{n=0}^{\infty} \frac{C_{n}^{(\beta)}(x)}{n!} w^{n}=e^{-\beta w}(1+w)^{x}, \quad|w|<1
$$

Generalized Charlier OPs - generating function \& asymptotics

- Asymptotic formula for $P_{n}(\alpha, \beta ; x)$ for $n \rightarrow \infty$:

$$
P_{n}(\alpha, \beta ; x)=(-1)^{n} \frac{\Gamma(n-x)}{\Gamma(-x)}{ }_{1} F_{1}\left(-\frac{\alpha}{\beta}-x ;-x ; \beta\right)(1+o(1)) .
$$

- Generating function: for $\alpha / \beta>0$ one has

$$
\begin{aligned}
\sum_{n=0}^{\infty} & \frac{P_{n}(\alpha, \beta ; x)}{\Gamma(n+1+\alpha / \beta)} w^{n} \\
& =\frac{e^{-\beta w} w^{-\alpha / \beta}(1+w)^{x+\alpha / \beta}}{\Gamma(\alpha / \beta)} \int_{0}^{w} e^{\beta t} t^{-1+\alpha / \beta}(1+t)^{-1-x-\alpha / \beta} d t, \quad|w|<1 .
\end{aligned}
$$

- In the case of Charlier polynomials ($\alpha=0$), the generating function formula reads

$$
\sum_{n=0}^{\infty} \frac{C_{n}^{(\beta)}(x)}{n!} w^{n}=e^{-\beta w}(1+w)^{x}, \quad|w|<1
$$

- For $\alpha / \beta<0$ the generating function has not been found.

Generalized Charlier OPs - structure relation

- Structure relations: only "forward shift",

$$
P_{n}(\alpha, \beta ; x+1)-P_{n}(\alpha, \beta ; x)=\left(n+\frac{\alpha}{\beta}\right) P_{n-1}(\alpha, \beta ; x)-\frac{\alpha}{\beta} P_{n-1}(\alpha+\beta, \beta ; x)
$$

Generalized Charlier OPs - structure relation

- Structure relations: only "forward shift",

$$
P_{n}(\alpha, \beta ; x+1)-P_{n}(\alpha, \beta ; x)=\left(n+\frac{\alpha}{\beta}\right) P_{n-1}(\alpha, \beta ; x)-\frac{\alpha}{\beta} P_{n-1}(\alpha+\beta, \beta ; x) .
$$

- By applying limit $\alpha \rightarrow 0$ in the last formula, one gets the forward shift formula for Charlier polynomials,

$$
C_{n}^{(\beta)}(x+1)-C_{n}^{(\beta)}(x)=n C_{n-1}^{(\beta)}(x) .
$$

Generalized Charlier OPs - structure relation

- Structure relations: only "forward shift",

$$
P_{n}(\alpha, \beta ; x+1)-P_{n}(\alpha, \beta ; x)=\left(n+\frac{\alpha}{\beta}\right) P_{n-1}(\alpha, \beta ; x)-\frac{\alpha}{\beta} P_{n-1}(\alpha+\beta, \beta ; x) .
$$

- By applying limit $\alpha \rightarrow 0$ in the last formula, one gets the forward shift formula for Charlier polynomials,

$$
C_{n}^{(\beta)}(x+1)-C_{n}^{(\beta)}(x)=n C_{n-1}^{(\beta)}(x)
$$

- The "backward shift" formula has not been found for $P_{n}(\alpha, \beta ; x)$.

Generalized Charlier OPs - structure relation

- Structure relations: only "forward shift",

$$
P_{n}(\alpha, \beta ; x+1)-P_{n}(\alpha, \beta ; x)=\left(n+\frac{\alpha}{\beta}\right) P_{n-1}(\alpha, \beta ; x)-\frac{\alpha}{\beta} P_{n-1}(\alpha+\beta, \beta ; x) .
$$

- By applying limit $\alpha \rightarrow 0$ in the last formula, one gets the forward shift formula for Charlier polynomials,

$$
C_{n}^{(\beta)}(x+1)-C_{n}^{(\beta)}(x)=n C_{n-1}^{(\beta)}(x)
$$

- The "backward shift" formula has not been found for $P_{n}(\alpha, \beta ; x)$.
- Consequently, the Rodriguez-type formula for $P_{n}(\alpha, \beta ; x)$ have not been discovered.

