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THE JACOBI OPERATOR

» Let {an}nez, {bn}tnez, {cn}nez be given bounded complex sequences.
» Then
a_q bo Co

] = a b
ai bz C2

determines a bounded Jacobi operator on ¢*(Z).

» We denote

dn := max{|an—1 — 1|, |an — 1], |bul, |ca=1 — 1], |cn — 1|}, n € Z.
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» Let {an}nez, {bn}tnez, {cn}nez be given bounded complex sequences.
» Then

a_q bo Co
] = ap bl C1
m b o

determines a bounded Jacobi operator on ¢*(Z).
» We denote

dy := max{|an—1 — 1|, |an — 1], |bul, |ca=1 — 1], |cn — 1|},
» Iflim, 400 dy =0, then

new.
oess(]) = [-2,2] and

o(]) = [=2,2] U ou()).
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LIEB-THIRRING INEQUALITIES FOR S.A. JACOBI OPERATORS

Theorem (Hundertmark-Simon, JAT’02)
Suppose a4, = ¢, > 0 and b, € R.
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LIEB-THIRRING INEQUALITIES FOR S.A. ]ACOBI OPERATORS
Theorem (Hundertmark-Simon, JAT’02)

Suppose a4, = c, > 0and b, € R. Ifd € #(Z), for p > 1, then
DUSE A
Ao ()N (—00,—2) Aoy (N(2,00)

-1/2
A =2P72 < Gyl
where C, is an explicit constant independent of |.
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LIEB-THIRRING INEQUALITIES FOR S.A. JACOBI OPERATORS

Theorem (Hundertmark-Simon, JAT’02)

Suppose a4, = c, > 0and b, € R. Ifd € #(Z), for p > 1, then
DUSE A
Ao ()N (—00,—2) Aoy (N(2,00)

-1/2
A =2P72 < Gyl
where C, is an explicit constant independent of |.

» Equivalently,

ST (dist(A, [-2,2)" 7 < G lldly
Aeay())
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LIEB—THIRRING INEQUALITIES FOR S.A. JACOBI OPERATORS
Theorem (Hundertmark-Simon, JAT’02)
Suppose a4, = c, > 0and b, € R. Ifd € #(Z), for p > 1, then

> A+2P 2 ST =22 < Gl

A€oy ()N(—00,-2) A€ay())N(2,00)

where C, is an explicit constant independent of |.

» Equivalently,

S (dist(h, [-2,2))" 72 < Gyldlfh,.

Aeay(])

Question 1

Does the above inequality hold true for general (possibly n.s.a.) Jacobi
operators with d € ¢#(Z)?




INTRODUCTION STATE OF THE ART
00 00®000
:

00000000000

THE CONJECTURE OF HANSMANN AND KATRIEL

DISCRETE SCHRODINGER OPERATORS

SCHRODINGER OPERATORS

Conjecture (Hansmann-Katriel, CAOT"11)
No.




INTRODUCTION
00

STATE OF THE ART
O0e000

DISCRETE SCHRODINGER OPERATORS
00000000000

SCHRODINGER OPERATORS
0000

THE CONJECTURE OF HANSMANN AND KATRIEL

Conjecture (Hansmann-Katriel, CAOT"11)
The Lieb-Thirring inequality

(dist(, [-2,2)))P "2 < G, |ld|
Aeoy())

does not extend to general Jacobi operators with d € ¢ (Z).
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Conjecture (Hansmann-Katriel, CAOT"11)
The Lieb-Thirring inequality

(dist(, [-2,2)))P "2 < G, |ld|
Aeoy())

Answer 1

does not extend to general Jacobi operators with d € ¢ (Z).
True.
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>

FURTHER ATTEMPTS TO FIND AN ADMISSIBLE EXTENSION
X427 4
A€oy (J)N(—o0,—2)

» Recall the H.-S. result for s.a. Jacobi operators:

>

A —2P712 < Gyl
reau(DN(2,00)
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FURTHER ATTEMPTS TO FIND AN ADMISSIBLE EXTENSION

