Non-self-adjoint Toeplitz matrices with purely real spectrum and related problems

František Štampach

International Conference on Special Functions: Theory, Computation, and Applications

Hong Kong

June 5-9, 2017

Based on: B. Shapiro, F. Štampach: Non-self-adjoint Toeplitz matrices whose principal submatrices have real spectrum, arXiv:1702.00741 [math.CA]

Contents

Toeplitz matrices with real spectrum

The asymptotic eigenvalue distribution

Connections to the Hamburger Moment Problem and Orthogonal Polynomials

Toeplitz matrix:

$$T_n(a) = (a_{j-k})_{j,k=0}^{n-1} = \begin{pmatrix} a_0 & a_{-1} & a_{-2} & \dots & a_{-n+1} \\ a_1 & a_0 & a_{-1} & \dots & a_{-n+2} \\ a_2 & a_1 & a_0 & \dots & a_{-n+3} \\ \dots & \dots & \dots & \dots & \dots \\ a_{n-1} & a_{n-2} & a_{n-3} & \dots & a_0 \end{pmatrix},$$

where $a_n \in \mathbb{C}$.

Toeplitz matrix:

$$T_n(a) = (a_{j-k})_{j,k=0}^{n-1} = \begin{pmatrix} a_0 & a_{-1} & a_{-2} & \dots & a_{-n+1} \\ a_1 & a_0 & a_{-1} & \dots & a_{-n+2} \\ a_2 & a_1 & a_0 & \dots & a_{-n+3} \\ \dots & \dots & \dots & \dots & \dots \\ a_{n-1} & a_{n-2} & a_{n-3} & \dots & a_0 \end{pmatrix},$$

where $a_n \in \mathbb{C}$.

Symbol of T(a):

$$a(z) = \sum_{n = -\infty}^{\infty} a_n z^n.$$

Toeplitz matrix:

$$T_n(a) = (a_{j-k})_{j,k=0}^{n-1} = \begin{pmatrix} a_0 & a_{-1} & a_{-2} & \dots & a_{-n+1} \\ a_1 & a_0 & a_{-1} & \dots & a_{-n+2} \\ a_2 & a_1 & a_0 & \dots & a_{-n+3} \\ \dots & \dots & \dots & \dots & \dots \\ a_{n-1} & a_{n-2} & a_{n-3} & \dots & a_0 \end{pmatrix},$$

where $a_n \in \mathbb{C}$.

 $\bullet \ \, \mathsf{Symbol} \ \, \mathsf{of} \ \, T(a) \mathsf{:} \\$

$$a(z) = \sum_{n = -\infty}^{\infty} a_n z^n.$$

• Question: For what symbol a are the eigenvalues of $T_n(a)$ "asymptotically real", as $n \to \infty$?

Toeplitz matrix:

$$T_n(a) = (a_{j-k})_{j,k=0}^{n-1} = \begin{pmatrix} a_0 & a_{-1} & a_{-2} & \dots & a_{-n+1} \\ a_1 & a_0 & a_{-1} & \dots & a_{-n+2} \\ a_2 & a_1 & a_0 & \dots & a_{-n+3} \\ \dots & \dots & \dots & \dots & \dots \\ a_{n-1} & a_{n-2} & a_{n-3} & \dots & a_0 \end{pmatrix},$$

where $a_n \in \mathbb{C}$.

Symbol of T(a):

$$a(z) = \sum_{n = -\infty}^{\infty} a_n z^n.$$

- Question: For what symbol a are the eigenvalues of $T_n(a)$ "asymptotically real", as $n \to \infty$?
- More precisely, let

$$\Lambda(a) := \{ \lambda \in \mathbb{C} \mid \liminf_{n \to \infty} \operatorname{dist} (\lambda, \operatorname{spec}(T_n(a))) = 0 \}$$

i.e., $\lambda \in \Lambda(a)$ if and only if $\exists n_k \nearrow \infty \ \exists \lambda_k \in \operatorname{spec}(T_{n_k}(a))$ s.t. $\lambda_k \to \lambda$.

Toeplitz matrix:

$$T_n(a) = (a_{j-k})_{j,k=0}^{n-1} = \begin{pmatrix} a_0 & a_{-1} & a_{-2} & \dots & a_{-n+1} \\ a_1 & a_0 & a_{-1} & \dots & a_{-n+2} \\ a_2 & a_1 & a_0 & \dots & a_{-n+3} \\ \dots & \dots & \dots & \dots & \dots \\ a_{n-1} & a_{n-2} & a_{n-3} & \dots & a_0 \end{pmatrix},$$

where $a_n \in \mathbb{C}$.

Symbol of T(a):

$$a(z) = \sum_{n = -\infty}^{\infty} a_n z^n.$$

- Question: For what symbol a are the eigenvalues of $T_n(a)$ "asymptotically real", as $n \to \infty$?
- More precisely, let

$$\Lambda(a) := \{ \lambda \in \mathbb{C} \mid \liminf_{n \to \infty} \operatorname{dist} (\lambda, \operatorname{spec}(T_n(a))) = 0 \}$$

i.e., $\lambda \in \Lambda(a)$ if and only if $\exists n_k \nearrow \infty \ \exists \lambda_k \in \operatorname{spec}(T_{n_k}(a))$ s.t. $\lambda_k \to \lambda$.

• The question: determine the class of symbols a for which

$$\Lambda(a) \subset \mathbb{R}$$
.

4/21

•

$$T_n(a) = T_n^*(a), \ \forall n \in \mathbb{N} \iff a(\mathbb{T}) \subset \mathbb{R}.$$

4/21

- Clearly, if $T_n(a)$ is Hermitian for all n, then $\Lambda(a) \subset \mathbb{R}$.
- $T_n(a) = T_n^*(a), \ \forall n \in \mathbb{N} \iff a(\mathbb{T}) \subset \mathbb{R}.$
- In other words: In the Hermitian case, there exists a Jordan curve in $\mathbb C$ (namely, the unit circle) on which the symbol is a real-valued function.

