On Lieb-Thirring inequlities for non-self-adjoint Jacobi matrices and Schrödinger operators

František Štampach
Czech Technical University in Prague
jointly with Sabine Bögli
Durham University

Mathematical aspects of the physics with non-self-adjoint operators:
10 years after, actually, 11 years after

$$
\text { Mareh 23-27, } 2020
$$

December 7-11, 2020
February 1-5, 2021 (Hurray!)

TABLE OF CONTENTS

InTRODUCTION

State of the art

DIScrete Schrödinger operators
Rectangular barrier potential with complex coupling Answer 1
Answer 2

SChRÖDINGER OPERATORS
Answer 3

THE JACOBI OPERATOR

- Let $\left\{a_{n}\right\}_{n \in \mathbb{Z}},\left\{b_{n}\right\}_{n \in \mathbb{Z}},\left\{c_{n}\right\}_{n \in \mathbb{Z}}$ be given bounded complex sequences.

THE JACOBI OPERATOR

- Let $\left\{a_{n}\right\}_{n \in \mathbb{Z}},\left\{b_{n}\right\}_{n \in \mathbb{Z}},\left\{c_{n}\right\}_{n \in \mathbb{Z}}$ be given bounded complex sequences.
- Then

$$
J:=\left(\begin{array}{ccccccc}
\ddots & \ddots & \ddots & & & & \\
& a_{-1} & b_{0} & c_{0} & & & \\
& & a_{0} & b_{1} & c_{1} & & \\
& & & a_{1} & b_{2} & c_{2} & \\
& & & & \ddots & \ddots & \ddots
\end{array}\right)
$$

determines a bounded Jacobi operator on $\ell^{2}(\mathbb{Z})$.

THE JACOBI OPERATOR

- Let $\left\{a_{n}\right\}_{n \in \mathbb{Z}},\left\{b_{n}\right\}_{n \in \mathbb{Z}},\left\{c_{n}\right\}_{n \in \mathbb{Z}}$ be given bounded complex sequences.
- Then

$$
J:=\left(\begin{array}{ccccccc}
\ddots & \ddots & \ddots & & & & \\
& a_{-1} & b_{0} & c_{0} & & & \\
& & a_{0} & b_{1} & c_{1} & & \\
& & & a_{1} & b_{2} & c_{2} & \\
& & & & \ddots & \ddots & \ddots
\end{array}\right)
$$

determines a bounded Jacobi operator on $\ell^{2}(\mathbb{Z})$.

- We denote

$$
d_{n}:=\max \left\{\left|a_{n-1}-1\right|,\left|a_{n}-1\right|,\left|b_{n}\right|,\left|c_{n-1}-1\right|,\left|c_{n}-1\right|\right\}, \quad n \in \mathbb{Z} .
$$

THE JACOBI OPERATOR

- Let $\left\{a_{n}\right\}_{n \in \mathbb{Z}},\left\{b_{n}\right\}_{n \in \mathbb{Z}},\left\{c_{n}\right\}_{n \in \mathbb{Z}}$ be given bounded complex sequences.
- Then

$$
J:=\left(\begin{array}{ccccccc}
\ddots & \ddots & \ddots & & & & \\
& a_{-1} & b_{0} & c_{0} & & & \\
& & a_{0} & b_{1} & c_{1} & & \\
& & & a_{1} & b_{2} & c_{2} & \\
& & & & \ddots & \ddots & \ddots
\end{array}\right)
$$

determines a bounded Jacobi operator on $\ell^{2}(\mathbb{Z})$.

- We denote

$$
d_{n}:=\max \left\{\left|a_{n-1}-1\right|,\left|a_{n}-1\right|,\left|b_{n}\right|,\left|c_{n-1}-1\right|,\left|c_{n}-1\right|\right\}, \quad n \in \mathbb{Z}
$$

- If $\lim _{n \rightarrow \pm \infty} d_{n}=0$, then

$$
\sigma_{e s s}(J)=[-2,2] \quad \text { and } \quad \sigma(J)=[-2,2] \cup \sigma_{d}(J)
$$

Lieb-THIRRING INEQUALITIES FOR S.A. JACOBI OPERATORS

Theorem (Hundertmark-Simon, JAT'02)
Suppose $a_{n}=c_{n}>0$ and $b_{n} \in \mathbb{R}$.

Lieb-THIRRING INEQUALITIES FOR S.A. JACOBI OPERATORS

Theorem (Hundertmark-Simon, JAT'02)
Suppose $a_{n}=c_{n}>0$ and $b_{n} \in \mathbb{R}$. If $d \in \ell^{p}(\mathbb{Z})$, for $p \geq 1$, then

$$
\sum_{\lambda \in \sigma_{d}(J) \cap(-\infty,-2)}|\lambda+2|^{p-1 / 2}+\sum_{\lambda \in \sigma_{d}(J) \cap(2, \infty)}|\lambda-2|^{p-1 / 2} \leq C_{p}\|d\|_{\ell}^{p},
$$

where C_{p} is an explicit constant independent of J.

Lieb-THIRRING INEQUALITIES FOR S.A. JACOBI OPERATORS

Theorem (Hundertmark-Simon, JAT'02)

Suppose $a_{n}=c_{n}>0$ and $b_{n} \in \mathbb{R}$. If $d \in \ell^{p}(\mathbb{Z})$, for $p \geq 1$, then

$$
\sum_{\lambda \in \sigma_{d}(J) \cap(-\infty,-2)}|\lambda+2|^{p-1 / 2}+\sum_{\lambda \in \sigma_{d}(J) \cap(2, \infty)}|\lambda-2|^{p-1 / 2} \leq C_{p}\|d\|_{\ell}^{p},
$$

where C_{p} is an explicit constant independent of J.