>

» Recall the H.-S. result for s.a. Jacobi operators:
X427 4
A€oy (J)N(—o0,—2)

>

A€aq())N(2,00)
» Using the observation

A =272 < Gyl
dist (A, [-2,2])" 1= 2P~1/2, ifA>2,
N2 —4]172 =2 | |A42p V2 if A< =2,
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FURTHER ATTEMPTS TO FIND AN ADMISSIBLE EXTENSION

» Recall the H.-S. result for s.a. Jacobi operators:

> X272 ST =2 < Gl

A€aq(J)N(—o0,—2) A€aq())N(2,00)

» Using the observation

dist (A, [-2,2])" 1[I — 2|12, ifA>2,
N2 —4]172 =2 | |A42p V2 if A< =2,

the H.-S. result implies

(dist(), [-2,2]))"

P
|)\2 _ 4|1/2 < CP”dHZP'

A€oy())
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FURTHER ATTEMPTS TO FIND AN ADMISSIBLE EXTENSION

» Recall the H.-S. result for s.a. Jacobi operators:

> X272 ST =2 < Gl

A€aq(J)N(—o0,—2) A€aq())N(2,00)

» Using the observation

dist (A, [-2,2])" 1[I — 2|12, ifA>2,
N2 —4]172 =2 | |A42p V2 if A< =2,

the H.-S. result implies

(dist(), [-2,2]))"

P
|)\2 _ 4|1/2 < CP”dHZP'

A€oy())

» This is already very close to what was proven by Hansmann and
Katriel for general Jacobi operators...
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LIEB-THIRRING INEQ. FOR N.S.A. JACOBI OPERATORS

Theorem (Hansmann—Katriel, CAOT’11)
Suppose 7 € (0,1) and d € ¢(Z) withp > 1. Then

Z (diSt()‘a [_27 2]))p+7'

e —qpz S Gl ifp>1,
A€oy ())
and .
dist )\7 _2’2 7 ‘
Z ( |)\2(_[4|1/2+]334 SCT||dH£17 1fP=1
A€oy())
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LIEB-THIRRING INEQ. FOR N.S.A. JACOBI OPERATORS

Theorem (Hansmann—Katriel, CAOT’11)
Suppose 7 € (0,1) and d € ¢(Z) withp > 1. Then

dist(\, [=2,2]))""" .
Z : |(>\2 [— 4|1/]2)) < Cpdlly, ifp>1,
A€oy (])

and

. _ 1471
5 (dist(X, [-2,2])) <Coldllp, ifp=1.

|A2 — 4[1/2+7/4

A€oy())

» In the s.a. case, the above inequalities hold true also if 7 = 0.
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LIEB-THIRRING INEQ. FOR N.S.A. JACOBI OPERATORS

Theorem (Hansmann—Katriel, CAOT’11)
Suppose 7 € (0,1) and d € ¢(Z) withp > 1. Then

dist(\, [=2,2]))""" .
Z : |(>\2 [— 4|1/]2)) < Cpdlly, ifp>1,
A€aqy())

and

. _ 1471
5 (dist(X, [-2,2])) <Coldllp, ifp=1.

|A2 — 4[1/2+7/4

A€oy())

» In the s.a. case, the above inequalities hold true also if 7 = 0.

Question 2

Does the above inequalities remain valid for 7 = 0 and general Jacobi
operators with d € #(Z)?
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The Lieb-Thirring inequality
(diSt()‘v [_27 2])),] 4
g < Gl
A€oy ()
does not extend to general Jacobi operators with d € £/(Z)
v
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T(b)=Jo+b
ay=c¢, =1,Yn € Z.

» Counterexamples are found among discrete Schrédinger operators
with complex potential b € #/(Z), i.e., Jacobi operators ] with
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T(b)=Jo+b
ay=c¢, =1,Yn € Z.

» Counterexamples are found among discrete Schrédinger operators
with complex potential b € #/(Z), i.e., Jacobi operators ] with

Theorem

For any p > 0 and w < p, one has

1
sup (dist(X, [-2,2]))* = oo
ozverr () ||Blly Aeodz(;(b))
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T(b)=Jo+b
ay=c¢, =1,Yn € Z.