 $T_n(a) = T_n^*(a), \ \forall n \in \mathbb{N} \quad \Longleftrightarrow \quad a(\mathbb{T}) \subset \mathbb{R}.$

- In other words: In the Hermitian case, there exists a Jordan curve in $\mathbb C$ (namely, the unit circle) on which the symbol is a real-valued function.
- And this is the clue ...

- Clearly, if $T_n(a)$ is Hermitian for all n, then $\Lambda(a) \subset \mathbb{R}$.
- •

$$T_n(a) = T_n^*(a), \ \forall n \in \mathbb{N} \iff a(\mathbb{T}) \subset \mathbb{R}.$$

- In other words: In the Hermitian case, there exists a Jordan curve in $\mathbb C$ (namely, the unit circle) on which the symbol is a real-valued function.
- And this is the clue ...

• Let the symbol a be given by the Laurent series $\sum_n a_n z^n$ which is absolutely convergent in an annulus $r \leq |z| \leq R$, where $r \leq 1$ and $R \geq 1$.

- Clearly, if $T_n(a)$ is Hermitian for all n, then $\Lambda(a) \subset \mathbb{R}$.
- •

$$T_n(a) = T_n^*(a), \ \forall n \in \mathbb{N} \iff a(\mathbb{T}) \subset \mathbb{R}.$$

- In other words: In the Hermitian case, there exists a Jordan curve in $\mathbb C$ (namely, the unit circle) on which the symbol is a real-valued function.
- And this is the clue ...

- Let the symbol a be given by the Laurent series $\sum_n a_n z^n$ which is absolutely convergent in an annulus $r \le |z| \le R$, where $r \le 1$ and $R \ge 1$.
- ② Let the above annulus contain (an image of) a Jordan curve γ such that $a \circ \gamma$ is **real-valued**.

- Clearly, if $T_n(a)$ is Hermitian for all n, then $\Lambda(a) \subset \mathbb{R}$.
- •

$$T_n(a) = T_n^*(a), \ \forall n \in \mathbb{N} \iff a(\mathbb{T}) \subset \mathbb{R}.$$

- In other words: In the Hermitian case, there exists a Jordan curve in $\mathbb C$ (namely, the unit circle) on which the symbol is a real-valued function.
- And this is the clue ...

- Let the symbol a be given by the Laurent series $\sum_n a_n z^n$ which is absolutely convergent in an annulus r < |z| < R, where r < 1 and R > 1.
- $\textbf{ 2} \ \, \text{Let the above annulus contain (an image of) a Jordan curve } \gamma \text{ such that } a \circ \gamma \text{ is } \mathbf{real-valued}.$

Then $\Lambda(a) \subset \mathbb{R}$.

4/21

- Clearly, if $T_n(a)$ is Hermitian for all n, then $\Lambda(a) \subset \mathbb{R}$.
- •

$$T_n(a) = T_n^*(a), \ \forall n \in \mathbb{N} \iff a(\mathbb{T}) \subset \mathbb{R}.$$

- In other words: In the Hermitian case, there exists a Jordan curve in C (namely, the unit circle) on which the symbol is a real-valued function.
- And this is the clue ...

- Let the symbol a be given by the Laurent series $\sum_n a_n z^n$ which is absolutely convergent in an annulus r < |z| < R, where r < 1 and R > 1.
- 2 Let the above annulus contain (an image of) a Jordan curve γ such that $a\circ\gamma$ is **real-valued**.

Then $\Lambda(a) \subset \mathbb{R}$. In fact, one has much more:

$$\operatorname{spec}(T_n(a)) \subset \mathbb{R}, \quad \forall n \in \mathbb{N}.$$

•

$$T_n(a) = T_n^*(a), \ \forall n \in \mathbb{N} \iff a(\mathbb{T}) \subset \mathbb{R}.$$

- In other words: In the Hermitian case, there exists a Jordan curve in $\mathbb C$ (namely, the unit circle) on which the symbol is a real-valued function.
- And this is the clue ...

Theorem:

- Let the symbol a be given by the Laurent series $\sum_n a_n z^n$ which is absolutely convergent in an annulus $r \le |z| \le R$, where $r \le 1$ and $R \ge 1$.
- ② Let the above annulus contain (an image of) a Jordan curve γ such that $a\circ\gamma$ is **real-valued**.

Then $\Lambda(a) \subset \mathbb{R}$. In fact, one has much more:

$$\operatorname{spec}(T_n(a)) \subset \mathbb{R}, \quad \forall n \in \mathbb{N}.$$

Remark:

If a is analytic in $\mathbb{C} \setminus \{0\}$ (especially, if a is a Laurent polynomial), then the assumption \bigcirc can be omitted.

• Question: If $\Lambda(a) \subset \mathbb{R}$, can the set $\Lambda(a)$ be approached from the complex plane? That is, can $\operatorname{spec}(T_n(a))$ contain non-real eigenvalues for some n?

- Question: If $\Lambda(a) \subset \mathbb{R}$, can the set $\Lambda(a)$ be approached from the complex plane? That is, can $\operatorname{spec}(T_n(a))$ contain non-real eigenvalues for some n?
- Answer: No, if a is a Laurent polynomial!

- Question: If $\Lambda(a) \subset \mathbb{R}$, can the set $\Lambda(a)$ be approached from the complex plane? That is, can $\operatorname{spec}(T_n(a))$ contain non-real eigenvalues for some n?
- Answer: No, if a is a Laurent polynomial!

