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THE JACOBI OPERATOR

I Let {an}n∈Z, {bn}n∈Z, {cn}n∈Z be given bounded complex sequences.

I Then

J :=


. . .

. . .
. . .

a−1 b0 c0
a0 b1 c1

a1 b2 c2

. . .
. . .

. . .


determines a bounded Jacobi operator on `2(Z).

I We denote

dn := max{|an−1 − 1|, |an − 1|, |bn|, |cn−1 − 1|, |cn − 1|}, n ∈ Z.

I If limn→±∞ dn = 0, then

σess(J) = [−2, 2] and σ(J) = [−2, 2] ∪ σd(J).
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THE JACOBI OPERATOR

I Let {an}n∈Z, {bn}n∈Z, {cn}n∈Z be given bounded complex sequences.

I Then

J :=


. . .

. . .
. . .

a−1 b0 c0
a0 b1 c1

a1 b2 c2

. . .
. . .

. . .


determines a bounded Jacobi operator on `2(Z).

I We denote

dn := max{|an−1 − 1|, |an − 1|, |bn|, |cn−1 − 1|, |cn − 1|}, n ∈ Z.

I If limn→±∞ dn = 0, then

σess(J) = [−2, 2] and σ(J) = [−2, 2] ∪ σd(J).



INTRODUCTION STATE OF THE ART DISCRETE SCHRÖDINGER OPERATORS SCHRÖDINGER OPERATORS
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LIEB–THIRRING INEQUALITIES FOR S.A. JACOBI OPERATORS

Theorem (Hundertmark–Simon, JAT’02)
Suppose an = cn > 0 and bn ∈ R.

If d ∈ `p(Z), for p ≥ 1, then∑
λ∈σd(J)∩(−∞,−2)

|λ+ 2|p−1/2 +
∑

λ∈σd(J)∩(2,∞)

|λ− 2|p−1/2 ≤ Cp‖d‖p
`p ,

where Cp is an explicit constant independent of J.

I Equivalently, ∑
λ∈σd(J)

(dist(λ, [−2, 2]))p−1/2 ≤ Cp‖d‖p
`p .

Question 1
Does the above inequality hold true for general (possibly n.s.a.) Jacobi
operators with d ∈ `p(Z)?
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LIEB–THIRRING INEQUALITIES FOR S.A. JACOBI OPERATORS

Theorem (Hundertmark–Simon, JAT’02)
Suppose an = cn > 0 and bn ∈ R. If d ∈ `p(Z), for p ≥ 1, then∑

λ∈σd(J)∩(−∞,−2)

|λ+ 2|p−1/2 +
∑

λ∈σd(J)∩(2,∞)

|λ− 2|p−1/2 ≤ Cp‖d‖p
`p ,

where Cp is an explicit constant independent of J.

I Equivalently, ∑
λ∈σd(J)

(dist(λ, [−2, 2]))p−1/2 ≤ Cp‖d‖p
`p .

Question 1
Does the above inequality hold true for general (possibly n.s.a.) Jacobi
operators with d ∈ `p(Z)?



INTRODUCTION STATE OF THE ART DISCRETE SCHRÖDINGER OPERATORS SCHRÖDINGER OPERATORS
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THE CONJECTURE OF HANSMANN AND KATRIEL

Conjecture (Hansmann–Katriel, CAOT’11)
No.

The Lieb-Thirring inequality∑
λ∈σd(J)

(dist(λ, [−2, 2]))p−1/2 ≤ Cp‖d‖p
`p

does not extend to general Jacobi operators with d ∈ `p(Z).

Answer 1
True.
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FURTHER ATTEMPTS TO FIND AN ADMISSIBLE EXTENSION

I Recall the H.–S. result for s.a. Jacobi operators:∑
λ∈σd(J)∩(−∞,−2)

|λ+ 2|p−1/2 +
∑

λ∈σd(J)∩(2,∞)

|λ− 2|p−1/2 ≤ Cp‖d‖p
`p ,

I Using the observation

dist (λ, [−2, 2])p

|λ2 − 4|1/2 ≤ 1
2

{
|λ− 2|p−1/2, if λ > 2,
|λ+ 2|p−1/2, if λ < −2,

the H.–S. result implies∑
λ∈σd(J)

(dist(λ, [−2, 2]))p

|λ2 − 4|1/2 ≤ Cp‖d‖p
`p .