- Equivalently,

$$
\sum_{\lambda \in \sigma_{d}(J)}(\operatorname{dist}(\lambda,[-2,2]))^{p-1 / 2} \leq C_{p}\|d\|_{\ell^{p}}^{p}
$$

Lieb-THIRRING INEQUALITIES FOR S.A. JACOBI OPERATORS

Theorem (Hundertmark-Simon, JAT'02)

Suppose $a_{n}=c_{n}>0$ and $b_{n} \in \mathbb{R}$. If $d \in \ell^{p}(\mathbb{Z})$, for $p \geq 1$, then

$$
\sum_{\lambda \in \sigma_{d}(J) \cap(-\infty,-2)}|\lambda+2|^{p-1 / 2}+\sum_{\lambda \in \sigma_{d}(J) \cap(2, \infty)}|\lambda-2|^{p-1 / 2} \leq C_{p}\|d\|_{\ell^{p}}^{p},
$$

where C_{p} is an explicit constant independent of J.

- Equivalently,

$$
\sum_{\lambda \in \sigma_{d}(J)}(\operatorname{dist}(\lambda,[-2,2]))^{p-1 / 2} \leq C_{p}\|d\|_{\ell^{p}}^{p} .
$$

Question 1

Does the above inequality hold true for general (possibly n.s.a.) Jacobi operators with $d \in \ell^{p}(\mathbb{Z})$?

The conjecture of Hansmann and Katriel

Conjecture (Hansmann-Katriel, CAOT'11)
No.

The conjecture of Hansmann and Katriel

Conjecture (Hansmann-Katriel, CAOT'11)

The Lieb-Thirring inequality

$$
\sum_{\lambda \in \sigma_{d}(J)}(\operatorname{dist}(\lambda,[-2,2]))^{p-1 / 2} \leq C_{p}\|d\|_{\ell^{p}}^{p}
$$

does not extend to general Jacobi operators with $d \in \ell^{p}(\mathbb{Z})$.

The conjecture of Hansmann and Katriel

Conjecture (Hansmann-Katriel, CAOT'11)

The Lieb-Thirring inequality

$$
\sum_{\lambda \in \sigma_{d}(J)}(\operatorname{dist}(\lambda,[-2,2]))^{p-1 / 2} \leq C_{p}\|d\|_{\ell^{p}}^{p}
$$

does not extend to general Jacobi operators with $d \in \ell^{p}(\mathbb{Z})$.

Answer 1

True.

Further attempts to find an admissible extension

- Recall the H.-S. result for s.a. Jacobi operators:

$$
\sum_{\lambda \in \sigma_{d}(J) \cap(-\infty,-2)}|\lambda+2|^{p-1 / 2}+\sum_{\lambda \in \sigma_{d}(J) \cap(2, \infty)}|\lambda-2|^{p-1 / 2} \leq C_{p}\|d\|_{\ell^{p}}^{p},
$$

FURTHER ATTEMPTS TO FIND AN ADMISSIBLE EXTENSION

- Recall the H.-S. result for s.a. Jacobi operators:

$$
\sum_{\lambda \in \sigma_{d}(J) \cap(-\infty,-2)}|\lambda+2|^{p-1 / 2}+\sum_{\lambda \in \sigma_{d}(J) \cap(2, \infty)}|\lambda-2|^{p-1 / 2} \leq C_{p}\|d\|_{\ell^{p}}^{p}
$$

- Using the observation

$$
\frac{\operatorname{dist}(\lambda,[-2,2])^{p}}{\left|\lambda^{2}-4\right|^{1 / 2}} \leq \frac{1}{2} \begin{cases}|\lambda-2|^{p-1 / 2}, & \text { if } \lambda>2 \\ |\lambda+2|^{p-1 / 2}, & \text { if } \lambda<-2\end{cases}
$$

FURTHER ATTEMPTS TO FIND AN ADMISSIBLE EXTENSION

- Recall the H.-S. result for s.a. Jacobi operators:

$$
\sum_{\lambda \in \sigma_{d}(J) \cap(-\infty,-2)}|\lambda+2|^{p-1 / 2}+\sum_{\lambda \in \sigma_{d}(J) \cap(2, \infty)}|\lambda-2|^{p-1 / 2} \leq C_{p}\|d\|_{\ell}^{p},
$$

- Using the observation

$$
\frac{\operatorname{dist}(\lambda,[-2,2])^{p}}{\left|\lambda^{2}-4\right|^{1 / 2}} \leq \frac{1}{2} \begin{cases}|\lambda-2|^{p-1 / 2}, & \text { if } \lambda>2 \\ |\lambda+2|^{p-1 / 2}, & \text { if } \lambda<-2\end{cases}
$$

the H.-S. result implies

$$
\sum_{\lambda \in \sigma_{d}(J)} \frac{(\operatorname{dist}(\lambda,[-2,2]))^{p}}{\left|\lambda^{2}-4\right|^{1 / 2}} \leq C_{p}\|d\|_{\ell p}^{p}
$$

Further attempts to find an admissible extension

- Recall the H.-S. result for s.a. Jacobi operators:

$$
\sum_{\lambda \in \sigma_{d}(J) \cap(-\infty,-2)}|\lambda+2|^{p-1 / 2}+\sum_{\lambda \in \sigma_{d}(J) \cap(2, \infty)}|\lambda-2|^{p-1 / 2} \leq C_{p}\|d\|_{\ell^{p}}^{p},
$$

- Using the observation

$$
\frac{\operatorname{dist}(\lambda,[-2,2])^{p}}{\left|\lambda^{2}-4\right|^{1 / 2}} \leq \frac{1}{2} \begin{cases}|\lambda-2|^{p-1 / 2}, & \text { if } \lambda>2 \\ |\lambda+2|^{p-1 / 2}, & \text { if } \lambda<-2\end{cases}
$$

the H.-S. result implies

$$
\sum_{\lambda \in \sigma_{d}(J)} \frac{(\operatorname{dist}(\lambda,[-2,2]))^{p}}{\left|\lambda^{2}-4\right|^{1 / 2}} \leq C_{p}\|d\|_{\ell p}^{p} .
$$

- This is already very close to what was proven by Hansmann and Katriel for general Jacobi operators...