Theorem:

Let b = b(z) be a Laurent polynomial which is neither a polynomial in z nor in 1/z. The following claims are equivalent:

- Question: If $\Lambda(a) \subset \mathbb{R}$, can the set $\Lambda(a)$ be approached from the complex plane? That is, can $\operatorname{spec}(T_n(a))$ contain non-real eigenvalues for some n?
- Answer: No, if a is a Laurent polynomial!

Theorem:

Let b=b(z) be a Laurent polynomial which is neither a polynomial in z nor in 1/z. The following claims are equivalent:

- Question: If $\Lambda(a) \subset \mathbb{R}$, can the set $\Lambda(a)$ be approached from the complex plane? That is, can $\operatorname{spec}(T_n(a))$ contain non-real eigenvalues for some n?
- Answer: No, if a is a Laurent polynomial!

Theorem:

Let b=b(z) be a Laurent polynomial which is neither a polynomial in z nor in 1/z. The following claims are equivalent:

- ② The set $b^{-1}(\mathbb{R})$ contains a Jordan curve (with 0 in its interior).

- Question: If $\Lambda(a) \subset \mathbb{R}$, can the set $\Lambda(a)$ be approached from the complex plane? That is, can $\operatorname{spec}(T_n(a))$ contain non-real eigenvalues for some n?
- Answer: No, if a is a Laurent polynomial!

Theorem:

Let b=b(z) be a Laurent polynomial which is neither a polynomial in z nor in 1/z. The following claims are equivalent:

- ② The set $b^{-1}(\mathbb{R})$ contains a Jordan curve (with 0 in its interior).
- **③** For all $n \in \mathbb{N}$, spec $(T_n(b)) \subset \mathbb{R}$.

- Question: If $\Lambda(a) \subset \mathbb{R}$, can the set $\Lambda(a)$ be approached from the complex plane? That is, can $\operatorname{spec}(T_n(a))$ contain non-real eigenvalues for some n?
- Answer: No, if a is a Laurent polynomial!

Theorem:

Let b = b(z) be a Laurent polynomial which is neither a polynomial in z nor in 1/z. The following claims are equivalent:

- ② The set $b^{-1}(\mathbb{R})$ contains a Jordan curve (with 0 in its interior).
- **③** For all $n \in \mathbb{N}$, spec $(T_n(b)) \subset \mathbb{R}$.

Remark:

It is a very surprising feature of banded Toeplitz matrices that the asymptotic reality of the eigenvalues (claim 1) forces all eigenvalues of all $T_n(b)$ to be real (claim 3). Hence, if, for instance, the 2×2 matrix $T_2(b)$ has a non-real eigenvalue, there is no chance for the limiting set $\Lambda(b)$ to be real!

5/21

Tridiagonal Toeplitz matrix:

$$b(z) = z^{-1} + az, (a \in \mathbb{C} \setminus \{0\}).$$

Then

$$\Lambda(b)\subset \mathbb{R}\quad\Longleftrightarrow\quad a>0.$$

Tridiagonal Toeplitz matrix:

$$b(z) = z^{-1} + az, (a \in \mathbb{C} \setminus \{0\}).$$

Then

$$\Lambda(b) \subset \mathbb{R} \quad \Longleftrightarrow \quad a > 0.$$

Four-diagonal Toeplitz matrix:

$$b(z) = z^{-1} + az + bz^{2}, \qquad (a \in \mathbb{C}, b \in \mathbb{C} \setminus \{0\}).$$

Then

$$\Lambda(b) \subset \mathbb{R} \iff a^3 \ge 27b^2 > 0.$$

Tridiagonal Toeplitz matrix:

$$b(z) = z^{-1} + az, (a \in \mathbb{C} \setminus \{0\}).$$

Then

$$\Lambda(b) \subset \mathbb{R} \quad \Longleftrightarrow \quad a > 0.$$

Four-diagonal Toeplitz matrix:

$$b(z) = z^{-1} + az + bz^{2}, \qquad (a \in \mathbb{C}, b \in \mathbb{C} \setminus \{0\}).$$

Then

$$\Lambda(b) \subset \mathbb{R} \iff a^3 \ge 27b^2 > 0.$$

A banded Toeplitz matrix:

$$b(z) = z^{-r} (1 + az)^{r+s},$$
 $(r, s \in \mathbb{N}, a \in \mathbb{R} \setminus \{0\}).$

Then $\Lambda(b) \subset \mathbb{R}$.

Tridiagonal Toeplitz matrix:

$$b(z) = z^{-1} + az, (a \in \mathbb{C} \setminus \{0\}).$$

Then

$$\Lambda(b) \subset \mathbb{R} \quad \Longleftrightarrow \quad a > 0.$$

Pour-diagonal Toeplitz matrix:

$$b(z) = z^{-1} + az + bz^{2}, \qquad (a \in \mathbb{C}, b \in \mathbb{C} \setminus \{0\}).$$

Then

$$\Lambda(b) \subset \mathbb{R} \iff a^3 \ge 27b^2 > 0.$$

A banded Toeplitz matrix:

$$b(z) = z^{-r} (1 + az)^{r+s},$$
 $(r, s \in \mathbb{N}, a \in \mathbb{R} \setminus \{0\}).$

Then $\Lambda(b) \subset \mathbb{R}$.

And many more...

