Non-self-adjoint Toeplitz matrices with purely real spectrum and related problems

František Štampach

International Conference on Special Functions: Theory, Computation, and Applications Hong Kong

June 5-9, 2017

Based on: B. Shapiro, F. Štampach: Non-self-adjoint Toeplitz matrices whose principal submatrices have real spectrum, arXiv:1702.00741 [math.CA]

Contents

(1) Toeplitz matrices with real spectrum

2 The asymptotic eigenvalue distribution

3 Connections to the Hamburger Moment Problem and Orthogonal Polynomials

Toeplitz matrix

- Toeplitz matrix:

$$
T_{n}(a)=\left(a_{j-k}\right)_{j, k=0}^{n-1}=\left(\begin{array}{ccccc}
a_{0} & a_{-1} & a_{-2} & \ldots & a_{-n+1} \\
a_{1} & a_{0} & a_{-1} & \ldots & a_{-n+2} \\
a_{2} & a_{1} & a_{0} & \ldots & a_{-n+3} \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
a_{n-1} & a_{n-2} & a_{n-3} & \cdots & a_{0}
\end{array}\right)
$$

where $a_{n} \in \mathbb{C}$.

Toeplitz matrix

- Toeplitz matrix:

$$
T_{n}(a)=\left(a_{j-k}\right)_{j, k=0}^{n-1}=\left(\begin{array}{ccccc}
a_{0} & a_{-1} & a_{-2} & \ldots & a_{-n+1} \\
a_{1} & a_{0} & a_{-1} & \ldots & a_{-n+2} \\
a_{2} & a_{1} & a_{0} & \ldots & a_{-n+3} \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
a_{n-1} & a_{n-2} & a_{n-3} & \cdots & a_{0}
\end{array}\right)
$$

where $a_{n} \in \mathbb{C}$.

- Symbol of $T(a)$:

$$
a(z)=\sum_{n=-\infty}^{\infty} a_{n} z^{n}
$$

Toeplitz matrix

- Toeplitz matrix:

$$
T_{n}(a)=\left(a_{j-k}\right)_{j, k=0}^{n-1}=\left(\begin{array}{ccccc}
a_{0} & a_{-1} & a_{-2} & \ldots & a_{-n+1} \\
a_{1} & a_{0} & a_{-1} & \ldots & a_{-n+2} \\
a_{2} & a_{1} & a_{0} & \ldots & a_{-n+3} \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
a_{n-1} & a_{n-2} & a_{n-3} & \ldots & a_{0}
\end{array}\right)
$$

where $a_{n} \in \mathbb{C}$.

- Symbol of $T(a)$:

$$
a(z)=\sum_{n=-\infty}^{\infty} a_{n} z^{n} .
$$

- Question: For what symbol a are the eigenvalues of $T_{n}(a)$ "asymptotically real", as $n \rightarrow \infty$?

Toeplitz matrix

- Toeplitz matrix:

$$
T_{n}(a)=\left(a_{j-k}\right)_{j, k=0}^{n-1}=\left(\begin{array}{ccccc}
a_{0} & a_{-1} & a_{-2} & \ldots & a_{-n+1} \\
a_{1} & a_{0} & a_{-1} & \ldots & a_{-n+2} \\
a_{2} & a_{1} & a_{0} & \ldots & a_{-n+3} \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
a_{n-1} & a_{n-2} & a_{n-3} & \ldots & a_{0}
\end{array}\right)
$$

where $a_{n} \in \mathbb{C}$.

- Symbol of $T(a)$:

$$
a(z)=\sum_{n=-\infty}^{\infty} a_{n} z^{n} .
$$

- Question: For what symbol a are the eigenvalues of $T_{n}(a)$ "asymptotically real", as $n \rightarrow \infty$?
- More precisely, let

$$
\Lambda(a):=\left\{\lambda \in \mathbb{C} \mid \liminf _{n \rightarrow \infty} \operatorname{dist}\left(\lambda, \operatorname{spec}\left(T_{n}(a)\right)\right)=0\right\}
$$

i.e., $\lambda \in \Lambda(a)$ if and only if $\exists n_{k} \nearrow \infty \exists \lambda_{k} \in \operatorname{spec}\left(T_{n_{k}}(a)\right)$ s.t. $\lambda_{k} \rightarrow \lambda$.

Toeplitz matrix

- Toeplitz matrix:

$$
T_{n}(a)=\left(a_{j-k}\right)_{j, k=0}^{n-1}=\left(\begin{array}{ccccc}
a_{0} & a_{-1} & a_{-2} & \ldots & a_{-n+1} \\
a_{1} & a_{0} & a_{-1} & \ldots & a_{-n+2} \\
a_{2} & a_{1} & a_{0} & \ldots & a_{-n+3} \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
a_{n-1} & a_{n-2} & a_{n-3} & \ldots & a_{0}
\end{array}\right)
$$

where $a_{n} \in \mathbb{C}$.

- Symbol of $T(a)$:

$$
a(z)=\sum_{n=-\infty}^{\infty} a_{n} z^{n} .
$$

- Question: For what symbol a are the eigenvalues of $T_{n}(a)$ "asymptotically real", as $n \rightarrow \infty$?
- More precisely, let

$$
\Lambda(a):=\left\{\lambda \in \mathbb{C} \mid \liminf _{n \rightarrow \infty} \operatorname{dist}\left(\lambda, \operatorname{spec}\left(T_{n}(a)\right)\right)=0\right\}
$$

i.e., $\lambda \in \Lambda(a)$ if and only if $\exists n_{k} \nearrow \infty \exists \lambda_{k} \in \operatorname{spec}\left(T_{n_{k}}(a)\right)$ s.t. $\lambda_{k} \rightarrow \lambda$.