» Counterexamples are found among discrete Schrédinger operators
with complex potential b € #/(Z), i.e., Jacobi operators ] with

Theorem

For any p > 0 and w < p, one has

1
sup (dist(X, [-2,2]))* = oo
ozverr () ||Blly Aeodz(;(b))

» In particular, for w = p — 1/2, the theorem confirms the conjecture of
Hansmann and Katriel.
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THE DISCRETE SCHRODINGER OPERATOR

» Counterexamples are found among discrete Schrédinger operators
T(b)=Jo+0b

with complex potential b € #/(Z), i.e., Jacobi operators ] with
a, =c, =1,Vn € Z.

Theorem
For any p > 0 and w < p, one has

> (dist(X, [-2,2]))* = 0.

sup  ———
oxeeer@ Bl | o)

» In particular, for w = p — 1/2, the theorem confirms the conjecture of
Hansmann and Katriel.

» On the other hand, if w > p, the inequality
D (dist(X, [-2,2])° < Gl
Aeoy(])

holds for any (possibly n.s.a.) Jacobi operator | (Hansmann, LMP’11).
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» Forn € Nand h > 0, define

Th,n = ]0 —+ ihpn,
where P, is OG projection onto span{e;,

..en}
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THE DSO WITH RECTANGULAR BARRIER POTENTIAL AND
COMPLEX COUPLING
» Forn € Nand h > 0, define
T = Jo + ihPn,
where P, is OG projection onto span{er, . . . e, }.

» Analysis of 04(T},,) can be reformulated in an investigation of roots of
polynomial equations.
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THE DSO WITH RECTANGULAR BARRIER POTENTIAL AND
COMPLEX COUPLING

» Forn € Nand h > 0, define
Th,n = ]O + ihpn,
where P, is OG projection onto span{ei, . ..e,}.

» Analysis of 04(T},,) can be reformulated in an investigation of roots of
polynomial equations.

» By the Birman-Schwinger principle, A ¢ [—2,2] is an eigenvalue of T},
iff
det (1+ihPs(Jo = 3)7'Pu) = 0.
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THE DSO WITH RECTANGULAR BARRIER POTENTIAL AND
COMPLEX COUPLING

» Forn € Nand h > 0, define
Th,n = ]O + ihpn,

where P, is OG projection onto span{ei, . ..e,}.

» Analysis of 04(T},,) can be reformulated in an investigation of roots of
polynomial equations.

» By the Birman-Schwinger principle, A ¢ [—2,2] is an eigenvalue of T},
iff
det (1+ihPs(Jo = 3)7'Pu) = 0.
> Write A ¢ [-2,2] as A = k + k!, where 0 < |k| < 1. Then

o~ X" = s QMR

where Q(k) is the Laurent operator with entries Q; ;(k) = kl/~'l.
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» We are led to the characteristic equation

det (14

an(k)) =0,
for Q. (k) := P,Q(k)P, 1 Ran P, (Kac-Murdock-Szeg6 matrix).
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det (14 G200 ) =0,
for Q. (k) := P,Q(k)P, 1 Ran P, (Kac-Murdock-Szeg6 matrix).
» Introducing a new parameter z by equation
ih=k+k'—z—2z"
the characteristic functions takes a fully explicit form
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» We are led to the characteristic equation
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ikh
det <1 + ﬁQn(k)) = O7
for Q. (k) := P,Q(k)P, 1 Ran P, (Kac-Murdock-Szeg6 matrix).
» Introducing a new parameter z by equation
ih=k+k'—z—2z"
the characteristic functions takes a fully explicit form
ikh e i"n" 2"z —k)* — (1 — kz)*
det (1+k2—1Q”(k)) TR G-k 2.1
» Solving z"(z — k)* — (1 — kz)* = 0 for k = k(z) yields
n+1
k=12 ! or
" —z

