< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

On Lieb–Thirring inequlities for non-self-adjoint Jacobi matrices and Schrödinger operators

František Štampach Czech Technical University in Prague

> jointly with Sabine Bögli Durham University

Mathematical aspects of the physics with non-self-adjoint operators: 10 years after, actually, 11 years after

> March 23-27, 2020 December 7-11, 2020 February 1-5, 2021 (*Hurray!*)

TABLE OF CONTENTS

INTRODUCTION

STATE OF THE ART

DISCRETE SCHRÖDINGER OPERATORS Rectangular barrier potential with complex coupling Answer 1 Answer 2

SCHRÖDINGER OPERATORS Answer 3

STATE OF THE ART

DISCRETE SCHRÖDINGER OPERATOR

SCHRÖDINGER OPERATORS

< □ > < @ > < E > < E > E のQ@

THE JACOBI OPERATOR

• Let $\{a_n\}_{n\in\mathbb{Z}}, \{b_n\}_{n\in\mathbb{Z}}, \{c_n\}_{n\in\mathbb{Z}}$ be given bounded complex sequences.

STATE OF THE ART

< ロ > < 同 > < 三 > < 三 > 、 三 、 の < ()</p>

THE JACOBI OPERATOR

- ► Let $\{a_n\}_{n \in \mathbb{Z}}$, $\{b_n\}_{n \in \mathbb{Z}}$, $\{c_n\}_{n \in \mathbb{Z}}$ be given bounded complex sequences.
- ► Then

$$J := \begin{pmatrix} \ddots & \ddots & \ddots & & & & \\ & a_{-1} & b_0 & c_0 & & & \\ & & a_0 & b_1 & c_1 & & \\ & & & a_1 & b_2 & c_2 & \\ & & & & \ddots & \ddots & \ddots \end{pmatrix}$$

determines a bounded Jacobi operator on $\ell^2(\mathbb{Z})$.

THE JACOBI OPERATOR

- ► Let $\{a_n\}_{n \in \mathbb{Z}}$, $\{b_n\}_{n \in \mathbb{Z}}$, $\{c_n\}_{n \in \mathbb{Z}}$ be given bounded complex sequences.
- ► Then

$$J := \begin{pmatrix} \ddots & \ddots & \ddots & & & & \\ & a_{-1} & b_0 & c_0 & & & \\ & & a_0 & b_1 & c_1 & & \\ & & & a_1 & b_2 & c_2 & \\ & & & & \ddots & \ddots & \ddots \end{pmatrix}$$

determines a bounded Jacobi operator on $\ell^2(\mathbb{Z})$.

► We denote

$$d_n := \max\{|a_{n-1}-1|, |a_n-1|, |b_n|, |c_{n-1}-1|, |c_n-1|\}, \quad n \in \mathbb{Z}.$$

◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

THE JACOBI OPERATOR

- ► Let $\{a_n\}_{n \in \mathbb{Z}}$, $\{b_n\}_{n \in \mathbb{Z}}$, $\{c_n\}_{n \in \mathbb{Z}}$ be given bounded complex sequences.
- ► Then

$$J := \begin{pmatrix} \ddots & \ddots & \ddots & & & & \\ & a_{-1} & b_0 & c_0 & & & \\ & & a_0 & b_1 & c_1 & & \\ & & & a_1 & b_2 & c_2 & \\ & & & & \ddots & \ddots & \ddots \end{pmatrix}$$

determines a bounded Jacobi operator on $\ell^2(\mathbb{Z})$.

We denote

$$d_n := \max\{|a_{n-1}-1|, |a_n-1|, |b_n|, |c_{n-1}-1|, |c_n-1|\}, n \in \mathbb{Z}.$$

• If
$$\lim_{n \to \pm \infty} d_n = 0$$
, then

$$\sigma_{ess}(J) = [-2, 2]$$
 and $\sigma(J) = [-2, 2] \cup \sigma_d(J).$

<□> < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

STATE OF THE ART

DISCRETE SCHRÖDINGER OPERATORS

SCHRÖDINGER OPERATORS

LIEB-THIRRING INEQUALITIES FOR S.A. JACOBI OPERATORS

Theorem (Hundertmark-Simon, JAT'02)

Suppose $a_n = c_n > 0$ and $b_n \in \mathbb{R}$.

STATE OF THE ART

LIEB-THIRRING INEQUALITIES FOR S.A. JACOBI OPERATORS

Theorem (Hundertmark–Simon, JAT'02)

Suppose $a_n = c_n > 0$ and $b_n \in \mathbb{R}$. If $d \in \ell^p(\mathbb{Z})$, for $p \ge 1$, then

$$\sum_{\lambda \in \sigma_d(J) \cap (-\infty, -2)} |\lambda + 2|^{p-1/2} + \sum_{\lambda \in \sigma_d(J) \cap (2, \infty)} |\lambda - 2|^{p-1/2} \le C_p ||d||_{\ell^p}^p$$

where C_p is an explicit constant independent of *J*.

STATE OF THE ART

LIEB-THIRRING INEQUALITIES FOR S.A. JACOBI OPERATORS

Theorem (Hundertmark–Simon, JAT'02)

Suppose $a_n = c_n > 0$ and $b_n \in \mathbb{R}$. If $d \in \ell^p(\mathbb{Z})$, for $p \ge 1$, then

$$\sum_{\lambda \in \sigma_d(J) \cap (-\infty, -2)} |\lambda + 2|^{p-1/2} + \sum_{\lambda \in \sigma_d(J) \cap (2, \infty)} |\lambda - 2|^{p-1/2} \le C_p ||d||_{\ell^p}^p$$

where C_p is an explicit constant independent of *J*.

Equivalently,

$$\sum_{\lambda\in\sigma_d(J)} \left(\operatorname{dist}(\lambda, [-2, 2])\right)^{p-1/2} \leq C_p \|d\|_{\ell^p}^p.$$

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - のへで

STATE OF THE ART

LIEB-THIRRING INEQUALITIES FOR S.A. JACOBI OPERATORS

Theorem (Hundertmark–Simon, JAT'02)

Suppose $a_n = c_n > 0$ and $b_n \in \mathbb{R}$. If $d \in \ell^p(\mathbb{Z})$, for $p \ge 1$, then

$$\sum_{\lambda \in \sigma_d(J) \cap (-\infty, -2)} |\lambda + 2|^{p-1/2} + \sum_{\lambda \in \sigma_d(J) \cap (2, \infty)} |\lambda - 2|^{p-1/2} \le C_p \|d\|_{\ell^p}^p$$

where C_p is an explicit constant independent of *J*.

