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Function §

Let me define § : D — C by relation

oo

=1+ Z( T Z Z Z Xy Xkey 41Xk Xhey 41 -+ - Xk Xk 415

ki=1 ka=ki+2 km: m—1+2

where
(oo}
= {{Xk}/?i1 c G Z |Xka+1| < OO} .
k=1
For a finite number of complex variables let me identify §(x1, X2, . . ., Xn) With F(x) where
X = (X1, %,...,%n,0,0,0,...).

@ §is well defined on D due to estimation

[S(x)] < exp <Z (XK X1 |> :

k=1
@ This inequality follows from the fact that the absolute value of the mth summand in the RHS of
the definition of § is majorized by the expression m
_1 o0
> Xk Xk 1 Xk X1 -+ X Xk 1| < - > x4
N7 BRAVES

€
ki <ko<---<km
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Properties of §

@ Note that the domain D is not a linear space. One has, however, ¢2(N) C D.
@ Forallx e Dand k =1,2,... one has

Recursive relation

F) =F(x1, -, %) F(TEX) = F(x1, -, X 1) XieXu 1 (THHx)

where T denote the truncation operator from the left defined on the space of all sequences:

T({xk}ieZ1) = Xt Hiea-

@ Especially for k = 1, one gets the simple relation

F(x) = F(Tx) — x1x2 5( T2x). J
@ Moreover, for x finite the relation has the form
F(X1, X2, X3, ..., Xn) = F(X2, X3, ..., Xn) — X1 X2 F(X3, ..., Xn).
@ Since F(x1, X2, - - ., Xn) = F(Xn, Xn—1, - .., X1) one also has
F(Xt5 -0y Xn—1,Xn) = F(X1, -+ s Xn—2, Xn—1) — Xn—1Xn F(Xq, - - - ; Xn—3, Xn—2)-

@ Functions § restricted on ¢2(N) is a continuous functional on £2(N). Further, for x € D, it holds

Jim (X1, X2, - - ., Xn) = F(x) and Jim F(T"x) =1.
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Equivalent definitions of §(xy, X, ..., Xn)

@ |Initial values §(0) = F(xq1) = 1 together with relation
S(X1 e Xn—1, Xn) = S(X1 yoe s Xn—2, Xn—1) — Xp—1Xn S(X‘I PRI »Xn—S:Xn—Z)

determine recursively and unambiguously F(xi, . . ., Xn) for any finite number of variables.
@ Other equivalent definitions of F(x1, Xz, . . ., Xn) were found:

1 X1
X2 1 X2
F(X1, X2, ..., Xn) = det X, = det
Xn—1 1 Xn—1
Xn 1

n
S‘V(XMXZ" ° '7X’7) = H(ekvxl(_1ek)_1
k=1

The Last identity holds if §(xy,X2,...,Xx) #0fork=1,2,...,n—1.
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Two examples

@ The case of geometric sequence:

Lett,w € C, |t| < 1, then it holds
tm@m—1),,2m

s({rwl) =1+ g(_”mu —2)A-t)...(1— ")

The function on the RHS can be identified with a g-hypergeometric series o1 (; 0; 12, —tw?)
[Gasper&Rahman04].

@ The case of Bessel functions:

Letw € Cand v ¢ —N, then it holds

Jo(2w) = r(yw—: 1)5 ({ u—tk}:;) ‘

Recursive relation for § written in this special case has the form

wd,_1(2w) — vdy (2wW) + wd, 1 (2w) = 0.
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§ connections

The function § is related to various fields of mathematics:
@ the theory of Orthogonal Polynomials [Akhiezer, Chihara, Ismail]
@ the theory of Continued Fractions
@ the eigenvalue problem for certain class of Jacobi matrices

For A\p € R and w, > 0, OPs can be defined recursively by

Wn—1Yn—1(X) + Anyn(X) + Wn¥ni1(X) = xyn(x), n=1,2,...

and OPs of the first kind Pp(x) satisfy initial conditions Py(x) = 1, P1(x) = (x — Ay)/wq, while
OPs of the second kind Qn(x) satisfy Qy(x) = 0, Qi(x) = 1/wy. OPs are related to § through

identities
T (2= M 2 "
Po(z) — ( )g i . n=01...,
n() g Wy )\/—Z

1=1

where the sequence {vn} can be defined recursively as v1 = 1, y1 = Wi /-
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§ connections

