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Function F

Definition

Let me define F : D → C by relation

F(x) = 1 +
∞∑

m=1

(−1)m
∞∑

k1=1

∞∑
k2=k1+2

. . .

∞∑
km=km−1+2

xk1 xk1+1xk2 xk2+1 . . . xkm xkm+1,

where

D =

{
{xk}∞k=1 ⊂ C;

∞∑
k=1

|xk xk+1| <∞

}
.

For a finite number of complex variables let me identify F(x1, x2, . . . , xn) with F(x)
where x = (x1, x2, . . . , xn, 0, 0, 0, . . . ).

Note the function F is indeed well defined on the domain D since one has the
estimate

|F(x)| ≤ exp

(
∞∑

k=1

|xk xk+1|

)
.

Note D is not a linear space. One has, however, `2(N) ⊂ D.
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Fundamental properties of F

For all x ∈ D, one has

F(x) = F(Tx)− x1x2 F(T 2x)

where T is the shift operator acting on the space of complex sequences as

(Tx)n = xn+1, n ∈ N.

This is a particular case of the more general formula:

F(x) = F(x1, . . . , xk )F(T k x)− F(x1, . . . , xk−1)xk xk+1F(T k+1x)

holding true for any k ∈ N.
Equivalent definition for F(x1, x2, . . . , xn) is:

F(x1, x2, . . . , xn) = det Xn = det


1 x1

x2 1 x2

. . .
. . .

. . .
xn−1 1 xn−1

xn 1

.

For x ∈ D, we have F(x) = limn→∞ det Xn.
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Characteristic function of Jacobi matrix

Let us denote

J =


λ1 w1

w1 λ2 w2

w2 λ3 w3

. . .
. . .

. . .


where λn ∈ R and wn ∈ R \ {0}.

Let JN denotes the N × N principal submatrix of J.

The characteristic function of JN can be written in the following form

det(JN − z) =

(
N∏

k=1

(λk − z)

)
F

(
γ2

1

λ1 − z
,

γ2
2

λ2 − z
, . . . ,

γ2
N

λN − z

)
,

where {γk}N
k=1 is any sequence satisfying the recurrence γkγk+1 = wk , for k ≥ 1.

By extracting the term with F and sending N →∞ one arrives at the function

FJ (z) := F

({
γ2

n

λn − z

}∞
n=1

)
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Characteristic function - cont.

The function

FJ (z) := F

({
γ2

n

λn − z

}∞
n=1

)
is well defined if there exists at least one z0 ∈ C \ Ranλ such that

∞∑
n=1

w2
n

|(λn − z0)(λn+1 − z0)| <∞.

Function FJ is analytic on C \ Ranλ and we call it the characteristic function of the
Jacobi matrix J.
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Spectrum of Jacobi operator via characteristic function

Theorem

Let the condition on λn and wn mentioned before be fulfilled.

Then matrix J determines
uniquely a self-adjoint Jacobi operator J on `2(N) and the set of zeros of FJ in C \Ranλ
coincides with the set of eigenvalues of J in C \ Ranλ (all are simple).

Moreover, if z ∈ C \ Ranλ is an eigenvalue of J then the vector
ξ(z) = (ξ1(z), ξ2(z), . . . ) where

ξn(z) =

(
n∏

k=1

wk−1

z − λk

)
F

({
γ 2

k

λk − z

}∞
k=n+1

)
, (w0 := 1),

is the corresponding eigenvector.

Furthermore, for the Green function Gij (z) = (ei , (J − z)−1ej ) we have

Gij (z) = − 1
wM

M∏
l=m

(
wl

z − λl

) F

({
γ2

l
λl−z

}m−1

l=1

)
F

({
γ2

l
λl−z

}∞
l=M+1

)
F
({

γ2
l

λl−z

}∞
l=1

)
where z /∈ spec(J), m := min(i, j), and M := max(i, j).
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Example

Set λn = n and wn = w ∈ R \ {0}, for n ∈ N. Thus, in this case,

J =


1 w
w 2 w

w 3 w
. . .

. . .
. . .

 .

One has

F

({
γ2

k

k − z

}∞
k=r+1

)
= F

({
w

k − z

}∞
k=r+1

)
= wz−r Γ(1 + r − z)Jr−z(2w)

for r ∈ Z+.
The general theorem tells us

spec(J) = {z ∈ R | J−z(2w) = 0}

and components of corresponding eigenvectors v(z) can be chosen as

vk (z) = (−1)k Jk−z(2w), k ∈ N.
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Function F and Orthogonal Polynomials

For λn ∈ R and wn > 0, consider the symmetric second order difference equations

wn−1yn−1(x) + λnyn(x) + wnyn+1(x) = xyn(x), n = 1, 2, . . . (w0 := −1).

OPs of the first kind Pn(x) are the solution satisfying initial conditions P0(x) = 0,
P1(x) = 1, while OPs of the second kind Qn(x) satisfy the same recurrence
starting with the initial conditions Q0(x) = 1, Q1(x) = 0.