Lieb-Thirring ineq. FOR n.S.a. Jacobi operators

Theorem (Hansmann-Katriel, CAOT'11)

Suppose $\tau \in(0,1)$ and $d \in \ell^{p}(\mathbb{Z})$ with $p \geq 1$. Then

$$
\sum_{\lambda \in \sigma_{d}(J)} \frac{(\operatorname{dist}(\lambda,[-2,2]))^{p+\tau}}{\left|\lambda^{2}-4\right|^{1 / 2}} \leq C_{p, \tau}\|d\|_{\ell p}^{p}, \quad \text { if } p>1
$$

and

$$
\sum_{\lambda \in \sigma_{d}(J)} \frac{(\operatorname{dist}(\lambda,[-2,2]))^{1+\tau}}{\left|\lambda^{2}-4\right|^{1 / 2+\tau / 4}} \leq C_{\tau}\|d\|_{\ell^{1}}, \quad \text { if } p=1
$$

Lieb-Thirring ineq. FOR n.S.a. Jacobi operators

Theorem (Hansmann-Katriel, CAOT'11)

Suppose $\tau \in(0,1)$ and $d \in \ell^{p}(\mathbb{Z})$ with $p \geq 1$. Then

$$
\sum_{\lambda \in \sigma_{d}(J)} \frac{(\operatorname{dist}(\lambda,[-2,2]))^{p+\tau}}{\left|\lambda^{2}-4\right|^{1 / 2}} \leq C_{p, \tau}\|d\|_{\ell p}^{p}, \quad \text { if } p>1
$$

and

$$
\sum_{\lambda \in \sigma_{d}(J)} \frac{(\operatorname{dist}(\lambda,[-2,2]))^{1+\tau}}{\left|\lambda^{2}-4\right|^{1 / 2+\tau / 4}} \leq C_{\tau}\|d\|_{\ell^{1}}, \quad \text { if } p=1
$$

- In the s.a. case, the above inequalities hold true also if $\tau=0$.

Lieb-Thirring ineq. FOR N.S.A. Jacobi operators

Theorem (Hansmann-Katriel, CAOT'11)

Suppose $\tau \in(0,1)$ and $d \in \ell^{p}(\mathbb{Z})$ with $p \geq 1$. Then

$$
\sum_{\lambda \in \sigma_{d}(J)} \frac{(\operatorname{dist}(\lambda,[-2,2]))^{p+\tau}}{\left|\lambda^{2}-4\right|^{1 / 2}} \leq C_{p, \tau}\|d\|_{\ell p}^{p}, \quad \text { if } p>1
$$

and

$$
\sum_{\lambda \in \sigma_{d}(J)} \frac{(\operatorname{dist}(\lambda,[-2,2]))^{1+\tau}}{\left|\lambda^{2}-4\right|^{1 / 2+\tau / 4}} \leq C_{\tau}\|d\|_{\ell^{1}}, \quad \text { if } p=1
$$

- In the s.a. case, the above inequalities hold true also if $\tau=0$.

Question 2

Does the above inequalities remain valid for $\tau=0$ and general Jacobi operators with $d \in \ell^{p}(\mathbb{Z})$?

Answer 2

No.

Answer 2

The Lieb-Thirring inequality

$$
\sum_{\lambda \in \sigma_{d}(J)} \frac{(\operatorname{dist}(\lambda,[-2,2]))^{p}}{\left|\lambda^{2}-4\right|^{1 / 2}} \leq C_{p}\|d\|_{\ell^{p}}^{p} .
$$

does not extend to general Jacobi operators with $d \in \ell^{p}(\mathbb{Z})$.

THE DISCRETE SCHRÖDINGER OPERATOR

- Counterexamples are found among discrete Schrödinger operators

$$
T(b)=J_{0}+b
$$

with complex potential $b \in \ell^{p}(\mathbb{Z})$, i.e., Jacobi operators J with $a_{n}=c_{n}=1, \forall n \in \mathbb{Z}$.

THE DISCRETE SCHRÖDINGER OPERATOR

- Counterexamples are found among discrete Schrödinger operators

$$
T(b)=J_{0}+b
$$

with complex potential $b \in \ell^{p}(\mathbb{Z})$, i.e., Jacobi operators J with $a_{n}=c_{n}=1, \forall n \in \mathbb{Z}$.

Theorem

For any $p \geq 0$ and $\omega<p$, one has

$$
\sup _{0 \neq b \in \ell^{p}(\mathbb{Z})} \frac{1}{\|b\|_{\ell^{p}}^{p}} \sum_{\lambda \in \sigma_{d}(T(b))}(\operatorname{dist}(\lambda,[-2,2]))^{\omega}=\infty .
$$

The discrete Schrödinger operator

- Counterexamples are found among discrete Schrödinger operators

$$
T(b)=J_{0}+b
$$

with complex potential $b \in \ell^{p}(\mathbb{Z})$, i.e., Jacobi operators J with $a_{n}=c_{n}=1, \forall n \in \mathbb{Z}$.

Theorem

For any $p \geq 0$ and $\omega<p$, one has

$$
\sup _{0 \neq b \in \ell^{p}(\mathbb{Z})} \frac{1}{\|b\|_{\ell^{p}}^{p}} \sum_{\lambda \in \sigma_{d}(T(b))}(\operatorname{dist}(\lambda,[-2,2]))^{\omega}=\infty .
$$

- In particular, for $\omega=p-1 / 2$, the theorem confirms the conjecture of Hansmann and Katriel.

The discrete Schrödinger operator

- Counterexamples are found among discrete Schrödinger operators

$$
T(b)=J_{0}+b
$$

with complex potential $b \in \ell^{p}(\mathbb{Z})$, i.e., Jacobi operators J with $a_{n}=c_{n}=1, \forall n \in \mathbb{Z}$.

Theorem

For any $p \geq 0$ and $\omega<p$, one has

$$
\sup _{0 \neq b \in \ell^{p}(\mathbb{Z})} \frac{1}{\|b\|_{\ell^{p}}^{p}} \sum_{\lambda \in \sigma_{d}(T(b))}(\operatorname{dist}(\lambda,[-2,2]))^{\omega}=\infty .
$$

- In particular, for $\omega=p-1 / 2$, the theorem confirms the conjecture of Hansmann and Katriel.
- On the other hand, if $\omega \geq p$, the inequality

$$
\sum_{\lambda \in \sigma_{d}(J)}(\operatorname{dist}(\lambda,[-2,2]))^{\omega} \leq C_{p}\|d\|_{\ell^{p}}^{p}
$$

holds for any (possibly n.s.a.) Jacobi operator J (Hansmann, LMP'11).

