On certain function with applications concerning tridiagonal matrices

František Štampach

Czech Technical University in Prague

Conference on Mathematics and its Applications 2014

November 16, 2014

Contents

(1) Function \mathfrak{F} and its fundamental properties

2 Application in the spectral analysis of Jacobi operators
(3) Application in the theory of orthogonal polynomial

Function \mathfrak{F}

Definition

Let me define $\mathfrak{F}: D \rightarrow \mathbb{C}$ by relation

$$
\mathfrak{F}(x)=1+\sum_{m=1}^{\infty}(-1)^{m} \sum_{k_{1}=1}^{\infty} \sum_{k_{2}=k_{1}+2}^{\infty} \ldots \sum_{k_{m}=k_{m-1}+2}^{\infty} x_{k_{1}} x_{k_{1}+1} x_{k_{2}} x_{k_{2}+1} \ldots x_{k_{m}} x_{k_{m}+1},
$$

where

$$
D=\left\{\left\{x_{k}\right\}_{k=1}^{\infty} \subset \mathbb{C} ; \sum_{k=1}^{\infty}\left|x_{k} x_{k+1}\right|<\infty\right\} .
$$

For a finite number of complex variables let me identify $\mathfrak{F}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ with $\mathfrak{F}(x)$ where $x=\left(x_{1}, x_{2}, \ldots, x_{n}, 0,0,0, \ldots\right)$.

Function \mathfrak{F}

Definition

Let me define $\mathfrak{F}: D \rightarrow \mathbb{C}$ by relation

$$
\mathfrak{F}(x)=1+\sum_{m=1}^{\infty}(-1)^{m} \sum_{k_{1}=1}^{\infty} \sum_{k_{2}=k_{1}+2}^{\infty} \ldots \sum_{k_{m}=k_{m-1}+2}^{\infty} x_{k_{1}} x_{k_{1}+1} x_{k_{2}} x_{k_{2}+1} \ldots x_{k_{m}} x_{k_{m}+1},
$$

where

$$
D=\left\{\left\{x_{k}\right\}_{k=1}^{\infty} \subset \mathbb{C} ; \sum_{k=1}^{\infty}\left|x_{k} x_{k+1}\right|<\infty\right\} .
$$

For a finite number of complex variables let me identify $\mathfrak{F}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ with $\mathfrak{F}(x)$ where $x=\left(x_{1}, x_{2}, \ldots, x_{n}, 0,0,0, \ldots\right)$.

- Note the function \mathfrak{F} is indeed well defined on the domain D since one has the estimate

$$
|\mathfrak{F}(x)| \leq \exp \left(\sum_{k=1}^{\infty}\left|x_{k} x_{k+1}\right|\right) .
$$

Function \mathfrak{F}

Definition

Let me define $\mathfrak{F}: D \rightarrow \mathbb{C}$ by relation

$$
\mathfrak{F}(x)=1+\sum_{m=1}^{\infty}(-1)^{m} \sum_{k_{1}=1}^{\infty} \sum_{k_{2}=k_{1}+2}^{\infty} \ldots \sum_{k_{m}=k_{m-1}+2}^{\infty} x_{k_{1}} x_{k_{1}+1} x_{k_{2}} x_{k_{2}+1} \ldots x_{k_{m}} x_{k_{m}+1},
$$

where

$$
D=\left\{\left\{x_{k}\right\}_{k=1}^{\infty} \subset \mathbb{C} ; \sum_{k=1}^{\infty}\left|x_{k} x_{k+1}\right|<\infty\right\} .
$$

For a finite number of complex variables let me identify $\mathfrak{F}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ with $\mathfrak{F}(x)$ where $x=\left(x_{1}, x_{2}, \ldots, x_{n}, 0,0,0, \ldots\right)$.

- Note the function \mathfrak{F} is indeed well defined on the domain D since one has the estimate

$$
|\mathfrak{F}(x)| \leq \exp \left(\sum_{k=1}^{\infty}\left|x_{k} x_{k+1}\right|\right) .
$$

- Note D is not a linear space. One has, however, $\ell^{2}(\mathbb{N}) \subset D$.

Fundamental properties of \mathfrak{F}

- For all $x \in D$, one has

$$
\mathfrak{F}(x)=\mathfrak{F}(T x)-x_{1} x_{2} \mathfrak{F}\left(T^{2} x\right)
$$

where T is the shift operator acting on the space of complex sequences as

$$
(T x)_{n}=x_{n+1}, \quad n \in \mathbb{N}
$$

Fundamental properties of \mathfrak{F}

- For all $x \in D$, one has

$$
\mathfrak{F}(x)=\mathfrak{F}(T x)-x_{1} x_{2} \mathfrak{F}\left(T^{2} x\right)
$$

where T is the shift operator acting on the space of complex sequences as

$$
(T x)_{n}=x_{n+1}, \quad n \in \mathbb{N}
$$

- This is a particular case of the more general formula:

$$
\mathfrak{F}(x)=\mathfrak{F}\left(x_{1}, \ldots, x_{k}\right) \mathfrak{F}\left(T^{k} x\right)-\mathfrak{F}\left(x_{1}, \ldots, x_{k-1}\right) x_{k} x_{k+1} \mathfrak{F}\left(T^{k+1} x\right)
$$

holding true for any $k \in \mathbb{N}$.

