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Basic hypergeometric function

Let 0 < q < 1, r , s ∈ Z+. Recall the basic hypergeometric function

rφs

[
a1, a2, . . . ar
b1, b2, . . . bs

; q, z
]

is defined by the power series

∞∑
n=0

(a1; q)n(a2; q)n . . . (ar ; q)n

(b1; q)n(b2; q)n . . . (bs; q)n

(−1)(s−r+1)nq(s−r+1)n(n−1)/2

(q; q)n
zn

where z, a1, a2, . . . , ar ∈ C, b1, b2, . . . , bs ∈ C \ qZ− and

(a; q)0 = 1, (a; q)n = (1− a)(1− aq) . . . (1− aqn−1)

is the q-Pochhammer symbol.
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q-exponential functions

Two commonly known q-analogues to exponential function are due to Jackson:

Eq(z) =
∞∑

n=0

qn(n−1)/2

(q; q)n
zn and eq(z) =

∞∑
n=0

zn

(q; q)n
.

For α ≥ 0, Atakishiyev (1996) studied the one-parameter generalization

E (α)
q (z) =

∞∑
n=0

qαn2/2

(q; q)n
zn.

Jackson’s q-exponential functions are particular cases corresponding to α = 0 and α = 1,

E (0)
q (z) = eq(z) and E (1)

q (z) = Eq(q1/2z).

Yet another particular case yields a very interesting function, this time α = 1/2,

Eq(z) := E (1/2)
q (z) =

∞∑
n=0

qn2/4

(q; q)n
zn.

One easily verifies that
lim

q→1−
Eq((1− q)z) = exp(z).

František Štampach (CTU in Prague) N-extremal measures, q-Fibonacci polynomials August 3, 2015 4 / 21



q-exponential functions

Two commonly known q-analogues to exponential function are due to Jackson:

Eq(z) =
∞∑

n=0

qn(n−1)/2

(q; q)n
zn and eq(z) =

∞∑
n=0

zn

(q; q)n
.

For α ≥ 0, Atakishiyev (1996) studied the one-parameter generalization

E (α)
q (z) =

∞∑
n=0

qαn2/2

(q; q)n
zn.

Jackson’s q-exponential functions are particular cases corresponding to α = 0 and α = 1,

E (0)
q (z) = eq(z) and E (1)

q (z) = Eq(q1/2z).

Yet another particular case yields a very interesting function, this time α = 1/2,

Eq(z) := E (1/2)
q (z) =

∞∑
n=0

qn2/4

(q; q)n
zn.

One easily verifies that
lim

q→1−
Eq((1− q)z) = exp(z).

František Štampach (CTU in Prague) N-extremal measures, q-Fibonacci polynomials August 3, 2015 4 / 21



q-exponential functions

Two commonly known q-analogues to exponential function are due to Jackson:

Eq(z) =
∞∑

n=0

qn(n−1)/2

(q; q)n
zn and eq(z) =

∞∑
n=0

zn

(q; q)n
.

For α ≥ 0, Atakishiyev (1996) studied the one-parameter generalization

E (α)
q (z) =

∞∑
n=0

qαn2/2

(q; q)n
zn.

Jackson’s q-exponential functions are particular cases corresponding to α = 0 and α = 1,

E (0)
q (z) = eq(z) and E (1)

q (z) = Eq(q1/2z).

Yet another particular case yields a very interesting function, this time α = 1/2,

Eq(z) := E (1/2)
q (z) =

∞∑
n=0

qn2/4

(q; q)n
zn.

One easily verifies that
lim

q→1−
Eq((1− q)z) = exp(z).

František Štampach (CTU in Prague) N-extremal measures, q-Fibonacci polynomials August 3, 2015 4 / 21



q-exponential functions

Two commonly known q-analogues to exponential function are due to Jackson:

Eq(z) =
∞∑

n=0

qn(n−1)/2

(q; q)n
zn and eq(z) =

∞∑
n=0

zn

(q; q)n
.

For α ≥ 0, Atakishiyev (1996) studied the one-parameter generalization

E (α)
q (z) =

∞∑
n=0

qαn2/2

(q; q)n
zn.

Jackson’s q-exponential functions are particular cases corresponding to α = 0 and α = 1,

E (0)
q (z) = eq(z) and E (1)

q (z) = Eq(q1/2z).

Yet another particular case yields a very interesting function, this time α = 1/2,

Eq(z) := E (1/2)
q (z) =

∞∑
n=0

qn2/4

(q; q)n
zn.

