Nevanlinna extremal measures for polynomials related to q-Fibonacci polynomials

František Štampach

Faculty of Information Technology, CTU in Prague

Symmetries of Discrete Systems and Processes

August 3, 2015

(1) Preliminaries-Special functions

2) q-Fibonacci polynomials

3 Related orthogonal polynomials

Basic hypergeometric function

- Let $0<q<1, r, s \in \mathbb{Z}_{+}$. Recall the basic hypergeometric function

$$
r \phi_{s}\left[\begin{array}{llll}
a_{1}, & a_{2}, & \ldots & a_{r} \\
b_{1}, & b_{2}, & \ldots & b_{s}
\end{array} ; q, z\right]
$$

is defined by the power series

$$
\sum_{n=0}^{\infty} \frac{\left(a_{1} ; q\right)_{n}\left(a_{2} ; q\right)_{n} \ldots\left(a_{r} ; q\right)_{n}}{\left(b_{1} ; q\right)_{n}\left(b_{2} ; q\right)_{n} \ldots\left(b_{s} ; q\right)_{n}} \frac{(-1)^{(s-r+1) n} q^{(s-r+1) n(n-1) / 2}}{(q ; q)_{n}} z^{n}
$$

where $z, a_{1}, a_{2}, \ldots, a_{r} \in \mathbb{C}, b_{1}, b_{2}, \ldots, b_{s} \in \mathbb{C} \backslash q^{\mathbb{Z}_{-}}$and

$$
(a ; q)_{0}=1, \quad(a ; q)_{n}=(1-a)(1-a q) \ldots\left(1-a q^{n-1}\right)
$$

is the q-Pochhammer symbol.

q-exponential functions

- Two commonly known q-analogues to exponential function are due to Jackson:

$$
E_{q}(z)=\sum_{n=0}^{\infty} \frac{q^{n(n-1) / 2}}{(q ; q)_{n}} z^{n} \quad \text { and } \quad e_{q}(z)=\sum_{n=0}^{\infty} \frac{z^{n}}{(q ; q)_{n}}
$$

q-exponential functions

- Two commonly known q-analogues to exponential function are due to Jackson:

$$
E_{q}(z)=\sum_{n=0}^{\infty} \frac{q^{n(n-1) / 2}}{(q ; q)_{n}} z^{n} \quad \text { and } \quad e_{q}(z)=\sum_{n=0}^{\infty} \frac{z^{n}}{(q ; q)_{n}}
$$

- For $\alpha \geq 0$, Atakishiyev (1996) studied the one-parameter generalization

$$
E_{q}^{(\alpha)}(z)=\sum_{n=0}^{\infty} \frac{q^{\alpha n^{2} / 2}}{(q ; q)_{n}} z^{n}
$$

q-exponential functions

- Two commonly known q-analogues to exponential function are due to Jackson:

$$
E_{q}(z)=\sum_{n=0}^{\infty} \frac{q^{n(n-1) / 2}}{(q ; q)_{n}} z^{n} \quad \text { and } \quad e_{q}(z)=\sum_{n=0}^{\infty} \frac{z^{n}}{(q ; q)_{n}}
$$

- For $\alpha \geq 0$, Atakishiyev (1996) studied the one-parameter generalization

$$
E_{q}^{(\alpha)}(z)=\sum_{n=0}^{\infty} \frac{q^{\alpha n^{2} / 2}}{(q ; q)_{n}} z^{n}
$$

- Jackson's q-exponential functions are particular cases corresponding to $\alpha=0$ and $\alpha=1$,

$$
E_{q}^{(0)}(z)=e_{q}(z) \quad \text { and } \quad E_{q}^{(1)}(z)=E_{q}\left(q^{1 / 2} z\right)
$$

q-exponential functions

- Two commonly known q-analogues to exponential function are due to Jackson:

$$
E_{q}(z)=\sum_{n=0}^{\infty} \frac{q^{n(n-1) / 2}}{(q ; q)_{n}} z^{n} \quad \text { and } \quad e_{q}(z)=\sum_{n=0}^{\infty} \frac{z^{n}}{(q ; q)_{n}}
$$

- For $\alpha \geq 0$, Atakishiyev (1996) studied the one-parameter generalization

$$
E_{q}^{(\alpha)}(z)=\sum_{n=0}^{\infty} \frac{q^{\alpha n^{2} / 2}}{(q ; q)_{n}} z^{n}
$$

- Jackson's q-exponential functions are particular cases corresponding to $\alpha=0$ and $\alpha=1$,

$$
E_{q}^{(0)}(z)=e_{q}(z) \quad \text { and } \quad E_{q}^{(1)}(z)=E_{q}\left(q^{1 / 2} z\right)
$$

- Yet another particular case yields a very interesting function, this time $\alpha=1 / 2$,

$$
\mathcal{E}_{q}(z):=E_{q}^{(1 / 2)}(z)=\sum_{n=0}^{\infty} \frac{q^{n^{2} / 4}}{(q ; q)_{n}} z^{n} .
$$

q-exponential functions

- Two commonly known q-analogues to exponential function are due to Jackson:

$$
E_{q}(z)=\sum_{n=0}^{\infty} \frac{q^{n(n-1) / 2}}{(q ; q)_{n}} z^{n} \quad \text { and } \quad e_{q}(z)=\sum_{n=0}^{\infty} \frac{z^{n}}{(q ; q)_{n}}
$$

- For $\alpha \geq 0$, Atakishiyev (1996) studied the one-parameter generalization

$$
E_{q}^{(\alpha)}(z)=\sum_{n=0}^{\infty} \frac{q^{\alpha n^{2} / 2}}{(q ; q)_{n}} z^{n}
$$

- Jackson's q-exponential functions are particular cases corresponding to $\alpha=0$ and $\alpha=1$,

$$
E_{q}^{(0)}(z)=e_{q}(z) \quad \text { and } \quad E_{q}^{(1)}(z)=E_{q}\left(q^{1 / 2} z\right)
$$

- Yet another particular case yields a very interesting function, this time $\alpha=1 / 2$,

$$
\mathcal{E}_{q}(z):=E_{q}^{(1 / 2)}(z)=\sum_{n=0}^{\infty} \frac{q^{n^{2} / 4}}{(q ; q)_{n}} z^{n} .
$$

- One easily verifies that

$$
\lim _{q \rightarrow 1-} \mathcal{E}_{q}((1-q) z)=\exp (z)
$$

q-trigonometric functions

- Let us introduce the couple of q-sine and q-cosine such that the q-version of Euler's identity

$$
\mathcal{E}_{q}(i z)=\mathcal{C}_{q}(z)+i q^{1 / 4} \mathcal{S}_{q}(z)
$$

holds.

q-trigonometric functions

- Let us introduce the couple of q-sine and q-cosine such that the q-version of Euler's identity

$$
\mathcal{E}_{q}(i z)=\mathcal{C}_{q}(z)+i q^{1 / 4} \mathcal{S}_{q}(z)
$$

holds.