Fundamental properties of \mathfrak{F}

- For all $x \in D$, one has

$$
\mathfrak{F}(x)=\mathfrak{F}(T x)-x_{1} x_{2} \mathfrak{F}\left(T^{2} x\right)
$$

where T is the shift operator acting on the space of complex sequences as

$$
(T x)_{n}=x_{n+1}, \quad n \in \mathbb{N}
$$

- This is a particular case of the more general formula:

$$
\mathfrak{F}(x)=\mathfrak{F}\left(x_{1}, \ldots, x_{k}\right) \mathfrak{F}\left(T^{k} x\right)-\mathfrak{F}\left(x_{1}, \ldots, x_{k-1}\right) x_{k} x_{k+1} \mathfrak{F}\left(T^{k+1} x\right)
$$

holding true for any $k \in \mathbb{N}$.

- Equivalent definition for $\mathfrak{F}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is:

$$
\mathfrak{F}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\operatorname{det} X_{n}=\operatorname{det}\left(\begin{array}{ccccc}
1 & x_{1} & & & \\
x_{2} & 1 & x_{2} & & \\
& \ddots & \ddots & \ddots & \\
& & x_{n-1} & 1 & x_{n-1} \\
& & & x_{n} & 1
\end{array}\right)
$$

For $x \in D$, we have $\mathfrak{F}(x)=\lim _{n \rightarrow \infty} \operatorname{det} X_{n}$.

Contents

(1) Function \mathfrak{F} and its fundamental properties

(2) Application in the spectral analysis of Jacobi operators

(3) Application in the theory of orthogonal polynomial

Characteristic function of Jacobi matrix

- Let us denote

$$
J=\left(\begin{array}{lllll}
\lambda_{1} & w_{1} & & & \\
w_{1} & \lambda_{2} & w_{2} & & \\
& w_{2} & \lambda_{3} & w_{3} & \\
& & \ddots & \ddots & \ddots
\end{array}\right)
$$

where $\lambda_{n} \in \mathbb{R}$ and $w_{n} \in \mathbb{R} \backslash\{0\}$.

Characteristic function of Jacobi matrix

- Let us denote

$$
J=\left(\begin{array}{lllll}
\lambda_{1} & w_{1} & & & \\
w_{1} & \lambda_{2} & w_{2} & & \\
& w_{2} & \lambda_{3} & w_{3} & \\
& & \ddots & \ddots & \ddots
\end{array}\right)
$$

where $\lambda_{n} \in \mathbb{R}$ and $w_{n} \in \mathbb{R} \backslash\{0\}$.

- Let J_{N} denotes the $N \times N$ principal submatrix of J.

Characteristic function of Jacobi matrix

- Let us denote

$$
J=\left(\begin{array}{lllll}
\lambda_{1} & w_{1} & & & \\
w_{1} & \lambda_{2} & w_{2} & & \\
& w_{2} & \lambda_{3} & w_{3} & \\
& & \ddots & \ddots & \ddots
\end{array}\right)
$$

where $\lambda_{n} \in \mathbb{R}$ and $w_{n} \in \mathbb{R} \backslash\{0\}$.

- Let J_{N} denotes the $N \times N$ principal submatrix of J.
- The characteristic function of J_{N} can be written in the following form

$$
\operatorname{det}\left(J_{N}-z\right)=\left(\prod_{k=1}^{N}\left(\lambda_{k}-z\right)\right) \mathfrak{F}\left(\frac{\gamma_{1}^{2}}{\lambda_{1}-z}, \frac{\gamma_{2}^{2}}{\lambda_{2}-z}, \ldots, \frac{\gamma_{N}^{2}}{\lambda_{N}-z}\right)
$$

where $\left\{\gamma_{k}\right\}_{k=1}^{N}$ is any sequence satisfying the recurrence $\gamma_{k} \gamma_{k+1}=w_{k}$, for $k \geq 1$.

Characteristic function of Jacobi matrix

- Let us denote

$$
J=\left(\begin{array}{lllll}
\lambda_{1} & w_{1} & & & \\
w_{1} & \lambda_{2} & w_{2} & & \\
& w_{2} & \lambda_{3} & w_{3} & \\
& & \ddots & \ddots & \ddots
\end{array}\right)
$$

where $\lambda_{n} \in \mathbb{R}$ and $w_{n} \in \mathbb{R} \backslash\{0\}$.

- Let J_{N} denotes the $N \times N$ principal submatrix of J.
- The characteristic function of J_{N} can be written in the following form

$$
\operatorname{det}\left(J_{N}-z\right)=\left(\prod_{k=1}^{N}\left(\lambda_{k}-z\right)\right) \mathfrak{F}\left(\frac{\gamma_{1}^{2}}{\lambda_{1}-z}, \frac{\gamma_{2}^{2}}{\lambda_{2}-z}, \ldots, \frac{\gamma_{N}^{2}}{\lambda_{N}-z}\right)
$$

where $\left\{\gamma_{k}\right\}_{k=1}^{N}$ is any sequence satisfying the recurrence $\gamma_{k} \gamma_{k+1}=w_{k}$, for $k \geq 1$.