Generalized Charlier OPs - structure relation

- Structure relations: only "forward shift",

$$
P_{n}(\alpha, \beta ; x+1)-P_{n}(\alpha, \beta ; x)=\left(n+\frac{\alpha}{\beta}\right) P_{n-1}(\alpha, \beta ; x)-\frac{\alpha}{\beta} P_{n-1}(\alpha+\beta, \beta ; x)
$$

- By applying limit $\alpha \rightarrow 0$ in the last formula, one gets the forward shift formula for Charlier polynomials,

$$
C_{n}^{(\beta)}(x+1)-C_{n}^{(\beta)}(x)=n C_{n-1}^{(\beta)}(x)
$$

- The "backward shift" formula has not been found for $P_{n}(\alpha, \beta ; x)$.
- Consequently, the Rodriguez-type formula for $P_{n}(\alpha, \beta ; x)$ have not been discovered.
- The backward shift formula in the Charlier OPs case reads

$$
\beta C_{n}^{(\beta)}(x)-x C_{n}^{(\beta)}(x-1)=-C_{n+1}^{(\beta)}(x)
$$

Generalized Charlier OPs - orthogonality

Let $\beta>0$ and $\alpha+\beta>0$. Then it holds:

- Polynomials $P_{n}(\alpha, \beta ; x)$ satisfy the orthogonality relation

$$
\int_{\mathbb{R}} P_{n}(\alpha, \beta ; x) P_{m}(\alpha, \beta ; x) d \mu(x)=\beta^{n} \frac{\Gamma\left(\frac{\alpha}{\beta}+n+1\right)}{\Gamma\left(\frac{\alpha}{\beta}+1\right)} \delta_{m n}, \quad m, n \in \mathbb{Z}_{+} .
$$

Generalized Charlier OPs - orthogonality

Let $\beta>0$ and $\alpha+\beta>0$. Then it holds:

- Polynomials $P_{n}(\alpha, \beta ; x)$ satisfy the orthogonality relation

$$
\int_{\mathbb{R}} P_{n}(\alpha, \beta ; x) P_{m}(\alpha, \beta ; x) d \mu(x)=\beta^{n} \frac{\Gamma\left(\frac{\alpha}{\beta}+n+1\right)}{\Gamma\left(\frac{\alpha}{\beta}+1\right)} \delta_{m n}, \quad m, n \in \mathbb{Z}_{+} .
$$

- $d \mu$ is a purely discrete probability measure supported by infinite set with no finite cluster point given by

$$
\operatorname{supp}(d \mu)=\left\{x \in \mathbb{R}:{ }_{1} \tilde{F}_{1}\left(-\frac{\alpha}{\beta}-x ;-x ; \beta\right)=0\right\}
$$

Generalized Charlier OPs - orthogonality

Let $\beta>0$ and $\alpha+\beta>0$. Then it holds:

- Polynomials $P_{n}(\alpha, \beta ; x)$ satisfy the orthogonality relation

$$
\int_{\mathbb{R}} P_{n}(\alpha, \beta ; x) P_{m}(\alpha, \beta ; x) d \mu(x)=\beta^{n} \frac{\Gamma\left(\frac{\alpha}{\beta}+n+1\right)}{\Gamma\left(\frac{\alpha}{\beta}+1\right)} \delta_{m n}, \quad m, n \in \mathbb{Z}_{+} .
$$

- $d \mu$ is a purely discrete probability measure supported by infinite set with no finite cluster point given by

$$
\operatorname{supp}(d \mu)=\left\{x \in \mathbb{R}:{ }_{1} \tilde{F}_{1}\left(-\frac{\alpha}{\beta}-x ;-x ; \beta\right)=0\right\}
$$

- Step function $\mu(x)$ has jumps at $x \in \operatorname{supp}(d \mu)$ of magnitude

$$
\mu(x)-\mu(x-0)=-\frac{{ }_{1} \tilde{F}_{1}\left(-\frac{\alpha}{\beta}-x ; 1-x ; \beta\right)}{\frac{\partial}{\partial x} 1 \tilde{F}_{1}\left(-\frac{\alpha}{\beta}-x ;-x ; \beta\right)}
$$

Generalized Charlier OPs - orthogonality

Let $\beta>0$ and $\alpha+\beta>0$. Then it holds:

- Polynomials $P_{n}(\alpha, \beta ; x)$ satisfy the orthogonality relation

$$
\int_{\mathbb{R}} P_{n}(\alpha, \beta ; x) P_{m}(\alpha, \beta ; x) d \mu(x)=\beta^{n} \frac{\Gamma\left(\frac{\alpha}{\beta}+n+1\right)}{\Gamma\left(\frac{\alpha}{\beta}+1\right)} \delta_{m n}, \quad m, n \in \mathbb{Z}_{+} .
$$

- $d \mu$ is a purely discrete probability measure supported by infinite set with no finite cluster point given by

$$
\operatorname{supp}(d \mu)=\left\{x \in \mathbb{R}:{ }_{1} \tilde{F}_{1}\left(-\frac{\alpha}{\beta}-x ;-x ; \beta\right)=0\right\}
$$

- Step function $\mu(x)$ has jumps at $x \in \operatorname{supp}(d \mu)$ of magnitude

$$
\mu(x)-\mu(x-0)=-\frac{{ }_{1} \tilde{F}_{1}\left(-\frac{\alpha}{\beta}-x ; 1-x ; \beta\right)}{\frac{\partial}{\partial x} 1 \tilde{F}_{1}\left(-\frac{\alpha}{\beta}-x ;-x ; \beta\right)}
$$

- The Stieltjes transform of $d \mu$ is given by

$$
\int_{\mathbb{R}} \frac{d \mu(x)}{z-x}=-\frac{{ }_{1} \tilde{F}_{1}\left(-\frac{\alpha}{\beta}-z ; 1-z ; \beta\right)}{{ }_{1} \tilde{F}_{1}\left(-\frac{\alpha}{\beta}-z ;-z ; \beta\right)}, \quad(z \notin \operatorname{supp}(d \mu))
$$

Generalized Charlier OPs - orthogonality

- By sending $\alpha \rightarrow 0$, one reprove Charlier polynomials are orthogonal with respect to Poisson probability distribution,

$$
\sum_{k=0}^{\infty} \frac{e^{-\beta} \beta^{k}}{k!} C_{m}^{(\beta)}(k) C_{n}^{(\beta)}(k)=\beta^{n} n!\delta_{m n},
$$

for $\beta>0$.

Generalized Al-Salam-Carlitz I - definition \& special function expression

- Define polynomials $U_{n}(a, \delta ; q, x)$ recursively as solution of recurrence

$$
v_{n+1}=\left(x-(a+1) q^{n}\right) v_{n}+a q^{n+\delta-1}\left(1-q^{n-\delta}\right) v_{n-1}
$$

with initial setting $U_{-1}(a, \delta ; q, x)=0$ and $U_{0}(a, \delta ; q, x)=1$.

Generalized Al-Salam-Carlitz I-definition \& special function expression

- Define polynomials $U_{n}(a, \delta ; q, x)$ recursively as solution of recurrence

$$
v_{n+1}=\left(x-(a+1) q^{n}\right) v_{n}+a q^{n+\delta-1}\left(1-q^{n-\delta}\right) v_{n-1}
$$

with initial setting $U_{-1}(a, \delta ; q, x)=0$ and $U_{0}(a, \delta ; q, x)=1$.

- By setting $\delta=0$, one gets Al-Salam-Carlitz I polynomials $U_{n}^{(a)}(x ; q)=U_{n}(a, 0 ; q, x)$.

Generalized Al-Salam-Carlitz I-definition \& special function expression

- Define polynomials $U_{n}(a, \delta ; q, x)$ recursively as solution of recurrence

$$
v_{n+1}=\left(x-(a+1) q^{n}\right) v_{n}+a q^{n+\delta-1}\left(1-q^{n-\delta}\right) v_{n-1}
$$

with initial setting $U_{-1}(a, \delta ; q, x)=0$ and $U_{0}(a, \delta ; q, x)=1$.