- The power series expansions for these functions then read

$$
\mathcal{S}_{q}(z)=\sum_{n=0}^{\infty} \frac{(-1)^{n} q^{n(n+1)}}{(q ; q)_{2 n+1}} z^{2 n+1} \quad \text { and } \quad \mathcal{C}_{q}(z)=\sum_{n=0}^{\infty} \frac{(-1)^{n} q^{n^{2}}}{(q ; q)_{2 n}} z^{2 n}
$$

q-trigonometric functions

- Let us introduce the couple of q-sine and q-cosine such that the q-version of Euler's identity

$$
\mathcal{E}_{q}(i z)=\mathcal{C}_{q}(z)+i q^{1 / 4} \mathcal{S}_{q}(z)
$$

holds.

- The power series expansions for these functions then read

$$
\mathcal{S}_{q}(z)=\sum_{n=0}^{\infty} \frac{(-1)^{n} q^{n(n+1)}}{(q ; q)_{2 n+1}} z^{2 n+1} \quad \text { and } \quad \mathcal{C}_{q}(z)=\sum_{n=0}^{\infty} \frac{(-1)^{n} q^{n^{2}}}{(q ; q)_{2 n}} z^{2 n}
$$

- Alternatively, functions \mathcal{S}_{q} and \mathcal{C}_{q} can be written as the ${ }_{1} \phi_{1}$ function with the base q^{2},

$$
\mathcal{S}_{q}(z)=\frac{z}{1-q}{ }^{1} \phi_{1}\left(0 ; q^{3} ; q^{2}, q^{2} z^{2}\right) \quad \text { and } \quad \mathcal{C}_{q}(z)={ }_{1} \phi_{1}\left(0 ; q ; q^{2}, q z^{2}\right)
$$

q-trigonometric functions

- Let us introduce the couple of q-sine and q-cosine such that the q-version of Euler's identity

$$
\mathcal{E}_{q}(i z)=\mathcal{C}_{q}(z)+i q^{1 / 4} \mathcal{S}_{q}(z)
$$

holds.

- The power series expansions for these functions then read

$$
\mathcal{S}_{q}(z)=\sum_{n=0}^{\infty} \frac{(-1)^{n} q^{n(n+1)}}{(q ; q)_{2 n+1}} z^{2 n+1} \quad \text { and } \quad \mathcal{C}_{q}(z)=\sum_{n=0}^{\infty} \frac{(-1)^{n} q^{n^{2}}}{(q ; q)_{2 n}} z^{2 n}
$$

- Alternatively, functions \mathcal{S}_{q} and \mathcal{C}_{q} can be written as the ${ }_{1} \phi_{1}$ function with the base q^{2},

$$
\mathcal{S}_{q}(z)=\frac{z}{1-q}{ }^{1} \phi_{1}\left(0 ; q^{3} ; q^{2}, q^{2} z^{2}\right) \quad \text { and } \quad \mathcal{C}_{q}(z)={ }_{1} \phi_{1}\left(0 ; q ; q^{2}, q z^{2}\right)
$$

- Functions \mathcal{S}_{q} and \mathcal{C}_{q} possess many nice properties. Let us only mention that they can be expressed with the aid of the third Jackson (or Hahn-Exton) q-Bessel function. In addition, they form a couple of linearly independent solution to a second-order q-difference equation.

q-trigonometric functions

- Let us introduce the couple of q-sine and q-cosine such that the q-version of Euler's identity

$$
\mathcal{E}_{q}(i z)=\mathcal{C}_{q}(z)+i q^{1 / 4} \mathcal{S}_{q}(z)
$$

holds.

- The power series expansions for these functions then read

$$
\mathcal{S}_{q}(z)=\sum_{n=0}^{\infty} \frac{(-1)^{n} q^{n(n+1)}}{(q ; q)_{2 n+1}} z^{2 n+1} \quad \text { and } \quad \mathcal{C}_{q}(z)=\sum_{n=0}^{\infty} \frac{(-1)^{n} q^{n^{2}}}{(q ; q)_{2 n}} z^{2 n}
$$

- Alternatively, functions \mathcal{S}_{q} and \mathcal{C}_{q} can be written as the ${ }_{1} \phi_{1}$ function with the base q^{2},

$$
\mathcal{S}_{q}(z)=\frac{z}{1-q}{ }^{1} \phi_{1}\left(0 ; q^{3} ; q^{2}, q^{2} z^{2}\right) \quad \text { and } \quad \mathcal{C}_{q}(z)={ }_{1} \phi_{1}\left(0 ; q ; q^{2}, q z^{2}\right)
$$

- Functions \mathcal{S}_{q} and \mathcal{C}_{q} possess many nice properties. Let us only mention that they can be expressed with the aid of the third Jackson (or Hahn-Exton) q-Bessel function. In addition, they form a couple of linearly independent solution to a second-order q-difference equation.
- At last, let us define the corresponding q-analogue to the hyperbolic sine and cosine:

$$
\mathcal{S} h_{q}(z)=-i \mathcal{S}_{q}(i z) \quad \text { and } \quad \mathcal{C} h_{q}(z)=\mathcal{C}_{q}(i z)
$$

A product formula

Proposition

For $u, v \in \mathbb{C}$, it holds

$$
\left.\begin{array}{rl}
\mathcal{E}_{q}(u) \mathcal{E}_{q}(-v)={ }_{3} \phi_{3}\left[\begin{array}{ccc}
0, & u^{-1} v q^{1 / 2}, & u v^{-1} q^{1 / 2} \\
q^{1 / 2}, & -q^{1 / 2}, & -q
\end{array} ; q v q^{1 / 2}\right.
\end{array}\right] .
$$

A product formula

Proposition

For $u, v \in \mathbb{C}$, it holds

$$
\left.\begin{array}{rl}
\mathcal{E}_{q}(u) \mathcal{E}_{q}(-v)={ }_{3} \phi_{3}\left[\begin{array}{ccc}
0, & u^{-1} v q^{1 / 2}, & u v^{-1} q^{1 / 2} \\
q^{1 / 2}, & -q^{1 / 2}, & -q
\end{array} ; u v q^{1 / 2}\right.
\end{array}\right] .
$$

Corollaries:

©

$$
\mathcal{C}_{q}(u) \mathcal{C}_{q}(v)+q^{1 / 2} \mathcal{S}_{q}(u) \mathcal{S}_{q}(v)={ }_{3} \phi_{3}\left[\begin{array}{ccc}
0, & u^{-1} v q^{1 / 2}, & u v^{-1} q^{1 / 2} \\
q^{1 / 2}, & -q^{1 / 2}, & -q
\end{array} ; q,-u v q^{1 / 2}\right],
$$

A product formula

Proposition

For $u, v \in \mathbb{C}$, it holds

$$
\left.\begin{array}{rl}
\mathcal{E}_{q}(u) \mathcal{E}_{q}(-v)={ }_{3} \phi_{3}\left[\begin{array}{ccc}
0, & u^{-1} v q^{1 / 2}, & u v^{-1} q^{1 / 2} \\
q^{1 / 2}, & -q^{1 / 2}, & -q
\end{array} ; u v q^{1 / 2}\right.
\end{array}\right] .
$$