- By extracting the term with \mathfrak{F} and sending $N \rightarrow \infty$ one arrives at the function

$$
F_{J}(z):=\mathfrak{F}\left(\left\{\frac{\gamma_{n}^{2}}{\lambda_{n}-z}\right\}_{n=1}^{\infty}\right)
$$

Characteristic function - cont.

- The function

$$
F_{J}(z):=\mathfrak{F}\left(\left\{\frac{\gamma_{n}^{2}}{\lambda_{n}-z}\right\}_{n=1}^{\infty}\right)
$$

is well defined if there exists at least one $z_{0} \in \mathbb{C} \backslash \overline{\operatorname{Ran} \lambda}$ such that

$$
\sum_{n=1}^{\infty} \frac{w_{n}^{2}}{\left|\left(\lambda_{n}-z_{0}\right)\left(\lambda_{n+1}-z_{0}\right)\right|}<\infty
$$

Characteristic function - cont.

- The function

$$
F_{J}(z):=\mathfrak{F}\left(\left\{\frac{\gamma_{n}^{2}}{\lambda_{n}-z}\right\}_{n=1}^{\infty}\right)
$$

is well defined if there exists at least one $z_{0} \in \mathbb{C} \backslash \overline{\operatorname{Ran} \lambda}$ such that

$$
\sum_{n=1}^{\infty} \frac{w_{n}^{2}}{\left|\left(\lambda_{n}-z_{0}\right)\left(\lambda_{n+1}-z_{0}\right)\right|}<\infty
$$

- Function F_{J} is analytic on $\mathbb{C} \backslash \overline{\operatorname{Ran} \lambda}$ and we call it the characteristic function of the Jacobi matrix J.

Spectrum of Jacobi operator via characteristic function

Theorem

Let the condition on λ_{n} and w_{n} mentioned before be fulfilled.

Spectrum of Jacobi operator via characteristic function

Theorem

Let the condition on λ_{n} and w_{n} mentioned before be fulfilled. Then matrix J determines uniquely a self-adjoint Jacobi operator J on $\ell^{2}(\mathbb{N})$

Spectrum of Jacobi operator via characteristic function

Theorem

Let the condition on λ_{n} and w_{n} mentioned before be fulfilled. Then matrix J determines uniquely a self-adjoint Jacobi operator J on $\ell^{2}(\mathbb{N})$ and the set of zeros of F_{J} in $\mathbb{C} \backslash \overline{\operatorname{Ran} \lambda}$ coincides with the set of eigenvalues of J in $\mathbb{C} \backslash \overline{\operatorname{Ran} \lambda}$ (all are simple).

Spectrum of Jacobi operator via characteristic function

Theorem

Let the condition on λ_{n} and w_{n} mentioned before be fulfilled. Then matrix J determines uniquely a self-adjoint Jacobi operator J on $\ell^{2}(\mathbb{N})$ and the set of zeros of F_{J} in $\mathbb{C} \backslash \overline{\operatorname{Ran} \lambda}$ coincides with the set of eigenvalues of J in $\mathbb{C} \backslash \overline{\operatorname{Ran} \lambda}$ (all are simple).

Moreover, if $z \in \mathbb{C} \backslash \overline{\operatorname{Ran} \lambda}$ is an eigenvalue of J then the vector $\xi(z)=\left(\xi_{1}(z), \xi_{2}(z), \ldots\right)$ where

$$
\xi_{n}(z)=\left(\prod_{k=1}^{n} \frac{w_{k-1}}{z-\lambda_{k}}\right) \mathfrak{F}\left(\left\{\frac{\gamma_{k}^{2}}{\lambda_{k}-z}\right\}_{k=n+1}^{\infty}\right), \quad\left(w_{0}:=1\right)
$$

is the corresponding eigenvector.

Spectrum of Jacobi operator via characteristic function

Theorem

Let the condition on λ_{n} and w_{n} mentioned before be fulfilled. Then matrix J determines uniquely a self-adjoint Jacobi operator J on $\ell^{2}(\mathbb{N})$ and the set of zeros of F_{J} in $\mathbb{C} \backslash \overline{\operatorname{Ran} \lambda}$ coincides with the set of eigenvalues of J in $\mathbb{C} \backslash \overline{\operatorname{Ran} \lambda}$ (all are simple).

Moreover, if $z \in \mathbb{C} \backslash \overline{\operatorname{Ran} \lambda}$ is an eigenvalue of J then the vector $\xi(z)=\left(\xi_{1}(z), \xi_{2}(z), \ldots\right)$ where

$$
\xi_{n}(z)=\left(\prod_{k=1}^{n} \frac{w_{k-1}}{z-\lambda_{k}}\right) \mathfrak{F}\left(\left\{\frac{\gamma_{k}^{2}}{\lambda_{k}-z}\right\}_{k=n+1}^{\infty}\right), \quad\left(w_{0}:=1\right)
$$

is the corresponding eigenvector.
Furthermore, for the Green function $G_{i j}(z)=\left(e_{i},(J-z)^{-1} e_{j}\right)$ we have

$$
G_{i j}(z)=-\frac{1}{w_{M}} \prod_{l=m}^{M}\left(\frac{w_{l}}{z-\lambda_{l}}\right)^{\mathfrak{F}\left(\left\{\frac{\gamma_{l}^{2}}{\lambda_{l}-z}\right\}_{l=1}^{m-1}\right) \mathfrak{F}\left(\left\{\frac{\gamma_{l}^{2}}{\lambda_{l}-z}\right\}_{l=M+1}^{\infty}\right)} \underset{\mathfrak{F}\left(\left\{\frac{\gamma_{l}^{2}}{\lambda_{l}-z}\right\}_{l=1}^{\infty}\right)}{\infty}
$$

where $z \notin \operatorname{spec}(J), m:=\min (i, j)$, and $M:=\max (i, j)$.