- The question: determine the class of symbols a for which

$$
\Lambda(a) \subset \mathbb{R}
$$

- Clearly, if $T_{n}(a)$ is Hermitian for all n, then $\Lambda(a) \subset \mathbb{R}$.
- Clearly, if $T_{n}(a)$ is Hermitian for all n, then $\Lambda(a) \subset \mathbb{R}$.
-

$$
T_{n}(a)=T_{n}^{*}(a), \forall n \in \mathbb{N} \quad \Longleftrightarrow \quad a(\mathbb{T}) \subset \mathbb{R}
$$

- Clearly, if $T_{n}(a)$ is Hermitian for all n, then $\Lambda(a) \subset \mathbb{R}$.
-

$$
T_{n}(a)=T_{n}^{*}(a), \forall n \in \mathbb{N} \quad \Longleftrightarrow \quad a(\mathbb{T}) \subset \mathbb{R}
$$

- In other words: In the Hermitian case, there exists a Jordan curve in \mathbb{C} (namely, the unit circle) on which the symbol is a real-valued function.
- Clearly, if $T_{n}(a)$ is Hermitian for all n, then $\Lambda(a) \subset \mathbb{R}$.
-

$$
T_{n}(a)=T_{n}^{*}(a), \forall n \in \mathbb{N} \quad \Longleftrightarrow \quad a(\mathbb{T}) \subset \mathbb{R}
$$

- In other words: In the Hermitian case, there exists a Jordan curve in \mathbb{C} (namely, the unit circle) on which the symbol is a real-valued function.
- And this is the clue ...
- Clearly, if $T_{n}(a)$ is Hermitian for all n, then $\Lambda(a) \subset \mathbb{R}$.
-

$$
T_{n}(a)=T_{n}^{*}(a), \forall n \in \mathbb{N} \quad \Longleftrightarrow \quad a(\mathbb{T}) \subset \mathbb{R}
$$

- In other words: In the Hermitian case, there exists a Jordan curve in \mathbb{C} (namely, the unit circle) on which the symbol is a real-valued function.
- And this is the clue ...

Theorem:

(1) Let the symbol a be given by the Laurent series $\sum_{n} a_{n} z^{n}$ which is absolutely convergent in an annulus $r \leq|z| \leq R$, where $r \leq 1$ and $R \geq 1$.

- Clearly, if $T_{n}(a)$ is Hermitian for all n, then $\Lambda(a) \subset \mathbb{R}$.
-

$$
T_{n}(a)=T_{n}^{*}(a), \forall n \in \mathbb{N} \quad \Longleftrightarrow \quad a(\mathbb{T}) \subset \mathbb{R}
$$

- In other words: In the Hermitian case, there exists a Jordan curve in \mathbb{C} (namely, the unit circle) on which the symbol is a real-valued function.
- And this is the clue ...

Theorem:

(1) Let the symbol a be given by the Laurent series $\sum_{n} a_{n} z^{n}$ which is absolutely convergent in an annulus $r \leq|z| \leq R$, where $r \leq 1$ and $R \geq 1$.
(2) Let the above annulus contain (an image of) a Jordan curve γ such that $a \circ \gamma$ is real-valued.

- Clearly, if $T_{n}(a)$ is Hermitian for all n, then $\Lambda(a) \subset \mathbb{R}$.
-

$$
T_{n}(a)=T_{n}^{*}(a), \forall n \in \mathbb{N} \quad \Longleftrightarrow \quad a(\mathbb{T}) \subset \mathbb{R}
$$

- In other words: In the Hermitian case, there exists a Jordan curve in \mathbb{C} (namely, the unit circle) on which the symbol is a real-valued function.
- And this is the clue ...

Theorem:

(1) Let the symbol a be given by the Laurent series $\sum_{n} a_{n} z^{n}$ which is absolutely convergent in an annulus $r \leq|z| \leq R$, where $r \leq 1$ and $R \geq 1$.
(2) Let the above annulus contain (an image of) a Jordan curve γ such that $a \circ \gamma$ is real-valued.

Then $\Lambda(a) \subset \mathbb{R}$.

- Clearly, if $T_{n}(a)$ is Hermitian for all n, then $\Lambda(a) \subset \mathbb{R}$.
-

$$
T_{n}(a)=T_{n}^{*}(a), \forall n \in \mathbb{N} \quad \Longleftrightarrow \quad a(\mathbb{T}) \subset \mathbb{R}
$$

- In other words: In the Hermitian case, there exists a Jordan curve in \mathbb{C} (namely, the unit circle) on which the symbol is a real-valued function.
- And this is the clue ...

Theorem:

(1) Let the symbol a be given by the Laurent series $\sum_{n} a_{n} z^{n}$ which is absolutely convergent in an annulus $r \leq|z| \leq R$, where $r \leq 1$ and $R \geq 1$.
(2) Let the above annulus contain (an image of) a Jordan curve γ such that $a \circ \gamma$ is real-valued.

Then $\Lambda(a) \subset \mathbb{R}$. In fact, one has much more:

$$
\operatorname{spec}\left(T_{n}(a)\right) \subset \mathbb{R}, \quad \forall n \in \mathbb{N} .
$$

- Clearly, if $T_{n}(a)$ is Hermitian for all n, then $\Lambda(a) \subset \mathbb{R}$.
-

$$
T_{n}(a)=T_{n}^{*}(a), \forall n \in \mathbb{N} \quad \Longleftrightarrow \quad a(\mathbb{T}) \subset \mathbb{R} .
$$

- In other words: In the Hermitian case, there exists a Jordan curve in \mathbb{C} (namely, the unit circle) on which the symbol is a real-valued function.
- And this is the clue ...

Theorem:

(1) Let the symbol a be given by the Laurent series $\sum_{n} a_{n} z^{n}$ which is absolutely convergent in an annulus $r \leq|z| \leq R$, where $r \leq 1$ and $R \geq 1$.
(2) Let the above annulus contain (an image of) a Jordan curve γ such that $a \circ \gamma$ is real-valued.

Then $\Lambda(a) \subset \mathbb{R}$. In fact, one has much more:

$$
\operatorname{spec}\left(T_{n}(a)\right) \subset \mathbb{R}, \quad \forall n \in \mathbb{N} .
$$

Remark:
If a is analytic in $\mathbb{C} \backslash\{0\}$ (especially, if a is a Laurent polynomial), then the assumption \mathbb{C} can be omitted.

The case of banded Toeplitz matrices

- Question: If $\Lambda(a) \subset \mathbb{R}$, can the set $\Lambda(a)$ be approached from the complex plane? That is, can $\operatorname{spec}\left(T_{n}(a)\right)$ contain non-real eigenvalues for some n ?

The case of banded Toeplitz matrices

- Question: If $\Lambda(a) \subset \mathbb{R}$, can the set $\Lambda(a)$ be approached from the complex plane? That is, can $\operatorname{spec}\left(T_{n}(a)\right)$ contain non-real eigenvalues for some n ?
- Answer: No, if a is a Laurent polynomial!

The case of banded Toeplitz matrices

- Question: If $\Lambda(a) \subset \mathbb{R}$, can the set $\Lambda(a)$ be approached from the complex plane? That is, can $\operatorname{spec}\left(T_{n}(a)\right)$ contain non-real eigenvalues for some n ?
- Answer: No, if a is a Laurent polynomial!

Theorem:

Let $b=b(z)$ be a Laurent polynomial which is neither a polynomial in z nor in $1 / z$. The following claims are equivalent:

The case of banded Toeplitz matrices

- Question: If $\Lambda(a) \subset \mathbb{R}$, can the set $\Lambda(a)$ be approached from the complex plane? That is, can $\operatorname{spec}\left(T_{n}(a)\right)$ contain non-real eigenvalues for some n ?
- Answer: No, if a is a Laurent polynomial!