I This is already very close to what was proven by Hansmann and
Katriel for general Jacobi operators...



INTRODUCTION STATE OF THE ART DISCRETE SCHRÖDINGER OPERATORS SCHRÖDINGER OPERATORS
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LIEB–THIRRING INEQ. FOR N.S.A. JACOBI OPERATORS

Theorem (Hansmann–Katriel, CAOT’11)
Suppose τ ∈ (0, 1) and d ∈ `p(Z) with p ≥ 1. Then

∑
λ∈σd(J)

(dist(λ, [−2, 2]))p+τ

|λ2 − 4|1/2 ≤ Cp,τ‖d‖p
`p , if p > 1,

and ∑
λ∈σd(J)

(dist(λ, [−2, 2]))1+τ

|λ2 − 4|1/2+τ/4 ≤ Cτ‖d‖`1 , if p = 1.

I In the s.a. case, the above inequalities hold true also if τ = 0.

Question 2
Does the above inequalities remain valid for τ = 0 and general Jacobi
operators with d ∈ `p(Z)?
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Answer 2
No.

The Lieb–Thirring inequality∑
λ∈σd(J)

(dist(λ, [−2, 2]))p

|λ2 − 4|1/2 ≤ Cp‖d‖p
`p .

does not extend to general Jacobi operators with d ∈ `p(Z).
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THE DISCRETE SCHRÖDINGER OPERATOR

I Counterexamples are found among discrete Schrödinger operators

T(b) = J0 + b

with complex potential b ∈ `p(Z), i.e., Jacobi operators J with
an = cn = 1, ∀n ∈ Z.

Theorem
For any p ≥ 0 and ω < p, one has

sup
0 6=b∈`p(Z)

1
‖b‖p

`p

∑
λ∈σd(T(b))

(dist(λ, [−2, 2]))ω =∞.

I In particular, for ω = p− 1/2, the theorem confirms the conjecture of
Hansmann and Katriel.

I On the other hand, if ω ≥ p, the inequality∑
λ∈σd(J)

(dist(λ, [−2, 2]))ω ≤ Cp‖d‖p
`p

holds for any (possibly n.s.a.) Jacobi operator J (Hansmann, LMP’11).
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THE DSO WITH RECTANGULAR BARRIER POTENTIAL AND
COMPLEX COUPLING

I For n ∈ N and h > 0, define

Th,n := J0 + ihPn,

where Pn is OG projection onto span{e1, . . . en}.

I Analysis of σd(Th,n) can be reformulated in an investigation of roots of
polynomial equations.

I By the Birman–Schwinger principle, λ /∈ [−2, 2] is an eigenvalue of Tn,h
iff

det
(

1 + ihPn(J0 − λ)−1Pn

)
= 0.

I Write λ /∈ [−2, 2] as λ = k + k−1, where 0 < |k| < 1. Then

(J0 − λ)−1 =
k

k2 − 1
Q(k),

where Q(k) is the Laurent operator with entries Qi,j(k) = k|j−i|.
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I We are led to the characteristic equation

det

(
1 +

ikh
k2 − 1

Qn(k)

)
= 0,

for Qn(k) := PnQ(k)Pn � Ran Pn (Kac–Murdock–Szegö matrix).

I Introducing a new parameter z by equation

ih = k + k−1 − z− z−1

the characteristic functions takes a fully explicit form

det

(
1 +

ikh
k2 − 1

Qn(k)

)
=

k2n

1− k2

inhn

(z− k)n(1− kz)n

z2n(z− k)2 − (1− kz)2

z2 − 1
.

I Solving z2n(z− k)2 − (1− kz)2 = 0 for k = k(z) yields

k =
zn+1 − 1

zn − z
or k =

zn+1 + 1
zn + z

.