Equivalently,

$$\sum_{\lambda\in\sigma_d(J)} \left(\operatorname{dist}(\lambda,[-2,2])
ight)^{p-1/2} \leq C_p \|d\|_{\ell^p}^p.$$

Question 1

Does the above inequality hold true for general (possibly n.s.a.) Jacobi operators with $d \in \ell^p(\mathbb{Z})$?

THE CONJECTURE OF HANSMANN AND KATRIEL

Conjecture (Hansmann-Katriel, CAOT'11)

No.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

STATE OF THE ART

λ

DISCRETE SCHRÖDINGER OPERATORS 00000000000 SCHRÖDINGER OPERATORS

THE CONJECTURE OF HANSMANN AND KATRIEL

Conjecture (Hansmann-Katriel, CAOT'11)

The Lieb-Thirring inequality

$$\sum_{\in \sigma_d(J)} \left(\operatorname{dist}(\lambda, [-2, 2])\right)^{p-1/2} \leq C_p \|d\|_{\ell^p}^p$$

does not extend to general Jacobi operators with $d \in \ell^p(\mathbb{Z})$.

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - のへで

λ

THE CONJECTURE OF HANSMANN AND KATRIEL

Conjecture (Hansmann-Katriel, CAOT'11)

The Lieb-Thirring inequality

$$\sum_{\in \sigma_d(J)} \left(\operatorname{dist}(\lambda, [-2, 2])\right)^{p-1/2} \leq C_p \|d\|_{\ell^p}^p$$

does not extend to general Jacobi operators with $d \in \ell^p(\mathbb{Z})$.

Answer 1

True.

・ロト (四) (日) (日) (日) (日) (日)

INTRODUCTION	
00	

STATE OF THE ART

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

FURTHER ATTEMPTS TO FIND AN ADMISSIBLE EXTENSION

► Recall the H.–S. result for s.a. Jacobi operators:

$$\sum_{\lambda \in \sigma_d(J) \cap (-\infty, -2)} |\lambda + 2|^{p-1/2} + \sum_{\lambda \in \sigma_d(J) \cap (2, \infty)} |\lambda - 2|^{p-1/2} \le C_p ||d||_{\ell^p}^p,$$

INTRODUCTION	
00	

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

FURTHER ATTEMPTS TO FIND AN ADMISSIBLE EXTENSION

► Recall the H.–S. result for s.a. Jacobi operators:

$$\sum_{\lambda \in \sigma_d(J) \cap (-\infty, -2)} \left| \lambda + 2 \right|^{p-1/2} + \sum_{\lambda \in \sigma_d(J) \cap (2, \infty)} \left| \lambda - 2 \right|^{p-1/2} \le C_p \|d\|_{\ell^p}^p,$$

Using the observation

$$\frac{\text{dist}\,(\lambda,[-2,2])^p}{|\lambda^2 - 4|^{1/2}} \le \frac{1}{2} \begin{cases} |\lambda - 2|^{p-1/2}, & \text{if } \lambda > 2, \\ |\lambda + 2|^{p-1/2}, & \text{if } \lambda < -2, \end{cases}$$

INTRODUCTION	
00	

FURTHER ATTEMPTS TO FIND AN ADMISSIBLE EXTENSION

► Recall the H.–S. result for s.a. Jacobi operators:

$$\sum_{\lambda \in \sigma_d(J) \cap (-\infty, -2)} \left| \lambda + 2 \right|^{p-1/2} + \sum_{\lambda \in \sigma_d(J) \cap (2, \infty)} \left| \lambda - 2 \right|^{p-1/2} \le C_p \|d\|_{\ell^p}^p,$$

Using the observation

$$\frac{\text{dist}\,(\lambda, [-2, 2])^p}{|\lambda^2 - 4|^{1/2}} \le \frac{1}{2} \begin{cases} |\lambda - 2|^{p-1/2}, & \text{if } \lambda > 2, \\ |\lambda + 2|^{p-1/2}, & \text{if } \lambda < -2, \end{cases}$$

the H.–S. result implies

$$\sum_{\lambda\in\sigma_d(J)}\frac{\left(\operatorname{dist}(\lambda,[-2,2])\right)^p}{|\lambda^2-4|^{1/2}}\leq C_p\|d\|_{\ell^p}^p.$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 − ����

INTRODUCTION	
00	

STATE OF THE ART

FURTHER ATTEMPTS TO FIND AN ADMISSIBLE EXTENSION

► Recall the H.–S. result for s.a. Jacobi operators:

$$\sum_{\lambda \in \sigma_d(J) \cap (-\infty, -2)} |\lambda + 2|^{p-1/2} + \sum_{\lambda \in \sigma_d(J) \cap (2, \infty)} |\lambda - 2|^{p-1/2} \le C_p ||d||_{\ell^p}^p,$$

Using the observation

$$\frac{\text{dist}\,(\lambda, [-2, 2])^p}{|\lambda^2 - 4|^{1/2}} \le \frac{1}{2} \begin{cases} |\lambda - 2|^{p-1/2}, & \text{if } \lambda > 2, \\ |\lambda + 2|^{p-1/2}, & \text{if } \lambda < -2, \end{cases}$$

the H.–S. result implies

$$\sum_{\lambda\in\sigma_d(J)}\frac{\left(\operatorname{dist}(\lambda,[-2,2])\right)^p}{|\lambda^2-4|^{1/2}}\leq C_p\|d\|_{\ell^p}^p.$$

This is already very close to what was proven by Hansmann and Katriel for general Jacobi operators...