Example

- Set $\lambda_{n}=n$ and $w_{n}=w \in \mathbb{R} \backslash\{0\}$, for $n \in \mathbb{N}$. Thus, in this case,

$$
J=\left(\begin{array}{ccccc}
1 & w & & & \\
w & 2 & w & & \\
& w & 3 & w & \\
& & \ddots & \ddots & \ddots
\end{array}\right)
$$

Example

- Set $\lambda_{n}=n$ and $w_{n}=w \in \mathbb{R} \backslash\{0\}$, for $n \in \mathbb{N}$. Thus, in this case,

$$
J=\left(\begin{array}{ccccc}
1 & w & & & \\
w & 2 & w & & \\
& w & 3 & w & \\
& & \ddots & \ddots & \ddots
\end{array}\right)
$$

- One has

$$
\mathfrak{F}\left(\left\{\frac{\gamma_{k}^{2}}{k-z}\right\}_{k=r+1}^{\infty}\right)=\mathfrak{F}\left(\left\{\frac{w}{k-z}\right\}_{k=r+1}^{\infty}\right)=w^{z-r} \Gamma(1+r-z) J_{r-z}(2 w)
$$

for $r \in \mathbb{Z}_{+}$.

Example

- Set $\lambda_{n}=n$ and $w_{n}=w \in \mathbb{R} \backslash\{0\}$, for $n \in \mathbb{N}$. Thus, in this case,

$$
J=\left(\begin{array}{ccccc}
1 & w & & & \\
w & 2 & w & & \\
& w & 3 & w & \\
& & \ddots & \ddots & \ddots
\end{array}\right)
$$

- One has

$$
\mathfrak{F}\left(\left\{\frac{\gamma_{k}^{2}}{k-z}\right\}_{k=r+1}^{\infty}\right)=\mathfrak{F}\left(\left\{\frac{w}{k-z}\right\}_{k=r+1}^{\infty}\right)=w^{z-r} \Gamma(1+r-z) J_{r-z}(2 w)
$$

for $r \in \mathbb{Z}_{+}$.

- The general theorem tells us

$$
\operatorname{spec}(J)=\left\{z \in \mathbb{R} \mid J_{-z}(2 w)=0\right\}
$$

and components of corresponding eigenvectors $v(z)$ can be chosen as

$$
v_{k}(z)=(-1)^{k} J_{k-z}(2 w), k \in \mathbb{N} .
$$

Contents

(1) Function \mathfrak{F} and its fundamental properties

2 Application in the spectral analysis of Jacobi operators
(3) Application in the theory of orthogonal polynomial

Function \mathfrak{F} and Orthogonal Polynomials

- For $\lambda_{n} \in \mathbb{R}$ and $w_{n}>0$, consider the symmetric second order difference equations

$$
w_{n-1} y_{n-1}(x)+\lambda_{n} y_{n}(x)+w_{n} y_{n+1}(x)=x y_{n}(x), \quad n=1,2, \ldots \quad\left(w_{0}:=-1\right)
$$

OPs of the first kind $P_{n}(x)$ are the solution satisfying initial conditions $P_{0}(x)=0$, $P_{1}(x)=1$, while OPs of the second kind $Q_{n}(x)$ satisfy the same recurrence starting with the initial conditions $Q_{0}(x)=1, Q_{1}(x)=0$.

Function \mathfrak{F} and Orthogonal Polynomials

- For $\lambda_{n} \in \mathbb{R}$ and $w_{n}>0$, consider the symmetric second order difference equations

$$
w_{n-1} y_{n-1}(x)+\lambda_{n} y_{n}(x)+w_{n} y_{n+1}(x)=x y_{n}(x), \quad n=1,2, \ldots \quad\left(w_{0}:=-1\right)
$$

OPs of the first kind $P_{n}(x)$ are the solution satisfying initial conditions $P_{0}(x)=0$, $P_{1}(x)=1$, while OPs of the second kind $Q_{n}(x)$ satisfy the same recurrence starting with the initial conditions $Q_{0}(x)=1, Q_{1}(x)=0$.

- OPs are related to \mathfrak{F} through identities

$$
\begin{gathered}
P_{n+1}(z)=\prod_{k=1}^{n}\left(\frac{z-\lambda_{k}}{w_{k}}\right) \mathfrak{F}\left(\left\{\frac{\gamma_{l}^{2}}{\lambda_{I}-z}\right\}_{l=1}^{n}\right), \quad n=0,1 \ldots \\
Q_{n+1}(z)=\frac{1}{w_{1}} \prod_{k=2}^{n}\left(\frac{z-\lambda_{k}}{w_{k}}\right) \mathfrak{F}\left(\left\{\frac{\gamma_{l}^{2}}{\lambda_{l}-z}\right\}_{l=2}^{n}\right), \quad n=0,1 \ldots
\end{gathered}
$$

where $\left\{\gamma_{n}\right\}$ can be defined recursively by $\gamma_{k} \gamma_{k+1}=w_{k}$.