Theorem:

Let $b=b(z)$ be a Laurent polynomial which is neither a polynomial in z nor in $1 / z$. The following claims are equivalent:
(1) $\Lambda(b) \subset \mathbb{R}$;

The case of banded Toeplitz matrices

- Question: If $\Lambda(a) \subset \mathbb{R}$, can the set $\Lambda(a)$ be approached from the complex plane? That is, can $\operatorname{spec}\left(T_{n}(a)\right)$ contain non-real eigenvalues for some n ?
- Answer: No, if a is a Laurent polynomial!

Theorem:

Let $b=b(z)$ be a Laurent polynomial which is neither a polynomial in z nor in $1 / z$. The following claims are equivalent:
(1) $\Lambda(b) \subset \mathbb{R}$;
(2) The set $b^{-1}(\mathbb{R})$ contains a Jordan curve (with 0 in its interior).

The case of banded Toeplitz matrices

- Question: If $\Lambda(a) \subset \mathbb{R}$, can the set $\Lambda(a)$ be approached from the complex plane? That is, can $\operatorname{spec}\left(T_{n}(a)\right)$ contain non-real eigenvalues for some n ?
- Answer: No, if a is a Laurent polynomial!

Theorem:

Let $b=b(z)$ be a Laurent polynomial which is neither a polynomial in z nor in $1 / z$. The following claims are equivalent:
(1) $\Lambda(b) \subset \mathbb{R}$;
(2) The set $b^{-1}(\mathbb{R})$ contains a Jordan curve (with 0 in its interior).
(3) For all $n \in \mathbb{N}, \operatorname{spec}\left(T_{n}(b)\right) \subset \mathbb{R}$.

The case of banded Toeplitz matrices

- Question: If $\Lambda(a) \subset \mathbb{R}$, can the set $\Lambda(a)$ be approached from the complex plane? That is, can $\operatorname{spec}\left(T_{n}(a)\right)$ contain non-real eigenvalues for some n ?
- Answer: No, if a is a Laurent polynomial!

Theorem:

Let $b=b(z)$ be a Laurent polynomial which is neither a polynomial in z nor in $1 / z$. The following claims are equivalent:
(1) $\Lambda(b) \subset \mathbb{R}$;
(2) The set $b^{-1}(\mathbb{R})$ contains a Jordan curve (with 0 in its interior).
(3) For all $n \in \mathbb{N}, \operatorname{spec}\left(T_{n}(b)\right) \subset \mathbb{R}$.

Remark:

It is a very surprising feature of banded Toeplitz matrices that the asymptotic reality of the eigenvalues (claim 1) forces all eigenvalues of all $T_{n}(b)$ to be real (claim 3). Hence, if, for instance, the 2×2 matrix $T_{2}(b)$ has a non-real eigenvalue, there is no chance for the limiting set $\Lambda(b)$ to be real!

Examples

(1) Tridiagonal Toeplitz matrix:

$$
b(z)=z^{-1}+a z, \quad(a \in \mathbb{C} \backslash\{0\})
$$

Then

$$
\Lambda(b) \subset \mathbb{R} \quad \Longleftrightarrow \quad a>0
$$

Examples

(1) Tridiagonal Toeplitz matrix:

$$
b(z)=z^{-1}+a z
$$

$$
(a \in \mathbb{C} \backslash\{0\})
$$

Then

$$
\Lambda(b) \subset \mathbb{R} \quad \Longleftrightarrow \quad a>0
$$

(2) Four-diagonal Toeplitz matrix:

$$
b(z)=z^{-1}+a z+b z^{2}, \quad(a \in \mathbb{C}, b \in \mathbb{C} \backslash\{0\})
$$

Then

$$
\Lambda(b) \subset \mathbb{R} \quad \Longleftrightarrow \quad a^{3} \geq 27 b^{2}>0
$$

Examples

(1) Tridiagonal Toeplitz matrix:

$$
b(z)=z^{-1}+a z
$$

$$
(a \in \mathbb{C} \backslash\{0\})
$$

Then

$$
\Lambda(b) \subset \mathbb{R} \quad \Longleftrightarrow \quad a>0
$$

(2) Four-diagonal Toeplitz matrix:

$$
b(z)=z^{-1}+a z+b z^{2}, \quad(a \in \mathbb{C}, b \in \mathbb{C} \backslash\{0\})
$$

Then

$$
\Lambda(b) \subset \mathbb{R} \quad \Longleftrightarrow \quad a^{3} \geq 27 b^{2}>0
$$

(3) A banded Toeplitz matrix:

$$
b(z)=z^{-r}(1+a z)^{r+s}, \quad(r, s \in \mathbb{N}, a \in \mathbb{R} \backslash\{0\})
$$

Then $\Lambda(b) \subset \mathbb{R}$.

Examples

(1) Tridiagonal Toeplitz matrix:

$$
b(z)=z^{-1}+a z
$$

$$
(a \in \mathbb{C} \backslash\{0\})
$$

Then

$$
\Lambda(b) \subset \mathbb{R} \quad \Longleftrightarrow \quad a>0
$$

(2) Four-diagonal Toeplitz matrix:

$$
b(z)=z^{-1}+a z+b z^{2}, \quad(a \in \mathbb{C}, b \in \mathbb{C} \backslash\{0\})
$$

Then

$$
\Lambda(b) \subset \mathbb{R} \quad \Longleftrightarrow \quad a^{3} \geq 27 b^{2}>0
$$

(3) A banded Toeplitz matrix:

$$
b(z)=z^{-r}(1+a z)^{r+s}, \quad(r, s \in \mathbb{N}, a \in \mathbb{R} \backslash\{0\})
$$

Then $\Lambda(b) \subset \mathbb{R}$.
(c) And many more...

Numerical examples

$$
b(z)=z^{-3}-z^{-2}+7 z^{-1}+9 z-2 z^{2}+2 z^{3}-z^{4}
$$

Numerical examples

Contents

(1) Toeplitz matrices with real spectrum

(2) The asymptotic eigenvalue distribution

3 Connections to the Hamburger Moment Problem and Orthogonal Polynomials

History on the topic

- We consider banded Toeplitz matrices only \longrightarrow the classical topic;

$$
b(z)=\sum_{k=-r}^{s} a_{k} z^{k}, \text { where } a_{-r} a_{s} \neq 0 \text { and } r, s \in \mathbb{N} .
$$

History on the topic

- We consider banded Toeplitz matrices only \longrightarrow the classical topic;

$$
b(z)=\sum_{k=-r}^{s} a_{k} z^{k}, \text { where } a_{-r} a_{s} \neq 0 \text { and } r, s \in \mathbb{N}
$$

- The set $\Lambda(b)$ can be described in terms of zeros of the polynomial $z \mapsto z^{r}(b(z)-\lambda)$ [Schmidt and Spitzer, 1960].