Corollaries:

©

$$
\mathcal{C}_{q}(u) \mathcal{C}_{q}(v)+q^{1 / 2} \mathcal{S}_{q}(u) \mathcal{S}_{q}(v)={ }_{3} \phi_{3}\left[\begin{array}{ccc}
0, & u^{-1} v q^{1 / 2}, & u v^{-1} q^{1 / 2} \\
q^{1 / 2}, & -q^{1 / 2}, & -q
\end{array} ; q,-u v q^{1 / 2}\right],
$$

(2)

$$
\mathcal{S}_{q}(u) \mathcal{C}_{q}(v)-\mathcal{C}_{q}(u) \mathcal{S}_{q}(v)=\frac{u-v}{1-q}{ }^{3} \phi_{3}\left[\begin{array}{ccc}
0, & u^{-1} v q, & u v^{-1} q \\
q^{3 / 2}, & -q^{3 / 2}, & -q
\end{array} ;-u v q\right] .
$$

A product formula

Proposition

For $u, v \in \mathbb{C}$, it holds

$$
\left.\begin{array}{rl}
\mathcal{E}_{q}(u) \mathcal{E}_{q}(-v)={ }_{3} \phi_{3}\left[\begin{array}{ccc}
0, & u^{-1} v q^{1 / 2}, & u v^{-1} q^{1 / 2} \\
q^{1 / 2}, & -q^{1 / 2}, & -q
\end{array} ; q v q^{1 / 2}\right.
\end{array}\right] .
$$

Corollaries:

©

$$
\mathcal{C}_{q}(u) \mathcal{C}_{q}(v)+q^{1 / 2} \mathcal{S}_{q}(u) \mathcal{S}_{q}(v)={ }_{3} \phi_{3}\left[\begin{array}{ccc}
0, & u^{-1} v q^{1 / 2}, & u v^{-1} q^{1 / 2} \\
q^{1 / 2}, & -q^{1 / 2}, & -q
\end{array} ;-u v q^{1 / 2}\right],
$$

(2)

$$
\mathcal{S}_{q}(u) \mathcal{C}_{q}(v)-\mathcal{C}_{q}(u) \mathcal{S}_{q}(v)=\frac{u-v}{1-q}{ }^{3} \phi_{3}\left[\begin{array}{ccc}
0, & u^{-1} v q, & u v^{-1} q \\
q^{3 / 2}, & -q^{3 / 2}, & -q
\end{array} ;-u v q\right] .
$$

By setting $u=q^{1 / 2} v$ in 1 . one gets

$$
\mathcal{C}_{q}\left(q^{1 / 2} v\right) \mathcal{C}_{q}(v)+q^{1 / 2} \mathcal{S}_{q}\left(q^{1 / 2} v\right) \mathcal{S}_{q}(v)=1
$$

(1) Preliminaries-Special functions

(2) q-Fibonacci polynomials

(3) Related orthogonal polynomials

q-Fibonacci polynomials

- Carlitz (1975) introduced q-Fibonacci polynomials $\varphi_{n}(x ; q)$ by

$$
\varphi_{n}(x ; q)=\sum_{2 k<n}\left[\begin{array}{c}
n-k-1 \\
k
\end{array}\right]_{q} q^{k^{2}} x^{n-2 k-1}
$$

where $n \in \mathbb{Z}_{+}$and

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}=\frac{(q ; q)_{n}}{(q ; q)_{k}(q ; q)_{n-k}}
$$

is the q-binomial coefficient.

q-Fibonacci polynomials

- Carlitz (1975) introduced q-Fibonacci polynomials $\varphi_{n}(x ; q)$ by

$$
\varphi_{n}(x ; q)=\sum_{2 k<n}\left[\begin{array}{c}
n-k-1 \\
k
\end{array}\right]_{q} q^{k^{2}} x^{n-2 k-1}
$$

where $n \in \mathbb{Z}_{+}$and

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}=\frac{(q ; q)_{n}}{(q ; q)_{k}(q ; q)_{n-k}}
$$

is the q-binomial coefficient.

- Polynomials $\varphi_{n}(x ; q)$ satisfy the second-order recurrence

$$
\varphi_{n+1}(x ; q)=x \varphi_{n}(x ; q)+q^{n-1} \varphi_{n-1}(x ; q), \quad n \in \mathbb{N}
$$

with the initial conditions $\varphi_{0}(x ; q)=0$ and $\varphi_{1}(x ; q)=1$.

q-Fibonacci polynomials

- Carlitz (1975) introduced q-Fibonacci polynomials $\varphi_{n}(x ; q)$ by

$$
\varphi_{n}(x ; q)=\sum_{2 k<n}\left[\begin{array}{c}
n-k-1 \\
k
\end{array}\right]_{q} q^{k^{2}} x^{n-2 k-1}
$$

where $n \in \mathbb{Z}_{+}$and

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}=\frac{(q ; q)_{n}}{(q ; q)_{k}(q ; q)_{n-k}}
$$

is the q-binomial coefficient.

- Polynomials $\varphi_{n}(x ; q)$ satisfy the second-order recurrence

$$
\varphi_{n+1}(x ; q)=x \varphi_{n}(x ; q)+q^{n-1} \varphi_{n-1}(x ; q), \quad n \in \mathbb{N}
$$

with the initial conditions $\varphi_{0}(x ; q)=0$ and $\varphi_{1}(x ; q)=1$.

- Let us mention that $\varphi_{n}(1 ; q)$ are polynomials in q first considered by I. Schur (1917) in conjunction with his proof of Rogers-Ramanujan identities. They are referred as q-Fibonacci numbers F_{n} since clearly $\varphi_{n}(1 ; 1)=F_{n}$.

Relation between \mathcal{E}_{q} and q-Fibonacci polynomials

- For convenience, we replace q with q^{-1} from now.

Relation between \mathcal{E}_{q} and q-Fibonacci polynomials

- For convenience, we replace q with q^{-1} from now.

Proposition

For all $n \in \mathbb{Z}_{+}$, one has

$$
\varphi_{n}\left(x ; q^{-1}\right)=\frac{1}{2} q^{-(n-1)^{2} / 4}\left[\mathcal{E}_{q}(x) \mathcal{E}_{q}\left(-q^{n / 2} x\right)-(-1)^{n} \mathcal{E}_{q}(-x) \mathcal{E}_{q}\left(q^{n / 2} x\right)\right]
$$

Relation between \mathcal{E}_{q} and q-Fibonacci polynomials

- For convenience, we replace q with q^{-1} from now.