_Z?H»l_"_l
T4z
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» We are led to the characteristic equation

ikh
det <1 + ﬁQn(k)) = O7

for Q. (k) := P,Q(k)P, 1 Ran P, (Kac-Murdock-Szeg6 matrix).
» Introducing a new parameter z by equation
h=k+k'—z—z""
the characteristic functions takes a fully explicit form

ikh e "h k- (k)
det (1 + kz—_lQn(k)) T1-REz-k'(1-k)" 22 -1 '

» Solving z"(z — k)* — (1 — kz)* = 0 for k = k(z) yields

Zn+1_1 k_ Zn+1_|_1
" —z T4z

» Plugging back...
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ih (z"+1 - l) (z”‘l - 1) — 7" (22 - 1)2
ih (z"Jrl + 1) (z”_1 + 1) +2"72 (zz - 1)

2
:O,
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N
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ih (:/:”Jrl - l) (z"*1 - 1) — 7" (22 - 1)2

=0, ()
2
ih (z’”rl + 1) (z”’1 + 1) +2"72 (zz - 1) =0, (%)
» Not all of their solutions give rise to eigenvalues, however. Most

importantly, one has to take into account the requirement |k(z)| < 1
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» ..we arrive at two equations:
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ih (:/:”Jrl - l) (z"*1 - 1) — 7" (22 - 1)2

=0, ()
2
in (z"+1 + 1) (z”*1 + 1) 2 (zz - 1) —0, (++)
» Not all of their solutions give rise to eigenvalues, however. Most

importantly, one has to take into account the requirement |k(z)| < 1
» In summary, we obtain:
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» ..we arrive at two equations:

in (z"“ - 1) (z"*1 - 1) — "2 (22 - 1)2 =0, ()
in (z"+1 + 1) (z”*1 + 1) 2 (zz - 1)2 —0, (++)

» Not all of their solutions give rise to eigenvalues, however. Most
importantly, one has to take into account the requirement |k(z)| < 1.

» In summary, we obtain:

Proposition

One has
Ae€oy(Th,) <= A=ih+z+4+z",

forz € C, |z| < 1,Imz > 0, which is either a solution of (x) or (xx) satisfying
the constraint |z"*! — 1| < |2" — z| or |z"T + 1| < |2" + 2|, respectively.
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Figure: A numerical illustration of spectrum of T}, ,, for h = 1/10 and n = 39.
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> Next, we puth = h, := n~>/* and consider the sequence T, := Tj, .
> Fix0<e<1/2.
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TOWARDS THE PROOF OF H.—K. CONJECTURE

> Next, we puth = h, := n~>/* and consider the sequence T, := Tj, .
> Fix0<e<1/2.

Then we can show that, for n sufficiently large, there are (1 — 2¢)n/2
solutions z; of the algebraic equations (*) and (#x) located in the sector

em < argz; < (1 —¢e)m,

and each z; gives rise to an eigenvalue \; of T),.
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TOWARDS THE PROOF OF H.—K. CONJECTURE

» Next, weputh =h, := n~%/% and consider the sequence Ty := Ty, 4.
> Fix0<e<1/2.

Then we can show that, for n sufficiently large, there are (1 — 2¢)n/2
solutions z; of the algebraic equations (*) and (#x) located in the sector

em < argz; < (1 —¢e)m,
and each z; gives rise to an eigenvalue \; of T),.

» Moreover, these eigenvalues have the asymptotic behavior

Aj :2cos¢j+in72/3+o (lo%n) , M —o00.
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TOWARDS THE PROOF OF H.—K. CONJECTURE

» Next, weputh =h, := n~%/% and consider the sequence Ty := Ty, 4.
> Fix0<e<1/2.

Then we can show that, for n sufficiently large, there are (1 — 2¢)n/2
solutions z; of the algebraic equations (*) and (#x) located in the sector

em < argz; < (1 —¢e)m,
and each z; gives rise to an eigenvalue \; of T),.

» Moreover, these eigenvalues have the asymptotic behavior

)\]-:Zcosqb]-—i—in _’_O(lo;gln)’ n — oo.