History on the topic

- We consider banded Toeplitz matrices only \longrightarrow the classical topic;

$$
b(z)=\sum_{k=-r}^{s} a_{k} z^{k}, \text { where } a_{-r} a_{s} \neq 0 \text { and } r, s \in \mathbb{N} .
$$

- The set $\Lambda(b)$ can be described in terms of zeros of the polynomial $z \mapsto z^{r}(b(z)-\lambda)$ [Schmidt and Spitzer, 1960].
- The weak limit of the eigenvalue-counting measures of $T_{n}(b)$:

$$
\mu_{n}=\frac{1}{n} \sum_{k=1}^{n} \delta_{\lambda_{k}^{(n)}}
$$

exists, as $n \rightarrow \infty$, and is absolutely continuous measure μ supported on $\Lambda(b)$ whose density can be expressed in terms of zeros of $z \mapsto z^{r}(b(z)-\lambda)$ [Hirschman Jr., 1967].

The limiting measure and the Jordan curve without critical points

(1) Let $T_{n}(b)$ be a banded Toeplitz matrix with real elements:

$$
b(z)=\sum_{k=-r}^{s} \underbrace{a_{k}}_{\in \mathbb{R}} z^{k}, \text { where } a_{-r} a_{s} \neq 0 \text { and } r, s \in \mathbb{N} .
$$

(Then both $\Lambda(b)$ and $b^{-1}(\mathbb{R})$ are symmetric w.r.t. \mathbb{R}.)

The limiting measure and the Jordan curve without critical points

(1) Let $T_{n}(b)$ be a banded Toeplitz matrix with real elements:

$$
b(z)=\sum_{k=-r}^{s} \underbrace{a_{k}}_{\in \mathbb{R}} z^{k}, \text { where } a_{-r} a_{s} \neq 0 \text { and } r, s \in \mathbb{N} .
$$

(Then both $\Lambda(b)$ and $b^{-1}(\mathbb{R})$ are symmetric w.r.t. \mathbb{R}.)
(2) Suppose the Jordan curve γ is present in $b^{-1}(\mathbb{R})$ and assume, additionally, that γ admits a polar parametrization:

$$
\gamma(t)=\rho(t) e^{\mathrm{i} t}, \quad t \in[-\pi, \pi] .
$$

The limiting measure and the Jordan curve without critical points

(1) Let $T_{n}(b)$ be a banded Toeplitz matrix with real elements:

$$
b(z)=\sum_{k=-r}^{s} \underbrace{a_{k}}_{\in \mathbb{R}} z^{k}, \text { where } a_{-r} a_{s} \neq 0 \text { and } r, s \in \mathbb{N} .
$$

(Then both $\Lambda(b)$ and $b^{-1}(\mathbb{R})$ are symmetric w.r.t. \mathbb{R}.)
(2) Suppose the Jordan curve γ is present in $b^{-1}(\mathbb{R})$ and assume, additionally, that γ admits a polar parametrization:

$$
\gamma(t)=\rho(t) e^{\mathrm{i} t}, \quad t \in[-\pi, \pi] .
$$

Theorem:

Let $b^{\prime}(\gamma(t)) \neq 0$ for all $t \in(0, \pi)$. Then $b \circ \gamma$ restricted to $(0, \pi)$ is either strictly increasing or decreasing; the limiting measure μ is supported on the interval $[\alpha, \beta]:=b(\gamma([0, \pi]))$ and its density satisfies

$$
\frac{\mathrm{d} \mu}{\mathrm{~d} x}(x)= \pm \frac{1}{\pi} \frac{\mathrm{~d}}{\mathrm{~d} x}(b \circ \gamma)^{-1}(x)
$$

for $x \in(\alpha, \beta)$, where the + sign is used when $b \circ \gamma$ increases on $(0, \pi)$, and the - sign is used otherwise.

Numerical illustration - the Jordan curve without critical points of b

$$
b(z)=z^{-3}-z^{-2}+7 z^{-1}+9 z-2 z^{2}+2 z^{3}-z^{4}
$$

Numerical illustration - the Jordan curve without critical points of b

$$
b(z)=z^{-3}-z^{-2}+7 z^{-1}+9 z-2 z^{2}+2 z^{3}-z^{4}
$$

Numerical illustration - the Jordan curve without critical points of b

$$
b(z)=z^{-3}-z^{-2}+7 z^{-1}+9 z-2 z^{2}+2 z^{3}-z^{4}
$$

Numerical illustration - the Jordan curve without critical points of b

$$
b(z)=z^{-3}-z^{-2}+7 z^{-1}+9 z-2 z^{2}+2 z^{3}-z^{4}
$$

Numerical illustration - the Jordan curve without critical points of b

$$
b(z)=z^{-3}-z^{-2}+7 z^{-1}+9 z-2 z^{2}+2 z^{3}-z^{4}
$$

Numerical illustration - the Jordan curve without critical points of b

$$
b(z)=z^{-3}-z^{-2}+7 z^{-1}+9 z-2 z^{2}+2 z^{3}-z^{4}
$$

The limiting measure and the Jordan curve with critical points

- If $\gamma((0, \pi))$ contains some critical points of b, then the description of μ is slightly more complicated.

The limiting measure and the Jordan curve with critical points

- If $\gamma((0, \pi))$ contains some critical points of b, then the description of μ is slightly more complicated.

The limiting measure and the Jordan curve with critical points

- If $\gamma((0, \pi))$ contains some critical points of b, then the description of μ is slightly more complicated.

Theorem:

The limiting measure and the Jordan curve with critical points

- If $\gamma((0, \pi))$ contains some critical points of b, then the description of μ is slightly more complicated.

Theorem:

Suppose that b and γ are as before and let

The limiting measure and the Jordan curve with critical points

- If $\gamma((0, \pi))$ contains some critical points of b, then the description of μ is slightly more complicated.

Theorem:

Suppose that b and γ are as before and let $\ell \in \mathbb{N}_{0}$ be the number of critical points of b in $\gamma((0, \pi))$ and $0=: \phi_{0}<\phi_{1}<\cdots<\phi_{\ell}<\phi_{\ell+1}:=\pi$ are such that $b^{\prime}\left(\gamma\left(\phi_{j}\right)\right)=0$ for all $0 \leq j \leq \ell+1$.

The limiting measure and the Jordan curve with critical points

- If $\gamma((0, \pi))$ contains some critical points of b, then the description of μ is slightly more complicated.