Proposition

For all $n \in \mathbb{Z}_{+}$, one has

$$
\varphi_{n}\left(x ; q^{-1}\right)=\frac{1}{2} q^{-(n-1)^{2} / 4}\left[\mathcal{E}_{q}(x) \mathcal{E}_{q}\left(-q^{n / 2} x\right)-(-1)^{n} \mathcal{E}_{q}(-x) \mathcal{E}_{q}\left(q^{n / 2} x\right)\right]
$$

Corollary:

Relation between \mathcal{E}_{q} and q-Fibonacci polynomials

- For convenience, we replace q with q^{-1} from now.

Proposition

For all $n \in \mathbb{Z}_{+}$, one has

$$
\varphi_{n}\left(x ; q^{-1}\right)=\frac{1}{2} q^{-(n-1)^{2} / 4}\left[\mathcal{E}_{q}(x) \mathcal{E}_{q}\left(-q^{n / 2} x\right)-(-1)^{n} \mathcal{E}_{q}(-x) \mathcal{E}_{q}\left(q^{n / 2} x\right)\right]
$$

Corollary:

©

$$
\varphi_{2 n+1}\left(x ; q^{-1}\right)=q^{-n^{2}}\left[\mathcal{C} h_{q}(x) \mathcal{C} h_{q}\left(q^{n+1 / 2} x\right)-q^{1 / 2} \mathcal{S} h_{q}(x) \mathcal{S} h_{q}\left(q^{n+1 / 2} x\right)\right]
$$

Relation between \mathcal{E}_{q} and q-Fibonacci polynomials

- For convenience, we replace q with q^{-1} from now.

Proposition

For all $n \in \mathbb{Z}_{+}$, one has

$$
\varphi_{n}\left(x ; q^{-1}\right)=\frac{1}{2} q^{-(n-1)^{2} / 4}\left[\mathcal{E}_{q}(x) \mathcal{E}_{q}\left(-q^{n / 2} x\right)-(-1)^{n} \mathcal{E}_{q}(-x) \mathcal{E}_{q}\left(q^{n / 2} x\right)\right]
$$

Corollary:

©

$$
\varphi_{2 n+1}\left(x ; q^{-1}\right)=q^{-n^{2}}\left[\mathcal{C} h_{q}(x) \mathcal{C} h_{q}\left(q^{n+1 / 2} x\right)-q^{1 / 2} \mathcal{S} h_{q}(x) \mathcal{S} h_{q}\left(q^{n+1 / 2} x\right)\right]
$$

(2)

$$
\varphi_{2 n}\left(x ; q^{-1}\right)=q^{-n(n-1)}\left[\mathcal{S} h_{q}(x) \mathcal{C} h_{q}\left(q^{n} x\right)-\mathcal{C} h_{q}(x) \mathcal{S} h_{q}\left(q^{n} x\right)\right] .
$$

Relation between \mathcal{E}_{q} and q-Fibonacci polynomials

- For convenience, we replace q with q^{-1} from now.

Proposition

For all $n \in \mathbb{Z}_{+}$, one has

$$
\varphi_{n}\left(x ; q^{-1}\right)=\frac{1}{2} q^{-(n-1)^{2} / 4}\left[\mathcal{E}_{q}(x) \mathcal{E}_{q}\left(-q^{n / 2} x\right)-(-1)^{n} \mathcal{E}_{q}(-x) \mathcal{E}_{q}\left(q^{n / 2} x\right)\right]
$$

Corollary:

©

$$
\varphi_{2 n+1}\left(x ; q^{-1}\right)=q^{-n^{2}}\left[\mathcal{C} h_{q}(x) \mathcal{C} h_{q}\left(q^{n+1 / 2} x\right)-q^{1 / 2} \mathcal{S} h_{q}(x) \mathcal{S} h_{q}\left(q^{n+1 / 2} x\right)\right]
$$

(2)

$$
\varphi_{2 n}\left(x ; q^{-1}\right)=q^{-n(n-1)}\left[\mathcal{S} h_{q}(x) \mathcal{C} h_{q}\left(q^{n} x\right)-\mathcal{C} h_{q}(x) \mathcal{S} h_{q}\left(q^{n} x\right)\right]
$$

Yet another corollary:

Relation between \mathcal{E}_{q} and q-Fibonacci polynomials

- For convenience, we replace q with q^{-1} from now.

Proposition

For all $n \in \mathbb{Z}_{+}$, one has

$$
\varphi_{n}\left(x ; q^{-1}\right)=\frac{1}{2} q^{-(n-1)^{2} / 4}\left[\mathcal{E}_{q}(x) \mathcal{E}_{q}\left(-q^{n / 2} x\right)-(-1)^{n} \mathcal{E}_{q}(-x) \mathcal{E}_{q}\left(q^{n / 2} x\right)\right]
$$

Corollary:

©

$$
\varphi_{2 n+1}\left(x ; q^{-1}\right)=q^{-n^{2}}\left[\mathcal{C} h_{q}(x) \mathcal{C} h_{q}\left(q^{n+1 / 2} x\right)-q^{1 / 2} \mathcal{S} h_{q}(x) \mathcal{S} h_{q}\left(q^{n+1 / 2} x\right)\right]
$$

(2)

$$
\varphi_{2 n}\left(x ; q^{-1}\right)=q^{-n(n-1)}\left[\mathcal{S} h_{q}(x) \mathcal{C} h_{q}\left(q^{n} x\right)-\mathcal{C} h_{q}(x) \mathcal{S} h_{q}\left(q^{n} x\right)\right] .
$$

Yet another corollary:

©

$$
\varphi_{2 n+1}\left(x ; q^{-1}\right)=q^{-n^{2}}{ }_{3} \phi_{3}\left[\begin{array}{ccc}
0, & q^{-n}, & q^{n+1} \\
q^{1 / 2}, & -q^{1 / 2}, & -q
\end{array} ; q^{n+1} x^{2}\right],
$$

Relation between \mathcal{E}_{q} and q-Fibonacci polynomials

- For convenience, we replace q with q^{-1} from now.

Proposition

For all $n \in \mathbb{Z}_{+}$, one has

$$
\varphi_{n}\left(x ; q^{-1}\right)=\frac{1}{2} q^{-(n-1)^{2} / 4}\left[\mathcal{E}_{q}(x) \mathcal{E}_{q}\left(-q^{n / 2} x\right)-(-1)^{n} \mathcal{E}_{q}(-x) \mathcal{E}_{q}\left(q^{n / 2} x\right)\right]
$$

Corollary:

(1)

$$
\varphi_{2 n+1}\left(x ; q^{-1}\right)=q^{-n^{2}}\left[\mathcal{C} h_{q}(x) \mathcal{C} h_{q}\left(q^{n+1 / 2} x\right)-q^{1 / 2} \mathcal{S} h_{q}(x) \mathcal{S} h_{q}\left(q^{n+1 / 2} x\right)\right]
$$

(2)

$$
\varphi_{2 n}\left(x ; q^{-1}\right)=q^{-n(n-1)}\left[\mathcal{S} h_{q}(x) \mathcal{C} h_{q}\left(q^{n} x\right)-\mathcal{C} h_{q}(x) \mathcal{S} h_{q}\left(q^{n} x\right)\right] .
$$

Yet another corollary:

(1)

$$
\varphi_{2 n+1}\left(x ; q^{-1}\right)=q^{-n^{2}}{ }_{3} \phi_{3}\left[\begin{array}{ccc}
0, & q^{-n}, & q^{n+1} \\
q^{1 / 2}, & -q^{1 / 2}, & -q, q^{n+1} x^{2}
\end{array}\right],
$$

(2)

$$
\varphi_{2 n}\left(x ; q^{-1}\right)=x q^{-n(n-1)} \frac{1-q^{n}}{1-q}{ }^{3} \phi_{3}\left[\begin{array}{ccc}
0, & q^{-n+1}, & q^{n+1} \\
q^{3 / 2}, & -q^{3 / 2}, & -q
\end{array} ; q, q^{n+1} x^{2}\right] .
$$

Asymptotic behavior of q^{-1}-Fibonacci polynomials

- The following limit relations are an immediate consequence of the previous formulas.