» It follows
dist(\, [-2,2) =n 2+ 0 <1°g”) 1 — oo,

uniformly in j.
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dist(A, [-2,2]))* > % ("72/3 +0 (lo%n»W

pl—20/3
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= (10 (B8)). noree
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3 (dist(A, [-2,2))) g( 210 (105”»
)\Egd(Tn)
1-2w/3
- 1 <1+o(logn))7 n— 0o
» In total, for n sufficiently large, we get
1 ~ L 2w/
s D (dist(), [-2,2])) 3"
A€ay(Ty)

which implies
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» Forw < pand e < 1/4, we have
1
3 (dist(, [-2,2) > § ( 2P 40 ( Og”>)
A€oy (Tn) n
1-2w/3
_n logn
== (1+O(n1/3)), n— 0o
» In total, for n sufficiently large, we get
1 . 1 2 —w)/3
s D (dist(), [-2,2]))” > g (p=w)/
A€ay(Ty)
which implies
For any p > 0 and w < p, one has
1 . w
up o D (dist(h [-2,2]) =
O;ﬁbGZV(Z) ||b||£1’ AEO’d(T(h))

0.
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» Forw < pand e < 1/4, we have

>

SCHRODINGER OPERATORS

0000

)\Egd(Tn)

(dist(\, [~2,2]))" Z( ’2/3+O(b§n>)

nl—Zw/3

(1+0(2E8)). noro
4
» In total, for n sufficiently large, we get

1

. 1 5w

s D (dist(\[-2,2]) §n2<r’ )3
A€ay(Ty)
which implies
For any p > 0 and w < p, one has
1
up (dist(X, [-2,2]))” = oco.
O;ﬁbEZV(Z) ||b||r£1’ AE%(b))

and the H.—K. conjecture follows (for w = p — 1/2).
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» Recall the 2nd open problem: Does the inequality
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hold for general Jacobi operators | with d € ¢#(Z)?
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» Recall the 2nd open problem: Does the inequality

(dISt(>H [_272]))17
Z |)\2 _ 4|1/2 S CP”d”’ZP
A€ay(])

hold for general Jacobi operators | with d € ¢#(Z)?
Theorem

Foranyp > 1and o > 1/2, one has

(dist(, [-2,2]))"
iy RTTATT) > I\ — 4| =
0¢b€£P(Z) H ||£V )\EO'd(T(h))

=00
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» Recall the 2nd open problem: Does the inequality

(dISt(>H [_27 2}))?’
> g <Gl
A€oy(J)
hold for general Jacobi operators | with d € ¢#(Z)?
Theorem

Foranyp > 1and o > 1/2, one has

(dist(), [-2,2]))
iy RTTATT) > I\ — 4| =
0¢b€£P(Z) H ||£P )\EO'd(T(h))
more delicate...

» The same sequence T, as before can be used here but the analysis is
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PLICES I

1
m <m) ) n— oo,
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» Asymptotic analysis yields
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0000

Aj = 2cos ¢; +in?*4+0 <
with

logn n— 0o
n b )
(4] —
¢ = (4

1) 1
m + O <m) ) n— oo,
» The range for indices j is determined by

m(4j—1)
< 71 I —
emr < o <(A-éer
for arbitrarily small e > 0.
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» Asymptotic analysis yields

SCHRODINGER OPERATORS
0000

)\/-:2cos¢]-+in_2/3+0<lo%n>, n — oo,
with -1
m(4i —
¢j:77

1
m (m) oo
» The range for indices j is determined by

o < m(4 — 1)
for arbitrarily small e > 0.