Limit formula for OPs

Proposition

If $\sum_{k \geq 0}\left|\frac{w_{k}^{2}}{\left(z-\lambda_{k}\right)\left(z-\lambda_{k+1}\right)}\right|<\infty$, for some $z \in \mathbb{C}$, then for all $z \in \mathbb{C} \backslash \mathbb{R}$ we have

$$
\left(\prod_{k=1}^{n-1} \frac{w_{k}}{z-\lambda_{k}}\right) P_{n}(z) \underset{n \rightarrow \infty}{\longrightarrow} \mathfrak{F}\left(\left\{\frac{\gamma_{k}^{2}}{\lambda_{k}-z}\right\}_{k=1}^{\infty}\right)
$$

Limit formula for OPs

Proposition

If $\sum_{k \geq 0}\left|\frac{w_{k}^{2}}{\left(z-\lambda_{k}\right)\left(z-\lambda_{k+1}\right)}\right|<\infty$, for some $z \in \mathbb{C}$, then for all $z \in \mathbb{C} \backslash \mathbb{R}$ we have

$$
\left(\prod_{k=1}^{n-1} \frac{w_{k}}{z-\lambda_{k}}\right) P_{n}(z) \underset{n \rightarrow \infty}{\longrightarrow} \mathfrak{F}\left(\left\{\frac{\gamma_{k}^{2}}{\lambda_{k}-z}\right\}_{k=1}^{\infty}\right) .
$$

Typical example: By setting $\lambda_{n}=0$ and $w_{n}=[4(n+\nu-1)(n+\nu)]^{-1 / 2}$, polynomials

$$
P_{n+1}(x)=(2 x)^{n} \sqrt{\frac{\nu}{\nu+n}} \frac{\Gamma(n+\nu)}{\Gamma(\nu)} \mathfrak{F}\left(\left\{\frac{1}{2 x(\nu+k-1)}\right\}_{k=1}^{n}\right)
$$

are related to Lommel polynomials $R_{n, \nu}(x)$:

Limit formula for OPs

Proposition

If $\sum_{k \geq 0}\left|\frac{w_{k}^{2}}{\left(z-\lambda_{k}\right)\left(z-\lambda_{k+1}\right)}\right|<\infty$, for some $z \in \mathbb{C}$, then for all $z \in \mathbb{C} \backslash \mathbb{R}$ we have

$$
\left(\prod_{k=1}^{n-1} \frac{w_{k}}{z-\lambda_{k}}\right) P_{n}(z) \underset{n \rightarrow \infty}{\longrightarrow} \mathfrak{F}\left(\left\{\frac{\gamma_{k}^{2}}{\lambda_{k}-z}\right\}_{k=1}^{\infty}\right) .
$$

Typical example: By setting $\lambda_{n}=0$ and $w_{n}=[4(n+\nu-1)(n+\nu)]^{-1 / 2}$, polynomials

$$
P_{n+1}(x)=(2 x)^{n} \sqrt{\frac{\nu}{\nu+n}} \frac{\Gamma(n+\nu)}{\Gamma(\nu)} \mathfrak{F}\left(\left\{\frac{1}{2 x(\nu+k-1)}\right\}_{k=1}^{n}\right)
$$

are related to Lommel polynomials $R_{n, \nu}(x)$:

$$
R_{n, \nu}(x)=\sqrt{\frac{n+\nu}{\nu}} P_{n+1}\left(x^{-1}\right) .
$$

Limit formula for OPs

Proposition

If $\sum_{k \geq 0}\left|\frac{w_{k}^{2}}{\left(z-\lambda_{k}\right)\left(z-\lambda_{k+1}\right)}\right|<\infty$, for some $z \in \mathbb{C}$, then for all $z \in \mathbb{C} \backslash \mathbb{R}$ we have

$$
\left(\prod_{k=1}^{n-1} \frac{w_{k}}{z-\lambda_{k}}\right) P_{n}(z) \underset{n \rightarrow \infty}{\longrightarrow} \mathfrak{F}\left(\left\{\frac{\gamma_{k}^{2}}{\lambda_{k}-z}\right\}_{k=1}^{\infty}\right) .
$$

Typical example: By setting $\lambda_{n}=0$ and $w_{n}=[4(n+\nu-1)(n+\nu)]^{-1 / 2}$, polynomials

$$
P_{n+1}(x)=(2 x)^{n} \sqrt{\frac{\nu}{\nu+n}} \frac{\Gamma(n+\nu)}{\Gamma(\nu)} \mathfrak{F}\left(\left\{\frac{1}{2 x(\nu+k-1)}\right\}_{k=1}^{n}\right)
$$

are related to Lommel polynomials $R_{n, \nu}(x)$:

$$
R_{n, \nu}(x)=\sqrt{\frac{n+\nu}{\nu}} P_{n+1}\left(x^{-1}\right) .
$$

The above limit relation yields the Hurwitz's asymptotic formula for Lommel polynomials

$$
\lim _{n \rightarrow \infty} \frac{x^{n}}{2^{n} \Gamma(\nu+n)} R_{n, \nu}(x)=\left(\frac{x}{2}\right)^{-\nu+1} J_{\nu-1}(x)
$$

Constructing measure of orthogonality

Theorem (essentially due to Markov)

Let the Hmp corresponding to P_{n} be determinate. Then

$$
\lim _{n \rightarrow \infty} \frac{Q_{n}(z)}{P_{n}(z)}=\int_{\mathbb{R}} \frac{\mathrm{d} \mu(x)}{z-x}, \quad z \in \mathbb{C} \backslash \mathbb{R}
$$

where μ is the measure of orthogonality for P_{n}.