I Plugging back...
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k =
zn+1 − 1

zn − z
or k =

zn+1 + 1
zn + z

.

I Plugging back...
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I Introducing a new parameter z by equation

ih = k + k−1 − z− z−1

the characteristic functions takes a fully explicit form

det

(
1 +

ikh
k2 − 1

Qn(k)

)
=

k2n

1− k2

inhn

(z− k)n(1− kz)n

z2n(z− k)2 − (1− kz)2

z2 − 1
.

I Solving z2n(z− k)2 − (1− kz)2 = 0 for k = k(z) yields

k =
zn+1 − 1

zn − z
or k =

zn+1 + 1
zn + z

.

I Plugging back...



INTRODUCTION STATE OF THE ART DISCRETE SCHRÖDINGER OPERATORS SCHRÖDINGER OPERATORS

I ...we arrive at two equations:

ih
(

zn+1 − 1
)(

zn−1 − 1
)
− zn−2

(
z2 − 1

)2
= 0, (∗)

ih
(

zn+1 + 1
)(

zn−1 + 1
)

+ zn−2
(

z2 − 1
)2

= 0, (∗∗)

I Not all of their solutions give rise to eigenvalues, however. Most
importantly, one has to take into account the requirement |k(z)| < 1.

I In summary, we obtain:

Proposition
One has

λ ∈ σd(Th,n) ⇐⇒ λ = ih + z + z−1,

for z ∈ C, |z| < 1, Im z > 0, which is either a solution of (∗) or (∗∗) satisfying
the constraint |zn+1 − 1| < |zn − z| or |zn+1 + 1| < |zn + z|, respectively.
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Figure: A numerical illustration of spectrum of Th,n for h = 1/10 and n = 39.
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TOWARDS THE PROOF OF H.–K. CONJECTURE

I Next, we put h = hn := n−2/3 and consider the sequence Tn := Thn,n.

I Fix 0 < ε < 1/2.

I Then we can show that, for n sufficiently large, there are (1− 2ε)n/2
solutions zj of the algebraic equations (∗) and (∗∗) located in the sector

επ < arg zj < (1− ε)π,

and each zj gives rise to an eigenvalue λj of Tn.

I Moreover, these eigenvalues have the asymptotic behavior

λj = 2 cosφj + in−2/3 + O
(

log n
n

)
, n→∞.

I It follows

dist(λj, [−2, 2]) = n−2/3 + O
(

log n
n

)
, n→∞,

uniformly in j.
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TOWARDS THE PROOF OF H.–K. CONJECTURE

I Next, we put h = hn := n−2/3 and consider the sequence Tn := Thn,n.

I Fix 0 < ε < 1/2.

I Then we can show that, for n sufficiently large, there are (1− 2ε)n/2
solutions zj of the algebraic equations (∗) and (∗∗) located in the sector

επ < arg zj < (1− ε)π,

and each zj gives rise to an eigenvalue λj of Tn.

I Moreover, these eigenvalues have the asymptotic behavior

λj = 2 cosφj + in−2/3 + O
(

log n
n

)
, n→∞.

I It follows

dist(λj, [−2, 2]) = n−2/3 + O
(

log n
n

)
, n→∞,

uniformly in j.



INTRODUCTION STATE OF THE ART DISCRETE SCHRÖDINGER OPERATORS SCHRÖDINGER OPERATORS
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A NUMERICAL ILLUSTRATION
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I For ω < p and ε < 1/4, we have∑
λ∈σd(Tn)

(dist(λ, [−2, 2]))ω ≥ n
4

(
n−2/3 + O

(
log n

n

))ω

=
n1−2ω/3

4

(
1 + O

(
log n
n1/3

))
, n→∞.

I In total, for n sufficiently large, we get

1
n1−2p/3

∑
λ∈σd(Tn)

(dist(λ, [−2, 2]))ω ≥ 1
8

n2(p−ω)/3,

which implies:

For any p ≥ 0 and ω < p, one has

sup
06=b∈`p(Z)

1
‖b‖p

`p

∑
λ∈σd(T(b))

(dist(λ, [−2, 2]))ω =∞.