・ロト・(部ト・モト・モー・)へ()

STATE OF THE ART

DISCRETE SCHRÖDINGER OPERATORS

SCHRÖDINGER OPERATORS

LIEB-THIRRING INEQ. FOR N.S.A. JACOBI OPERATORS

Theorem (Hansmann–Katriel, CAOT'11) Suppose $\tau \in (0, 1)$ and $d \in \ell^p(\mathbb{Z})$ with $p \ge 1$. Then

$$\sum_{\lambda \in \sigma_d(J)} \frac{(\operatorname{dist}(\lambda, [-2, 2]))^{p+\tau}}{|\lambda^2 - 4|^{1/2}} \le C_{p,\tau} \|d\|_{\ell^p}^p, \quad \text{if } p > 1,$$

and

$$\sum_{\lambda \in \sigma_d(J)} \frac{(\operatorname{dist}(\lambda, [-2, 2]))^{1+\tau}}{|\lambda^2 - 4|^{1/2 + \tau/4}} \le C_\tau \|d\|_{\ell^1}, \quad \text{if } p = 1.$$

STATE OF THE ART

LIEB-THIRRING INEQ. FOR N.S.A. JACOBI OPERATORS

Theorem (Hansmann–Katriel, CAOT'11) Suppose $\tau \in (0, 1)$ and $d \in \ell^p(\mathbb{Z})$ with $p \ge 1$. Then

 $\sum_{\lambda\in\sigma_d(J)}\frac{\left(\operatorname{dist}(\lambda,[-2,2])\right)^{p+\tau}}{|\lambda^2-4|^{1/2}}\leq C_{p,\tau}\|d\|_{\ell^p}^p,\quad\text{if }p>1,$

and

$$\sum_{\lambda \in \sigma_d(J)} \frac{(\operatorname{dist}(\lambda, [-2, 2]))^{1+\tau}}{|\lambda^2 - 4|^{1/2 + \tau/4}} \le C_\tau \|d\|_{\ell^1}, \quad \text{if } p = 1.$$

• In the s.a. case, the above inequalities hold true also if $\tau = 0$.

◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

STATE OF THE ART

LIEB-THIRRING INEQ. FOR N.S.A. JACOBI OPERATORS

Theorem (Hansmann–Katriel, CAOT'11)

Suppose $\tau \in (0, 1)$ and $d \in \ell^p(\mathbb{Z})$ with $p \ge 1$. Then

$$\sum_{\lambda \in \sigma_d(J)} \frac{(\operatorname{dist}(\lambda, [-2, 2]))^{p+\tau}}{|\lambda^2 - 4|^{1/2}} \le C_{p,\tau} \|d\|_{\ell^p}^p, \quad \text{if } p > 1,$$

and

$$\sum_{\lambda \in \sigma_d(J)} \frac{(\operatorname{dist}(\lambda, [-2, 2]))^{1+\tau}}{|\lambda^2 - 4|^{1/2 + \tau/4}} \le C_\tau \|d\|_{\ell^1}, \quad \text{if } p = 1.$$

• In the s.a. case, the above inequalities hold true also if $\tau = 0$.

Question 2

Does the above inequalities remain valid for $\tau = 0$ and general Jacobi operators with $d \in \ell^p(\mathbb{Z})$?

Introe 00	DUCTION	State of the art 00000●	Discrete Schrödinger operators	Schrödinger operators 0000
	Answer 2			
	No.			

λ

< □ > < @ > < E > < E > E のQ@

Answer 2

The Lieb-Thirring inequality

$$\sum_{\in \sigma_d(J)} \frac{(\operatorname{dist}(\lambda, [-2, 2]))^p}{|\lambda^2 - 4|^{1/2}} \le C_p \|d\|_{\ell^p}^p.$$

does not extend to general Jacobi operators with $d \in \ell^p(\mathbb{Z})$.

STATE OF THE ART

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

THE DISCRETE SCHRÖDINGER OPERATOR

Counterexamples are found among discrete Schrödinger operators

 $T(b) = J_0 + b$

with complex potential $b \in \ell^p(\mathbb{Z})$, i.e., Jacobi operators *J* with $a_n = c_n = 1, \forall n \in \mathbb{Z}$.

STATE OF THE ART

THE DISCRETE SCHRÖDINGER OPERATOR

Counterexamples are found among discrete Schrödinger operators

$$T(b) = J_0 + b$$

with complex potential $b \in \ell^p(\mathbb{Z})$, i.e., Jacobi operators *J* with $a_n = c_n = 1, \forall n \in \mathbb{Z}$.

Theorem

For any $p \ge 0$ and $\omega < p$, one has

$$\sup_{0\neq b\in \ell^p(\mathbb{Z})}\frac{1}{\|b\|_{\ell^p}^p}\sum_{\lambda\in \sigma_d(T(b))}\left(\operatorname{dist}(\lambda,[-2,2])\right)^\omega=\infty.$$

・ロト (四) (日) (日) (日) (日) (日)

STATE OF THE ART 000000

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

THE DISCRETE SCHRÖDINGER OPERATOR

Counterexamples are found among discrete Schrödinger operators

$$T(b) = J_0 + b$$

with complex potential $b \in \ell^p(\mathbb{Z})$, i.e., Jacobi operators *J* with $a_n = c_n = 1, \forall n \in \mathbb{Z}$.

Theorem

For any $p \ge 0$ and $\omega < p$, one has

$$\sup_{0\neq b\in \ell^p(\mathbb{Z})}\frac{1}{\|b\|_{\ell^p}^p}\sum_{\lambda\in \sigma_d(T(b))}\left(\operatorname{dist}(\lambda,[-2,2])\right)^\omega=\infty.$$

▶ In particular, for $\omega = p - 1/2$, the theorem confirms the conjecture of Hansmann and Katriel.

STATE OF THE ART

THE DISCRETE SCHRÖDINGER OPERATOR

Counterexamples are found among discrete Schrödinger operators

$$T(b) = J_0 + b$$

with complex potential $b \in \ell^p(\mathbb{Z})$, i.e., Jacobi operators *J* with $a_n = c_n = 1, \forall n \in \mathbb{Z}$.

Theorem

For any $p \ge 0$ and $\omega < p$, one has

$$\sup_{0\neq b\in \ell^p(\mathbb{Z})}\frac{1}{\|b\|_{\ell^p}^p}\sum_{\lambda\in \sigma_d(T(b))}\left(\operatorname{dist}(\lambda,[-2,2])\right)^\omega=\infty.$$

- ► In particular, for $\omega = p 1/2$, the theorem confirms the conjecture of Hansmann and Katriel.
- On the other hand, if $\omega \ge p$, the inequality

$$\sum_{\lambda \in \sigma_d(J)} \left(\operatorname{dist}(\lambda, [-2, 2])
ight)^\omega \leq C_p \|d\|_{\ell^p}^p$$

holds for any (possibly n.s.a.) Jacobi operator *J* (Hansmann, LMP'11).