THE DSO WITH RECTANGULAR BARRIER POTENTIAL AND COMPLEX COUPLING

- For $n \in \mathbb{N}$ and $h>0$, define

$$
T_{h, n}:=J_{0}+\mathrm{i} h P_{n},
$$

where P_{n} is OG projection onto $\operatorname{span}\left\{e_{1}, \ldots e_{n}\right\}$.

THE DSO WITH RECTANGULAR BARRIER POTENTIAL AND COMPLEX COUPLING

- For $n \in \mathbb{N}$ and $h>0$, define

$$
T_{h, n}:=J_{0}+\mathrm{i} h P_{n},
$$

where P_{n} is OG projection onto $\operatorname{span}\left\{e_{1}, \ldots e_{n}\right\}$.

- Analysis of $\sigma_{d}\left(T_{h, n}\right)$ can be reformulated in an investigation of roots of polynomial equations.

THE DSO WITH RECTANGULAR BARRIER POTENTIAL AND COMPLEX COUPLING

- For $n \in \mathbb{N}$ and $h>0$, define

$$
T_{h, n}:=J_{0}+\mathrm{i} h P_{n}
$$

where P_{n} is OG projection onto span $\left\{e_{1}, \ldots e_{n}\right\}$.

- Analysis of $\sigma_{d}\left(T_{h, n}\right)$ can be reformulated in an investigation of roots of polynomial equations.
- By the Birman-Schwinger principle, $\lambda \notin[-2,2]$ is an eigenvalue of $T_{n, h}$ iff

$$
\operatorname{det}\left(1+\mathrm{i} h P_{n}\left(J_{0}-\lambda\right)^{-1} P_{n}\right)=0
$$

THE DSO WITH RECTANGULAR BARRIER POTENTIAL AND COMPLEX COUPLING

- For $n \in \mathbb{N}$ and $h>0$, define

$$
T_{h, n}:=J_{0}+\mathrm{i} h P_{n}
$$

where P_{n} is OG projection onto span $\left\{e_{1}, \ldots e_{n}\right\}$.

- Analysis of $\sigma_{d}\left(T_{h, n}\right)$ can be reformulated in an investigation of roots of polynomial equations.
- By the Birman-Schwinger principle, $\lambda \notin[-2,2]$ is an eigenvalue of $T_{n, h}$ iff

$$
\operatorname{det}\left(1+\mathrm{i} h P_{n}\left(J_{0}-\lambda\right)^{-1} P_{n}\right)=0
$$

- Write $\lambda \notin[-2,2]$ as $\lambda=k+k^{-1}$, where $0<|k|<1$. Then

$$
\left(J_{0}-\lambda\right)^{-1}=\frac{k}{k^{2}-1} Q(k)
$$

where $Q(k)$ is the Laurent operator with entries $Q_{i, j}(k)=k^{|j-i|}$.

- We are led to the characteristic equation

$$
\operatorname{det}\left(1+\frac{\mathrm{i} k h}{k^{2}-1} Q_{n}(k)\right)=0,
$$

for $Q_{n}(k):=P_{n} Q(k) P_{n} \upharpoonleft \operatorname{Ran} P_{n}$ (Kac-Murdock-Szegö matrix).

- We are led to the characteristic equation

$$
\operatorname{det}\left(1+\frac{\mathrm{i} k h}{k^{2}-1} Q_{n}(k)\right)=0,
$$

for $Q_{n}(k):=P_{n} Q(k) P_{n} \upharpoonleft \operatorname{Ran} P_{n}$ (Kac-Murdock-Szegö matrix).

- Introducing a new parameter z by equation

$$
\mathrm{i} h=k+k^{-1}-z-z^{-1}
$$

the characteristic functions takes a fully explicit form
$\operatorname{det}\left(1+\frac{\mathrm{i} k h}{k^{2}-1} Q_{n}(k)\right)=\frac{k^{2 n}}{1-k^{2}} \frac{\mathrm{i}^{n} h^{n}}{(z-k)^{n}(1-k z)^{n}} \frac{z^{2 n}(z-k)^{2}-(1-k z)^{2}}{z^{2}-1}$.

- We are led to the characteristic equation

$$
\operatorname{det}\left(1+\frac{\mathrm{i} k h}{k^{2}-1} Q_{n}(k)\right)=0,
$$

for $Q_{n}(k):=P_{n} Q(k) P_{n} \upharpoonleft \operatorname{Ran} P_{n}$ (Kac-Murdock-Szegö matrix).

- Introducing a new parameter z by equation

$$
\mathrm{i} h=k+k^{-1}-z-z^{-1}
$$

the characteristic functions takes a fully explicit form
$\operatorname{det}\left(1+\frac{\mathrm{i} k h}{k^{2}-1} Q_{n}(k)\right)=\frac{k^{2 n}}{1-k^{2}} \frac{\mathrm{i}^{n} h^{n}}{(z-k)^{n}(1-k z)^{n}} \frac{z^{2 n}(z-k)^{2}-(1-k z)^{2}}{z^{2}-1}$.

- Solving $z^{2 n}(z-k)^{2}-(1-k z)^{2}=0$ for $k=k(z)$ yields

$$
k=\frac{z^{n+1}-1}{z^{n}-z} \quad \text { or } \quad k=\frac{z^{n+1}+1}{z^{n}+z} .
$$

- We are led to the characteristic equation

$$
\operatorname{det}\left(1+\frac{\mathrm{i} k h}{k^{2}-1} Q_{n}(k)\right)=0,
$$

for $Q_{n}(k):=P_{n} Q(k) P_{n} \upharpoonleft \operatorname{Ran} P_{n}$ (Kac-Murdock-Szegö matrix).

- Introducing a new parameter z by equation

$$
\mathrm{i} h=k+k^{-1}-z-z^{-1}
$$

the characteristic functions takes a fully explicit form
$\operatorname{det}\left(1+\frac{\mathrm{i} k h}{k^{2}-1} Q_{n}(k)\right)=\frac{k^{2 n}}{1-k^{2}} \frac{\mathrm{i}^{n} h^{n}}{(z-k)^{n}(1-k z)^{n}} \frac{z^{2 n}(z-k)^{2}-(1-k z)^{2}}{z^{2}-1}$.