Numerical examples

$$b(z) = z^{-3} - z^{-2} + 7z^{-1} + 9z - 2z^2 + 2z^3 - z^4$$

Numerical examples

$$b(z) = z^{-3} - z^{-2} + 7z^{-1} + 9z - 2z^2 + 2z^3 - z^4$$

$$b(z) = z^{-3} - z^{-2} + 7z^{-1} + 9z + 2z^{2} + 2z^{3} - z^{4}$$

Contents

Toeplitz matrices with real spectrum

The asymptotic eigenvalue distribution

Connections to the Hamburger Moment Problem and Orthogonal Polynomials

History on the topic

 \bullet We consider banded Toeplitz matrices only $\,\longrightarrow\,$ the classical topic;

$$b(z) = \sum_{k=-r}^s a_k z^k, \text{ where } a_{-r} a_s \neq 0 \text{ and } r, s \in \mathbb{N}.$$

History on the topic

ullet We consider **banded** Toeplitz matrices only \longrightarrow the classical topic;

$$b(z) = \sum_{k=-r}^s a_k z^k, \text{ where } a_{-r} a_s \neq 0 \text{ and } r, s \in \mathbb{N}.$$

• The set $\Lambda(b)$ can be described in terms of zeros of the polynomial $z\mapsto z^r(b(z)-\lambda)$ [Schmidt and Spitzer, 1960].

History on the topic

 \bullet We consider banded Toeplitz matrices only $\,\longrightarrow\,$ the classical topic;

$$b(z) = \sum_{k=-r}^{s} a_k z^k, \text{ where } a_{-r} a_s \neq 0 \text{ and } r, s \in \mathbb{N}.$$

- The set $\Lambda(b)$ can be described in terms of zeros of the polynomial $z\mapsto z^r(b(z)-\lambda)$ [Schmidt and Spitzer, 1960].
- The weak limit of the eigenvalue-counting measures of $T_n(b)$:

$$\mu_n = \frac{1}{n} \sum_{k=1}^n \delta_{\lambda_k^{(n)}}$$

exists, as $n\to\infty$, and is absolutely continuous measure μ supported on $\Lambda(b)$ whose density can be expressed in terms of zeros of $z\mapsto z^r(b(z)-\lambda)$ [Hirschman Jr., 1967].

The limiting measure and the Jordan curve without critical points

• Let $T_n(b)$ be a banded Toeplitz matrix with **real** elements:

$$b(z) = \sum_{k=-r}^s \underbrace{a_k}_{\in \mathbb{R}} z^k, \ \text{ where } \ a_{-r} a_s \neq 0 \ \text{ and } \ r,s \in \mathbb{N}.$$

(Then both $\Lambda(b)$ and $b^{-1}(\mathbb{R})$ are symmetric w.r.t. \mathbb{R} .)

10 / 21

The limiting measure and the Jordan curve without critical points

• Let $T_n(b)$ be a banded Toeplitz matrix with **real** elements:

$$b(z) = \sum_{k=-r}^s \underbrace{a_k}_{\in \mathbb{R}} z^k, \ \text{ where } \ a_{-r} a_s \neq 0 \ \text{ and } \ r,s \in \mathbb{N}.$$

(Then both $\Lambda(b)$ and $b^{-1}(\mathbb{R})$ are symmetric w.r.t. \mathbb{R} .)

② Suppose the Jordan curve γ is present in $b^{-1}(\mathbb{R})$ and assume, additionally, that γ admits a polar parametrization:

$$\gamma(t) = \rho(t)e^{it}, \quad t \in [-\pi, \pi].$$

10 / 21

The limiting measure and the Jordan curve without critical points

• Let $T_n(b)$ be a banded Toeplitz matrix with **real** elements:

$$b(z) = \sum_{k=-r}^s \underbrace{a_k}_{\in \mathbb{R}} z^k, \text{ where } a_{-r} a_s \neq 0 \text{ and } r,s \in \mathbb{N}.$$

(Then both $\Lambda(b)$ and $b^{-1}(\mathbb{R})$ are symmetric w.r.t. \mathbb{R} .)

② Suppose the Jordan curve γ is present in $b^{-1}(\mathbb{R})$ and assume, additionally, that γ admits a polar parametrization:

$$\gamma(t) = \rho(t)e^{it}, \quad t \in [-\pi, \pi].$$

Theorem:

Let $b'(\gamma(t)) \neq 0$ for all $t \in (0,\pi)$. Then $b \circ \gamma$ restricted to $(0,\pi)$ is either strictly increasing or decreasing; the limiting measure μ is supported on the interval $[\alpha, \beta] := b(\gamma([0, \pi]))$ and its density satisfies

$$\frac{\mathrm{d}\mu}{\mathrm{d}x}(x) = \pm \frac{1}{\pi} \frac{\mathrm{d}}{\mathrm{d}x} (b \circ \gamma)^{-1}(x),$$

for $x \in (\alpha, \beta)$, where the + sign is used when $b \circ \gamma$ increases on $(0, \pi)$, and the - sign is used otherwise.

$$b(z) = z^{-3} - z^{-2} + 7z^{-1} + 9z - 2z^{2} + 2z^{3} - z^{4},$$

11 / 21

$$b(z) = z^{-3} - z^{-2} + 7z^{-1} + 9z - 2z^{2} + 2z^{3} - z^{4},$$

11/21

$$b(z) = z^{-3} - z^{-2} + 7z^{-1} + 9z - 2z^{2} + 2z^{3} - z^{4},$$

11/21

• If $\gamma((0,\pi))$ contains some critical points of b, then the description of μ is slightly more complicated.

• If $\gamma((0,\pi))$ contains some critical points of b, then the description of μ is slightly more complicated.

• If $\gamma((0,\pi))$ contains some critical points of b, then the description of μ is slightly more complicated.

Theorem:

• If $\gamma((0,\pi))$ contains some critical points of b, then the description of μ is slightly more complicated.

Theorem:

Suppose that b and γ are as before and let

• If $\gamma((0,\pi))$ contains some critical points of b, then the description of μ is slightly more complicated.

Theorem:

Suppose that b and γ are as before and let $\ell \in \mathbb{N}_0$ be the number of critical points of b in $\gamma((0,\pi))$ and $0 =: \phi_0 < \phi_1 < \dots < \phi_\ell < \phi_{\ell+1} := \pi$ are such that $b'(\gamma(\phi_j)) = 0$ for all $0 \le j \le \ell+1$.