<ロト < 同ト < 三ト < 三ト < 三ト < 回 < つ < ○</p>

THE DSO WITH RECTANGULAR BARRIER POTENTIAL AND COMPLEX COUPLING

• For $n \in \mathbb{N}$ and h > 0, define

 $T_{h,n} := J_0 + \mathrm{i} h P_n,$

where P_n is OG projection onto span{ $e_1, \ldots e_n$ }.

THE DSO WITH RECTANGULAR BARRIER POTENTIAL AND COMPLEX COUPLING

• For $n \in \mathbb{N}$ and h > 0, define

 $T_{h,n} := J_0 + \mathrm{i} h P_n,$

where P_n is OG projection onto span $\{e_1, \ldots, e_n\}$.

Analysis of σ_d(T_{h,n}) can be reformulated in an investigation of roots of polynomial equations.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

THE DSO WITH RECTANGULAR BARRIER POTENTIAL AND COMPLEX COUPLING

• For $n \in \mathbb{N}$ and h > 0, define

$$T_{h,n}:=J_0+\mathrm{i}hP_n,$$

where P_n is OG projection onto span{ $e_1, \ldots e_n$ }.

- Analysis of σ_d(T_{h,n}) can be reformulated in an investigation of roots of polynomial equations.
- ▶ By the Birman–Schwinger principle, $\lambda \notin [-2, 2]$ is an eigenvalue of $T_{n,h}$ iff

$$\det\left(1+\mathrm{i}hP_n(J_0-\lambda)^{-1}P_n\right)=0.$$

THE DSO WITH RECTANGULAR BARRIER POTENTIAL AND COMPLEX COUPLING

• For $n \in \mathbb{N}$ and h > 0, define

$$T_{h,n}:=J_0+\mathrm{i}hP_n,$$

where P_n is OG projection onto span{ $e_1, \ldots e_n$ }.

- Analysis of σ_d(T_{h,n}) can be reformulated in an investigation of roots of polynomial equations.
- ▶ By the Birman–Schwinger principle, $\lambda \notin [-2, 2]$ is an eigenvalue of $T_{n,h}$ iff

$$\det\left(1+\mathrm{i}hP_n(J_0-\lambda)^{-1}P_n\right)=0.$$

• Write $\lambda \notin [-2, 2]$ as $\lambda = k + k^{-1}$, where 0 < |k| < 1. Then

$$(J_0 - \lambda)^{-1} = \frac{k}{k^2 - 1}Q(k),$$

where Q(k) is the Laurent operator with entries $Q_{i,j}(k) = k^{|j-i|}$.

◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

INTRODUCTION	STATE OF THE ART	DISCRETE SCHRÖDINGER OPERATORS	SCHRÖDINGER OPERATORS
00	000000	000000000	0000

$$\det\left(1+\frac{\mathbf{i}kh}{k^2-1}Q_n(k)\right)=0,$$

for $Q_n(k) := P_n Q(k) P_n | \operatorname{Ran} P_n$ (Kac–Murdock–Szegö matrix).

INTRODUCTION	STATE OF THE ART	DISCRETE SCHRÖDINGER OPERATORS	SCHRÖDINGER OPERATORS
00	000000	000000000	0000

$$\det\left(1+\frac{\mathbf{i}kh}{k^2-1}Q_n(k)\right)=0,$$

for $Q_n(k) := P_n Q(k) P_n |$ Ran P_n (Kac–Murdock–Szegö matrix).

Introducing a new parameter z by equation

$$ih = k + k^{-1} - z - z^{-1}$$

the characteristic functions takes a fully explicit form

$$\det\left(1+\frac{\mathrm{i}kh}{k^2-1}Q_n(k)\right)=\frac{k^{2n}}{1-k^2}\frac{\mathrm{i}^nh^n}{(z-k)^n(1-kz)^n}\frac{z^{2n}(z-k)^2-(1-kz)^2}{z^2-1}$$

INTRODUCTION	STATE OF THE ART	DISCRETE SCHRÖDINGER OPERATORS	SCHRÖDINGER OPERATORS
00	000000	000000000	0000

$$\det\left(1+\frac{\mathbf{i}kh}{k^2-1}Q_n(k)\right)=0,$$

for $Q_n(k) := P_n Q(k) P_n | \text{Ran } P_n$ (Kac–Murdock–Szegö matrix).

Introducing a new parameter z by equation

$$ih = k + k^{-1} - z - z^{-1}$$

the characteristic functions takes a fully explicit form

$$\det\left(1+\frac{\mathrm{i}kh}{k^2-1}Q_n(k)\right) = \frac{k^{2n}}{1-k^2}\frac{\mathrm{i}^n h^n}{(z-k)^n(1-kz)^n}\frac{z^{2n}(z-k)^2-(1-kz)^2}{z^2-1}$$

• Solving $z^{2n}(z-k)^2 - (1-kz)^2 = 0$ for k = k(z) yields

$$k = \frac{z^{n+1} - 1}{z^n - z}$$
 or $k = \frac{z^{n+1} + 1}{z^n + z}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

INTRODUCTION	STATE OF THE ART	DISCRETE SCHRÖDINGER OPERATORS	SCHRÖDINGER OPERATORS
00	000000	000000000	0000

$$\det\left(1+\frac{\mathrm{i}kh}{k^2-1}Q_n(k)\right)=0,$$

for $Q_n(k) := P_n Q(k) P_n |$ Ran P_n (Kac–Murdock–Szegö matrix).