Asymptotic behavior of q^{-1}-Fibonacci polynomials

- The following limit relations are an immediate consequence of the previous formulas.

Proposition

For all $x \in \mathbb{C}$ and $0<q<1$, the limit relations

$$
\lim _{n \rightarrow \infty} q^{n(n-1)} \varphi_{2 n}\left(x ; q^{-1}\right)=\mathcal{S} h_{q}(x) \quad \text { and } \quad \lim _{n \rightarrow \infty} q^{n^{2}} \varphi_{2 n+1}\left(x ; q^{-1}\right)=\mathcal{C} h_{q}(x)
$$

hold.

Asymptotic behavior of q^{-1}-Fibonacci polynomials

- The following limit relations are an immediate consequence of the previous formulas.

Proposition

For all $x \in \mathbb{C}$ and $0<q<1$, the limit relations

$$
\lim _{n \rightarrow \infty} q^{n(n-1)} \varphi_{2 n}\left(x ; q^{-1}\right)=\mathcal{S} h_{q}(x) \quad \text { and } \quad \lim _{n \rightarrow \infty} q^{n^{2}} \varphi_{2 n+1}\left(x ; q^{-1}\right)=\mathcal{C} h_{q}(x)
$$

hold.

- Let us note the asymptotic behavior in case of q-Fibonacci polynomials with $0<q<1$ is particularly different:

$$
\lim _{n \rightarrow \infty} x^{-n} \varphi_{n+1}(x ; q)=0 \phi_{1}\left(; 0 ; q, q x^{-2}\right)
$$

(1) Preliminaries-Special functions

2 q-Fibonacci polynomials
(3) Related orthogonal polynomials

Orthogonal polynomials associated with q-Fibonacci polynomials

- Recall polynomials $\varphi_{n}(x ; q)$ are a solution of the second-order recurrence

$$
\varphi_{n+1}(x ; q)=x \varphi_{n}(x ; q)+q^{n-1} \varphi_{n-1}(x ; q), \quad n \in \mathbb{N}
$$

with the initial conditions $\varphi_{0}(x ; q)=0$ and $\varphi_{1}(x ; q)=1$.

Orthogonal polynomials associated with q-Fibonacci polynomials

- Recall polynomials $\varphi_{n}(x ; q)$ are a solution of the second-order recurrence

$$
\varphi_{n+1}(x ; q)=x \varphi_{n}(x ; q)+q^{n-1} \varphi_{n-1}(x ; q), \quad n \in \mathbb{N}
$$

with the initial conditions $\varphi_{0}(x ; q)=0$ and $\varphi_{1}(x ; q)=1$.

- If we put

$$
T_{n}(x ; q)=(-\mathrm{i})^{n} q^{-n / 2} \varphi_{n+1}\left(\mathrm{i} q^{1 / 2} x ; q\right), \quad n=-1,0,1,2, \ldots
$$

Orthogonal polynomials associated with q-Fibonacci polynomials

- Recall polynomials $\varphi_{n}(x ; q)$ are a solution of the second-order recurrence

$$
\varphi_{n+1}(x ; q)=x \varphi_{n}(x ; q)+q^{n-1} \varphi_{n-1}(x ; q), \quad n \in \mathbb{N}
$$

with the initial conditions $\varphi_{0}(x ; q)=0$ and $\varphi_{1}(x ; q)=1$.

- If we put

$$
T_{n}(x ; q)=(-\mathrm{i})^{n} q^{-n / 2} \varphi_{n+1}\left(\mathrm{i} q^{1 / 2} x ; q\right), \quad n=-1,0,1,2, \ldots,
$$

then $\left\{T_{n}(x ; q)\right\}$ fulfills the second-order difference equation

$$
T_{n+1}(x ; q)=x T_{n}(x ; q)-q^{n-1} T_{n-1}(x ; q), \quad n \in \mathbb{Z}_{+}
$$

with the initial conditions $T_{-1}(x ; q)=0$ and $T_{0}(x ; q)=1$.

- For $q>0$ The Favard's theorem is applicable to the family $\left\{T_{n}(x ; q)\right\}$. It tells us that there exists a positive Borel measure such that polynomials $\left\{T_{n}(x ; q)\right\}$ are OG w.r.t. this measure.

Orthogonal polynomials associated with q-Fibonacci polynomials

- Recall polynomials $\varphi_{n}(x ; q)$ are a solution of the second-order recurrence

$$
\varphi_{n+1}(x ; q)=x \varphi_{n}(x ; q)+q^{n-1} \varphi_{n-1}(x ; q), \quad n \in \mathbb{N}
$$

with the initial conditions $\varphi_{0}(x ; q)=0$ and $\varphi_{1}(x ; q)=1$.

- If we put

$$
T_{n}(x ; q)=(-\mathrm{i})^{n} q^{-n / 2} \varphi_{n+1}\left(\mathrm{i} q^{1 / 2} x ; q\right), \quad n=-1,0,1,2, \ldots,
$$

then $\left\{T_{n}(x ; q)\right\}$ fulfills the second-order difference equation

$$
T_{n+1}(x ; q)=x T_{n}(x ; q)-q^{n-1} T_{n-1}(x ; q), \quad n \in \mathbb{Z}_{+}
$$

with the initial conditions $T_{-1}(x ; q)=0$ and $T_{0}(x ; q)=1$.

- For $q>0$ The Favard's theorem is applicable to the family $\left\{T_{n}(x ; q)\right\}$. It tells us that there exists a positive Borel measure such that polynomials $\left\{T_{n}(x ; q)\right\}$ are OG w.r.t. this measure.
- In addition, it is not hard to show that

1. the measure of $O G$ is unique iff $0<q \leq 1$ (determinate case of Hmp) and
2. there infinitely many measures of OG iff $q>1$ (indeterminate case of Hmp).