The function § is concerned with various fields of mathematics:
@ the theory of Orthogonal Polynomials
@ the theory of Continued Fractions [Teschl, Ifantis, Stieltjes]
@ the eigenvalue problem for certain class of Jacobi matrices

Function § is related to a continued fraction. For a given x € D such that F(x) # 0, it holds

S(Tx) 1
F(x) 1 X1 X2 ’

Example:
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§ connections

The function § is concerned with various fields of mathematics:
@ the theory of Orthogonal Polynomials
@ the theory of Continued Fractions
@ the eigenvalue problem for certain class of Jacobi matrices

Let me denote

A Wy
wy Ao Wy
J = Wo Az W3

where {wn}>° . is positive and {\n}22, is real.

Let Jn be the n-th truncation of J, i.e. Jy = (PnJPn) 1 Ran Pn, where Pj is the orthogonal

projection on the space spanned by {ey, es, ..., en}. In other words,
A1 wy
wi Az W
Jn =

Wn_2 Ap—1 Wp_1
Wn—1 An
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Characteristic function in terms of §

The characteristic function of a finite symmetric Jacobi matrix can be expressed in terms of §:

Proposition

Let n € Na z € C, then it holds

det(Jn — zln) = f[(x —2))3 n % gl
" w = P " M—2"2—-2""""Ap—2z

where the sequence {vn} can be defined recursively as v1 = 1, yx11 = Wi /.

@ The proof is based on the decomposition

Jn = GanGn
where Gp = diag(vy1, 7Y, - - -, vn) is a diagonal matrix and Jn is a Jacobi matrix with all units on
the neighboring parallels to the diagonal,
X
1 X 1
Jp =
1 Xy 1

and S\k = )\k/’ykz.
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In the rest, let me suppose:
@ the set of all accumulation points der() of the sequence A = {\n} is bounded.
@ Let for at least one z € C \ X it holds

Let the above assumptions are fulfilled then it holds

< o0

Z [An — z||)\,,+1 —Z|

for all z € C \ X and the convergence of the sum is local uniform on C \ X.

@ Under these assumptions, the function

2 oo
()
n n=1

is well defined on C \ .

Franti$ek Stampach (FNSPE, CTU) Func. § and the Eigenv. Prob. for Jacobi Matr. May 17, 2011



Complicated definition

@ Further, we slightly extend the definition of F;(z). For ¢ € C\ der(A) and /, k € Ng, | < k, let

us define
5 k
(z_g)fgg ({A:iz} ) ’ |fz76€
n=I+1

k
lim,_e(z—¢)€F <{ kﬁz} > ifz=¢
n=I+1

oo
e = 8(x.¢) € No.
k=1

Fe) =

where

@ The limit in the definition exists and is finite.
@ If / = 0 or k = co we omit the respective index in Ff’,k.

@ Function F7(z) is well defined on C \ der()).
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Properties of the characteristic function

Let ¢ € C\ der()\). Then

Jim F57(2) = Fj(2)

and the convergence uniform on a neighborhood of £.

The proof is based on an estimate for the Cauchy condition and the previous Lemma (flipchart).

The function F(z) is an analytic function on C \ X and it has poles in points z € X \ der()\) of finite
order less or equal to r; = >"¢24 d(z,»,)- Further, for any k € N, it holds

lim :—F'5 "z) = d—F'g(z).

n— oo

@ It seems the function F,(z) has essential singularities in points z € der(\). However, we let
that as a hypothesis since we do not know the proof up to now.

May 17, 2011 13/28
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The first inclusion

@ First, let us denote
3(J) :={z € C\der(N) : Fi(z) =0}

and
R3(J) :=3(J)NR.

@ Next, let us define

&k(2) - ﬁ (

=1
for k € Ng, z € C\ der(\) and set wp := 1.

If £(z) = F7(z) = 0 for some z € R\ der()) and the ugly condition (UG)

) Fj,k(z)v

holds, then z is an eigenvalue of J and vector £(2) = {&x(2)} 2, is the respective eigenvector.
Hence the inclusion
R3(J)N{zeR:zUG } C specy(J) \ der(A)

holds.
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The opposite inclusion

@ To prove the opposite inclusion in the previous Proposition one has to investigate the relation
between sets spec(J), 3(J), and set

AJ)={reC: nim dist(spec(Jn), A) = 0}.
@ Itis well know [ Ifantis95 ], for J self-adjoint, the set A(J) contains the spectrum of J,
spec(J) C A(J).