Introducing a new parameter z by equation

$$ih = k + k^{-1} - z - z^{-1}$$

the characteristic functions takes a fully explicit form

$$\det\left(1+\frac{\mathrm{i}kh}{k^2-1}Q_n(k)\right)=\frac{k^{2n}}{1-k^2}\frac{\mathrm{i}^nh^n}{(z-k)^n(1-kz)^n}\frac{z^{2n}(z-k)^2-(1-kz)^2}{z^2-1}$$

• Solving $z^{2n}(z-k)^2 - (1-kz)^2 = 0$ for k = k(z) yields

$$k = \frac{z^{n+1} - 1}{z^n - z}$$
 or $k = \frac{z^{n+1} + 1}{z^n + z}$

Plugging back...

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

STATE OF THE ART

DISCRETE SCHRÖDINGER OPERATORS

SCHRÖDINGER OPERATORS

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• ...we arrive at two equations:

$$ih\left(z^{n+1}-1\right)\left(z^{n-1}-1\right)-z^{n-2}\left(z^{2}-1\right)^{2}=0, \quad (*)$$
$$ih\left(z^{n+1}+1\right)\left(z^{n-1}+1\right)+z^{n-2}\left(z^{2}-1\right)^{2}=0, \quad (**)$$

INTRODUCTION	STATE OF THE ART	DISCRETE SCHRÖDINGER OPERATORS	Schrödinger
00	000000	0000000000	0000

...we arrive at two equations:

$$ih\left(z^{n+1}-1\right)\left(z^{n-1}-1\right)-z^{n-2}\left(z^{2}-1\right)^{2}=0,\quad(*)$$
$$ih\left(z^{n+1}+1\right)\left(z^{n-1}+1\right)+z^{n-2}\left(z^{2}-1\right)^{2}=0,\quad(**)$$

< □ > < @ > < E > < E > E のQ@

► Not all of their solutions give rise to eigenvalues, however. Most importantly, one has to take into account the requirement |k(z)| < 1.</p>

INTRODUCTION	STATE OF THE ART	DISCRETE SCHRÖDINGER OPERATORS	Sch
00	000000	000000000	00

...we arrive at two equations:

$$ih\left(z^{n+1}-1\right)\left(z^{n-1}-1\right)-z^{n-2}\left(z^{2}-1\right)^{2}=0,\quad(*)$$
$$ih\left(z^{n+1}+1\right)\left(z^{n-1}+1\right)+z^{n-2}\left(z^{2}-1\right)^{2}=0,\quad(**)$$

- ► Not all of their solutions give rise to eigenvalues, however. Most importantly, one has to take into account the requirement |k(z)| < 1.</p>
- ► In summary, we obtain:

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

INTRODUCTION OO	STATE OF THE ART 000000	DISCRETE SCHRÖDINGER OPERATORS	Schrödinger operators 0000

...we arrive at two equations:

$$ih\left(z^{n+1}-1\right)\left(z^{n-1}-1\right)-z^{n-2}\left(z^{2}-1\right)^{2}=0,\quad(*)$$
$$ih\left(z^{n+1}+1\right)\left(z^{n-1}+1\right)+z^{n-2}\left(z^{2}-1\right)^{2}=0,\quad(**)$$

- ▶ Not all of their solutions give rise to eigenvalues, however. Most importantly, one has to take into account the requirement |*k*(*z*)| < 1.
- ▶ In summary, we obtain:

Proposition

One has

$$\lambda \in \sigma_d(T_{h,n}) \quad \Longleftrightarrow \quad \lambda = \mathrm{i}h + z + z^{-1},$$

for $z \in \mathbb{C}$, |z| < 1, Im z > 0, which is either a solution of (*) or (**) satisfying the constraint $|z^{n+1} - 1| < |z^n - z|$ or $|z^{n+1} + 1| < |z^n + z|$, respectively.

NTRODUCTION	State of the art 000000	Discrete Schrödinger operators	Schrödinger operators
1.0 0.8 0.6 0.4 0.2 0.0 -1.0			
•	•	0.00	

Figure: A numerical illustration of spectrum of $T_{h,n}$ for h = 1/10 and n = 39.

1

ヘロト 人間 とく ヨン くきとう

2

€ 990

0.04

-2

TOWARDS THE PROOF OF H.-K. CONJECTURE

- Next, we put $h = h_n := n^{-2/3}$ and consider the sequence $T_n := T_{h_n,n}$.
- Fix $0 < \epsilon < 1/2$.

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

TOWARDS THE PROOF OF H.–K. CONJECTURE

- Next, we put $h = h_n := n^{-2/3}$ and consider the sequence $T_n := T_{h_n,n}$.
- Fix $0 < \epsilon < 1/2$.
- ► Then we can show that, for *n* sufficiently large, there are (1 2ε)n/2 solutions z_j of the algebraic equations (*) and (**) located in the sector

$$\epsilon \pi < \arg z_j < (1 - \epsilon)\pi,$$

and each z_j gives rise to an eigenvalue λ_j of T_n .

TOWARDS THE PROOF OF H.–K. CONJECTURE

- Next, we put $h = h_n := n^{-2/3}$ and consider the sequence $T_n := T_{h_n,n}$.
- Fix $0 < \epsilon < 1/2$.
- ► Then we can show that, for *n* sufficiently large, there are (1 2ε)n/2 solutions z_j of the algebraic equations (*) and (**) located in the sector

$$\epsilon \pi < \arg z_j < (1-\epsilon)\pi,$$

and each z_j gives rise to an eigenvalue λ_j of T_n .

Moreover, these eigenvalues have the asymptotic behavior

$$\lambda_j = 2\cos\phi_j + \mathrm{i}n^{-2/3} + O\left(\frac{\log n}{n}\right), \quad n \to \infty.$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

TOWARDS THE PROOF OF H.–K. CONJECTURE

- Next, we put $h = h_n := n^{-2/3}$ and consider the sequence $T_n := T_{h_n,n}$.
- Fix $0 < \epsilon < 1/2$.
- ► Then we can show that, for *n* sufficiently large, there are (1 2ε)n/2 solutions z_j of the algebraic equations (*) and (**) located in the sector

$$\epsilon \pi < \arg z_j < (1 - \epsilon)\pi,$$

and each z_j gives rise to an eigenvalue λ_j of T_n .

Moreover, these eigenvalues have the asymptotic behavior

$$\lambda_j = 2\cos\phi_j + \mathrm{i}n^{-2/3} + O\left(\frac{\log n}{n}\right), \quad n \to \infty.$$

It follows

dist
$$(\lambda_j, [-2, 2]) = n^{-2/3} + O\left(\frac{\log n}{n}\right), \quad n \to \infty,$$

uniformly in *j*.