Measure of OG in determinate case

- The measure of OG in the case $0<q<1$ has been found by Al-Salam and Ismail (1983):

$$
\sum_{j=1}^{\infty} \frac{\Phi_{q}\left(q z_{j}(q)\right)}{z_{j}(q) \Phi_{q}^{\prime}\left(z_{j}(q)\right)} T_{n}\left(\pm z_{j}^{-1 / 2}\right) T_{m}\left(\pm z_{j}^{-1 / 2}\right)=-2 q^{n(n-1) / 2} \delta_{m n},
$$

where

Measure of OG in determinate case

- The measure of OG in the case $0<q<1$ has been found by Al-Salam and Ismail (1983):

$$
\sum_{j=1}^{\infty} \frac{\Phi_{q}\left(q z_{j}(q)\right)}{z_{j}(q) \Phi_{q}^{\prime}\left(z_{j}(q)\right)} T_{n}\left(\pm z_{j}^{-1 / 2}\right) T_{m}\left(\pm z_{j}^{-1 / 2}\right)=-2 q^{n(n-1) / 2} \delta_{m n}
$$

where $T_{n}\left(\pm z_{j}^{-1 / 2}\right) T_{m}\left(\pm z_{j}^{-1 / 2}\right)$ is a shorthand for the expression

$$
T_{n}\left(z_{j}^{-1 / 2}(q) ; q\right) T_{m}\left(z_{j}^{-1 / 2}(q) ; q\right)+T_{n}\left(-z_{j}^{-1 / 2}(q) ; q\right) T_{m}\left(-z_{j}^{-1 / 2}(q) ; q\right),
$$

and

Measure of OG in determinate case

- The measure of OG in the case $0<q<1$ has been found by Al-Salam and Ismail (1983):

$$
\sum_{j=1}^{\infty} \frac{\Phi_{q}\left(q z_{j}(q)\right)}{z_{j}(q) \Phi_{q}^{\prime}\left(z_{j}(q)\right)} T_{n}\left(\pm z_{j}^{-1 / 2}\right) T_{m}\left(\pm z_{j}^{-1 / 2}\right)=-2 q^{n(n-1) / 2} \delta_{m n}
$$

where $T_{n}\left(\pm z_{j}^{-1 / 2}\right) T_{m}\left(\pm z_{j}^{-1 / 2}\right)$ is a shorthand for the expression

$$
T_{n}\left(z_{j}^{-1 / 2}(q) ; q\right) T_{m}\left(z_{j}^{-1 / 2}(q) ; q\right)+T_{n}\left(-z_{j}^{-1 / 2}(q) ; q\right) T_{m}\left(-z_{j}^{-1 / 2}(q) ; q\right),
$$

and $\left\{z_{j}(q) \mid j \in \mathbb{N}\right\}$ stands for positive zeros of the Rogers-Ramanujan function

$$
\Phi_{q}(z)={ }_{0} \phi_{1}(; 0 ; q,-z) .
$$

Measure of OG in determinate case

- The measure of OG in the case $0<q<1$ has been found by Al-Salam and Ismail (1983):

$$
\sum_{j=1}^{\infty} \frac{\Phi_{q}\left(q z_{j}(q)\right)}{z_{j}(q) \Phi_{q}^{\prime}\left(z_{j}(q)\right)} T_{n}\left(\pm z_{j}^{-1 / 2}\right) T_{m}\left(\pm z_{j}^{-1 / 2}\right)=-2 q^{n(n-1) / 2} \delta_{m n}
$$

where $T_{n}\left(\pm z_{j}^{-1 / 2}\right) T_{m}\left(\pm z_{j}^{-1 / 2}\right)$ is a shorthand for the expression

$$
T_{n}\left(z_{j}^{-1 / 2}(q) ; q\right) T_{m}\left(z_{j}^{-1 / 2}(q) ; q\right)+T_{n}\left(-z_{j}^{-1 / 2}(q) ; q\right) T_{m}\left(-z_{j}^{-1 / 2}(q) ; q\right),
$$

and $\left\{z_{j}(q) \mid j \in \mathbb{N}\right\}$ stands for positive zeros of the Rogers-Ramanujan function

$$
\Phi_{q}(z)={ }_{0} \phi_{1}(; 0 ; q,-z)
$$

- The case $q=1$ corresponds to Chebyshev polynomials of the second kind. Their measure of orthogonality is very well known.

Assume the indeterminate case. Recall the Nevanlinna Theorem:

- All measures of orthogonality μ_{φ} are in one-to-one correspondence with functions φ belonging to the one-point compactification of the space of Pick functions.

Assume the indeterminate case. Recall the Nevanlinna Theorem:

- All measures of orthogonality μ_{φ} are in one-to-one correspondence with functions φ belonging to the one-point compactification of the space of Pick functions.
- Recall that Pick functions are defined and holomorphic on the open complex halfplane $\Im z>0$, with values in the closed halfplane $\Im z \geq 0$.

Assume the indeterminate case. Recall the Nevanlinna Theorem:

- All measures of orthogonality μ_{φ} are in one-to-one correspondence with functions φ belonging to the one-point compactification of the space of Pick functions.
- Recall that Pick functions are defined and holomorphic on the open complex halfplane $\Im z>0$, with values in the closed halfplane $\Im z \geq 0$.
- The correspondence is established by identifying the Stieltjes transform of the measure μ_{φ},

$$
\int_{\mathbb{R}} \frac{\mathrm{d} \mu_{\varphi}(x)}{z-x}=\frac{A(z) \varphi(z)-C(z)}{B(z) \varphi(z)-D(z)}, \quad z \in \mathbb{C} \backslash \mathbb{R}
$$

Assume the indeterminate case. Recall the Nevanlinna Theorem:

- All measures of orthogonality μ_{φ} are in one-to-one correspondence with functions φ belonging to the one-point compactification of the space of Pick functions.
- Recall that Pick functions are defined and holomorphic on the open complex halfplane $\Im z>0$, with values in the closed halfplane $\Im z \geq 0$.
- The correspondence is established by identifying the Stieltjes transform of the measure μ_{φ},

$$
\int_{\mathbb{R}} \frac{\mathrm{d} \mu_{\varphi}(x)}{z-x}=\frac{A(z) \varphi(z)-C(z)}{B(z) \varphi(z)-D(z)}, \quad z \in \mathbb{C} \backslash \mathbb{R}
$$

- Four entire functions A, B, C, D are called Nevanlinna functions and they are determined by the leading term of the asymptotic expansion of corresponding OG polynomials of the first and second kind for large index.

Nevanlinna extremal measures

- The particular class of measures of orthogonality is composed by measures μ_{t} associated with the Pick function $\varphi(z)=t \in \mathbb{R} \cup\{\infty\}$.

Nevanlinna extremal measures

- The particular class of measures of orthogonality is composed by measures μ_{t} associated with the Pick function $\varphi(z)=t \in \mathbb{R} \cup\{\infty\}$.
- Measures μ_{t} are called N -extremal and are purely discrete.