One easily verifies that
lim

q→1−
Eq((1− q)z) = exp(z).

František Štampach (CTU in Prague) N-extremal measures, q-Fibonacci polynomials August 3, 2015 4 / 21



q-exponential functions

Two commonly known q-analogues to exponential function are due to Jackson:

Eq(z) =
∞∑

n=0

qn(n−1)/2

(q; q)n
zn and eq(z) =

∞∑
n=0

zn

(q; q)n
.

For α ≥ 0, Atakishiyev (1996) studied the one-parameter generalization

E (α)
q (z) =

∞∑
n=0

qαn2/2

(q; q)n
zn.

Jackson’s q-exponential functions are particular cases corresponding to α = 0 and α = 1,

E (0)
q (z) = eq(z) and E (1)

q (z) = Eq(q1/2z).

Yet another particular case yields a very interesting function, this time α = 1/2,

Eq(z) := E (1/2)
q (z) =

∞∑
n=0

qn2/4

(q; q)n
zn.

One easily verifies that
lim

q→1−
Eq((1− q)z) = exp(z).

František Štampach (CTU in Prague) N-extremal measures, q-Fibonacci polynomials August 3, 2015 4 / 21



q-trigonometric functions

Let us introduce the couple of q-sine and q-cosine such that the q-version of Euler’s identity

Eq(iz) = Cq(z) + iq1/4Sq(z)

holds.

The power series expansions for these functions then read

Sq(z) =
∞∑

n=0

(−1)nqn(n+1)

(q; q)2n+1
z2n+1 and Cq(z) =

∞∑
n=0

(−1)nqn2

(q; q)2n
z2n.

Alternatively, functions Sq and Cq can be written as the 1φ1 function with the base q2,

Sq(z) =
z

1− q 1φ1(0; q3; q2, q2z2) and Cq(z) = 1φ1(0; q; q2, qz2).

Functions Sq and Cq possess many nice properties. Let us only mention that they can be
expressed with the aid of the third Jackson (or Hahn-Exton) q-Bessel function. In addition,
they form a couple of linearly independent solution to a second-order q-difference equation.

At last, let us define the corresponding q-analogue to the hyperbolic sine and cosine:

Shq(z) = −iSq(iz) and Chq(z) = Cq(iz).
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A product formula

Proposition

For u, v ∈ C, it holds

Eq(u)Eq(−v) = 3φ3

[
0, u−1vq1/2, uv−1q1/2

q1/2, −q1/2, −q
; q, uvq1/2

]
+q1/4 u − v

1− q 3φ3

[
0, u−1vq, uv−1q

q3/2, −q3/2, −q
; q, uvq

]
.

Corollaries:

1

Cq(u)Cq(v) + q1/2Sq(u)Sq(v) = 3φ3

[
0, u−1vq1/2, uv−1q1/2

q1/2, −q1/2, −q
; q,−uvq1/2

]
,

2

Sq(u)Cq(v)− Cq(u)Sq(v) =
u − v
1− q 3φ3

[
0, u−1vq, uv−1q

q3/2, −q3/2, −q
; q,−uvq

]
.

By setting u = q1/2v in 1. one gets

Cq(q1/2v)Cq(v) + q1/2Sq(q1/2v)Sq(v) = 1.
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q-Fibonacci polynomials

Carlitz (1975) introduced q-Fibonacci polynomials ϕn(x ; q) by

ϕn(x ; q) =
∑

2k<n

[n − k − 1
k

]
q
qk2

xn−2k−1

where n ∈ Z+ and [n
k

]
q

=
(q; q)n

(q; q)k (q; q)n−k

is the q-binomial coefficient.

Polynomials ϕn(x ; q) satisfy the second-order recurrence

ϕn+1(x ; q) = xϕn(x ; q) + qn−1ϕn−1(x ; q), n ∈ N,

with the initial conditions ϕ0(x ; q) = 0 and ϕ1(x ; q) = 1.

Let us mention that ϕn(1; q) are polynomials in q first considered by I. Schur (1917) in
conjunction with his proof of Rogers-Ramanujan identities. They are referred as q-Fibonacci
numbers Fn since clearly ϕn(1; 1) = Fn.
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Relation between Eq and q-Fibonacci polynomials

For convenience, we replace q with q−1 from now.