INTRODUCTION 00 STATE OF THE ART

DISCRETE SCHRÖDINGER OPERATORS

SCHRÖDINGER OPERATORS 00000

A NUMERICAL ILLUSTRATION

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• For $\omega < p$ and $\epsilon < 1/4$, we have

$$\begin{split} \sum_{\lambda \in \sigma_d(T_n)} (\operatorname{dist}(\lambda, [-2, 2]))^{\omega} &\geq \frac{n}{4} \left(n^{-2/3} + O\left(\frac{\log n}{n}\right) \right)^{\omega} \\ &= \frac{n^{1-2\omega/3}}{4} \left(1 + O\left(\frac{\log n}{n^{1/3}}\right) \right), \quad n \to \infty. \end{split}$$

• For $\omega < p$ and $\epsilon < 1/4$, we have

$$\sum_{\lambda \in \sigma_d(T_n)} (\operatorname{dist}(\lambda, [-2, 2]))^{\omega} \ge \frac{n}{4} \left(n^{-2/3} + O\left(\frac{\log n}{n}\right)
ight)^{\omega}$$

= $\frac{n^{1-2\omega/3}}{4} \left(1 + O\left(\frac{\log n}{n^{1/3}}\right)
ight), \quad n o \infty.$

▶ In total, for *n* sufficiently large, we get

$$\frac{1}{n^{1-2p/3}}\sum_{\lambda\in\sigma_d(T_n)}(\operatorname{dist}(\lambda,[-2,2]))^{\omega}\geq \frac{1}{8}n^{2(p-\omega)/3},$$

which implies:

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• For $\omega < p$ and $\epsilon < 1/4$, we have

$$\begin{split} \sum_{\lambda \in \sigma_d(T_n)} (\operatorname{dist}(\lambda, [-2, 2]))^{\omega} &\geq \frac{n}{4} \left(n^{-2/3} + O\left(\frac{\log n}{n}\right) \right)^{\omega} \\ &= \frac{n^{1-2\omega/3}}{4} \left(1 + O\left(\frac{\log n}{n^{1/3}}\right) \right), \quad n \to \infty. \end{split}$$

▶ In total, for *n* sufficiently large, we get

$$\frac{1}{n^{1-2p/3}}\sum_{\lambda\in\sigma_d(T_n)}(\operatorname{dist}(\lambda,[-2,2]))^{\omega}\geq \frac{1}{8}n^{2(p-\omega)/3},$$

which implies:

For any
$$p \ge 0$$
 and $\omega < p$, one has

$$\sup_{0 \neq b \in \ell^p(\mathbb{Z})} \frac{1}{\|b\|_{\ell^p}^p} \sum_{\lambda \in \sigma_d(T(b))} (\operatorname{dist}(\lambda, [-2, 2]))^{\omega} = \infty.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

590

• For $\omega < p$ and $\epsilon < 1/4$, we have

$$\sum_{\lambda \in \sigma_d(T_n)} (\operatorname{dist}(\lambda, [-2, 2]))^{\omega} \ge \frac{n}{4} \left(n^{-2/3} + O\left(\frac{\log n}{n}\right)
ight)^{\omega}$$

= $\frac{n^{1-2\omega/3}}{4} \left(1 + O\left(\frac{\log n}{n^{1/3}}\right)
ight), \quad n o \infty.$

► In total, for *n* sufficiently large, we get

$$\frac{1}{n^{1-2p/3}}\sum_{\lambda\in\sigma_d(T_n)} (\operatorname{dist}(\lambda, [-2, 2]))^{\omega} \geq \frac{1}{8}n^{2(p-\omega)/3},$$

which implies:

For any
$$p \ge 0$$
 and $\omega < p$, one has

$$\sup_{0 \neq b \in \ell^{p}(\mathbb{Z})} \frac{1}{\|b\|_{\ell^{p}}^{p}} \sum_{\lambda \in \sigma_{d}(T(b))} (\operatorname{dist}(\lambda, [-2, 2]))^{\omega} = \infty.$$

...and the H.–K. conjecture follows (for $\omega = p - 1/2$).

TOWARDS ANSWER 2

Recall the 2nd open problem: Does the inequality

$$\sum_{\lambda\in\sigma_d(J)}\frac{\left(\operatorname{dist}(\lambda,[-2,2])\right)^p}{|\lambda^2-4|^{1/2}}\leq C_p\|d\|_{\ell^p}^p.$$

hold for general Jacobi operators *J* with $d \in \ell^p(\mathbb{Z})$?

TOWARDS ANSWER 2

Recall the 2nd open problem: Does the inequality

$$\sum_{\lambda\in\sigma_d(J)}\frac{\left(\operatorname{dist}(\lambda,[-2,2])\right)^p}{|\lambda^2-4|^{1/2}}\leq C_p\|d\|_{\ell^p}^p.$$

hold for general Jacobi operators *J* with $d \in \ell^p(\mathbb{Z})$?

Theorem

For any $p \ge 1$ and $\sigma \ge 1/2$, one has

$$\sup_{0\neq b\in \ell^p(\mathbb{Z})}\frac{1}{\|b\|_{\ell^p}^p}\sum_{\lambda\in \sigma_d(T(b))}\frac{(\operatorname{dist}(\lambda,[-2,2]))^p}{|\lambda^2-4|^\sigma}=\infty.$$

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - のへで

TOWARDS ANSWER 2

Recall the 2nd open problem: Does the inequality

$$\sum_{\lambda \in \sigma_d(J)} \frac{\left(\operatorname{dist}(\lambda, [-2, 2])\right)^p}{|\lambda^2 - 4|^{1/2}} \leq C_p \|d\|_{\ell^p}^p.$$

hold for general Jacobi operators *J* with $d \in \ell^p(\mathbb{Z})$?

Theorem

For any $p \ge 1$ and $\sigma \ge 1/2$, one has

$$\sup_{0\neq b\in \ell^p(\mathbb{Z})}\frac{1}{\|b\|_{\ell^p}^p}\sum_{\lambda\in \sigma_d(T(b))}\frac{\left(\operatorname{dist}(\lambda,[-2,2])\right)^p}{|\lambda^2-4|^\sigma}=\infty.$$

• The same sequence T_n as before can be used here but the analysis is more delicate...