- By setting $\delta=0$, one gets Al-Salam-Carlitz I polynomials $U_{n}^{(a)}(x ; q)=U_{n}(a, 0 ; q, x)$.
- Formula for $U_{n}(a, \delta ; q, x)$ in terms of q-confluent hypergeometric functions yields:

$$
\begin{aligned}
& U_{n}(a, \delta ; q, x)=\frac{1}{\left(a x^{-1} q^{\delta} ; q\right)_{\infty}}\left[x^{n}\left(x^{-1} ; q\right)_{n} \phi_{1}\left(x^{-1} q^{\delta} ; x^{-1} ; q, a x^{-1}\right){ }_{1} \phi_{1}\left(q^{\delta-n} ; q^{1-n} x ; q, a q\right)\right. \\
& \left.-\frac{(-a)^{n+1} q^{\delta(n+1)-1+n(n-1) / 2}\left(q^{-\delta} ; q\right)_{n+1}}{x^{n+2}\left(x^{-1} q^{-1} ; q\right)_{n+2}}{ }_{1} \phi_{1}\left(x^{-1} q^{\delta} ; x^{-1} q^{n+1} ; q, a x^{-1} q^{n+1}\right){ }_{1} \phi_{1}\left(q^{\delta+1} ; q^{2} x ; q, a q\right)\right]
\end{aligned}
$$

Generalized Al-Salam-Carlitz I-definition \& special function expression

- Define polynomials $U_{n}(a, \delta ; q, x)$ recursively as solution of recurrence

$$
v_{n+1}=\left(x-(a+1) q^{n}\right) v_{n}+a q^{n+\delta-1}\left(1-q^{n-\delta}\right) v_{n-1}
$$

with initial setting $U_{-1}(a, \delta ; q, x)=0$ and $U_{0}(a, \delta ; q, x)=1$.

- By setting $\delta=0$, one gets Al-Salam-Carlitz I polynomials $U_{n}^{(a)}(x ; q)=U_{n}(a, 0 ; q, x)$.
- Formula for $U_{n}(a, \delta ; q, x)$ in terms of q-confluent hypergeometric functions yields:

$$
\begin{aligned}
& U_{n}(a, \delta ; q, x)=\frac{1}{\left(a x^{-1} q^{\delta} ; q\right)_{\infty}}\left[x^{n}\left(x^{-1} ; q\right)_{n_{1}} \phi_{1}\left(x^{-1} q^{\delta} ; x^{-1} ; q, a x^{-1}\right){ }_{1} \phi_{1}\left(q^{\delta-n} ; q^{1-n} x ; q, a q\right)\right. \\
& \left.-\frac{(-a)^{n+1} q^{\delta(n+1)-1+n(n-1) / 2}\left(q^{-\delta} ; q\right)_{n+1}}{x^{n+2}\left(x^{-1} q^{-1} ; q\right)_{n+2}}{ }_{1} \phi_{1}\left(x^{-1} q^{\delta} ; x^{-1} q^{n+1} ; q, a x^{-1} q^{n+1}\right){ }_{1} \phi_{1}\left(q^{\delta+1} ; q^{2} x ; q, a q\right)\right]
\end{aligned}
$$

- Especially, for $\delta=0$, one has

$$
U_{n}^{(a)}(x ; q)=x^{n}\left(x^{-1} ; q\right)_{n_{1}} \phi_{1}\left(q^{-n} ; q^{1-n} x ; q, a q\right)
$$

Generalized Al-Salam-Carlitz I OPs - generating function \& asymptotics

- Asymptotic formula for $U_{n}(a, \delta ; q, x)$ with $x \neq 0$, for $n \rightarrow \infty$:

$$
U_{n}(a, \delta ; q, x)=x^{n}\left(x^{-1} ; q\right)_{n 1} \phi_{1}\left(x^{-1} q^{\delta} ; x^{-1} ; q, a x^{-1}\right)(1+o(1))
$$

Generalized Al-Salam-Carlitz I OPs - generating function \& asymptotics

- Asymptotic formula for $U_{n}(a, \delta ; q, x)$ with $x \neq 0$, for $n \rightarrow \infty$:

$$
U_{n}(a, \delta ; q, x)=x^{n}\left(x^{-1} ; q\right)_{n_{1}} \phi_{1}\left(x^{-1} q^{\delta} ; x^{-1} ; q, a x^{-1}\right)(1+o(1))
$$

- Generating function: for $\delta<0$ and $x \neq 0$ one has

$$
\sum_{n=0}^{\infty} \frac{U_{n}(a, \delta ; q, x)}{\left(q^{1-\delta} ; q\right)_{n}} t^{n}=\left(1-q^{-\delta}\right) \sum_{k=0}^{\infty} \frac{\left(a q^{\delta} t ; q\right)_{k}\left(q^{\delta} t ; q\right)_{k}}{(x t ; q)_{k+1}} q^{-k \delta}, \quad|x t|<1
$$