@ Further, if J is symmetric then

specp(J) C A(J).

A(J) \ der(\) C R3(J)

The main theorem
It holds

R3(J)N{zeR:zUG} C specy(VJ) \ der(X) C R3(J).
If, in addition, J is self-adjoint then

R3(J)N{zeR:zUG } C spec(J) \ der(A) C R3(J).

Franti$ek Stampach (FNSPE, CTU) Func. § and the Eigenv. Prob. for Jacobi Matr. May 17, 2011



Remarks on the relation between der(\) and spec(J)

@ The question concerning the relation between der() and spec(J) is difficult to be fully
answered. We derived only partial results:

nﬁmoo wh=0 — der()‘) - Specess(‘]) J

J=J" = specgss(J) C der(N) J

Franti$ek Stampach (FNSPE, CTU) Func. § and the Eigenv. Prob. for Jacobi Matr. May 17, 2011 16/28



The eigenvector £(z) and its norm 1/2

@ The vector-valued function £(z) = {&k(2)} 72 satisfies equality
Wi—16k—1(2) + (A — 2)6k(2) + Wik41(2) =0

forall k € N, (wp :=1).
@ Hence, forany k € Nand x, y € C\ der()), it holds

Ek(Y)Wik—18k—1(x) + (A — X)Ek(X) + Wie€gq1(X)]
=&k () Whk—1&k—1(¥) + Ok — V)& (V) + Wibkq1(¥)] = 0.

@ By rearranging this equation one gets
(X = )& (X)Ek(y) = Wi(x, y) — Wi—1(x, ¥)

where Wk(x, y) := wk[€x11(X)Ek (V) — Ek(X)Ek41(¥)]-
@ It follows the identity

(X =¥) D &(X)é(y) = Wa(X, ) = Win_1(x,¥) J
k=m

holds forany m,ne Nym < n—+1.
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The eigenvector £(z) and its norm 2/2

@ By making a limit y — x and setting m = 1, one arrives at the formula

n

D (%)% = &(x)&1(x) — &0 ()€ (X) — WalEn(X)€nr1(X) — En(X)Eny1 (X)].

k=1

Proposition
Let, for z € C \ der()), the condition

oo k 2
w;
ST <
k=1 j=1 Z=4
Aj#Z
holds. Then
i wal€h(2)6n11(2) = €n(2)&h,1(2)] = 0

and hence

D (€k(2))? = &(2)61(2) — &(2)84(2)-

k=1

Especially, if x € R \ der()) is an eigenvalue of J then, for the £2-norm of respective eigenvector
&(x), one has the formula

IECNIZ = &(x)é1(x).
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Green function - finite-dimensional case

The Green function G(m, n; z) := (em, (J — )~ 'en), m, n € N, and especially the Weyl
m-function m(z) := G(1, 1; z) is also expressible in terms of §. For k,n € Nand / € Ny,
one has

G(k+l,k;z)_—1ﬁ< " )8<{Aiz}fk—_11>%<{>"’y}iz}j—k+/+1>

Wiet!

Ingredients for the proof are:
o the formula AA2Y = det(A),
@ the relation between § and the determinant of a Jacobi matrix.
For the rest entries of the Green matrix, one can use the symmetry relation
G(m, n; z) = G(n, m; z)

which is true since Jp, is real and hermitian matrix.
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Green function - infinite-dimensional case

@ If J = J* then it is easy to verify equality
lim ||Jpx —Jx|| =0
n—oo
for all x € Dom(J).
@ This fact together with the formula
(=2 = (-2 =(h-2) (= -2)",
where z € C, Sz # 0, follows J, converges to J in the strong resolvent sense.

Corollary
Forany z € C, 3z # 0, k,/ € N, one has

n@;wh@m—n—wn:(qu—n—wa

v

Let k € Nand / € Ny then the Green function of J = J* has the form

()

k+1 ) N—=z (. =z (.