<□> < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

< □ > < @ > < E > < E > E のQ@

Asymptotic analysis yields

$$\lambda_j = 2\cos\phi_j + \mathrm{i}n^{-2/3} + O\left(\frac{\log n}{n}\right), \quad n \to \infty,$$

with

$$\phi_j = \frac{\pi(4j-1)}{2n} + O\left(\frac{1}{n^{3/2}}\right), \quad n \to \infty,$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Asymptotic analysis yields

$$\lambda_j = 2\cos\phi_j + \mathrm{i}n^{-2/3} + O\left(\frac{\log n}{n}\right), \quad n \to \infty,$$

with

$$\phi_j = \frac{\pi(4j-1)}{2n} + O\left(\frac{1}{n^{3/2}}\right), \quad n \to \infty,$$

► The range for indices *j* is determined by

$$\epsilon \pi \le \frac{\pi (4j-1)}{2n} \le (1-\epsilon)\pi$$

for arbitrarily small $\epsilon > 0$.

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

Asymptotic analysis yields

$$\lambda_j = 2\cos\phi_j + \mathrm{i}n^{-2/3} + O\left(\frac{\log n}{n}\right), \quad n \to \infty,$$

with

$$\phi_j = \frac{\pi(4j-1)}{2n} + O\left(\frac{1}{n^{3/2}}\right), \quad n \to \infty,$$

► The range for indices *j* is determined by

$$\epsilon \pi \le \frac{\pi (4j-1)}{2n} \le (1-\epsilon)\pi$$

for arbitrarily small $\epsilon > 0$.

Particularly, it follows that

$$dist(\lambda_j, [-2, 2]) \ge \frac{1}{2}n^{-2/3}$$

for all *j* and *n* sufficiently large.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

► Then

$$\begin{split} \liminf_{n \to \infty} n^{2p/3-1} \sum_{\lambda \in \sigma_d(T_n)} \frac{\left(\operatorname{dist}(\lambda, [-2, 2])\right)^p}{|\lambda^2 - 4|^{\sigma}} \geq \liminf_{n \to \infty} \frac{1}{n} \sum_j \frac{1}{|\lambda_j^2 - 4|^{\sigma}} \\ &= C_{\sigma} \int_{\epsilon \pi}^{(1-\epsilon)\pi} \frac{\mathrm{d}x}{(4 - 4\cos^2 x)^{\sigma}}, \end{split}$$

< □ > < @ > < E > < E > E のQ@

Then

$$\begin{split} \liminf_{n \to \infty} n^{2p/3-1} \sum_{\lambda \in \sigma_d(T_n)} \frac{\left(\operatorname{dist}(\lambda, [-2, 2])\right)^p}{|\lambda^2 - 4|^{\sigma}} \geq \liminf_{n \to \infty} \frac{1}{n} \sum_j \frac{1}{|\lambda_j^2 - 4|^{\sigma}} \\ &= C_{\sigma} \int_{\epsilon \pi}^{(1-\epsilon)\pi} \frac{\mathrm{d}x}{(4 - 4\cos^2 x)^{\sigma}}, \end{split}$$

Since

$$\int_{\epsilon\pi}^{(1-\epsilon)\pi} \frac{\mathrm{d}x}{(1-\cos^2 x)^{\sigma}} \ge 2 \int_{\epsilon\pi}^{1} \frac{\mathrm{d}x}{x^{2\sigma}} = \begin{cases} \frac{2}{2\sigma-1} \left((\pi\epsilon)^{1-2\sigma} - 1 \right), & \text{if } \sigma > \frac{1}{2}, \\ -2\log(\pi\epsilon), & \text{if } \sigma = \frac{1}{2}. \end{cases}$$

and $\epsilon > 0$ can be arbitrarily small, one finally gets

Then

$$\begin{split} \liminf_{n \to \infty} n^{2p/3-1} \sum_{\lambda \in \sigma_d(T_n)} \frac{\left(\operatorname{dist}(\lambda, [-2, 2])\right)^p}{|\lambda^2 - 4|^{\sigma}} \geq \liminf_{n \to \infty} \frac{1}{n} \sum_j \frac{1}{|\lambda_j^2 - 4|^{\sigma}} \\ &= C_{\sigma} \int_{\epsilon \pi}^{(1-\epsilon)\pi} \frac{\mathrm{d}x}{(4 - 4\cos^2 x)^{\sigma}}, \end{split}$$

Since

$$\int_{\epsilon\pi}^{(1-\epsilon)\pi} \frac{\mathrm{d}x}{(1-\cos^2 x)^{\sigma}} \ge 2 \int_{\epsilon\pi}^{1} \frac{\mathrm{d}x}{x^{2\sigma}} = \begin{cases} \frac{2}{2\sigma-1} \left((\pi\epsilon)^{1-2\sigma} - 1 \right), & \text{if } \sigma > \frac{1}{2}, \\ -2\log(\pi\epsilon), & \text{if } \sigma = \frac{1}{2}. \end{cases}$$

and $\epsilon > 0$ can be arbitrarily small, one finally gets

$$\lim_{n\to\infty} n^{2p/3-1} \sum_{\lambda\in\sigma_d(T_n)} \frac{\left(\operatorname{dist}(\lambda, [-2, 2])\right)^p}{|\lambda^2 - 4|^{\sigma}} = \infty,$$

for all $\sigma \geq 1/2$.

< □ > < @ > < E > < E > E のQ@

INTRODUCTION	
00	

LIEB-THIRRING INEQUALITIES FOR S.A. SCHRÖDINGER OPERATORS

• Consider the Schrödinger operator $H := -\Delta + V$ on $L^2(\mathbb{R}^d)$ with $V \in L^p(\mathbb{R}^d)$, where

 $\begin{array}{ll} p \geq 1, & \text{if } d = 1, \\ p > 1, & \text{if } d = 2, \\ p \geq d/2, & \text{if } d \geq 3. \end{array}$

INTRODUCTION
00

LIEB-THIRRING INEQUALITIES FOR S.A. SCHRÖDINGER OPERATORS

• Consider the Schrödinger operator $H := -\Delta + V$ on $L^2(\mathbb{R}^d)$ with $V \in L^p(\mathbb{R}^d)$, where

$$\begin{array}{ll} p \geq 1, & \text{if } d = 1, \\ p > 1, & \text{if } d = 2, \\ p \geq d/2, & \text{if } d \geq 3. \end{array}$$

• Then
$$\sigma(H) = \sigma_d(H) \cup [0, \infty)$$
.