Generalized Al-Salam-Carlitz I OPs - generating function \& asymptotics

- Asymptotic formula for $U_{n}(a, \delta ; q, x)$ with $x \neq 0$, for $n \rightarrow \infty$:

$$
U_{n}(a, \delta ; q, x)=x^{n}\left(x^{-1} ; q\right)_{n 1} \phi_{1}\left(x^{-1} q^{\delta} ; x^{-1} ; q, a x^{-1}\right)(1+o(1))
$$

- Generating function: for $\delta<0$ and $x \neq 0$ one has

$$
\sum_{n=0}^{\infty} \frac{U_{n}(a, \delta ; q, x)}{\left(q^{1-\delta} ; q\right)_{n}} t^{n}=\left(1-q^{-\delta}\right) \sum_{k=0}^{\infty} \frac{\left(a q^{\delta} t ; q\right)_{k}\left(q^{\delta} t ; q\right)_{k}}{(x t ; q)_{k+1}} q^{-k \delta}, \quad|x t|<1
$$

- In the case of AI-Salam-Carlitz I polynomials $(\delta=0)$, the generating function formula reads

$$
\sum_{n=0}^{\infty} \frac{U_{n}(a, 0 ; q, x)}{(q ; q)_{n}} t^{n}=\frac{(a t ; q)_{\infty}(t ; q)_{\infty}}{(x t ; q)_{\infty}}, \quad|x t|<1
$$

Generalized Al-Salam-Carlitz I OPs - generating function \& asymptotics

- Asymptotic formula for $U_{n}(a, \delta ; q, x)$ with $x \neq 0$, for $n \rightarrow \infty$:

$$
U_{n}(a, \delta ; q, x)=x^{n}\left(x^{-1} ; q\right)_{n_{1}} \phi_{1}\left(x^{-1} q^{\delta} ; x^{-1} ; q, a x^{-1}\right)(1+o(1))
$$

- Generating function: for $\delta<0$ and $x \neq 0$ one has

$$
\sum_{n=0}^{\infty} \frac{U_{n}(a, \delta ; q, x)}{\left(q^{1-\delta} ; q\right)_{n}} t^{n}=\left(1-q^{-\delta}\right) \sum_{k=0}^{\infty} \frac{\left(a q^{\delta} t ; q\right)_{k}\left(q^{\delta} t ; q\right)_{k}}{(x t ; q)_{k+1}} q^{-k \delta}, \quad|x t|<1
$$

- In the case of Al-Salam-Carlitz I polynomials $(\delta=0)$, the generating function formula reads

$$
\sum_{n=0}^{\infty} \frac{U_{n}(a, 0 ; q, x)}{(q ; q)_{n}} t^{n}=\frac{(a t ; q)_{\infty}(t ; q)_{\infty}}{(x t ; q)_{\infty}}, \quad|x t|<1
$$

- For $\delta>0$ the generating function has not been found.

Generalized Al-Salam-Carlitz OPs - structure relation

- Structure relations: only "forward shift",

$$
\begin{aligned}
& U_{n}(a, \delta ; q, x)-U_{n}(a, \delta ; q, q x) \\
& \quad=x\left(1-q^{n-\delta}\right) U_{n-1}(a, \delta ; q, x)-x q^{n}\left(1-q^{-\delta}\right) U_{n-1}(a, \delta-1 ; q, x)
\end{aligned}
$$

Generalized Al-Salam-Carlitz OPs - structure relation

- Structure relations: only "forward shift",

$$
\begin{aligned}
U_{n}(a, \delta ; q, x) & -U_{n}(a, \delta ; q, q x) \\
= & x\left(1-q^{n-\delta}\right) U_{n-1}(a, \delta ; q, x)-x q^{n}\left(1-q^{-\delta}\right) U_{n-1}(a, \delta-1 ; q, x)
\end{aligned}
$$

- By applying limit $\alpha \rightarrow 0$ in the last formula, one gets the forward shift formula for Al-Salam-Carlitz I,

$$
U_{n}^{(a)}(x ; q)-U_{n}^{(a)}(q x ; q)=x\left(1-q^{n}\right) U_{n-1}^{(a)}(x ; q)
$$