OPs are related to F through identities

Pn+1(z) =
n∏

k=1

(
z − λk

wk

)
F

({
γ2

l

λl − z

}n

l=1

)
, n = 0, 1 . . . ,

Qn+1(z) =
1

w1

n∏
k=2

(
z − λk

wk

)
F

({
γ2

l

λl − z

}n

l=2

)
, n = 0, 1 . . .

where {γn} can be defined recursively by γkγk+1 = wk .
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Limit formula for OPs

Proposition

If
∑

k≥0

∣∣ w2
k

(z−λk )(z−λk+1)

∣∣ <∞, for some z ∈ C, then for all z ∈ C \ R we have(
n−1∏
k=1

wk

z − λk

)
Pn(z) −→

n→∞
F

({
γ2

k

λk − z

}∞
k=1

)
.

Typical example: By setting λn = 0 and wn = [4(n + ν − 1)(n + ν)]−1/2, polynomials

Pn+1(x) = (2x)n
√

ν

ν + n
Γ(n + ν)

Γ(ν)
F

({
1

2x(ν + k − 1)

}n

k=1

)
are related to Lommel polynomials Rn,ν(x):

Rn,ν(x) =

√
n + ν

ν
Pn+1(x−1).

The above limit relation yields the Hurwitz’s asymptotic formula for Lommel polynomials

lim
n→∞

xn

2nΓ(ν + n)
Rn,ν(x) =

(x
2

)−ν+1
Jν−1(x).
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n−1∏
k=1

wk

z − λk

)
Pn(z) −→

n→∞
F

({
γ2

k

λk − z

}∞
k=1

)
.

Typical example: By setting λn = 0 and wn = [4(n + ν − 1)(n + ν)]−1/2, polynomials

Pn+1(x) = (2x)n
√

ν

ν + n
Γ(n + ν)

Γ(ν)
F

({
1

2x(ν + k − 1)

}n

k=1

)
are related to Lommel polynomials Rn,ν(x):

Rn,ν(x) =

√
n + ν

ν
Pn+1(x−1).

The above limit relation yields the Hurwitz’s asymptotic formula for Lommel polynomials

lim
n→∞

xn

2nΓ(ν + n)
Rn,ν(x) =

(x
2

)−ν+1
Jν−1(x).
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Constructing measure of orthogonality

Theorem (essentially due to Markov)

Let the Hmp corresponding to Pn be determinate. Then

lim
n→∞

Qn(z)

Pn(z)
=

∫
R

dµ(x)

z − x
, z ∈ C \ R,

where µ is the measure of orthogonality for Pn.

Under certain assumption on λn and wn, we can apply the limit formula for Pn(x)
(and similar formula for Qn(x)):

∫
R

dµ(x)

z − x
=

F
({

γ2
k

λk−z

}∞
k=2

)
(z − λ1)F

({
γ2

k
λk−z

}∞
k=1

) ,
for z /∈ suppµ.

Having the Stieltjes transform of µ we can, in principle, determine the measure of
orthogonality µ by using the Stieltjes-Perron inversion formula.
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Measure of orthogonality - special case

Assume λn = 0 and {wn} ∈ `2 then the suppµ is a denumerable set of points with
0 the only accumulation point and we have∫

R

dµ(x)

z − x
=

F
({

z−1γ2
k
}∞

k=2

)
z F
({

z−1γ2
k

}∞
k=1

) , z /∈ suppµ.

If we denote supp(µ) \ {0} = {µ1, µ2, . . . } then the last equality can be rewritten as
the Mittag-Leffler expansion:

Λ0

z
+
∞∑

k=1

Λk

z − µk
=

F
({

z−1γ2
k
}∞

k=2

)
z F
({

z−1γ2
k

}∞
k=1

) .
From this expression, one extracts information about µk and Λk . Namely, we have

supp(µ) \ {0} = {µ1, µ2, . . . } =

{
1
x
∈ R : F

({
xγ2

k

}∞
k=1

)
= 0

}
,

and

Λn = F
({
µ−1

n γ2
k

}∞
k=2

)( d
dz

∣∣∣∣
z=µn

z F
({

z−1γ2
k

}∞
k=1

))−1

.
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Example

Let us set λn = 0 and wn = 1/
√

(ν + n)(ν + n + 1) then

F
({

z−1γ2
k

}∞
k=1

)
= F

({
1

z(ν + k)

}∞
k=1

)
= Γ(ν + 1) zνJν(2/z)

Hence, by the general result, the measure of orthogonality for Pn is supported by
the set {

2
±jk,ν

}∞
k=1

zeros of the function z 7→ zνJν(2/z).

The orthogonality relation takes the form

−2(ν + 1)
∞∑

k=1

Jν+1(±jk,ν)

j 2
k,ν J ′ν(±jk,ν)

Pm

(
2
±jk,ν

)
Pn

(
2
±jk,ν

)
= δmn

which can be further simplified to the well known relation

∞∑
k=1

j −2
k,ν Rn,ν+1(±jk,ν)Rm,ν+1(±jk,ν) =

1
2(n + ν + 1)

δmn

where Rn,ν stands for the Lommel polynomial (the standard notation).
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Summary

The function F is an interesting mathematical object which has nice algebraic
and combinatorial properties.

With the aid of F we can define the characteristic function of Jacobi matrix
(from certain class) and describe spectral properties of corresponding Jacobi
operator.

One can use F to determine the measure of orthogonality for a family of
orthogonal polynomials generated by a three term recurrence.

It remains unmentioned:

There are several identities for F which yield various formulas for orthogonal
polynomials and special functions.

The function F has further applications in the theory of second order difference
equations.

There is a close relation between F and continued fractions.
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