INTRODUCTION
00

LIEB-THIRRING INEQUALITIES FOR S.A. SCHRÖDINGER OPERATORS

• Consider the Schrödinger operator $H := -\Delta + V$ on $L^2(\mathbb{R}^d)$ with $V \in L^p(\mathbb{R}^d)$, where

 $\begin{array}{ll} p \geq 1, & \text{if } d = 1, \\ p > 1, & \text{if } d = 2, \\ p \geq d/2, & \text{if } d \geq 3. \end{array}$

• Then
$$\sigma(H) = \sigma_d(H) \cup [0, \infty)$$
.

Theorem (Lieb–Thirring)

Suppose *V* is real-valued and satisfies the above conditions. Then

$$\sum_{\Lambda \in \sigma_d(H)} |\lambda|^{p-\frac{d}{2}} \le C_{p,d} \|V\|_{L^p}^p.$$

Introduction 00	State of the art 000000	Discrete Schrödinger operators 0000000000	Schrödinger operators ○●OO

► Equivalent formulation:

$$\sum_{\lambda \in \sigma_d(H)} \frac{\left(\operatorname{dist}(\lambda, [0, \infty))^p \right)}{|\lambda|^{d/2}} \leq C_{p, d} \|V\|_{L^p}^p.$$

Introduction OO	STATE OF THE ART	Discrete Schrödinger operators 00000000000	SCHRÖDINGER OPERATORS

Equivalent formulation:

$$\sum_{\lambda \in \sigma_d(H)} \frac{\left(\operatorname{dist}(\lambda, [0, \infty))^p \right)}{|\lambda|^{d/2}} \leq C_{p, d} \|V\|_{L^p}^p.$$

< □ > < @ > < E > < E > E のQ@

Question 3 (Demuth-Hansmann-Katriel, IEOT'13)

Does the above inequality remain valid for complex-valued potentials $V \in L^p(\mathbb{R}^d)$?

Introduction	STATE OF THE ART	Discrete Schrödinger operators	Schrödinger operators
OO		00000000000	○●OO

Equivalent formulation:

$$\sum_{\lambda \in \sigma_d(H)} \frac{\left(\operatorname{dist}(\lambda, [0, \infty))^p \right)}{|\lambda|^{d/2}} \leq C_{p, d} \|V\|_{L^p}^p.$$

Question 3 (Demuth-Hansmann-Katriel, IEOT'13)

Does the above inequality remain valid for complex-valued potentials $V \in L^p(\mathbb{R}^d)$?

(Partial) Answer 3

1. If d = 1, then NO.

◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Introduction OO	STATE OF THE ART 000000	Discrete Schrödinger operators	SCHRÖDINGER OPERATORS

Equivalent formulation:

$$\sum_{\lambda \in \sigma_d(H)} \frac{\left(\operatorname{dist}(\lambda, [0, \infty))^p \right)}{|\lambda|^{d/2}} \leq C_{p, d} \|V\|_{L^p}^p.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Question 3 (Demuth-Hansmann-Katriel, IEOT'13)

Does the above inequality remain valid for complex-valued potentials $V \in L^p(\mathbb{R}^d)$?

(Partial) Answer 3

- 1. If d = 1, then NO.
- 2. If $d \ge 2$, then UNKNOWN work in progress.

Answer 3 in dimension 1

Theorem

Let d = 1. For all $p \ge 1$ and $\sigma \ge 1/2$, one has

$$\sup_{0 \neq V \in L^p(\mathbb{R})} \frac{1}{\|V\|_{L^p}^p} \sum_{\lambda \in \sigma_d(H)} \frac{\left(\operatorname{dist}(\lambda, [0, \infty))^p \right.}{|\lambda|^{\sigma}} = \infty.$$

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - のへで

Answer 3 in dimension 1

Theorem

Let d = 1. For all $p \ge 1$ and $\sigma \ge 1/2$, one has

$$\sup_{0 \neq V \in L^p(\mathbb{R})} \frac{1}{\|V\|_{L^p}^p} \sum_{\lambda \in \sigma_d(H)} \frac{\left(\operatorname{dist}(\lambda, [0, \infty))^p \right.}{|\lambda|^\sigma} = \infty.$$

In analogy to the discrete case, the operator family that demonstrates the theorem is

$$H_h:=-\frac{\mathrm{d}^2}{\mathrm{d}x^2}+\frac{\mathrm{i}}{h}\chi_{[-h,h]},\quad h>0.$$

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - のへで

Answer 3 in dimension 1

Theorem

Let d = 1. For all $p \ge 1$ and $\sigma \ge 1/2$, one has

$$\sup_{0\neq V\in L^p(\mathbb{R})}\frac{1}{\|V\|_{L^p}^p}\sum_{\lambda\in\sigma_d(H)}\frac{\left(\mathrm{dist}(\lambda,[0,\infty)\right)^p}{|\lambda|^\sigma}=\infty.$$

In analogy to the discrete case, the operator family that demonstrates the theorem is

$$H_h:=-\frac{\mathrm{d}^2}{\mathrm{d}x^2}+\frac{\mathrm{i}}{h}\chi_{[-h,h]},\quad h>0.$$

 The problem can be reduced to a study of asymptotic properties of discrete eigenvalues of

$$\tilde{H}_h := -\frac{\mathrm{d}^2}{\mathrm{d}x^2} + \mathrm{i}h\chi_{[-1,1]},$$

for $h \to \infty$.

Introduction	STATE OF THE ART	Discrete Schrödinger operators	Schrödinger operators
OO	000000	00000000000	○OO●

Based on:

S. Bögli, F. Š.: On Lieb-Thirring inequalities for one-dimensional non-self-adjoint Jacobi and Schrödinger operators, J. Spectr. Theory (to appear), arXiv:2004.09794.

Thank you!