Generalized Al-Salam-Carlitz OPs - structure relation

- Structure relations: only "forward shift",

$$
\begin{aligned}
U_{n}(a, \delta ; q, x) & -U_{n}(a, \delta ; q, q x) \\
= & x\left(1-q^{n-\delta}\right) U_{n-1}(a, \delta ; q, x)-x q^{n}\left(1-q^{-\delta}\right) U_{n-1}(a, \delta-1 ; q, x)
\end{aligned}
$$

- By applying limit $\alpha \rightarrow 0$ in the last formula, one gets the forward shift formula for Al-Salam-Carlitz I,

$$
U_{n}^{(a)}(x ; q)-U_{n}^{(a)}(q x ; q)=x\left(1-q^{n}\right) U_{n-1}^{(a)}(x ; q)
$$

- The "backward shift" formula has not been found for $U_{n}(a, \delta ; q, x)$.

Generalized Al-Salam-Carlitz OPs - structure relation

- Structure relations: only "forward shift",

$$
\begin{aligned}
U_{n}(a, \delta ; q, x) & -U_{n}(a, \delta ; q, q x) \\
= & x\left(1-q^{n-\delta}\right) U_{n-1}(a, \delta ; q, x)-x q^{n}\left(1-q^{-\delta}\right) U_{n-1}(a, \delta-1 ; q, x)
\end{aligned}
$$

- By applying limit $\alpha \rightarrow 0$ in the last formula, one gets the forward shift formula for Al-Salam-Carlitz I,

$$
U_{n}^{(a)}(x ; q)-U_{n}^{(a)}(q x ; q)=x\left(1-q^{n}\right) U_{n-1}^{(a)}(x ; q)
$$

- The "backward shift" formula has not been found for $U_{n}(a, \delta ; q, x)$.
- Consequently, the Rodriguez-type formula for $U_{n}(a, \delta ; q, x)$ have not been discovered.

Generalized Al-Salam-Carlitz OPs - structure relation

- Structure relations: only "forward shift",

$$
\begin{aligned}
U_{n}(a, \delta ; q, x) & -U_{n}(a, \delta ; q, q x) \\
= & x\left(1-q^{n-\delta}\right) U_{n-1}(a, \delta ; q, x)-x q^{n}\left(1-q^{-\delta}\right) U_{n-1}(a, \delta-1 ; q, x)
\end{aligned}
$$

- By applying limit $\alpha \rightarrow 0$ in the last formula, one gets the forward shift formula for Al-Salam-Carlitz I,

$$
U_{n}^{(a)}(x ; q)-U_{n}^{(a)}(q x ; q)=x\left(1-q^{n}\right) U_{n-1}^{(a)}(x ; q)
$$

- The "backward shift" formula has not been found for $U_{n}(a, \delta ; q, x)$.
- Consequently, the Rodriguez-type formula for $U_{n}(a, \delta ; q, x)$ have not been discovered.
- The backward shift formula in the AI-Salam-Carlitz I OPs case reads

$$
a U_{n}^{(a)}(x ; q)-(1-x)(a-x) U_{n}^{(a)}\left(q^{-1} x ; q\right)=-x q^{-n} U_{n+1}^{(a)}(x ; q)
$$

Generalized Al-Salam-Carlitz I OPs - orthogonality

Let $a, \delta<0$ then it holds:

- Polynomials $U_{n}(a, \delta ; q, x)$ satisfy the orthogonality relation

$$
\int_{\mathbb{R}} U_{m}(a, \delta ; q, x) U_{n}(a, \delta ; q, x) d \mu(x)=(-a)^{n} q^{n \delta+n(n-1) / 2}\left(q^{-\delta} ; q\right)_{n+1} \delta_{m n}
$$

Generalized Al-Salam-Carlitz I OPs - orthogonality

Let $a, \delta<0$ then it holds:

- Polynomials $U_{n}(a, \delta ; q, x)$ satisfy the orthogonality relation

$$
\int_{\mathbb{R}} U_{m}(a, \delta ; q, x) U_{n}(a, \delta ; q, x) d \mu(x)=(-a)^{n} q^{n \delta+n(n-1) / 2}\left(q^{-\delta} ; q\right)_{n+1} \delta_{m n}
$$