12/21

• If $\gamma((0,\pi))$ contains some critical points of b, then the description of μ is slightly more complicated.

Theorem:

Suppose that b and γ are as before and let $\ell \in \mathbb{N}_0$ be the number of critical points of b in $\gamma((0,\pi))$ and $0 =: \phi_0 < \phi_1 < \dots < \phi_\ell < \phi_{\ell+1} := \pi$ are such that $b'(\gamma(\phi_j)) = 0$ for all $0 \le j \le \ell+1$. Then $b \circ \gamma$ restricted to (ϕ_{i-1}, ϕ_i) is strictly monotone for all $1 \le i \le \ell+1$, and the limiting measure $\mu = \mu_1 + \mu_2 + \dots + \mu_{\ell+1}$, where μ_i is an absolutely continuous measure supported on $[\alpha_i, \beta_i] := b(\gamma([\phi_{i-1}, \phi_i]))$ whose density is given by

$$\frac{\mathrm{d}\mu_i}{\mathrm{d}x}(x) = \pm \frac{1}{\pi} \frac{\mathrm{d}}{\mathrm{d}x} (b \circ \gamma)^{-1}(x)$$

for all $x \in (\alpha_i, \beta_i)$ and all $i \in \{1, 2, \dots, \ell+1\}$. The + sign is used when $b \circ \gamma$ increases on (α_i, β_i) , and the - sign is used otherwise.

$$b(z) = z^{-3} + z^{-2} + z^{-1} + z + z^2 + z^3$$

Contents

Toeplitz matrices with real spectrum

The asymptotic eigenvalue distribution

Onnections to the Hamburger Moment Problem and Orthogonal Polynomials

We consider real Laurent polynomial symbols:

$$b(z) = \sum_{k=-r}^{s} \underbrace{a_k}_{\in \mathbb{R}} z^k, \text{ where } a_{-r}a_s \neq 0 \text{ and } r, s \in \mathbb{N}.$$

• We consider real Laurent polynomial symbols:

$$b(z) = \sum_{k=-r}^s \underbrace{a_k}_{\in \mathbb{R}} z^k, \ \text{ where } \ a_{-r} a_s \neq 0 \ \text{ and } \ r,s \in \mathbb{N}.$$

Proposition:

Let $b^{-1}(\mathbb{R})$ contains a Jordan curve. Then the limiting measure μ coincides with the unique solution of the determinate HMP with moments

$$h_m := \frac{1}{2\pi} \int_{-\pi}^{\pi} b^m \left(e^{it} \right) dt, \quad m \in \mathbb{N}_0.$$

• We consider real Laurent polynomial symbols:

$$b(z) = \sum_{k=-r}^s \underbrace{a_k}_{\in \mathbb{R}} z^k, \ \ \text{where} \ \ a_{-r} a_s \neq 0 \ \ \text{and} \ \ r,s \in \mathbb{N}.$$

Proposition:

Let $b^{-1}(\mathbb{R})$ contains a Jordan curve. Then the limiting measure μ coincides with the unique solution of the determinate HMP with moments

$$h_m := \frac{1}{2\pi} \int_{-\pi}^{\pi} b^m \left(e^{it} \right) dt, \quad m \in \mathbb{N}_0.$$

Corollary:

If $b^{-1}(\mathbb{R})$ contains a Jordan curve, then the moment Hankel matrix $H_n := (h_{i+1})_{i,i=0}^{n-1}$ is positive-definite for all $n \in \mathbb{N}_0$.

• We consider real Laurent polynomial symbols:

$$b(z) = \sum_{k=-r}^s \underbrace{a_k}_{\in \mathbb{R}} z^k, \ \text{ where } \ a_{-r}a_s \neq 0 \ \text{ and } \ r,s \in \mathbb{N}.$$

Proposition:

Let $b^{-1}(\mathbb{R})$ contains a Jordan curve. Then the limiting measure μ coincides with the unique solution of the determinate HMP with moments

$$h_m := \frac{1}{2\pi} \int_{-\pi}^{\pi} b^m \left(e^{it} \right) dt, \quad m \in \mathbb{N}_0.$$

Corollary:

If $b^{-1}(\mathbb{R})$ contains a Jordan curve, then the moment Hankel matrix $H_n:=(h_{i+j})_{i,j=0}^{n-1}$ is positive-definite for all $n\in\mathbb{N}_0$.

Open problem: The opposite implication: $H_n > 0, \ \forall n \in \mathbb{N}_0 \quad \stackrel{?}{\Longrightarrow} \quad \Lambda(b) \subset \mathbb{R}.$

◆ロ → ◆母 → ◆ き → き め へ で

• We consider real Laurent polynomial symbols:

$$b(z) = \sum_{k=-r}^s \underbrace{a_k}_{\in \mathbb{R}} z^k, \ \ \text{where} \ \ a_{-r} a_s \neq 0 \ \ \text{and} \ \ r,s \in \mathbb{N}.$$

Proposition:

Let $b^{-1}(\mathbb{R})$ contains a Jordan curve. Then the limiting measure μ coincides with the unique solution of the determinate HMP with moments

$$h_m := \frac{1}{2\pi} \int_{-\pi}^{\pi} b^m \left(e^{it} \right) dt, \quad m \in \mathbb{N}_0.$$

Corollary:

If $b^{-1}(\mathbb{R})$ contains a Jordan curve, then the moment Hankel matrix $H_n:=(h_{i+j})_{i,j=0}^{n-1}$ is positive-definite for all $n\in\mathbb{N}_0$.

Open problem: The opposite implication: $H_n>0, \ \forall n\in\mathbb{N}_0 \quad \stackrel{?}{\Longrightarrow} \quad \Lambda(b)\subset\mathbb{R}.$ (If a counter-example exists, $\mathbb{C}\setminus\Lambda(b)$ has to be disconnected.)