Theorem:

Suppose that b and γ are as before and let $\ell \in \mathbb{N}_{0}$ be the number of critical points of b in $\gamma((0, \pi))$ and $0=: \phi_{0}<\phi_{1}<\cdots<\phi_{\ell}<\phi_{\ell+1}:=\pi$ are such that $b^{\prime}\left(\gamma\left(\phi_{j}\right)\right)=0$ for all $0 \leq j \leq \ell+1$. Then $b \circ \gamma$ restricted to $\left(\phi_{i-1}, \phi_{i}\right)$ is strictly monotone for all $1 \leq i \leq \ell+1$, and the limiting measure $\mu=\mu_{1}+\mu_{2}+\cdots+\mu_{\ell+1}$, where μ_{i} is an absolutely continuous measure supported on $\left[\alpha_{i}, \beta_{i}\right]:=b\left(\gamma\left(\left[\phi_{i-1}, \phi_{i}\right]\right)\right)$ whose density is given by

$$
\frac{\mathrm{d} \mu_{i}}{\mathrm{~d} x}(x)= \pm \frac{1}{\pi} \frac{\mathrm{~d}}{\mathrm{~d} x}(b \circ \gamma)^{-1}(x)
$$

for all $x \in\left(\alpha_{i}, \beta_{i}\right)$ and all $i \in\{1,2, \ldots, \ell+1\}$. The + sign is used when $b \circ \gamma$ increases on (α_{i}, β_{i}), and the - sign is used otherwise.

Numerical illustration - the Jordan curve with critical points of b

$$
b(z)=z^{-3}+z^{-2}+z^{-1}+z+z^{2}+z^{3}
$$

Numerical illustration - the Jordan curve with critical points of b

Numerical illustration - the Jordan curve with critical points of b

Numerical illustration - the Jordan curve with critical points of b

Numerical illustration - the Jordan curve with critical points of b

Numerical illustration - the Jordan curve with critical points of b

$$
b(z)=z^{-3}+z^{-2}+z^{-1}+z+z^{2}+z^{3}
$$

Numerical illustration - the Jordan curve with critical points of b

$$
b(z)=z^{-3}+z^{-2}+z^{-1}+z+z^{2}+z^{3}
$$

Numerical illustration - the Jordan curve with critical points of b

$$
b(z)=z^{-3}+z^{-2}+z^{-1}+z+z^{2}+z^{3}
$$

Numerical illustration - the Jordan curve with critical points of b

Numerical illustration - the Jordan curve with critical points of b

Contents

(1) Toeplitz matrices with real spectrum

(2) The asymptotic eigenvalue distribution
(3) Connections to the Hamburger Moment Problem and Orthogonal Polynomials

The limiting measure as a solution of the HMP

- We consider real Laurent polynomial symbols:

$$
b(z)=\sum_{k=-r}^{s} \underbrace{a_{k}}_{\in \mathbb{R}} z^{k}, \text { where } a_{-r} a_{s} \neq 0 \text { and } r, s \in \mathbb{N}
$$

The limiting measure as a solution of the HMP

- We consider real Laurent polynomial symbols:

$$
b(z)=\sum_{k=-r}^{s} \underbrace{a_{k}}_{\in \mathbb{R}} z^{k}, \text { where } a_{-r} a_{s} \neq 0 \text { and } r, s \in \mathbb{N}
$$

Proposition:

Let $b^{-1}(\mathbb{R})$ contains a Jordan curve. Then the limiting measure μ coincides with the unique solution of the determinate HMP with moments

$$
h_{m}:=\frac{1}{2 \pi} \int_{-\pi}^{\pi} b^{m}\left(e^{\mathrm{i} t}\right) \mathrm{d} t, \quad m \in \mathbb{N}_{0} .
$$

The limiting measure as a solution of the HMP

- We consider real Laurent polynomial symbols:

$$
b(z)=\sum_{k=-r}^{s} \underbrace{a_{k}}_{\in \mathbb{R}} z^{k}, \text { where } a_{-r} a_{s} \neq 0 \text { and } r, s \in \mathbb{N}
$$

Proposition:

Let $b^{-1}(\mathbb{R})$ contains a Jordan curve. Then the limiting measure μ coincides with the unique solution of the determinate HMP with moments

$$
h_{m}:=\frac{1}{2 \pi} \int_{-\pi}^{\pi} b^{m}\left(e^{\mathrm{i} t}\right) \mathrm{d} t, \quad m \in \mathbb{N}_{0} .
$$

Corollary:

If $b^{-1}(\mathbb{R})$ contains a Jordan curve, then the moment Hankel matrix $H_{n}:=\left(h_{i+j}\right)_{i, j=0}^{n-1}$ is positive-definite for all $n \in \mathbb{N}_{0}$.

The limiting measure as a solution of the HMP

- We consider real Laurent polynomial symbols:

$$
b(z)=\sum_{k=-r}^{s} \underbrace{a_{k}}_{\in \mathbb{R}} z^{k}, \text { where } a_{-r} a_{s} \neq 0 \text { and } r, s \in \mathbb{N}
$$

Proposition:

Let $b^{-1}(\mathbb{R})$ contains a Jordan curve. Then the limiting measure μ coincides with the unique solution of the determinate HMP with moments

$$
h_{m}:=\frac{1}{2 \pi} \int_{-\pi}^{\pi} b^{m}\left(e^{\mathrm{i} t}\right) \mathrm{d} t, \quad m \in \mathbb{N}_{0} .
$$

Corollary:

If $b^{-1}(\mathbb{R})$ contains a Jordan curve, then the moment Hankel matrix $H_{n}:=\left(h_{i+j}\right)_{i, j=0}^{n-1}$ is positive-definite for all $n \in \mathbb{N}_{0}$.

Open problem: The opposite implication: $H_{n}>0, \forall n \in \mathbb{N}_{0} \quad \xlongequal{?} \quad \Lambda(b) \subset \mathbb{R}$.

The limiting measure as a solution of the HMP

- We consider real Laurent polynomial symbols:

$$
b(z)=\sum_{k=-r}^{s} \underbrace{a_{k}}_{\in \mathbb{R}} z^{k}, \text { where } a_{-r} a_{s} \neq 0 \text { and } r, s \in \mathbb{N}
$$

Proposition:

Let $b^{-1}(\mathbb{R})$ contains a Jordan curve. Then the limiting measure μ coincides with the unique solution of the determinate HMP with moments

$$
h_{m}:=\frac{1}{2 \pi} \int_{-\pi}^{\pi} b^{m}\left(e^{\mathrm{i} t}\right) \mathrm{d} t, \quad m \in \mathbb{N}_{0} .
$$

Corollary:

If $b^{-1}(\mathbb{R})$ contains a Jordan curve, then the moment Hankel matrix $H_{n}:=\left(h_{i+j}\right)_{i, j=0}^{n-1}$ is positive-definite for all $n \in \mathbb{N}_{0}$.