- $d \mu$ is a purely discrete positive measure supported by infinite set, with 0 the only cluster point, given by

$$
\operatorname{supp}(d \mu)=\left\{x^{-1} \in \mathbb{R}:{ }_{2} \phi_{1}\left(a x q^{\delta}, x q^{\delta} ; 0 ; q, q^{-\delta}\right)=0\right\} \cup\{0\}
$$

Generalized Al-Salam-Carlitz I OPs - orthogonality

Let $a, \delta<0$ then it holds:

- Polynomials $U_{n}(a, \delta ; q, x)$ satisfy the orthogonality relation

$$
\int_{\mathbb{R}} U_{m}(a, \delta ; q, x) U_{n}(a, \delta ; q, x) d \mu(x)=(-a)^{n} q^{n \delta+n(n-1) / 2}\left(q^{-\delta} ; q\right)_{n+1} \delta_{m n}
$$

- $d \mu$ is a purely discrete positive measure supported by infinite set, with 0 the only cluster point, given by

$$
\operatorname{supp}(d \mu)=\left\{x^{-1} \in \mathbb{R}:{ }_{2} \phi_{1}\left(a x q^{\delta}, x q^{\delta} ; 0 ; q, q^{-\delta}\right)=0\right\} \cup\{0\},
$$

- Step function $\mu(x)$ has jumps at $x \in \operatorname{supp}(d \mu) \backslash\{0\}$ of magnitude

$$
\mu(x)-\mu(x-0)=\frac{2 \phi_{1}\left(a x^{-1} q^{\delta}, x^{-1} q^{\delta} ; 0 ; q, q^{1-\delta}\right)}{x \frac{\partial}{\partial x}\left[2 \phi_{1}\left(a x^{-1} q^{\delta}, x^{-1} q^{\delta} ; 0 ; q, q^{-\delta}\right)\right]}
$$

Generalized Al-Salam-Carlitz I OPs - orthogonality

Let $a, \delta<0$ then it holds:

- Polynomials $U_{n}(a, \delta ; q, x)$ satisfy the orthogonality relation

$$
\int_{\mathbb{R}} U_{m}(a, \delta ; q, x) U_{n}(a, \delta ; q, x) d \mu(x)=(-a)^{n} q^{n \delta+n(n-1) / 2}\left(q^{-\delta} ; q\right)_{n+1} \delta_{m n}
$$

- $d \mu$ is a purely discrete positive measure supported by infinite set, with 0 the only cluster point, given by

$$
\operatorname{supp}(d \mu)=\left\{x^{-1} \in \mathbb{R}:{ }_{2} \phi_{1}\left(a x q^{\delta}, x q^{\delta} ; 0 ; q, q^{-\delta}\right)=0\right\} \cup\{0\},
$$

- Step function $\mu(x)$ has jumps at $x \in \operatorname{supp}(d \mu) \backslash\{0\}$ of magnitude

$$
\mu(x)-\mu(x-0)=\frac{2 \phi_{1}\left(a x^{-1} q^{\delta}, x^{-1} q^{\delta} ; 0 ; q, q^{1-\delta}\right)}{x \frac{\partial}{\partial x}\left[2 \phi_{1}\left(a x^{-1} q^{\delta}, x^{-1} q^{\delta} ; 0 ; q, q^{-\delta}\right)\right]}
$$

- The Stieltjes transform of $d \mu$ is given by

$$
\int_{\mathbb{R}} \frac{d \mu(x)}{z-x}=\frac{{ }_{2} \phi_{1}\left(a x^{-1} q^{\delta}, x^{-1} q^{\delta} ; 0 ; q, q^{1-\delta}\right)}{x_{2} \phi_{1}\left(a x^{-1} q^{\delta}, x^{-1} q^{\delta} ; 0 ; q, q^{-\delta}\right)}, \quad(z \notin \operatorname{supp}(d \mu)) .
$$

There are other generalized classes of OPs

- Lommel OPs, well known class from theory of Bessel functions, have been generalized similarly (in one parameter).