• If $b^{-1}(\mathbb{R})$ contains a Jordan curve, then there is a family of OGPs $\{p_n\}_{n=0}^{\infty}$ orthogonal w.r.t. the limiting measure μ .

16/21

- If $b^{-1}(\mathbb{R})$ contains a Jordan curve, then there is a family of OGPs $\{p_n\}_{n=0}^{\infty}$ orthogonal w.r.t. the limiting measure μ .
- What are the properties of p_n ?

- If $b^{-1}(\mathbb{R})$ contains a Jordan curve, then there is a family of OGPs $\{p_n\}_{n=0}^{\infty}$ orthogonal w.r.t. the limiting measure μ .
- What are the properties of p_n ?
- What can be said about the mapping $b \mapsto (\{a_n\}, \{b_n\})$, where

$$p_{n+1}(x) = (x - b_{n+1})p_n(x) - a_n^2 p_{n-1}(x), \quad n \in \mathbb{N}?$$

16/21

- If $b^{-1}(\mathbb{R})$ contains a Jordan curve, then there is a family of OGPs $\{p_n\}_{n=0}^{\infty}$ orthogonal w.r.t. the limiting measure μ .
- What are the properties of p_n ?
- What can be said about the mapping $b \mapsto (\{a_n\}, \{b_n\})$, where

$$p_{n+1}(x) = (x - b_{n+1})p_n(x) - a_n^2 p_{n-1}(x), \quad n \in \mathbb{N}?$$

Proposition:

Let $b^{-1}(\mathbb{R})$ contains a Jordan curve and let no non-real critical point of b is located on this Jordan curve. Then

16/21

- If $b^{-1}(\mathbb{R})$ contains a Jordan curve, then there is a family of OGPs $\{p_n\}_{n=0}^{\infty}$ orthogonal w.r.t. the limiting measure μ .
- What are the properties of p_n ?
- What can be said about the mapping $b \mapsto (\{a_n\}, \{b_n\})$, where

$$p_{n+1}(x) = (x - b_{n+1})p_n(x) - a_n^2 p_{n-1}(x), \quad n \in \mathbb{N}?$$

Proposition:

Let $b^{-1}(\mathbb{R})$ contains a Jordan curve and let no non-real critical point of b is located on this Jordan curve. Then

• the Jordan curve intersects \mathbb{R} at exactly two points whose b-images are the endpoints of the interval $\Lambda(b) = [\alpha, \beta]$;

- If $b^{-1}(\mathbb{R})$ contains a Jordan curve, then there is a family of OGPs $\{p_n\}_{n=0}^{\infty}$ orthogonal w.r.t. the limiting measure μ .
- What are the properties of p_n ?
- What can be said about the mapping $b \mapsto (\{a_n\}, \{b_n\})$, where

$$p_{n+1}(x) = (x - b_{n+1})p_n(x) - a_n^2 p_{n-1}(x), \quad n \in \mathbb{N}?$$

Proposition:

Let $b^{-1}(\mathbb{R})$ contains a Jordan curve and let no non-real critical point of b is located on this Jordan curve. Then

- **1** the Jordan curve intersects $\mathbb R$ at exactly two points whose b-images are the endpoints of the interval $\Lambda(b) = [\alpha, \beta]$;
- ② the OGPs $\{p_n\}$ belong to the Blumenthal–Nevai class $M((\beta \alpha)/2, (\alpha + \beta)/2)$, i.e.,

$$\lim_{n\to\infty}a_n=\frac{\beta-\alpha}{4}\quad\text{ and }\quad \lim_{n\to\infty}b_n=\frac{\alpha+\beta}{2}.$$

Example 1/4

Let

$$b(z) = \frac{1}{z^r} (1 + az)^{r+s},$$
 $(a > 0, r, s \in \mathbb{N}).$

Example 1/4

Let

$$b(z) = \frac{1}{z^r} (1 + az)^{r+s},$$
 $(a > 0, r, s \in \mathbb{N}).$

• Jordan curve (wlog a=1):

$$\gamma(t) = \frac{\sin\frac{r}{r+s}t}{\sin\frac{s}{r+s}t}e^{\mathrm{i}t}, \quad t \in [-\pi, \pi].$$

Let

$$b(z) = \frac{1}{z^r} (1 + az)^{r+s},$$
 $(a > 0, r, s \in \mathbb{N}).$

• Jordan curve (wlog a = 1):

$$\gamma(t) = \frac{\sin\frac{r}{r+s}t}{\sin\frac{s}{r+s}t}e^{\mathrm{i}t}, \quad t \in [-\pi, \pi].$$

•

$$b(\gamma(t)) = \frac{\sin^{r+s} t}{\sin^r \left(\frac{r}{r+s} t\right) \sin^s \left(\frac{s}{r+s} t\right)} \in \mathbb{R}, \quad \forall t \in [-\pi, \pi],$$

Let

$$b(z) = \frac{1}{z^r} (1 + az)^{r+s},$$
 $(a > 0, r, s \in \mathbb{N}).$

• Jordan curve (wlog a = 1):

$$\gamma(t) = \frac{\sin\frac{r}{r+s}t}{\sin\frac{s}{r+s}t}e^{\mathrm{i}t}, \quad t \in [-\pi, \pi].$$

•

$$b(\gamma(t)) = \frac{\sin^{r+s} t}{\sin^r \left(\frac{r}{r+s} t\right) \sin^s \left(\frac{s}{r+s} t\right)} \in \mathbb{R}, \quad \forall t \in [-\pi, \pi],$$

• $b'(\gamma(t)) \neq 0$ for all $t \in (0,\pi)$ and $b(\gamma(0)) = (r+s)^{r+s} r^{-r} s^{-s}$ and $b(\gamma(\pi)) = 0$. Hence