- Solving $z^{2 n}(z-k)^{2}-(1-k z)^{2}=0$ for $k=k(z)$ yields

$$
k=\frac{z^{n+1}-1}{z^{n}-z} \quad \text { or } \quad k=\frac{z^{n+1}+1}{z^{n}+z} .
$$

- Plugging back...
- ...we arrive at two equations:

$$
\begin{aligned}
& \mathrm{i} h\left(z^{n+1}-1\right)\left(z^{n-1}-1\right)-z^{n-2}\left(z^{2}-1\right)^{2}=0, \quad(*) \\
& \mathrm{i} h\left(z^{n+1}+1\right)\left(z^{n-1}+1\right)+z^{n-2}\left(z^{2}-1\right)^{2}=0, \quad(* *)
\end{aligned}
$$

- ...we arrive at two equations:

$$
\begin{aligned}
& \mathrm{i} h\left(z^{n+1}-1\right)\left(z^{n-1}-1\right)-z^{n-2}\left(z^{2}-1\right)^{2}=0, \quad(*) \\
& \mathrm{i} h\left(z^{n+1}+1\right)\left(z^{n-1}+1\right)+z^{n-2}\left(z^{2}-1\right)^{2}=0, \quad(* *)
\end{aligned}
$$

- Not all of their solutions give rise to eigenvalues, however. Most importantly, one has to take into account the requirement $|k(z)|<1$.
- ...we arrive at two equations:

$$
\begin{aligned}
& \mathrm{i} h\left(z^{n+1}-1\right)\left(z^{n-1}-1\right)-z^{n-2}\left(z^{2}-1\right)^{2}=0, \quad(*) \\
& \mathrm{i} h\left(z^{n+1}+1\right)\left(z^{n-1}+1\right)+z^{n-2}\left(z^{2}-1\right)^{2}=0, \quad(* *)
\end{aligned}
$$

- Not all of their solutions give rise to eigenvalues, however. Most importantly, one has to take into account the requirement $|k(z)|<1$.
- In summary, we obtain:
- ...we arrive at two equations:

$$
\begin{aligned}
& \mathrm{i} h\left(z^{n+1}-1\right)\left(z^{n-1}-1\right)-z^{n-2}\left(z^{2}-1\right)^{2}=0, \quad(*) \\
& \mathrm{i} h\left(z^{n+1}+1\right)\left(z^{n-1}+1\right)+z^{n-2}\left(z^{2}-1\right)^{2}=0, \quad(* *)
\end{aligned}
$$

- Not all of their solutions give rise to eigenvalues, however. Most importantly, one has to take into account the requirement $|k(z)|<1$.
- In summary, we obtain:

Proposition

One has

$$
\lambda \in \sigma_{d}\left(T_{h, n}\right) \quad \Longleftrightarrow \quad \lambda=\mathrm{i} h+z+z^{-1}
$$

for $z \in \mathbb{C},|z|<1, \operatorname{Im} z>0$, which is either a solution of $(*)$ or $(* *)$ satisfying the constraint $\left|z^{n+1}-1\right|<\left|z^{n}-z\right|$ or $\left|z^{n+1}+1\right|<\left|z^{n}+z\right|$, respectively.

Figure: A numerical illustration of spectrum of $T_{h, n}$ for $h=1 / 10$ and $n=39$.

Towards the proof of H.-K. conjecture

- Next, we put $h=h_{n}:=n^{-2 / 3}$ and consider the sequence $T_{n}:=T_{h_{n}, n}$.
- Fix $0<\epsilon<1 / 2$.

Towards the proof of H.-K. conjecture

- Next, we put $h=h_{n}:=n^{-2 / 3}$ and consider the sequence $T_{n}:=T_{h_{n}, n}$.
- Fix $0<\epsilon<1 / 2$.
- Then we can show that, for n sufficiently large, there are $(1-2 \epsilon) n / 2$ solutions z_{j} of the algebraic equations $(*)$ and $(* *)$ located in the sector

$$
\epsilon \pi<\arg z_{j}<(1-\epsilon) \pi
$$

and each z_{j} gives rise to an eigenvalue λ_{j} of T_{n}.

Towards the proof of H.-K. conjecture

- Next, we put $h=h_{n}:=n^{-2 / 3}$ and consider the sequence $T_{n}:=T_{h_{n}, n}$.
- Fix $0<\epsilon<1 / 2$.
- Then we can show that, for n sufficiently large, there are $(1-2 \epsilon) n / 2$ solutions z_{j} of the algebraic equations ($*$) and ($* *$) located in the sector

$$
\epsilon \pi<\arg z_{j}<(1-\epsilon) \pi,
$$

and each z_{j} gives rise to an eigenvalue λ_{j} of T_{n}.

- Moreover, these eigenvalues have the asymptotic behavior

$$
\lambda_{j}=2 \cos \phi_{j}+\mathrm{i} n^{-2 / 3}+O\left(\frac{\log n}{n}\right), \quad n \rightarrow \infty .
$$

Towards the proof of H.-K. conjecture

- Next, we put $h=h_{n}:=n^{-2 / 3}$ and consider the sequence $T_{n}:=T_{h_{n}, n}$.
- Fix $0<\epsilon<1 / 2$.
- Then we can show that, for n sufficiently large, there are $(1-2 \epsilon) n / 2$ solutions z_{j} of the algebraic equations ($*$) and ($* *$) located in the sector

$$
\epsilon \pi<\arg z_{j}<(1-\epsilon) \pi
$$

and each z_{j} gives rise to an eigenvalue λ_{j} of T_{n}.

- Moreover, these eigenvalues have the asymptotic behavior

$$
\lambda_{j}=2 \cos \phi_{j}+\mathrm{i} n^{-2 / 3}+O\left(\frac{\log n}{n}\right), \quad n \rightarrow \infty .
$$

- It follows

$$
\operatorname{dist}\left(\lambda_{j},[-2,2]\right)=n^{-2 / 3}+O\left(\frac{\log n}{n}\right), \quad n \rightarrow \infty
$$

uniformly in j.