Proposition

For all n ∈ Z+, one has

ϕn(x ; q−1) =
1
2

q−(n−1)2/4
[
Eq(x)Eq(−qn/2x)− (−1)nEq(−x)Eq(qn/2x)

]
.

Corollary:

1

ϕ2n+1(x ; q−1) = q−n2 [
Chq(x)Chq(qn+1/2x)− q1/2Shq(x)Shq(qn+1/2x)

]
,

2

ϕ2n(x ; q−1) = q−n(n−1)
[
Shq(x)Chq(qnx)− Chq(x)Shq(qnx)

]
.

Yet another corollary:

1

ϕ2n+1(x ; q−1) = q−n2
3φ3

[
0, q−n, qn+1

q1/2, −q1/2, −q
; q, qn+1x2

]
,

2

ϕ2n(x ; q−1) = xq−n(n−1) 1− qn

1− q 3φ3

[
0, q−n+1, qn+1

q3/2, −q3/2, −q
; q, qn+1x2

]
.
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Relation between Eq and q-Fibonacci polynomials

For convenience, we replace q with q−1 from now.

Proposition
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Asymptotic behavior of q−1-Fibonacci polynomials

The following limit relations are an immediate consequence of the previous formulas.

Proposition

For all x ∈ C and 0 < q < 1, the limit relations

lim
n→∞

qn(n−1)ϕ2n(x ; q−1) = Shq(x) and lim
n→∞

qn2
ϕ2n+1(x ; q−1) = Chq(x)

hold.

Let us note the asymptotic behavior in case of q-Fibonacci polynomials with 0 < q < 1 is
particularly different:

lim
n→∞

x−nϕn+1(x ; q) = 0φ1(; 0; q, qx−2).
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Orthogonal polynomials associated with q-Fibonacci polynomials

Recall polynomials ϕn(x ; q) are a solution of the second-order recurrence

ϕn+1(x ; q) = xϕn(x ; q) + qn−1ϕn−1(x ; q), n ∈ N,

with the initial conditions ϕ0(x ; q) = 0 and ϕ1(x ; q) = 1.

If we put
Tn(x ; q) = (−i)nq−n/2ϕn+1(iq1/2x ; q), n = −1, 0, 1, 2, . . . ,

then {Tn(x ; q)} fulfills the second-order difference equation

Tn+1(x ; q) = xTn(x ; q) - qn−1Tn−1(x ; q), n ∈ Z+,

with the initial conditions T−1(x ; q) = 0 and T0(x ; q) = 1.

For q > 0 The Favard’s theorem is applicable to the family {Tn(x ; q)}. It tells us that there
exists a positive Borel measure such that polynomials {Tn(x ; q)} are OG w.r.t. this measure.

In addition, it is not hard to show that
1. the measure of OG is unique iff 0 < q ≤ 1 (determinate case of Hmp) and
2. there infinitely many measures of OG iff q > 1 (indeterminate case of Hmp).
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Measure of OG in determinate case

The measure of OG in the case 0 < q < 1 has been found by Al-Salam and Ismail (1983):

∞∑
j=1

Φq(qzj (q))

zj (q)Φ′q(zj (q))
Tn(±z−1/2

j )Tm(±z−1/2
j ) = −2qn(n−1)/2δmn,

where

Tn(±z−1/2
j )Tm(±z−1/2

j ) is a shorthand for the expression

Tn

(
z−1/2

j (q); q
)

Tm

(
z−1/2

j (q); q
)

+ Tn

(
−z−1/2

j (q); q
)

Tm

(
−z−1/2

j (q); q
)
,

and {zj (q) | j ∈ N} stands for positive zeros of the Rogers-Ramanujan function

Φq(z) = 0φ1( ; 0; q,−z) .

The case q = 1 corresponds to Chebyshev polynomials of the second kind. Their measure of
orthogonality is very well known.
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Towards OG in the indeterminate case - Nevanlinna Theorem

Assume the indeterminate case. Recall the Nevanlinna Theorem:

All measures of orthogonality µϕ are in one-to-one correspondence with functions ϕ
belonging to the one-point compactification of the space of Pick functions.

Recall that Pick functions are defined and holomorphic on the open complex halfplane
=z > 0, with values in the closed halfplane =z ≥ 0.

The correspondence is established by identifying the Stieltjes transform of the measure µϕ,∫
R

dµϕ(x)

z − x
=

A(z)ϕ(z)− C(z)

B(z)ϕ(z)− D(z)
, z ∈ C \ R.