17/21

Let

$$b(z) = \frac{1}{z^r} (1 + az)^{r+s},$$
 $(a > 0, r, s \in \mathbb{N}).$

• Jordan curve (wlog a = 1):

$$\gamma(t) = \frac{\sin\frac{r}{r+s}t}{\sin\frac{s}{r+s}t}e^{\mathrm{i}t}, \quad t \in [-\pi, \pi].$$

•

$$b(\gamma(t)) = \frac{\sin^{r+s} t}{\sin^r \left(\frac{r}{r+s}t\right) \sin^s \left(\frac{s}{r+s}t\right)} \in \mathbb{R}, \quad \forall t \in [-\pi, \pi],$$

• $b'(\gamma(t)) \neq 0$ for all $t \in (0,\pi)$ and $b(\gamma(0)) = (r+s)^{r+s} r^{-r} s^{-s}$ and $b(\gamma(\pi)) = 0$. Hence

$$\Lambda(b) = \operatorname{supp} \mu = \left[0, \frac{(r+s)^{r+s}}{r^r s^s}\right]$$

Let

$$b(z) = \frac{1}{z^r} (1 + az)^{r+s},$$
 $(a > 0, r, s \in \mathbb{N}).$

• Jordan curve (wlog a = 1):

$$\gamma(t) = \frac{\sin\frac{r}{r+s}t}{\sin\frac{s}{r+s}t}e^{\mathrm{i}t}, \quad t \in [-\pi, \pi].$$

•

$$b(\gamma(t)) = \frac{\sin^{r+s} t}{\sin^r \left(\frac{r}{r+s}t\right) \sin^s \left(\frac{s}{r+s}t\right)} \in \mathbb{R}, \quad \forall t \in [-\pi, \pi],$$

• $b'(\gamma(t)) \neq 0$ for all $t \in (0,\pi)$ and $b(\gamma(0)) = (r+s)^{r+s} r^{-r} s^{-s}$ and $b(\gamma(\pi)) = 0$. Hence

$$\Lambda(b) = \operatorname{supp} \mu = \left[0, \frac{(r+s)^{r+s}}{r^r s^s}\right] \supset \operatorname{spec} T_n(b) \quad \forall n \in \mathbb{N}.$$

ullet The limiting measure μ is the solution of the moment problem with moments

$$h_m = \frac{1}{2\pi} \int_0^{2\pi} b^m \left(e^{\mathrm{i}\theta} \right) \mathrm{d}\theta = \binom{(r+s)m}{rm}, \quad m \in \mathbb{N}_0.$$

18 / 21

ullet The limiting measure μ is the solution of the moment problem with moments

$$h_m = \frac{1}{2\pi} \int_0^{2\pi} b^m \left(e^{\mathrm{i}\theta} \right) \mathrm{d}\theta = \binom{(r+s)m}{rm}, \quad m \in \mathbb{N}_0.$$

• To obtain μ , one has to invert the function

$$b(\gamma(t)) = \frac{\sin^{r+s} t}{\sin^r \left(\frac{r}{r+s}t\right) \sin^s \left(\frac{s}{r+s}t\right)}, \quad t \in (0, \pi),$$

which cannot be done explicitly in general.

ullet The limiting measure μ is the solution of the moment problem with moments

$$h_m = \frac{1}{2\pi} \int_0^{2\pi} b^m \left(e^{\mathrm{i}\theta} \right) \mathrm{d}\theta = \binom{(r+s)m}{rm}, \quad m \in \mathbb{N}_0.$$

• To obtain μ , one has to invert the function

$$b(\gamma(t)) = \frac{\sin^{r+s} t}{\sin^r \left(\frac{r}{r+s}t\right) \sin^s \left(\frac{s}{r+s}t\right)}, \quad t \in (0, \pi),$$

which cannot be done explicitly in general.

• But the main result yields that for the distribution function of μ , $F_{\mu} := \mu([0,\cdot))$, one has

$$F_{\mu}(b(\gamma(t))) = 1 - \frac{t}{\pi}, \quad \text{for } t \in [0, \pi].$$

ullet The limiting measure μ is the solution of the moment problem with moments

$$h_m = \frac{1}{2\pi} \int_0^{2\pi} b^m \left(e^{\mathrm{i}\theta} \right) \mathrm{d}\theta = \binom{(r+s)m}{rm}, \quad m \in \mathbb{N}_0.$$

• To obtain μ , one has to invert the function

$$b(\gamma(t)) = \frac{\sin^{r+s} t}{\sin^r \left(\frac{r}{r+s}t\right) \sin^s \left(\frac{s}{r+s}t\right)}, \quad t \in (0, \pi),$$

which cannot be done explicitly in general.

• But the main result yields that for the distribution function of $\mu, F_{\mu} := \mu\left([0,\cdot)\right)$, one has

$$F_{\mu}(b(\gamma(t))) = 1 - \frac{t}{\pi}, \text{ for } t \in [0, \pi].$$

ullet Explicit formulas for the Jacobi parameters a_n and b_n are not known in general but we have

$$2\lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n = \frac{(r+s)^{r+s}}{2r^r s^s}.$$

• Special cases that admit more explicit results: (r, s) = (1, 1), (1, 2), (2, 2).

- Special cases that admit more explicit results: (r, s) = (1, 1), (1, 2), (2, 2).
- The symbol:

$$b(z) = \frac{1}{z}(1 + az)^3.$$

- Special cases that admit more explicit results: (r, s) = (1, 1), (1, 2), (2, 2).
- The symbol:

$$b(z) = \frac{1}{z}(1 + az)^3.$$

• Here we put a=4/27. Then one has

$$\frac{\mathrm{d}\mu}{\mathrm{d}x}(x) = \frac{\sqrt{3}}{4\pi} \frac{\left(1 + \sqrt{1 - x}\right)^{1/3} - \left(1 - \sqrt{1 - x}\right)^{1/3}}{x^{2/3}\sqrt{1 - x}}, \quad x \in (0, 1).$$

(This density appeared earlier: Kuijlaars, Van Assche, ...)