» Particularly, it follows that

dist();, [-2,2]) > %
for all j and n sufficiently large.
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» Then
liminfn
n—oo

/31 Z (dist(A, [-2,2]))

i
- = hni
Ae€oy(Th)

12 1
n N2 _ 4|0
n< |AF — 4

(1—e)m dx
=G /671' (4 -

4cos?x)°’
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» Then

PR 2p/3—1 (diSt(Av [727 2}))?’ U 1 1
D D R P D

A€oy(Tn)
(1—e)m
—c, / A
o (4 —4cos?x)e

» Since
/(176)7r dx ) b dx ﬁ ((7‘(’6)1720 - 1)7 if o > %,
e (1 — cos? x)a N em X2 -2 log(we), ifo = %

and e > 0 can be arbitrarily small, one finally gets
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» Then

i _ p
liminf an/3—1 Z (dISt(Av [ 27 ZD)

1 1
T R
im in pe g 2 iminf o> e

AEoy(Ty) j J

(1—e)m dx
=G /eTr (4 -

4 cos? x)7’

» Since
/(176)7r dx -5 b dx ﬁ ((7‘(’6)1720 — 1)7 ifo > %,
e (1 — cos? x)a N em X2 -2 log(we), ifo = %

and e > 0 can be arbitrarily small, one finally gets

. . dist(\, [=2,2]))

lim an/3 1 z : ( ) ’ =00
n—oo 2 _ 4lo ’
- A€oy(Ty) ‘)\ 4|

forallo > 1/2.
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» Consider the Schrodinger operator H := —A + V on L*(R?) with
V € LP(RY), where

p>1, ifd=1,
p>1, ifd=2,
p>d/2, if d>3.
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» Consider the Schrodinger operator H := —A + V on L*(R?) with
V € LP(RY), where

p>1, ifd=1,
p>1, if d=2,
p>d/2, ifd>3.

» Then o(H) = o4(H) U [0, 00).
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LIEB-THIRRING INEQUALITIES FOR S.A. SCHRODINGER
OPERATORS

» Consider the Schrodinger operator H := —A + V on L*(R?) with
V € LP(RY), where

p>1, ifd=1,
p>1, ifd=2,
p>d/2, if d>3.

» Then o(H) = o4(H) U [0, 00).

Theorem (Lieb-Thirring)

Suppose V is real-valued and satisfies the above conditions. Then

_d
> T <GullvIG-

A€o, (H)
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Question 3 (Demuth—-Hansmann—Katriel, [EOT’13)
V€ LP(RY)?

Does the above inequality remain valid for complex-valued potentials
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» Equivalent formulation:

dist(), [0, 00))”
Z % < CP,dHVHIIjP'
A€oy (H)

Question 3 (Demuth—-Hansmann—Katriel, [EOT’13)

Does the above inequality remain valid for complex-valued potentials
V€ LP(RY)?

(Partial) Answer 3

1. If d = 1, then NO.

i
N)
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» Equivalent formulation:

dist(), [0, 00))”
Z % < CP,d“VH’IjP'
A€oy (H)

Question 3 (Demuth—Hansmann—Katriel, [EOT"13)

Does the above inequality remain valid for complex-valued potentials
V€ LP(RY)?

(Partial) Answer 3
1. If d = 1, then NO.
2. If d > 2, then UNKNOWN - work in progress.

i
N
yel
?
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Letd = 1. Forallp > 1and o > 1/2, one has
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. p Z (dist(A, [0, 00))
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Letd = 1. Forallp > 1and o > 1/2, one has
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the theorem is

» In analogy to the discrete case, the operator family that demonstrates

h>0.
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ANSWER 3 IN DIMENSION 1
Theorem

SCHRODINGER OPERATORS
0000

Letd = 1. Forallp > 1and o > 1/2, one has

(dist(), [0, 00))?
sup \ p Z |A|U
0£VEL! (R) I ”U’ A€oy (H)

the theorem is

» In analogy to the discrete case, the operator family that demonstrates

h > 0.
» The problem can be reduced to a study of asymptotic properties of
discrete eigenvalues of

d2
Hy=—a 1+

dx2 ihX[—l,l],
forh — co.
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S. Bogli, . S.: On Lieb-Thirring inequalities for one-dimensional non-self-adjoint
Jacobi and Schrodinger operators, J. Spectr. Theory (to appear), arXiv:2004.09794.

Thank you!
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