Open problem: The opposite implication: $H_{n}>0, \forall n \in \mathbb{N}_{0} \quad \stackrel{?}{\Longrightarrow} \quad \Lambda(b) \subset \mathbb{R}$. (If a counter-example exists, $\mathbb{C} \backslash \Lambda(b)$ has to be disconnected.)

The limiting measure as the orthogonality measure of OGPs

- If $b^{-1}(\mathbb{R})$ contains a Jordan curve, then there is a family of OGPs $\left\{p_{n}\right\}_{n=0}^{\infty}$ orthogonal w.r.t. the limiting measure μ.

The limiting measure as the orthogonality measure of OGPs

- If $b^{-1}(\mathbb{R})$ contains a Jordan curve, then there is a family of OGPs $\left\{p_{n}\right\}_{n=0}^{\infty}$ orthogonal w.r.t. the limiting measure μ.
- What are the properties of p_{n} ?

The limiting measure as the orthogonality measure of OGPs

- If $b^{-1}(\mathbb{R})$ contains a Jordan curve, then there is a family of OGPs $\left\{p_{n}\right\}_{n=0}^{\infty}$ orthogonal w.r.t. the limiting measure μ.
- What are the properties of p_{n} ?
- What can be said about the mapping $b \mapsto\left(\left\{a_{n}\right\},\left\{b_{n}\right\}\right)$, where

$$
p_{n+1}(x)=\left(x-b_{n+1}\right) p_{n}(x)-a_{n}^{2} p_{n-1}(x), \quad n \in \mathbb{N} ?
$$

The limiting measure as the orthogonality measure of OGPs

- If $b^{-1}(\mathbb{R})$ contains a Jordan curve, then there is a family of OGPs $\left\{p_{n}\right\}_{n=0}^{\infty}$ orthogonal w.r.t. the limiting measure μ.
- What are the properties of p_{n} ?
- What can be said about the mapping $b \mapsto\left(\left\{a_{n}\right\},\left\{b_{n}\right\}\right)$, where

$$
p_{n+1}(x)=\left(x-b_{n+1}\right) p_{n}(x)-a_{n}^{2} p_{n-1}(x), \quad n \in \mathbb{N} ?
$$

Proposition:

Let $b^{-1}(\mathbb{R})$ contains a Jordan curve and let no non-real critical point of b is located on this Jordan curve. Then

The limiting measure as the orthogonality measure of OGPs

- If $b^{-1}(\mathbb{R})$ contains a Jordan curve, then there is a family of OGPs $\left\{p_{n}\right\}_{n=0}^{\infty}$ orthogonal w.r.t. the limiting measure μ.
- What are the properties of p_{n} ?
- What can be said about the mapping $b \mapsto\left(\left\{a_{n}\right\},\left\{b_{n}\right\}\right)$, where

$$
p_{n+1}(x)=\left(x-b_{n+1}\right) p_{n}(x)-a_{n}^{2} p_{n-1}(x), \quad n \in \mathbb{N} ?
$$

Proposition:

Let $b^{-1}(\mathbb{R})$ contains a Jordan curve and let no non-real critical point of b is located on this Jordan curve. Then
(1) the Jordan curve intersects \mathbb{R} at exactly two points whose b-images are the endpoints of the interval $\Lambda(b)=[\alpha, \beta]$;

The limiting measure as the orthogonality measure of OGPs

- If $b^{-1}(\mathbb{R})$ contains a Jordan curve, then there is a family of OGPs $\left\{p_{n}\right\}_{n=0}^{\infty}$ orthogonal w.r.t. the limiting measure μ.
- What are the properties of p_{n} ?
- What can be said about the mapping $b \mapsto\left(\left\{a_{n}\right\},\left\{b_{n}\right\}\right)$, where

$$
p_{n+1}(x)=\left(x-b_{n+1}\right) p_{n}(x)-a_{n}^{2} p_{n-1}(x), \quad n \in \mathbb{N} ?
$$

Proposition:

Let $b^{-1}(\mathbb{R})$ contains a Jordan curve and let no non-real critical point of b is located on this Jordan curve. Then
(1) the Jordan curve intersects \mathbb{R} at exactly two points whose b-images are the endpoints of the interval $\Lambda(b)=[\alpha, \beta]$;
(2) the OGPs $\left\{p_{n}\right\}$ belong to the Blumenthal-Nevai class $M((\beta-\alpha) / 2,(\alpha+\beta) / 2)$, i.e.,

$$
\lim _{n \rightarrow \infty} a_{n}=\frac{\beta-\alpha}{4} \quad \text { and } \quad \lim _{n \rightarrow \infty} b_{n}=\frac{\alpha+\beta}{2}
$$

Connections to the Hamburger Moment Problem and Orthogonal Polynomials

Example 1/4

- Let

$$
b(z)=\frac{1}{z^{r}}(1+a z)^{r+s}, \quad(a>0, r, s \in \mathbb{N})
$$

Example 1/4

- Let

$$
b(z)=\frac{1}{z^{r}}(1+a z)^{r+s}, \quad(a>0, r, s \in \mathbb{N})
$$

- Jordan curve (wlog $a=1$):

$$
\gamma(t)=\frac{\sin \frac{r}{r+s} t}{\sin \frac{s}{r+s} t} e^{\mathrm{i} t}, \quad t \in[-\pi, \pi] .
$$

Example 1/4

- Let

$$
b(z)=\frac{1}{z^{r}}(1+a z)^{r+s}, \quad(a>0, r, s \in \mathbb{N})
$$

- Jordan curve (wlog $a=1$):

$$
\begin{gathered}
\gamma(t)=\frac{\sin \frac{r}{r+s} t}{\sin \frac{s}{r+s} t} e^{\mathrm{i} t}, \quad t \in[-\pi, \pi] \\
b(\gamma(t))=\frac{\sin ^{r+s} t}{\sin ^{r}\left(\frac{r}{r+s} t\right) \sin ^{s}\left(\frac{s}{r+s} t\right)} \in \mathbb{R}, \quad \forall t \in[-\pi, \pi],
\end{gathered}
$$