...and the H.–K. conjecture follows (for ω = p− 1/2).
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TOWARDS ANSWER 2

I Recall the 2nd open problem: Does the inequality∑
λ∈σd(J)

(dist(λ, [−2, 2]))p

|λ2 − 4|1/2 ≤ Cp‖d‖p
`p .

hold for general Jacobi operators J with d ∈ `p(Z)?

Theorem
For any p ≥ 1 and σ ≥ 1/2, one has

sup
0 6=b∈`p(Z)

1
‖b‖p

`p

∑
λ∈σd(T(b))

(dist(λ, [−2, 2]))p

|λ2 − 4|σ =∞.

I The same sequence Tn as before can be used here but the analysis is
more delicate...
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I Asymptotic analysis yields

λj = 2 cosφj + in−2/3 + O
(

log n
n

)
, n→∞,

with

φj =
π(4j− 1)

2n
+ O

(
1

n3/2

)
, n→∞,

I The range for indices j is determined by

επ ≤ π(4j− 1)

2n
≤ (1− ε)π

for arbitrarily small ε > 0.

I Particularly, it follows that

dist(λj, [−2, 2]) ≥ 1
2

n−2/3

for all j and n sufficiently large.
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I Then

lim inf
n→∞

n2p/3−1
∑

λ∈σd(Tn)

(dist(λ, [−2, 2]))p

|λ2 − 4|σ ≥ lim inf
n→∞

1
n

∑
j

1
|λ2

j − 4|σ

= Cσ
∫ (1−ε)π

επ

dx
(4− 4 cos2 x)σ

,

I Since∫ (1−ε)π

επ

dx
(1− cos2 x)σ

≥ 2
∫ 1

επ

dx
x2σ =

{
2

2σ−1

(
(πε)1−2σ − 1

)
, if σ > 1

2 ,

−2 log(πε), if σ = 1
2 .

and ε > 0 can be arbitrarily small, one finally gets

lim
n→∞

n2p/3−1
∑

λ∈σd(Tn)

(dist(λ, [−2, 2]))p

|λ2 − 4|σ =∞,

for all σ ≥ 1/2.
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LIEB-THIRRING INEQUALITIES FOR S.A. SCHRÖDINGER
OPERATORS

I Consider the Schrödinger operator H := −∆ + V on L2(Rd) with
V ∈ Lp(Rd), where

p ≥ 1, if d = 1,
p > 1, if d = 2,

p ≥ d/2, if d ≥ 3.

I Then σ(H) = σd(H) ∪ [0,∞).

Theorem (Lieb–Thirring)
Suppose V is real-valued and satisfies the above conditions. Then∑

λ∈σd(H)

|λ|p−
d
2 ≤ Cp,d‖V‖p

Lp .
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I Equivalent formulation:∑
λ∈σd(H)

(dist(λ, [0,∞))p

|λ|d/2 ≤ Cp,d‖V‖p
Lp .

Question 3 (Demuth–Hansmann–Katriel, IEOT’13)
Does the above inequality remain valid for complex-valued potentials
V ∈ Lp(Rd)?

(Partial) Answer 3

1. If d = 1, then NO.

2. If d ≥ 2, then UNKNOWN - work in progress.
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ANSWER 3 IN DIMENSION 1

Theorem
Let d = 1. For all p ≥ 1 and σ ≥ 1/2, one has

sup
0 6=V∈Lp(R)

1
‖V‖p

Lp

∑
λ∈σd(H)

(dist(λ, [0,∞))p

|λ|σ =∞.

I In analogy to the discrete case, the operator family that demonstrates
the theorem is

Hh := − d2

dx2 +
i
h
χ[−h,h], h > 0.

I The problem can be reduced to a study of asymptotic properties of
discrete eigenvalues of

H̃h := − d2

dx2 + ihχ[−1,1],

for h→∞.
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Based on:

S. Bögli, F. Š.: On Lieb-Thirring inequalities for one-dimensional non-self-adjoint
Jacobi and Schrödinger operators, J. Spectr. Theory (to appear), arXiv:2004.09794.

Thank you!
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