A NUMERICAL ILLUSTRATION

- For $\omega<p$ and $\epsilon<1 / 4$, we have

$$
\begin{aligned}
\sum_{\lambda \in \sigma_{d}\left(T_{n}\right)}(\operatorname{dist}(\lambda,[-2,2]))^{\omega} & \geq \frac{n}{4}\left(n^{-2 / 3}+O\left(\frac{\log n}{n}\right)\right)^{\omega} \\
& =\frac{n^{1-2 \omega / 3}}{4}\left(1+O\left(\frac{\log n}{n^{1 / 3}}\right)\right), \quad n \rightarrow \infty
\end{aligned}
$$

- For $\omega<p$ and $\epsilon<1 / 4$, we have

$$
\begin{aligned}
\sum_{\lambda \in \sigma_{d}\left(T_{n}\right)}(\operatorname{dist}(\lambda,[-2,2]))^{\omega} & \geq \frac{n}{4}\left(n^{-2 / 3}+O\left(\frac{\log n}{n}\right)\right)^{\omega} \\
& =\frac{n^{1-2 \omega / 3}}{4}\left(1+O\left(\frac{\log n}{n^{1 / 3}}\right)\right), \quad n \rightarrow \infty
\end{aligned}
$$

- In total, for n sufficiently large, we get

$$
\frac{1}{n^{1-2 p / 3}} \sum_{\lambda \in \sigma_{d}\left(T_{n}\right)}(\operatorname{dist}(\lambda,[-2,2]))^{\omega} \geq \frac{1}{8} n^{2(p-\omega) / 3},
$$

which implies:

- For $\omega<p$ and $\epsilon<1 / 4$, we have

$$
\begin{aligned}
\sum_{\lambda \in \sigma_{d}\left(T_{n}\right)}(\operatorname{dist}(\lambda,[-2,2]))^{\omega} & \geq \frac{n}{4}\left(n^{-2 / 3}+O\left(\frac{\log n}{n}\right)\right)^{\omega} \\
& =\frac{n^{1-2 \omega / 3}}{4}\left(1+O\left(\frac{\log n}{n^{1 / 3}}\right)\right), \quad n \rightarrow \infty
\end{aligned}
$$

- In total, for n sufficiently large, we get

$$
\frac{1}{n^{1-2 p / 3}} \sum_{\lambda \in \sigma_{d}\left(T_{n}\right)}(\operatorname{dist}(\lambda,[-2,2]))^{\omega} \geq \frac{1}{8} n^{2(p-\omega) / 3}
$$

which implies:
For any $p \geq 0$ and $\omega<p$, one has

$$
\sup _{0 \neq b \in \ell^{p}(\mathbb{Z})} \frac{1}{\|b\|_{\ell^{p}}^{p}} \sum_{\lambda \in \sigma_{d}(T(b))}(\operatorname{dist}(\lambda,[-2,2]))^{\omega}=\infty .
$$

- For $\omega<p$ and $\epsilon<1 / 4$, we have

$$
\begin{aligned}
\sum_{\lambda \in \sigma_{d}\left(T_{n}\right)}(\operatorname{dist}(\lambda,[-2,2]))^{\omega} & \geq \frac{n}{4}\left(n^{-2 / 3}+O\left(\frac{\log n}{n}\right)\right)^{\omega} \\
& =\frac{n^{1-2 \omega / 3}}{4}\left(1+O\left(\frac{\log n}{n^{1 / 3}}\right)\right), \quad n \rightarrow \infty
\end{aligned}
$$

- In total, for n sufficiently large, we get

$$
\frac{1}{n^{1-2 p / 3}} \sum_{\lambda \in \sigma_{d}\left(T_{n}\right)}(\operatorname{dist}(\lambda,[-2,2]))^{\omega} \geq \frac{1}{8} n^{2(p-\omega) / 3}
$$

which implies:
For any $p \geq 0$ and $\omega<p$, one has

$$
\sup _{0 \neq b \in \ell^{p}(\mathbb{Z})} \frac{1}{\|b\|_{\ell^{p}}^{p}} \sum_{\lambda \in \sigma_{d}(T(b))}(\operatorname{dist}(\lambda,[-2,2]))^{\omega}=\infty
$$

...and the H.-K. conjecture follows (for $\omega=p-1 / 2$).

TOWARDS ANSWER 2

- Recall the 2nd open problem: Does the inequality

$$
\sum_{\lambda \in \sigma_{d}(J)} \frac{(\operatorname{dist}(\lambda,[-2,2]))^{p}}{\left|\lambda^{2}-4\right|^{1 / 2}} \leq C_{p}\|d\|_{\ell p}^{p}
$$

hold for general Jacobi operators J with $d \in \ell^{p}(\mathbb{Z})$?

TOWARDS ANSWER 2

- Recall the 2nd open problem: Does the inequality

$$
\sum_{\lambda \in \sigma_{d}(J)} \frac{(\operatorname{dist}(\lambda,[-2,2]))^{p}}{\left|\lambda^{2}-4\right|^{1 / 2}} \leq C_{p}\|d\|_{\ell p}^{p} .
$$

hold for general Jacobi operators J with $d \in \ell^{p}(\mathbb{Z})$?

Theorem

For any $p \geq 1$ and $\sigma \geq 1 / 2$, one has

$$
\sup _{0 \neq b \in \ell^{p}(\mathbb{Z})} \frac{1}{\|b\|_{\ell^{p}}^{p}} \sum_{\lambda \in \sigma_{d}(T(b))} \frac{(\operatorname{dist}(\lambda,[-2,2]))^{p}}{\left|\lambda^{2}-4\right|^{\sigma}}=\infty .
$$

Towards Answer 2

- Recall the 2nd open problem: Does the inequality

$$
\sum_{\lambda \in \sigma_{d}(J)} \frac{(\operatorname{dist}(\lambda,[-2,2]))^{p}}{\left|\lambda^{2}-4\right|^{1 / 2}} \leq C_{p}\|d\|_{\ell p}^{p}
$$

hold for general Jacobi operators J with $d \in \ell^{p}(\mathbb{Z})$?