Example 1/4

- Let

$$
b(z)=\frac{1}{z^{r}}(1+a z)^{r+s}, \quad(a>0, r, s \in \mathbb{N})
$$

- Jordan curve (wlog $a=1$):

$$
\begin{gathered}
\gamma(t)=\frac{\sin \frac{r}{r+s} t}{\sin \frac{s}{r+s} t} e^{\mathrm{i} t}, \quad t \in[-\pi, \pi] . \\
b(\gamma(t))=\frac{\sin ^{r+s} t}{\sin ^{r}\left(\frac{r}{r+s} t\right) \sin ^{s}\left(\frac{s}{r+s} t\right)} \in \mathbb{R}, \quad \forall t \in[-\pi, \pi],
\end{gathered}
$$

- $b^{\prime}(\gamma(t)) \neq 0$ for all $t \in(0, \pi)$ and $b(\gamma(0))=(r+s)^{r+s} r^{-r} s^{-s}$ and $b(\gamma(\pi))=0$. Hence

Example 1/4

- Let

$$
b(z)=\frac{1}{z^{r}}(1+a z)^{r+s}, \quad(a>0, r, s \in \mathbb{N})
$$

- Jordan curve (wlog $a=1$):

$$
\begin{gathered}
\gamma(t)=\frac{\sin \frac{r}{r+s} t}{\sin \frac{s}{r+s} t} e^{\mathrm{i} t}, \quad t \in[-\pi, \pi] . \\
b(\gamma(t))=\frac{\sin ^{r+s} t}{\sin ^{r}\left(\frac{r}{r+s} t\right) \sin ^{s}\left(\frac{s}{r+s} t\right)} \in \mathbb{R}, \quad \forall t \in[-\pi, \pi],
\end{gathered}
$$

- $b^{\prime}(\gamma(t)) \neq 0$ for all $t \in(0, \pi)$ and $b(\gamma(0))=(r+s)^{r+s} r^{-r} s^{-s}$ and $b(\gamma(\pi))=0$. Hence

$$
\Lambda(b)=\operatorname{supp} \mu=\left[0, \frac{(r+s)^{r+s}}{r^{r} s^{s}}\right]
$$

Example 1/4

- Let

$$
b(z)=\frac{1}{z^{r}}(1+a z)^{r+s}, \quad(a>0, r, s \in \mathbb{N})
$$

- Jordan curve (wlog $a=1$):

$$
\begin{gathered}
\gamma(t)=\frac{\sin \frac{r}{r+s} t}{\sin \frac{s}{r+s} t} e^{\mathrm{i} t}, \quad t \in[-\pi, \pi] \\
b(\gamma(t))=\frac{\sin ^{r+s} t}{\sin ^{r}\left(\frac{r}{r+s} t\right) \sin ^{s}\left(\frac{s}{r+s} t\right)} \in \mathbb{R}, \quad \forall t \in[-\pi, \pi],
\end{gathered}
$$

- $b^{\prime}(\gamma(t)) \neq 0$ for all $t \in(0, \pi)$ and $b(\gamma(0))=(r+s)^{r+s} r^{-r} s^{-s}$ and $b(\gamma(\pi))=0$. Hence

$$
\Lambda(b)=\operatorname{supp} \mu=\left[0, \frac{(r+s)^{r+s}}{r^{r} s^{s}}\right] \supset \operatorname{spec} T_{n}(b) \quad \forall n \in \mathbb{N} .
$$

Example 2/4

- The limiting measure μ is the solution of the moment problem with moments

$$
h_{m}=\frac{1}{2 \pi} \int_{0}^{2 \pi} b^{m}\left(e^{\mathrm{i} \theta}\right) \mathrm{d} \theta=\binom{(r+s) m}{r m}, \quad m \in \mathbb{N}_{0} .
$$

Example 2/4

- The limiting measure μ is the solution of the moment problem with moments

$$
h_{m}=\frac{1}{2 \pi} \int_{0}^{2 \pi} b^{m}\left(e^{\mathrm{i} \theta}\right) \mathrm{d} \theta=\binom{(r+s) m}{r m}, \quad m \in \mathbb{N}_{0}
$$

- To obtain μ, one has to invert the function

$$
b(\gamma(t))=\frac{\sin ^{r+s} t}{\sin ^{r}\left(\frac{r}{r+s} t\right) \sin ^{s}\left(\frac{s}{r+s} t\right)}, \quad t \in(0, \pi)
$$

which cannot be done explicitly in general.

Example 2/4

- The limiting measure μ is the solution of the moment problem with moments

$$
h_{m}=\frac{1}{2 \pi} \int_{0}^{2 \pi} b^{m}\left(e^{\mathrm{i} \theta}\right) \mathrm{d} \theta=\binom{(r+s) m}{r m}, \quad m \in \mathbb{N}_{0} .
$$

- To obtain μ, one has to invert the function

$$
b(\gamma(t))=\frac{\sin ^{r+s} t}{\sin ^{r}\left(\frac{r}{r+s} t\right) \sin ^{s}\left(\frac{s}{r+s} t\right)}, \quad t \in(0, \pi)
$$

which cannot be done explicitly in general.

- But the main result yields that for the distribution function of $\mu, F_{\mu}:=\mu([0, \cdot))$, one has

$$
F_{\mu}(b(\gamma(t)))=1-\frac{t}{\pi}, \quad \text { for } t \in[0, \pi] .
$$

Example 2/4

- The limiting measure μ is the solution of the moment problem with moments

$$
h_{m}=\frac{1}{2 \pi} \int_{0}^{2 \pi} b^{m}\left(e^{\mathrm{i} \theta}\right) \mathrm{d} \theta=\binom{(r+s) m}{r m}, \quad m \in \mathbb{N}_{0} .
$$

- To obtain μ, one has to invert the function

$$
b(\gamma(t))=\frac{\sin ^{r+s} t}{\sin ^{r}\left(\frac{r}{r+s} t\right) \sin ^{s}\left(\frac{s}{r+s} t\right)}, \quad t \in(0, \pi)
$$

which cannot be done explicitly in general.

- But the main result yields that for the distribution function of $\mu, F_{\mu}:=\mu([0, \cdot))$, one has

$$
F_{\mu}(b(\gamma(t)))=1-\frac{t}{\pi}, \quad \text { for } t \in[0, \pi] .
$$

- Explicit formulas for the Jacobi parameters a_{n} and b_{n} are not known in general but we have

$$
2 \lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} b_{n}=\frac{(r+s)^{r+s}}{2 r^{r} s^{s}}
$$

Connections to the Hamburger Moment Problem and Orthogonal Polynomials

Example 3/4

- Special cases that admit more explicit results: $(r, s)=(1,1),(1,2),(2,2)$.