There are other generalized classes of OPs

- Lommel OPs, well known class from theory of Bessel functions, have been generalized similarly (in one parameter).
- Lommel OPs may be given explicitly in the form

$$
R_{n, \nu}(x)=\sum_{k=0}^{[n / 2]}\binom{n-k}{k}(-1)^{k} \frac{\Gamma(\nu+n-k)}{\Gamma(\nu+k)}\left(\frac{2}{x}\right)^{n-2 k}
$$

There are other generalized classes of OPs

- Lommel OPs, well known class from theory of Bessel functions, have been generalized similarly (in one parameter).
- Lommel OPs may be given explicitly in the form

$$
R_{n, \nu}(x)=\sum_{k=0}^{[n / 2]}\binom{n-k}{k}(-1)^{k} \frac{\Gamma(\nu+n-k)}{\Gamma(\nu+k)}\left(\frac{2}{x}\right)^{n-2 k}
$$

- Explicit formulas and support of the measure of orthogonality for the generalization are expressed in terms of (ir)regular Coulomb wave functions.

There are other generalized classes of OPs

- Lommel OPs, well known class from theory of Bessel functions, have been generalized similarly (in one parameter).
- Lommel OPs may be given explicitly in the form

$$
R_{n, \nu}(x)=\sum_{k=0}^{[n / 2]}\binom{n-k}{k}(-1)^{k} \frac{\Gamma(\nu+n-k)}{\Gamma(\nu+k)}\left(\frac{2}{x}\right)^{n-2 k}
$$

- Explicit formulas and support of the measure of orthogonality for the generalization are expressed in terms of (ir)regular Coulomb wave functions.
- The last example generalizes AI-Salam-Carlitz II polynomials. Generalized OPs are defined via recurrence

$$
v_{n+1}=\left(x-q^{-n}\right) v_{n}-\frac{1}{2} \sin (\sigma) q^{-2 n+1}\left(1-q^{n+\gamma-1}\right) v_{n-1}
$$

where $\gamma>0, \sigma \in(0, \pi / 2)$, and $q \in(0,1)$.

There are other generalized classes of OPs

- Lommel OPs, well known class from theory of Bessel functions, have been generalized similarly (in one parameter).
- Lommel OPs may be given explicitly in the form

$$
R_{n, \nu}(x)=\sum_{k=0}^{[n / 2]}\binom{n-k}{k}(-1)^{k} \frac{\Gamma(\nu+n-k)}{\Gamma(\nu+k)}\left(\frac{2}{x}\right)^{n-2 k}
$$

- Explicit formulas and support of the measure of orthogonality for the generalization are expressed in terms of (ir)regular Coulomb wave functions.
- The last example generalizes AI-Salam-Carlitz II polynomials. Generalized OPs are defined via recurrence

$$
v_{n+1}=\left(x-q^{-n}\right) v_{n}-\frac{1}{2} \sin (\sigma) q^{-2 n+1}\left(1-q^{n+\gamma-1}\right) v_{n-1}
$$

where $\gamma>0, \sigma \in(0, \pi / 2)$, and $q \in(0,1)$.

- This case is extremely interesting. The analysis of basic characteristics is much more difficult then in previous cases.

There are other generalized classes of OPs

- Lommel OPs, well known class from theory of Bessel functions, have been generalized similarly (in one parameter).
- Lommel OPs may be given explicitly in the form

$$
R_{n, \nu}(x)=\sum_{k=0}^{[n / 2]}\binom{n-k}{k}(-1)^{k} \frac{\Gamma(\nu+n-k)}{\Gamma(\nu+k)}\left(\frac{2}{x}\right)^{n-2 k}
$$

- Explicit formulas and support of the measure of orthogonality for the generalization are expressed in terms of (ir)regular Coulomb wave functions.
- The last example generalizes AI-Salam-Carlitz II polynomials. Generalized OPs are defined via recurrence

$$
v_{n+1}=\left(x-q^{-n}\right) v_{n}-\frac{1}{2} \sin (\sigma) q^{-2 n+1}\left(1-q^{n+\gamma-1}\right) v_{n-1}
$$

where $\gamma>0, \sigma \in(0, \pi / 2)$, and $q \in(0,1)$.

- This case is extremely interesting. The analysis of basic characteristics is much more difficult then in previous cases.
- Especially, concerning the measure of orthogonality, if $q \geq \tan ^{2}(\sigma / 2)$ then there is only one OG measure. However, if $q<\tan ^{2}(\sigma / 2)$ then there are infinitely many measures of orthogonality (cf. indeterminate moment problem).

Thank you, and enjoy Beskydy!

[^0]: 4) Springer
[^1]: 4) Springer