Four entire functions A, B, C, D are called Nevanlinna functions and they are determined by
the leading term of the asymptotic expansion of corresponding OG polynomials of the first
and second kind for large index.
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Nevanlinna extremal measures

The particular class of measures of orthogonality is composed by measures µt associated
with the Pick function ϕ(z) = t ∈ R ∪ {∞}.

Measures µt are called N-extremal and are purely discrete.

The support of µt is an unbounded set of isolated points which is known to be equal to the
zero set

suppµt = {x ∈ R | B(x)t − D(x) = 0}.

Hence
µt =

∑
x∈suppµt

ρ(x)δx .

For the weight function ρ one has

ρ(x) =
1

B′(x)D(x)− B(x)D′(x)
.
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Measures µt are called N-extremal and are purely discrete.

The support of µt is an unbounded set of isolated points which is known to be equal to the
zero set

suppµt = {x ∈ R | B(x)t − D(x) = 0}.

Hence
µt =

∑
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Nevanlinna functions for OG polynomials associated with q−1-Fibonacci polynomials

Since we have the limit relation for polynomials ϕn(x ; q−1), for n→∞, we can express
functions A, B, C, D in terms of Sq and Cq .

Proposition

For 0 < q < 1, Nevanlinna functions corresponding to OG polynomials {Tn(x ; q−1)} are as
follows:

A(z) = q−1/2D(q1/2z) = Sq(z) and C(z) = −B(q1/2z) = Cq(z).

These formulas are not new. They have already been obtain by Chen and Ismail (1998).
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First application of the product formula - the reproducing kernel

Recall the reproducing kernel for polynomials Tn(x ; q−1) is related with Nevanlinna functions
B and D by formula

K (u, v) =
B(u)D(v)− D(u)B(v)

u − v
.

Proposition

The formula for the reproducing kernel for orthogonal polynomials Tn(x ; q−1) reads

K (u, v) =
1

1− q 3φ3

[
0, u−1vq, uv−1q

q3/2, −q3/2, −q
; q,−uv

]
.

By applying the limit v → u in the last expression one finds the formula for the weight
function ρ:

1
ρ(u)

= B′(u)D(u)− D′(u)B(u) =
1

1− q 3φ3

[
0, q, q

q3/2, −q3/2, −q
; q,−u2

]
.
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Second application of the product formula - support of N-extremal measure

Recall N-extremal measure µt is supported by zeros of the function

z 7→ B(z)t − D(z).

where B(z) = −Cq(q−1/2z) and D(z) = q1/2Sq(q−1/2z).

By applying the suitable reparametrization

t =
Cq(u)

Sq(u)

one arrives at another N-extremal measure νu supported by zeros of function

z 7→ Cq(q−1/2z)Cq(u) + q1/2Sq(q−1/2z)Sq(u).

Applying the product formula once more, we get the final complete description of all
N-extremal measures of orthogonality of polynomials Tn(x ; q−1) . . .
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N-extremal measures of orthogonality of Tn(x ; q−1)

Theorem

If 0 < q < 1 and u ∈ R, then the orthogonality relation for Tn(x ; q−1) reads

∞∑
k=1

(
3φ3

[
0, q, q

q3/2, −q3/2, −q
; q,−λ2

k (u)

])−1

Tn(λk (u); q−1)Tm(λk (u); q−1) =
q−n(n−1)/2

1− q
δmn

where λ1(u), λ2(u), λ3(u), . . . stand for zeros of the function

z 7→ 3φ3

[
0, u−1z, uz−1q

q1/2, −q1/2, −q
; q,−uz

]
.
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Two particular orthogonality relations

Let the sequences

0 < s1(q) < s2(q) < s3(q) < . . . and 0 < c1(q) < c2(q) < c3(q) < . . .

denote all positive zeros of Sq and Cq , respectively.

One has the following orthogonality relations:
1

(1− q)Tn(0; q−1)Tm(0; q−1)−
∑

k∈Z\{0}

Sq(qsk (q))

sk (q)S′q(sk (q))
Tn(q

1
2 sk (q); q−1)Tm(q

1
2 sk (q); q−1)

= q−n(n−1)/2δmn

where s−k (q) = −sk (q).
2

−
∑

k∈Z\{0}

Cq(qck (q))

ck (q)C′q(ck (q))
Tn(q

1
2 ck (q); q−1)Tm(q

1
2 ck (q); q−1) = q−n(n−1)/2δmn

where c−k (q) = −ck (q).
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