Theorem

For any $p \geq 1$ and $\sigma \geq 1 / 2$, one has

$$
\sup _{0 \neq b \in \ell^{p}(\mathbb{Z})} \frac{1}{\|b\|_{\ell^{p}}^{p}} \sum_{\lambda \in \sigma_{d}(T(b))} \frac{(\operatorname{dist}(\lambda,[-2,2]))^{p}}{\left|\lambda^{2}-4\right|^{\sigma}}=\infty
$$

- The same sequence T_{n} as before can be used here but the analysis is more delicate...
- Asymptotic analysis yields

$$
\lambda_{j}=2 \cos \phi_{j}+\mathrm{i} n^{-2 / 3}+O\left(\frac{\log n}{n}\right), \quad n \rightarrow \infty
$$

with

$$
\phi_{j}=\frac{\pi(4 j-1)}{2 n}+O\left(\frac{1}{n^{3 / 2}}\right), \quad n \rightarrow \infty
$$

- Asymptotic analysis yields

$$
\lambda_{j}=2 \cos \phi_{j}+\mathrm{i} n^{-2 / 3}+O\left(\frac{\log n}{n}\right), \quad n \rightarrow \infty
$$

with

$$
\phi_{j}=\frac{\pi(4 j-1)}{2 n}+O\left(\frac{1}{n^{3 / 2}}\right), \quad n \rightarrow \infty
$$

- The range for indices j is determined by

$$
\epsilon \pi \leq \frac{\pi(4 j-1)}{2 n} \leq(1-\epsilon) \pi
$$

for arbitrarily small $\epsilon>0$.

- Asymptotic analysis yields

$$
\lambda_{j}=2 \cos \phi_{j}+\mathrm{i} n^{-2 / 3}+O\left(\frac{\log n}{n}\right), \quad n \rightarrow \infty
$$

with

$$
\phi_{j}=\frac{\pi(4 j-1)}{2 n}+O\left(\frac{1}{n^{3 / 2}}\right), \quad n \rightarrow \infty
$$

- The range for indices j is determined by

$$
\epsilon \pi \leq \frac{\pi(4 j-1)}{2 n} \leq(1-\epsilon) \pi
$$

for arbitrarily small $\epsilon>0$.

- Particularly, it follows that

$$
\operatorname{dist}\left(\lambda_{j},[-2,2]\right) \geq \frac{1}{2} n^{-2 / 3}
$$

for all j and n sufficiently large.

- Then

$$
\begin{aligned}
\liminf _{n \rightarrow \infty} n^{2 p / 3-1} \sum_{\lambda \in \sigma_{d}\left(T_{n}\right)} \frac{(\operatorname{dist}(\lambda,[-2,2]))^{p}}{\left|\lambda^{2}-4\right|^{\sigma}} & \geq \liminf _{n \rightarrow \infty} \frac{1}{n} \sum_{j} \frac{1}{\left|\lambda_{j}^{2}-4\right|^{\sigma}} \\
& =C_{\sigma} \int_{\epsilon \pi}^{(1-\epsilon) \pi} \frac{\mathrm{d} x}{\left(4-4 \cos ^{2} x\right)^{\sigma}}
\end{aligned}
$$

- Then

$$
\begin{aligned}
\liminf _{n \rightarrow \infty} n^{2 p / 3-1} \sum_{\lambda \in \sigma_{d}\left(T_{n}\right)} \frac{(\operatorname{dist}(\lambda,[-2,2]))^{p}}{\left|\lambda^{2}-4\right|^{\sigma}} & \geq \liminf _{n \rightarrow \infty} \frac{1}{n} \sum_{j} \frac{1}{\left|\lambda_{j}^{2}-4\right|^{\sigma}} \\
& =C_{\sigma} \int_{\epsilon \pi}^{(1-\epsilon) \pi} \frac{\mathrm{d} x}{\left(4-4 \cos ^{2} x\right)^{\sigma}}
\end{aligned}
$$

- Since

$$
\int_{\epsilon \pi}^{(1-\epsilon) \pi} \frac{\mathrm{d} x}{\left(1-\cos ^{2} x\right)^{\sigma}} \geq 2 \int_{\epsilon \pi}^{1} \frac{\mathrm{~d} x}{x^{2 \sigma}}= \begin{cases}\frac{2}{2 \sigma-1}\left((\pi \epsilon)^{1-2 \sigma}-1\right), & \text { if } \sigma>\frac{1}{2} \\ -2 \log (\pi \epsilon), & \text { if } \sigma=\frac{1}{2}\end{cases}
$$

and $\epsilon>0$ can be arbitrarily small, one finally gets

- Then

$$
\begin{aligned}
\liminf _{n \rightarrow \infty} n^{2 p / 3-1} \sum_{\lambda \in \sigma_{d}\left(T_{n}\right)} \frac{(\operatorname{dist}(\lambda,[-2,2]))^{p}}{\left|\lambda^{2}-4\right|^{\sigma}} & \geq \liminf _{n \rightarrow \infty} \frac{1}{n} \sum_{j} \frac{1}{\left|\lambda_{j}^{2}-4\right|^{\sigma}} \\
& =C_{\sigma} \int_{\epsilon \pi}^{(1-\epsilon) \pi} \frac{\mathrm{d} x}{\left(4-4 \cos ^{2} x\right)^{\sigma}}
\end{aligned}
$$

- Since

$$
\int_{\epsilon \pi}^{(1-\epsilon) \pi} \frac{\mathrm{d} x}{\left(1-\cos ^{2} x\right)^{\sigma}} \geq 2 \int_{\epsilon \pi}^{1} \frac{\mathrm{~d} x}{x^{2 \sigma}}= \begin{cases}\frac{2}{2 \sigma-1}\left((\pi \epsilon)^{1-2 \sigma}-1\right), & \text { if } \sigma>\frac{1}{2} \\ -2 \log (\pi \epsilon), & \text { if } \sigma=\frac{1}{2}\end{cases}
$$

and $\epsilon>0$ can be arbitrarily small, one finally gets

$$
\lim _{n \rightarrow \infty} n^{2 p / 3-1} \sum_{\lambda \in \sigma_{d}\left(T_{n}\right)} \frac{(\operatorname{dist}(\lambda,[-2,2]))^{p}}{\left|\lambda^{2}-4\right|^{\sigma}}=\infty
$$

for all $\sigma \geq 1 / 2$.