Example 3/4

- Special cases that admit more explicit results: $(r, s)=(1,1),(1,2),(2,2)$.
- The symbol:

$$
b(z)=\frac{1}{z}(1+a z)^{3}
$$

Example 3/4

- Special cases that admit more explicit results: $(r, s)=(1,1),(1,2),(2,2)$.
- The symbol:

$$
b(z)=\frac{1}{z}(1+a z)^{3} .
$$

- Here we put $a=4 / 27$. Then one has

$$
\frac{\mathrm{d} \mu}{\mathrm{~d} x}(x)=\frac{\sqrt{3}}{4 \pi} \frac{(1+\sqrt{1-x})^{1 / 3}-(1-\sqrt{1-x})^{1 / 3}}{x^{2 / 3} \sqrt{1-x}}, \quad x \in(0,1) .
$$

(This density appeared earlier: Kuijlaars, Van Assche, ...)

Example 3/4

- Special cases that admit more explicit results: $(r, s)=(1,1),(1,2),(2,2)$.
- The symbol:

$$
b(z)=\frac{1}{z}(1+a z)^{3} .
$$

- Here we put $a=4 / 27$. Then one has

$$
\frac{\mathrm{d} \mu}{\mathrm{~d} x}(x)=\frac{\sqrt{3}}{4 \pi} \frac{(1+\sqrt{1-x})^{1 / 3}-(1-\sqrt{1-x})^{1 / 3}}{x^{2 / 3} \sqrt{1-x}}, \quad x \in(0,1) .
$$

(This density appeared earlier: Kuijlaars, Van Assche, ...)

- Jacobi parameters:

$$
a_{1}^{2}=6 a^{2}, \quad a_{k}^{2}=\frac{9(6 k-5)(6 k-1)(3 k-1)(3 k+1)}{4(4 k-3)(4 k-1)^{2}(4 k+1)} a^{2}, \quad \text { for } k>1 .
$$

and

$$
b_{1}=3 a, \quad b_{k}=\frac{3\left(36 k^{2}-54 k+13\right)}{2(4 k-5)(4 k-1)} a, \quad \text { for } k>1 .
$$

Example 4/4

- Polynomials p_{n} can be expressed as a combination of the associated Jacobi polynomials $P_{n}^{(\alpha, \beta)}(x ; c)$ studied by J.Wimp (1987).

Example 4/4

- Polynomials p_{n} can be expressed as a combination of the associated Jacobi polynomials $P_{n}^{(\alpha, \beta)}(x ; c)$ studied by J.Wimp (1987).
- Recall that the associated Jacobi polynomials $P_{n}^{(\alpha, \beta)}(x ; c)$ constitute a three-parameter family of orthogonal polynomials generated by the same recurrence as the Jacobi polynomials $P_{n}^{(\alpha, \beta)}(x)$, but every occurrence of n in the coefficients of the recurrence relation defining $P_{n}^{(\alpha, \beta)}(x)$ is replaced by $n+c$.

Example 4/4

- Polynomials p_{n} can be expressed as a combination of the associated Jacobi polynomials $P_{n}^{(\alpha, \beta)}(x ; c)$ studied by J.Wimp (1987).
- Recall that the associated Jacobi polynomials $P_{n}^{(\alpha, \beta)}(x ; c)$ constitute a three-parameter family of orthogonal polynomials generated by the same recurrence as the Jacobi polynomials $P_{n}^{(\alpha, \beta)}(x)$, but every occurrence of n in the coefficients of the recurrence relation defining $P_{n}^{(\alpha, \beta)}(x)$ is replaced by $n+c$.
- Then, if we denote

$$
r_{n}^{(\alpha, \beta)}(x ; c):=\frac{2^{n}(c+\alpha+\beta+1)_{n}(c+1)_{n}}{(2 c+\alpha+\beta+1)_{2 n}} P_{n}^{(\alpha, \beta)}(2 x-1 ; c), \quad n \in \mathbb{N}_{0},
$$

Example 4/4

- Polynomials p_{n} can be expressed as a combination of the associated Jacobi polynomials $P_{n}^{(\alpha, \beta)}(x ; c)$ studied by J.Wimp (1987).
- Recall that the associated Jacobi polynomials $P_{n}^{(\alpha, \beta)}(x ; c)$ constitute a three-parameter family of orthogonal polynomials generated by the same recurrence as the Jacobi polynomials $P_{n}^{(\alpha, \beta)}(x)$, but every occurrence of n in the coefficients of the recurrence relation defining $P_{n}^{(\alpha, \beta)}(x)$ is replaced by $n+c$.
- Then, if we denote

$$
r_{n}^{(\alpha, \beta)}(x ; c):=\frac{2^{n}(c+\alpha+\beta+1)_{n}(c+1)_{n}}{(2 c+\alpha+\beta+1)_{2 n}} P_{n}^{(\alpha, \beta)}(2 x-1 ; c), \quad n \in \mathbb{N}_{0},
$$

it holds

$$
2^{n} p_{n}(x)=r_{n}^{(\alpha, \beta)}(x ; c)-\frac{4}{27} r_{n-1}^{(\alpha, \beta)}(x ; c+1)-\frac{256}{729} r_{n-2}^{(\alpha, \beta)}(x ; c+2), \quad n \in \mathbb{N},
$$

where $\alpha=1 / 2, \beta=-2 / 3$, and $c=-1 / 6$.

Example 4/4

- Polynomials p_{n} can be expressed as a combination of the associated Jacobi polynomials $P_{n}^{(\alpha, \beta)}(x ; c)$ studied by J.Wimp (1987).
- Recall that the associated Jacobi polynomials $P_{n}^{(\alpha, \beta)}(x ; c)$ constitute a three-parameter family of orthogonal polynomials generated by the same recurrence as the Jacobi polynomials $P_{n}^{(\alpha, \beta)}(x)$, but every occurrence of n in the coefficients of the recurrence relation defining $P_{n}^{(\alpha, \beta)}(x)$ is replaced by $n+c$.
- Then, if we denote

$$
r_{n}^{(\alpha, \beta)}(x ; c):=\frac{2^{n}(c+\alpha+\beta+1)_{n}(c+1)_{n}}{(2 c+\alpha+\beta+1)_{2 n}} P_{n}^{(\alpha, \beta)}(2 x-1 ; c), \quad n \in \mathbb{N}_{0},
$$

it holds

$$
2^{n} p_{n}(x)=r_{n}^{(\alpha, \beta)}(x ; c)-\frac{4}{27} r_{n-1}^{(\alpha, \beta)}(x ; c+1)-\frac{256}{729} r_{n-2}^{(\alpha, \beta)}(x ; c+2), \quad n \in \mathbb{N},
$$

where $\alpha=1 / 2, \beta=-2 / 3$, and $c=-1 / 6$.

- This relation and the known properties of the associated Jacobi polynomials allow to derive other formulas for p_{n} such as: an explicit representation, a generating function, ...

Thank you!