- Special cases that admit more explicit results: (r, s) = (1, 1), (1, 2), (2, 2).
- The symbol:

$$b(z) = \frac{1}{z}(1 + az)^3.$$

• Here we put a=4/27. Then one has

$$\frac{\mathrm{d}\mu}{\mathrm{d}x}(x) = \frac{\sqrt{3}}{4\pi} \frac{\left(1 + \sqrt{1 - x}\right)^{1/3} - \left(1 - \sqrt{1 - x}\right)^{1/3}}{x^{2/3}\sqrt{1 - x}}, \quad x \in (0, 1).$$

(This density appeared earlier: Kuijlaars, Van Assche, ...)

Jacobi parameters:

$$a_1^2 = 6a^2, \quad a_k^2 = \frac{9(6k-5)(6k-1)(3k-1)(3k+1)}{4(4k-3)(4k-1)^2(4k+1)}a^2, \quad \text{ for } k > 1.$$

and

$$b_1 = 3a$$
, $b_k = \frac{3(36k^2 - 54k + 13)}{2(4k - 5)(4k - 1)}a$, for $k > 1$.

• Polynomials p_n can be expressed as a combination of the associated Jacobi polynomials $P_n^{(\alpha,\beta)}(x;c)$ studied by J.Wimp (1987).

- Polynomials p_n can be expressed as a combination of the associated Jacobi polynomials $P_n^{(\alpha,\beta)}(x;c)$ studied by J.Wimp (1987).
- Recall that the associated Jacobi polynomials $P_n^{(\alpha,\beta)}(x;c)$ constitute a three-parameter family of orthogonal polynomials generated by the same recurrence as the Jacobi polynomials $P_n^{(\alpha,\beta)}(x)$, but every occurrence of n in the coefficients of the recurrence relation defining $P_n^{(\alpha,\beta)}(x)$ is replaced by n+c.

20 / 21

- Polynomials p_n can be expressed as a combination of the associated Jacobi polynomials $P_n^{(\alpha,\beta)}(x;c)$ studied by J.Wimp (1987).
- Recall that the associated Jacobi polynomials $P_n^{(\alpha,\beta)}(x;c)$ constitute a three-parameter family of orthogonal polynomials generated by the same recurrence as the Jacobi polynomials $P_n^{(\alpha,\beta)}(x)$, but every occurrence of n in the coefficients of the recurrence relation defining $P_n^{(\alpha,\beta)}(x)$ is replaced by n+c.
- Then, if we denote

$$r_n^{(\alpha,\beta)}(x;c) := \frac{2^n(c+\alpha+\beta+1)_n(c+1)_n}{(2c+\alpha+\beta+1)_{2n}} P_n^{(\alpha,\beta)}(2x-1;c), \quad n \in \mathbb{N}_0,$$

- Polynomials p_n can be expressed as a combination of the associated Jacobi polynomials $P_n^{(\alpha,\beta)}(x;c)$ studied by J.Wimp (1987).
- Recall that the associated Jacobi polynomials $P_n^{(\alpha,\beta)}(x;c)$ constitute a three-parameter family of orthogonal polynomials generated by the same recurrence as the Jacobi polynomials $P_n^{(\alpha,\beta)}(x)$, but every occurrence of n in the coefficients of the recurrence relation defining $P_n^{(\alpha,\beta)}(x)$ is replaced by n+c.
- Then, if we denote

$$r_n^{(\alpha,\beta)}(x;c) := \frac{2^n(c+\alpha+\beta+1)_n(c+1)_n}{(2c+\alpha+\beta+1)_{2n}} P_n^{(\alpha,\beta)}(2x-1;c), \quad n \in \mathbb{N}_0,$$

it holds

$$2^{n}p_{n}(x) = r_{n}^{(\alpha,\beta)}(x;c) - \frac{4}{27}r_{n-1}^{(\alpha,\beta)}(x;c+1) - \frac{256}{729}r_{n-2}^{(\alpha,\beta)}(x;c+2), \quad n \in \mathbb{N},$$

where $\alpha = 1/2$, $\beta = -2/3$, and c = -1/6.

- Polynomials p_n can be expressed as a combination of the associated Jacobi polynomials $P_n^{(\alpha,\beta)}(x;c)$ studied by J.Wimp (1987).
- Recall that the associated Jacobi polynomials $P_n^{(\alpha,\beta)}(x;c)$ constitute a three-parameter family of orthogonal polynomials generated by the same recurrence as the Jacobi polynomials $P_n^{(\alpha,\beta)}(x)$, but every occurrence of n in the coefficients of the recurrence relation defining $P_n^{(\alpha,\beta)}(x)$ is replaced by n+c.
- Then, if we denote

$$r_n^{(\alpha,\beta)}(x;c) := \frac{2^n(c+\alpha+\beta+1)_n(c+1)_n}{(2c+\alpha+\beta+1)_{2n}} P_n^{(\alpha,\beta)}(2x-1;c), \quad n \in \mathbb{N}_0,$$

it holds

$$2^{n}p_{n}(x) = r_{n}^{(\alpha,\beta)}(x;c) - \frac{4}{27}r_{n-1}^{(\alpha,\beta)}(x;c+1) - \frac{256}{729}r_{n-2}^{(\alpha,\beta)}(x;c+2), \quad n \in \mathbb{N},$$

where $\alpha = 1/2$, $\beta = -2/3$, and c = -1/6.

ullet This relation and the known properties of the associated Jacobi polynomials allow to derive other formulas for p_n such as: an explicit representation, a generating function, ...

Thank you!