Lieb-Thirring inequalities for s.a. Schrödinger OPERATORS

- Consider the Schrödinger operator $H:=-\Delta+V$ on $L^{2}\left(\mathbb{R}^{d}\right)$ with $V \in L^{p}\left(\mathbb{R}^{d}\right)$, where

$$
\begin{aligned}
p \geq 1, & \text { if } d=1 \\
p>1, & \text { if } d=2 \\
p \geq d / 2, & \text { if } d \geq 3
\end{aligned}
$$

Lieb-Thirring inequalities for s.a. Schrödinger OPERATORS

- Consider the Schrödinger operator $H:=-\Delta+V$ on $L^{2}\left(\mathbb{R}^{d}\right)$ with $V \in L^{p}\left(\mathbb{R}^{d}\right)$, where

$$
\begin{aligned}
p \geq 1, & \text { if } d=1 \\
p>1, & \text { if } d=2 \\
p \geq d / 2, & \text { if } d \geq 3
\end{aligned}
$$

- Then $\sigma(H)=\sigma_{d}(H) \cup[0, \infty)$.

Lieb-Thirring inequalities for s.a. Schrödinger OPERATORS

- Consider the Schrödinger operator $H:=-\Delta+V$ on $L^{2}\left(\mathbb{R}^{d}\right)$ with $V \in L^{p}\left(\mathbb{R}^{d}\right)$, where

$$
\begin{aligned}
p \geq 1, & \text { if } d=1 \\
p>1, & \text { if } d=2 \\
p \geq d / 2, & \text { if } d \geq 3
\end{aligned}
$$

- Then $\sigma(H)=\sigma_{d}(H) \cup[0, \infty)$.

Theorem (Lieb-Thirring)
Suppose V is real-valued and satisfies the above conditions. Then

$$
\sum_{\lambda \in \sigma_{d}(H)}|\lambda|^{p-\frac{d}{2}} \leq C_{p, d}\|V\|_{L^{p}}^{p}
$$

- Equivalent formulation:

$$
\sum_{\lambda \in \sigma_{d}(H)} \frac{\left(\operatorname{dist}(\lambda,[0, \infty))^{p}\right.}{|\lambda|^{d / 2}} \leq C_{p, d}\|V\|_{L^{p}}^{p}
$$

- Equivalent formulation:

$$
\sum_{\lambda \in \sigma_{d}(H)} \frac{\left(\operatorname{dist}(\lambda,[0, \infty))^{p}\right.}{|\lambda|^{d / 2}} \leq C_{p, d}\|V\|_{L^{p}}^{p} .
$$

Question 3 (Demuth-Hansmann-Katriel, IEOT'13)

Does the above inequality remain valid for complex-valued potentials $V \in L^{p}\left(\mathbb{R}^{d}\right)$?

- Equivalent formulation:

$$
\sum_{\lambda \in \sigma_{d}(H)} \frac{\left(\operatorname{dist}(\lambda,[0, \infty))^{p}\right.}{|\lambda|^{d / 2}} \leq C_{p, d}\|V\|_{L^{p}}^{p} .
$$

Question 3 (Demuth-Hansmann-Katriel, IEOT'13)

Does the above inequality remain valid for complex-valued potentials $V \in L^{p}\left(\mathbb{R}^{d}\right)$?
(Partial) Answer 3

1. If $d=1$, then NO.

- Equivalent formulation:

$$
\sum_{\lambda \in \sigma_{d}(H)} \frac{\left(\operatorname{dist}(\lambda,[0, \infty))^{p}\right.}{|\lambda|^{d / 2}} \leq C_{p, d}\|V\|_{L^{p}}^{p} .
$$

Question 3 (Demuth-Hansmann-Katriel, IEOT'13)

Does the above inequality remain valid for complex-valued potentials $V \in L^{p}\left(\mathbb{R}^{d}\right)$?
(Partial) Answer 3

1. If $d=1$, then NO.
2. If $d \geq 2$, then UNKNOWN - work in progress.

ANSWER 3 IN DIMENSION 1

Theorem

Let $d=1$. For all $p \geq 1$ and $\sigma \geq 1 / 2$, one has

$$
\sup _{0 \neq V \in L^{p}(\mathbb{R})} \frac{1}{\|V\|_{L^{p}}^{p}} \sum_{\lambda \in \sigma_{d}(H)} \frac{\left(\operatorname{dist}(\lambda,[0, \infty))^{p}\right.}{|\lambda|^{\sigma}}=\infty .
$$

ANSWER 3 IN DIMENSION 1

Theorem

Let $d=1$. For all $p \geq 1$ and $\sigma \geq 1 / 2$, one has

$$
\sup _{0 \neq V \in L^{p}(\mathbb{R})} \frac{1}{\|V\|_{L^{p}}^{p}} \sum_{\lambda \in \sigma_{d}(H)} \frac{\left(\operatorname{dist}(\lambda,[0, \infty))^{p}\right.}{|\lambda|^{\sigma}}=\infty
$$

- In analogy to the discrete case, the operator family that demonstrates the theorem is

$$
H_{h}:=-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}+\frac{\mathrm{i}}{h} \chi_{[-h, h]}, \quad h>0 .
$$

ANSWER 3 IN DIMENSION 1

Theorem

Let $d=1$. For all $p \geq 1$ and $\sigma \geq 1 / 2$, one has

$$
\sup _{0 \neq V \in L^{p}(\mathbb{R})} \frac{1}{\|V\|_{L^{p}}^{p}} \sum_{\lambda \in \sigma_{d}(H)} \frac{\left(\operatorname{dist}(\lambda,[0, \infty))^{p}\right.}{|\lambda|^{\sigma}}=\infty
$$

- In analogy to the discrete case, the operator family that demonstrates the theorem is

$$
H_{h}:=-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}+\frac{\mathrm{i}}{h} \chi_{[-h, h]}, \quad h>0 .
$$

- The problem can be reduced to a study of asymptotic properties of discrete eigenvalues of

$$
\tilde{H}_{h}:=-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}+\mathrm{i} h \chi_{[-1,1]}
$$

for $h \rightarrow \infty$.

Based on:

S. Bögli, F. Š.: On Lieb-Thirring inequalities for one-dimensional non-self-adjoint Jacobi and Schrödinger operators, J. Spectr. Theory (to appear), arXiv:2004.09794.

Thank you!