Nevanlinna extremal measures

- The particular class of measures of orthogonality is composed by measures μ_{t} associated with the Pick function $\varphi(z)=t \in \mathbb{R} \cup\{\infty\}$.
- Measures μ_{t} are called N -extremal and are purely discrete.
- The support of μ_{t} is an unbounded set of isolated points which is known to be equal to the zero set

$$
\operatorname{supp} \mu_{t}=\{x \in \mathbb{R} \mid B(x) t-D(x)=0\}
$$

Nevanlinna extremal measures

- The particular class of measures of orthogonality is composed by measures μ_{t} associated with the Pick function $\varphi(z)=t \in \mathbb{R} \cup\{\infty\}$.
- Measures μ_{t} are called N -extremal and are purely discrete.
- The support of μ_{t} is an unbounded set of isolated points which is known to be equal to the zero set

$$
\operatorname{supp} \mu_{t}=\{x \in \mathbb{R} \mid B(x) t-D(x)=0\}
$$

- Hence

$$
\mu_{t}=\sum_{x \in \operatorname{supp} \mu_{t}} \rho(x) \delta_{x}
$$

Nevanlinna extremal measures

- The particular class of measures of orthogonality is composed by measures μ_{t} associated with the Pick function $\varphi(z)=t \in \mathbb{R} \cup\{\infty\}$.
- Measures μ_{t} are called N -extremal and are purely discrete.
- The support of μ_{t} is an unbounded set of isolated points which is known to be equal to the zero set

$$
\operatorname{supp} \mu_{t}=\{x \in \mathbb{R} \mid B(x) t-D(x)=0\}
$$

- Hence

$$
\mu_{t}=\sum_{x \in \operatorname{supp} \mu_{t}} \rho(x) \delta_{x}
$$

- For the weight function ρ one has

$$
\rho(x)=\frac{1}{B^{\prime}(x) D(x)-B(x) D^{\prime}(x)}
$$

- Since we have the limit relation for polynomials $\varphi_{n}\left(x ; q^{-1}\right)$, for $n \rightarrow \infty$, we can express functions A, B, C, D in terms of \mathcal{S}_{q} and \mathcal{C}_{q}.

Nevanlinna functions for OG polynomials associated with q^{-1}-Fibonacci polynomials

- Since we have the limit relation for polynomials $\varphi_{n}\left(x ; q^{-1}\right)$, for $n \rightarrow \infty$, we can express functions A, B, C, D in terms of \mathcal{S}_{q} and \mathcal{C}_{q}.

Proposition

For $0<q<1$, Nevanlinna functions corresponding to OG polynomials $\left\{T_{n}\left(x ; q^{-1}\right)\right\}$ are as follows:

$$
A(z)=q^{-1 / 2} D\left(q^{1 / 2} z\right)=\mathcal{S}_{q}(z) \quad \text { and } \quad C(z)=-B\left(q^{1 / 2} z\right)=\mathcal{C}_{q}(z)
$$

Nevanlinna functions for OG polynomials associated with q^{-1}-Fibonacci polynomials

- Since we have the limit relation for polynomials $\varphi_{n}\left(x ; q^{-1}\right)$, for $n \rightarrow \infty$, we can express functions A, B, C, D in terms of \mathcal{S}_{q} and \mathcal{C}_{q}.

Proposition

For $0<q<1$, Nevanlinna functions corresponding to OG polynomials $\left\{T_{n}\left(x ; q^{-1}\right)\right\}$ are as follows:

$$
A(z)=q^{-1 / 2} D\left(q^{1 / 2} z\right)=\mathcal{S}_{q}(z) \quad \text { and } \quad C(z)=-B\left(q^{1 / 2} z\right)=\mathcal{C}_{q}(z)
$$

- These formulas are not new. They have already been obtain by Chen and Ismail (1998).

First application of the product formula - the reproducing kernel

- Recall the reproducing kernel for polynomials $T_{n}\left(x ; q^{-1}\right)$ is related with Nevanlinna functions B and D by formula

$$
K(u, v)=\frac{B(u) D(v)-D(u) B(v)}{u-v}
$$

First application of the product formula - the reproducing kernel

- Recall the reproducing kernel for polynomials $T_{n}\left(x ; q^{-1}\right)$ is related with Nevanlinna functions B and D by formula

$$
K(u, v)=\frac{B(u) D(v)-D(u) B(v)}{u-v}
$$

Proposition

The formula for the reproducing kernel for orthogonal polynomials $T_{n}\left(x ; q^{-1}\right)$ reads

$$
K(u, v)=\frac{1}{1-q^{3} \phi_{3}}\left[\begin{array}{ccc}
0, & u^{-1} v q, & u v^{-1} q \\
q^{3 / 2}, & -q^{3 / 2}, & -q
\end{array} ;-u v\right] .
$$

First application of the product formula - the reproducing kernel

- Recall the reproducing kernel for polynomials $T_{n}\left(x ; q^{-1}\right)$ is related with Nevanlinna functions B and D by formula

$$
K(u, v)=\frac{B(u) D(v)-D(u) B(v)}{u-v}
$$

Proposition

The formula for the reproducing kernel for orthogonal polynomials $T_{n}\left(x ; q^{-1}\right)$ reads

$$
K(u, v)=\frac{1}{1-q^{3} \phi_{3}}\left[\begin{array}{ccc}
0, & u^{-1} v q, & u v^{-1} q \\
q^{3 / 2}, & -q^{3 / 2}, & -q
\end{array} ;-u v\right] .
$$

- By applying the limit $v \rightarrow u$ in the last expression one finds the formula for the weight function ρ :

First application of the product formula - the reproducing kernel

- Recall the reproducing kernel for polynomials $T_{n}\left(x ; q^{-1}\right)$ is related with Nevanlinna functions B and D by formula

$$
K(u, v)=\frac{B(u) D(v)-D(u) B(v)}{u-v}
$$

Proposition

The formula for the reproducing kernel for orthogonal polynomials $T_{n}\left(x ; q^{-1}\right)$ reads

$$
K(u, v)=\frac{1}{1-q}{ }^{3} \phi_{3}\left[\begin{array}{ccc}
0, & u^{-1} v q, & u v^{-1} q \\
q^{3 / 2}, & -q^{3 / 2}, & -q
\end{array} q,-u v\right] .
$$

- By applying the limit $v \rightarrow u$ in the last expression one finds the formula for the weight function ρ :

$$
\frac{1}{\rho(u)}=B^{\prime}(u) D(u)-D^{\prime}(u) B(u)=\frac{1}{1-q^{3} \phi_{3}}\left[\begin{array}{ccc}
0, & q, & q \\
q^{3 / 2}, & -q^{3 / 2}, & -q ; q,-u^{2}
\end{array}\right] .
$$

- Recall N -extremal measure μ_{t} is supported by zeros of the function

$$
z \mapsto B(z) t-D(z)
$$

where $B(z)=-\mathcal{C}_{q}\left(q^{-1 / 2} z\right)$ and $D(z)=q^{1 / 2} \mathcal{S}_{q}\left(q^{-1 / 2} z\right)$.