Glk+ 1 kiz) = ——— <Z?X> 172 : ; jektit)
4 % {L}

Aj—z =1
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Weyl m-function

@ Especially, for the Weyl m-function, one gets the relation

(1) 1
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Example 1 (unbounded operator 1/2)

o Let\p=ana#0and wp,=w > 0,n=1,2,.... With this choice one has

a w
S waa w = 1, if nodd
) w, if neven.
@ The characteristic function can be expressed as
wh 2 z 2w
Fi(z)=(— rM1——J)dJd_-z — .
J( ) (a) ( a) T a ( e )

@ Since the term (w/a)i (1 — z/«) does not effect zeros of F,(z) and, moreover, the term

(1 — z/«) causes singularities in z = «, 2¢, . . ., one arrives at the following expression

«

spec(J) = {Z€R; J_z (2—"") =0}, J

and since

() = E (%) r (1 - )bz (%W) (for z ¢ aN),

w «a
the formula for the kth entry of the respective eigenvector is

w(@) = (Do z (). J
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Example 1 (unbounded operator 2/2)

The problem of location of eigenvalues of operator J with A\, = nand w, = w > 0 was studied
intensively.

The exact estimate

For s € N, let us denote

2S
0<s—As(w) < larcs,in W .
™ (s—1)!ls!

then, for 0 < w < s, one has

@ Note that, by Stirling formula, 3s ~ s/e for s > 1.
@ Asymptotic expansions:

As(w) = —2w —asw'/B + O(w=1/%)  asw — +oo

and,as w — 0,

Mw)=1-w?+ %w4+ o(wh),

1 PR 2s

L 25+2 2s5+4 f > 2.
ST oY T ooy TowTT) forsz

As(w) =
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Example 2 (compact operator 1/2)

o Let\p=1/nand wp =1/y/n(n+1),n=1,2,.... Then matrix J has the form

1 1/V2
1/v2 1/2 1/V6
J= 1/v6 173 1/V12 . (1)

In this case one has

F =N i (1 1J 2
(=3 syl =2 —2)1(Z)

s=0 j=1

-

By the main result, one gets

spec(J) = {% eR: J_(22) = 0} U {0}

v

and the kth entry of the respective eigenvector has the form

vk(2) = \/EJ,(_% (;) .
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Example 2 (compact operator 2/2)

@ Letge (0,1), \n=q" " and wy, = (/)" ', n=1,2,.... Then matrix J has the form

11
149 Vg
J=| v@ad& g ) 2

@ The characteristic function F,(z) can be identified with a basic hypergeometric series
01(;1/2; q,1/2%) where

oo gktk=1)

01(big.2) =)

k
2= (G (b )i

and -
(k=] (1 —aqf), k=0,1,2,....
j=0
@ Hence

spec(J) = {; ER; 0b1(;2;9,2%) = 0} U {0}.
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Example 3 (compact operator with zero diagonal 1/2)

Jacobi matrices J with zero diagonal, more precisely, matrices with A\, = 0, n € Nand w € ¢3(N),
can be investigated in more detail. This is a special case of compact Jacobi matrices and we have

Z _m:O Z2m Ky Vhy  Tkmo

n=1 ky=1ko=k1+2  km=Kp_1+2

which is the Laurent series for the function we are interested in. In the previous part we have

proved -
spec(J)z{ZER: 3({227} >:0}U{0}.
n=1

Since the function is an even function in z the spectrum of J is symmetric with respect to 0.

@ LetA\p=0,wp=8//(n+a)(n+a+1),aa>—-1,8>0,n=1,2,.... Then the results

are

28

spec(J) = {7 eER: Ju(2) = 0} U {0},

Vi(2) = Va + kda ik (?) ] J
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Example 3 (compact operator with zero diagonal 2/2)

o leth\y=0andwp,=aq"',0<g<1,a>0n=1,2.... Then the results are

spec(J) = {az € R: 0¢1(;0;¢%, —gz~?) = 0} U {0}, J

w(@)=q"E (g)koqﬁ (;0;612, S (%)2) .

z
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KAM
POJEDEME?

Thank you!

rantigek Stampach (FNSPE, CTU) ul May 17, 2011



	Function F
	Definition of F
	Properties of F
	Equivalent definitions
	Two examples

	F connections
	F and OPs
	F and continued fractions
	The symmetric Jacobi matrix
	Characteristic function in terms of F

	Technical preliminaries
	Main results
	Zeros of the characteristic function as eigenvalues
	Eigenvalues as zeros of the characteristic function
	The eigenvector (z) and its norm

	Green and Weyl m-function
	Examples
	Ex.1 - unbounded operator
	Ex.2 - compact operator
	Ex.3 - compact operator with zero diagonal