Constructing measure of orthogonality

Theorem (essentially due to Markov)

Let the Hmp corresponding to P_{n} be determinate. Then

$$
\lim _{n \rightarrow \infty} \frac{Q_{n}(z)}{P_{n}(z)}=\int_{\mathbb{R}} \frac{\mathrm{d} \mu(x)}{z-x}, \quad z \in \mathbb{C} \backslash \mathbb{R},
$$

where μ is the measure of orthogonality for P_{n}.

- Under certain assumption on λ_{n} and w_{n}, we can apply the limit formula for $P_{n}(x)$ (and similar formula for $Q_{n}(x)$):

$$
\int_{\mathbb{R}} \frac{\mathrm{d} \mu(x)}{z-x}=\frac{\mathfrak{F}\left(\left\{\frac{\gamma_{k}^{2}}{\lambda_{k}-z}\right\}_{k=2}^{\infty}\right)}{\left(z-\lambda_{1}\right) \mathfrak{F}\left(\left\{\frac{\gamma_{k}^{2}}{\lambda_{k}-z}\right\}_{k=1}^{\infty}\right)},
$$

for $z \notin \operatorname{supp} \mu$.

Constructing measure of orthogonality

Theorem (essentially due to Markov)

Let the Hmp corresponding to P_{n} be determinate. Then

$$
\lim _{n \rightarrow \infty} \frac{Q_{n}(z)}{P_{n}(z)}=\int_{\mathbb{R}} \frac{\mathrm{d} \mu(x)}{z-x}, \quad z \in \mathbb{C} \backslash \mathbb{R},
$$

where μ is the measure of orthogonality for P_{n}.

- Under certain assumption on λ_{n} and w_{n}, we can apply the limit formula for $P_{n}(x)$ (and similar formula for $Q_{n}(x)$):

$$
\int_{\mathbb{R}} \frac{\mathrm{d} \mu(x)}{z-x}=\frac{\mathfrak{F}\left(\left\{\frac{\gamma_{k}^{2}}{\lambda_{k}-z}\right\}_{k=2}^{\infty}\right)}{\left(z-\lambda_{1}\right) \mathfrak{F}\left(\left\{\frac{\gamma_{k}^{2}}{\lambda_{k}-z}\right\}_{k=1}^{\infty}\right)},
$$

for $z \notin \operatorname{supp} \mu$.

- Having the Stieltjes transform of μ we can, in principle, determine the measure of orthogonality μ by using the Stieltjes-Perron inversion formula.

Measure of orthogonality - special case

- Assume $\lambda_{n}=0$ and $\left\{w_{n}\right\} \in \ell^{2}$ then the supp μ is a denumerable set of points with 0 the only accumulation point and we have

$$
\int_{\mathbb{R}} \frac{\mathrm{d} \mu(x)}{z-x}=\frac{\mathfrak{F}\left(\left\{z^{-1} \gamma_{k}^{2}\right\}_{k=2}^{\infty}\right)}{z \mathfrak{F}\left(\left\{z^{-1} \gamma_{k}^{2}\right\}_{k=1}^{\infty}\right)}, \quad z \notin \operatorname{supp} \mu
$$

Measure of orthogonality - special case

- Assume $\lambda_{n}=0$ and $\left\{w_{n}\right\} \in \ell^{2}$ then the supp μ is a denumerable set of points with 0 the only accumulation point and we have

$$
\int_{\mathbb{R}} \frac{\mathrm{d} \mu(x)}{z-x}=\frac{\mathfrak{F}\left(\left\{z^{-1} \gamma_{k}^{2}\right\}_{k=2}^{\infty}\right)}{z \mathfrak{F}\left(\left\{z^{-1} \gamma_{k}^{2}\right\}_{k=1}^{\infty}\right)}, \quad z \notin \operatorname{supp} \mu
$$

- If we denote $\operatorname{supp}(\mu) \backslash\{0\}=\left\{\mu_{1}, \mu_{2}, \ldots\right\}$ then the last equality can be rewritten as the Mittag-Leffler expansion:

$$
\frac{\Lambda_{0}}{z}+\sum_{k=1}^{\infty} \frac{\Lambda_{k}}{z-\mu_{k}}=\frac{\mathfrak{F}\left(\left\{z^{-1} \gamma_{k}^{2}\right\}_{k=2}^{\infty}\right)}{z \mathfrak{F}\left(\left\{z^{-1} \gamma_{k}^{2}\right\}_{k=1}^{\infty}\right)}
$$