- Recall N -extremal measure μ_{t} is supported by zeros of the function

$$
z \mapsto B(z) t-D(z)
$$

where $B(z)=-\mathcal{C}_{q}\left(q^{-1 / 2} z\right)$ and $D(z)=q^{1 / 2} \mathcal{S}_{q}\left(q^{-1 / 2} z\right)$.

- By applying the suitable reparametrization

$$
t=\frac{\mathcal{C}_{q}(u)}{\mathcal{S}_{q}(u)}
$$

one arrives at another N -extremal measure ν_{u} supported by zeros of function

$$
z \mapsto \mathcal{C}_{q}\left(q^{-1 / 2} z\right) \mathcal{C}_{q}(u)+q^{1 / 2} \mathcal{S}_{q}\left(q^{-1 / 2} z\right) \mathcal{S}_{q}(u)
$$

- Recall N -extremal measure μ_{t} is supported by zeros of the function

$$
z \mapsto B(z) t-D(z)
$$

where $B(z)=-\mathcal{C}_{q}\left(q^{-1 / 2} z\right)$ and $D(z)=q^{1 / 2} \mathcal{S}_{q}\left(q^{-1 / 2} z\right)$.

- By applying the suitable reparametrization

$$
t=\frac{\mathcal{C}_{q}(u)}{\mathcal{S}_{q}(u)}
$$

one arrives at another N -extremal measure ν_{u} supported by zeros of function

$$
z \mapsto \mathcal{C}_{q}\left(q^{-1 / 2} z\right) \mathcal{C}_{q}(u)+q^{1 / 2} \mathcal{S}_{q}\left(q^{-1 / 2} z\right) \mathcal{S}_{q}(u)
$$

- Applying the product formula once more, we get the final complete description of all N -extremal measures of orthogonality of polynomials $T_{n}\left(x ; q^{-1}\right) \ldots$

N-extremal measures of orthogonality of $T_{n}\left(x ; q^{-1}\right)$

Theorem

If $0<q<1$ and $u \in \mathbb{R}$, then the orthogonality relation for $T_{n}\left(x ; q^{-1}\right)$ reads
$\sum_{k=1}^{\infty}\left({ }_{3} \phi_{3}\left[\begin{array}{ccc}0, & q, & q \\ q^{3 / 2}, & -q^{3 / 2}, & -q\end{array} ; q,-\lambda_{k}^{2}(u)\right]\right)^{-1} T_{n}\left(\lambda_{k}(u) ; q^{-1}\right) T_{m}\left(\lambda_{k}(u) ; q^{-1}\right)=\frac{q^{-n(n-1) / 2}}{1-q} \delta_{m n}$ where $\lambda_{1}(u), \lambda_{2}(u), \lambda_{3}(u), \ldots$ stand for zeros of the function

$$
z \mapsto_{3} \phi_{3}\left[\begin{array}{ccc}
0, & u^{-1} z, & u z^{-1} q \\
q^{1 / 2}, & -q^{1 / 2}, & -q
\end{array} ;-u z\right] .
$$

Two particular orthogonality relations

- Let the sequences

$$
0<s_{1}(q)<s_{2}(q)<s_{3}(q)<\ldots \text { and } 0<c_{1}(q)<c_{2}(q)<c_{3}(q)<\ldots
$$

denote all positive zeros of \mathcal{S}_{q} and \mathcal{C}_{q}, respectively.

Two particular orthogonality relations

- Let the sequences

$$
0<s_{1}(q)<s_{2}(q)<s_{3}(q)<\ldots \text { and } 0<c_{1}(q)<c_{2}(q)<c_{3}(q)<\ldots
$$

denote all positive zeros of \mathcal{S}_{q} and \mathcal{C}_{q}, respectively.

One has the following orthogonality relations:

Two particular orthogonality relations

- Let the sequences

$$
0<s_{1}(q)<s_{2}(q)<s_{3}(q)<\ldots \text { and } 0<c_{1}(q)<c_{2}(q)<c_{3}(q)<\ldots
$$

denote all positive zeros of \mathcal{S}_{q} and \mathcal{C}_{q}, respectively.

One has the following orthogonality relations:

(1)

$$
\begin{array}{r}
(1-q) T_{n}\left(0 ; q^{-1}\right) T_{m}\left(0 ; q^{-1}\right)-\sum_{k \in \mathbb{Z} \backslash\{0\}} \frac{\mathcal{S}_{q}\left(q s_{k}(q)\right)}{s_{k}(q) \mathcal{S}_{q}^{\prime}\left(s_{k}(q)\right)} T_{n}\left(q^{\frac{1}{2}} s_{k}(q) ; q^{-1}\right) T_{m}\left(q^{\frac{1}{2}} s_{k}(q) ; q^{-1}\right) \\
=q^{-n(n-1) / 2} \delta_{m n}
\end{array}
$$

where $s_{-k}(q)=-s_{k}(q)$.

Two particular orthogonality relations

- Let the sequences

$$
0<s_{1}(q)<s_{2}(q)<s_{3}(q)<\ldots \text { and } 0<c_{1}(q)<c_{2}(q)<c_{3}(q)<\ldots
$$

denote all positive zeros of \mathcal{S}_{q} and \mathcal{C}_{q}, respectively.

One has the following orthogonality relations:

(1)

$$
\begin{array}{r}
(1-q) T_{n}\left(0 ; q^{-1}\right) T_{m}\left(0 ; q^{-1}\right)-\sum_{k \in \mathbb{Z} \backslash\{0\}} \frac{\mathcal{S}_{q}\left(q s_{k}(q)\right)}{s_{k}(q) \mathcal{S}_{q}^{\prime}\left(s_{k}(q)\right)} T_{n}\left(q^{\frac{1}{2}} s_{k}(q) ; q^{-1}\right) T_{m}\left(q^{\frac{1}{2}} s_{k}(q) ; q^{-1}\right) \\
=q^{-n(n-1) / 2} \delta_{m n}
\end{array}
$$

where $s_{-k}(q)=-s_{k}(q)$.
(2)

$$
-\sum_{k \in \mathbb{Z} \backslash\{0\}} \frac{\mathcal{C}_{q}\left(q c_{k}(q)\right)}{c_{k}(q) \mathcal{C}_{q}^{\prime}\left(c_{k}(q)\right)} T_{n}\left(q^{\frac{1}{2}} c_{k}(q) ; q^{-1}\right) T_{m}\left(q^{\frac{1}{2}} c_{k}(q) ; q^{-1}\right)=q^{-n(n-1) / 2} \delta_{m n}
$$

where $c_{-k}(q)=-c_{k}(q)$.

Reference

- F. Š.: Nevanlinna extremal measures for polynomials related to q^{-1}-Fibonacci polynomials, arXiv:1505.00742.

Reference

- F. Š.: Nevanlinna extremal measures for polynomials related to q^{-1}-Fibonacci polynomials, arXiv:1505.00742.

Thank you!