Measure of orthogonality - special case

- Assume $\lambda_{n}=0$ and $\left\{w_{n}\right\} \in \ell^{2}$ then the supp μ is a denumerable set of points with 0 the only accumulation point and we have

$$
\int_{\mathbb{R}} \frac{\mathrm{d} \mu(x)}{z-x}=\frac{\mathfrak{F}\left(\left\{z^{-1} \gamma_{k}^{2}\right\}_{k=2}^{\infty}\right)}{z \mathfrak{F}\left(\left\{z^{-1} \gamma_{k}^{2}\right\}_{k=1}^{\infty}\right)}, \quad z \notin \operatorname{supp} \mu
$$

- If we denote $\operatorname{supp}(\mu) \backslash\{0\}=\left\{\mu_{1}, \mu_{2}, \ldots\right\}$ then the last equality can be rewritten as the Mittag-Leffler expansion:

$$
\frac{\Lambda_{0}}{z}+\sum_{k=1}^{\infty} \frac{\Lambda_{k}}{z-\mu_{k}}=\frac{\mathfrak{F}\left(\left\{z^{-1} \gamma_{k}^{2}\right\}_{k=2}^{\infty}\right)}{z \mathfrak{F}\left(\left\{z^{-1} \gamma_{k}^{2}\right\}_{k=1}^{\infty}\right)}
$$

- From this expression, one extracts information about μ_{k} and Λ_{k}. Namely, we have

$$
\operatorname{supp}(\mu) \backslash\{0\}=\left\{\mu_{1}, \mu_{2}, \ldots\right\}=\left\{\frac{1}{x} \in \mathbb{R}: \mathfrak{F}\left(\left\{x \gamma_{k}^{2}\right\}_{k=1}^{\infty}\right)=0\right\},
$$

and

$$
\Lambda_{n}=\mathfrak{F}\left(\left\{\mu_{n}^{-1} \gamma_{k}^{2}\right\}_{k=2}^{\infty}\right)\left(\left.\frac{d}{d z}\right|_{z=\mu_{n}} z \mathfrak{F}\left(\left\{z^{-1} \gamma_{k}^{2}\right\}_{k=1}^{\infty}\right)\right)^{-1}
$$

Example

- Let us set $\lambda_{n}=0$ and $w_{n}=1 / \sqrt{(\nu+n)(\nu+n+1)}$ then

$$
\mathfrak{F}\left(\left\{z^{-1} \gamma_{k}^{2}\right\}_{k=1}^{\infty}\right)=\mathfrak{F}\left(\left\{\frac{1}{z(\nu+k)}\right\}_{k=1}^{\infty}\right)=\Gamma(\nu+1) z^{\nu} J_{\nu}(2 / z)
$$

Example

- Let us set $\lambda_{n}=0$ and $w_{n}=1 / \sqrt{(\nu+n)(\nu+n+1)}$ then

$$
\mathfrak{F}\left(\left\{z^{-1} \gamma_{k}^{2}\right\}_{k=1}^{\infty}\right)=\mathfrak{F}\left(\left\{\frac{1}{z(\nu+k)}\right\}_{k=1}^{\infty}\right)=\Gamma(\nu+1) z^{\nu} J_{\nu}(2 / z)
$$

- Hence, by the general result, the measure of orthogonality for P_{n} is supported by the set

$$
\left\{\frac{2}{ \pm j_{k, \nu}}\right\}_{k=1}^{\infty} \text { zeros of the function } z \mapsto z^{\nu} J_{\nu}(2 / z)
$$

Example

- Let us set $\lambda_{n}=0$ and $w_{n}=1 / \sqrt{(\nu+n)(\nu+n+1)}$ then

$$
\mathfrak{F}\left(\left\{z^{-1} \gamma_{k}^{2}\right\}_{k=1}^{\infty}\right)=\mathfrak{F}\left(\left\{\frac{1}{z(\nu+k)}\right\}_{k=1}^{\infty}\right)=\Gamma(\nu+1) z^{\nu} J_{\nu}(2 / z)
$$

- Hence, by the general result, the measure of orthogonality for P_{n} is supported by the set

$$
\left\{\frac{2}{ \pm j_{k, \nu}}\right\}_{k=1}^{\infty} \text { zeros of the function } z \mapsto z^{\nu} J_{\nu}(2 / z)
$$

- The orthogonality relation takes the form

$$
-2(\nu+1) \sum_{k=1}^{\infty} \frac{J_{\nu+1}\left(\pm j_{k, \nu}\right)}{j_{k, \nu}^{2} J_{\nu}^{\prime}\left(\pm j_{k, \nu}\right)} P_{m}\left(\frac{2}{ \pm j_{k, \nu}}\right) P_{n}\left(\frac{2}{ \pm j_{k, \nu}}\right)=\delta_{m n}
$$

Example

- Let us set $\lambda_{n}=0$ and $w_{n}=1 / \sqrt{(\nu+n)(\nu+n+1)}$ then

$$
\mathfrak{F}\left(\left\{z^{-1} \gamma_{k}^{2}\right\}_{k=1}^{\infty}\right)=\mathfrak{F}\left(\left\{\frac{1}{z(\nu+k)}\right\}_{k=1}^{\infty}\right)=\Gamma(\nu+1) z^{\nu} J_{\nu}(2 / z)
$$

- Hence, by the general result, the measure of orthogonality for P_{n} is supported by the set

$$
\left\{\frac{2}{ \pm j_{k, \nu}}\right\}_{k=1}^{\infty} \text { zeros of the function } z \mapsto z^{\nu} J_{\nu}(2 / z)
$$

- The orthogonality relation takes the form

$$
-2(\nu+1) \sum_{k=1}^{\infty} \frac{J_{\nu+1}\left(\pm j_{k, \nu}\right)}{j_{k, \nu}^{2} J_{\nu}^{\prime}\left(\pm j_{k, \nu}\right)} P_{m}\left(\frac{2}{ \pm j_{k, \nu}}\right) P_{n}\left(\frac{2}{ \pm j_{k, \nu}}\right)=\delta_{m n}
$$

which can be further simplified to the well known relation

$$
\sum_{k=1}^{\infty} j_{k, \nu}^{-2} R_{n, \nu+1}\left(\pm j_{k, \nu}\right) R_{m, \nu+1}\left(\pm j_{k, \nu}\right)=\frac{1}{2(n+\nu+1)} \delta_{m n}
$$

where $R_{n, \nu}$ stands for the Lommel polynomial (the standard notation).

Summary

- The function \mathfrak{F} is an interesting mathematical object which has nice algebraic and combinatorial properties.

Summary

- The function \mathfrak{F} is an interesting mathematical object which has nice algebraic and combinatorial properties.
- With the aid of \mathfrak{F} we can define the characteristic function of Jacobi matrix (from certain class) and describe spectral properties of corresponding Jacobi operator.

Summary

- The function \mathfrak{F} is an interesting mathematical object which has nice algebraic and combinatorial properties.
- With the aid of \mathfrak{F} we can define the characteristic function of Jacobi matrix (from certain class) and describe spectral properties of corresponding Jacobi operator.
- One can use \mathfrak{F} to determine the measure of orthogonality for a family of orthogonal polynomials generated by a three term recurrence.

Summary

- The function \mathfrak{F} is an interesting mathematical object which has nice algebraic and combinatorial properties.
- With the aid of \mathfrak{F} we can define the characteristic function of Jacobi matrix (from certain class) and describe spectral properties of corresponding Jacobi operator.
- One can use \mathfrak{F} to determine the measure of orthogonality for a family of orthogonal polynomials generated by a three term recurrence.

It remains unmentioned:

Summary

- The function \mathfrak{F} is an interesting mathematical object which has nice algebraic and combinatorial properties.
- With the aid of \mathfrak{F} we can define the characteristic function of Jacobi matrix (from certain class) and describe spectral properties of corresponding Jacobi operator.
- One can use \mathfrak{F} to determine the measure of orthogonality for a family of orthogonal polynomials generated by a three term recurrence.

It remains unmentioned:

- There are several identities for \mathfrak{F} which yield various formulas for orthogonal polynomials and special functions.

Summary

- The function \mathfrak{F} is an interesting mathematical object which has nice algebraic and combinatorial properties.
- With the aid of \mathfrak{F} we can define the characteristic function of Jacobi matrix (from certain class) and describe spectral properties of corresponding Jacobi operator.
- One can use \mathfrak{F} to determine the measure of orthogonality for a family of orthogonal polynomials generated by a three term recurrence.

It remains unmentioned:

- There are several identities for \mathfrak{F} which yield various formulas for orthogonal polynomials and special functions.
- The function \mathfrak{F} has further applications in the theory of second order difference equations.

Summary

- The function \mathfrak{F} is an interesting mathematical object which has nice algebraic and combinatorial properties.
- With the aid of \mathfrak{F} we can define the characteristic function of Jacobi matrix (from certain class) and describe spectral properties of corresponding Jacobi operator.
- One can use \mathfrak{F} to determine the measure of orthogonality for a family of orthogonal polynomials generated by a three term recurrence.

It remains unmentioned:

- There are several identities for \mathfrak{F} which yield various formulas for orthogonal polynomials and special functions.
- The function \mathfrak{F} has further applications in the theory of second order difference equations.
- There is a close relation between \mathfrak{F} and continued fractions.

References

1. F. Š. and P. Štovíček: On the Eigenvalue Problem for a Particular Class of Finite Jacobi Matrices, arXiv:1011.1241.
2. F. Š. and P. Štovíček: The characteristic function for Jacobi matrices with applications, arXiv:1201.1743.
3. F. Š. and P. Štovíček: Special functions and spectrum of Jacobi matrices, arXiv:1301.2125.
4. F. Š. and P. Štovíček: Orthogonal polynomials associated with Coulomb wave functions, arXiv:1403.8083.

References

1. F. Š. and P. Štovíček: On the Eigenvalue Problem for a Particular Class of Finite Jacobi Matrices, arXiv:1011.1241.
2. F. Š. and P. Štovíček: The characteristic function for Jacobi matrices with applications, arXiv:1201.1743.
3. F. Š. and P. Štovíček: Special functions and spectrum of Jacobi matrices, arXiv:1301.2125.
4. F. Š. and P. Štovíček: Orthogonal polynomials associated with Coulomb wave functions, arXiv:1403.8083.

Thank you!

