Non-self-adjoint Toeplitz matrices with purely real spectrum and related problems

František Štampach

Symmetries of Discrete Systems and Processes

Děčín

June 14, 2017

Based on: B. Shapiro, F. Štampach: Non-self-adjoint Toeplitz matrices whose principal submatrices have real spectrum, arXiv:1702.00741 [math.CA]

František Štampach (Stockholm University)

Spectral analysis of Jacobi operators

Contents

The asymptotic eigenvalue distribution

Connections to the Hamburger Moment Problem and Orthogonal Polynomials

・ロト ・回ト ・ヨト ・ヨト

• Toeplitz matrix:

$$T_n(a) = (a_{j-k})_{j,k=0}^{n-1} = \begin{pmatrix} a_0 & a_{-1} & a_{-2} & \dots & a_{-n+1} \\ a_1 & a_0 & a_{-1} & \dots & a_{-n+2} \\ a_2 & a_1 & a_0 & \dots & a_{-n+3} \\ \dots & \dots & \dots & \dots & \dots \\ a_{n-1} & a_{n-2} & a_{n-3} & \dots & a_0 \end{pmatrix},$$

where $a_n \in \mathbb{C}$.

<ロ> <同> <同> < 同> < 同>

• Toeplitz matrix:

$$T_n(a) = (a_{j-k})_{j,k=0}^{n-1} = \begin{pmatrix} a_0 & a_{-1} & a_{-2} & \dots & a_{-n+1} \\ a_1 & a_0 & a_{-1} & \dots & a_{-n+2} \\ a_2 & a_1 & a_0 & \dots & a_{-n+3} \\ \dots & \dots & \dots & \dots & \dots \\ a_{n-1} & a_{n-2} & a_{n-3} & \dots & a_0 \end{pmatrix},$$

where $a_n \in \mathbb{C}$.

• Symbol of T(a):

$$a(z) = \sum_{n = -\infty}^{\infty} a_n z^n.$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

• Toeplitz matrix:

$$T_n(a) = (a_{j-k})_{j,k=0}^{n-1} = \begin{pmatrix} a_0 & a_{-1} & a_{-2} & \dots & a_{-n+1} \\ a_1 & a_0 & a_{-1} & \dots & a_{-n+2} \\ a_2 & a_1 & a_0 & \dots & a_{-n+3} \\ \dots & \dots & \dots & \dots & \dots \\ a_{n-1} & a_{n-2} & a_{n-3} & \dots & a_0 \end{pmatrix},$$

where $a_n \in \mathbb{C}$.

• Symbol of T(a):

$$a(z) = \sum_{n = -\infty}^{\infty} a_n z^n.$$

• Question: For what symbol a are the eigenvalues of $T_n(a)$ "asymptotically real", as $n \to \infty$?

・ロン ・回 と ・ ヨン・

• Toeplitz matrix:

$$T_n(a) = (a_{j-k})_{j,k=0}^{n-1} = \begin{pmatrix} a_0 & a_{-1} & a_{-2} & \dots & a_{-n+1} \\ a_1 & a_0 & a_{-1} & \dots & a_{-n+2} \\ a_2 & a_1 & a_0 & \dots & a_{-n+3} \\ \dots & \dots & \dots & \dots & \dots \\ a_{n-1} & a_{n-2} & a_{n-3} & \dots & a_0 \end{pmatrix},$$

where $a_n \in \mathbb{C}$.

• Symbol of T(a):

$$a(z) = \sum_{n = -\infty}^{\infty} a_n z^n.$$

Question: For what symbol *a* are the eigenvalues of *T_n(a)* "asymptotically real", as *n* → ∞?
 More precisely, let

$$\Lambda(a) := \{\lambda \in \mathbb{C} \mid \liminf_{n \to \infty} \operatorname{dist} (\lambda, \operatorname{spec}(T_n(a))) = 0\}$$

i.e., $\lambda \in \Lambda(a)$ if and only if $\exists n_k \nearrow \infty \exists \lambda_k \in \operatorname{spec}(T_{n_k}(a))$ s.t. $\lambda_k \to \lambda$.

• Toeplitz matrix:

$$T_n(a) = (a_{j-k})_{j,k=0}^{n-1} = \begin{pmatrix} a_0 & a_{-1} & a_{-2} & \dots & a_{-n+1} \\ a_1 & a_0 & a_{-1} & \dots & a_{-n+2} \\ a_2 & a_1 & a_0 & \dots & a_{-n+3} \\ \dots & \dots & \dots & \dots & \dots \\ a_{n-1} & a_{n-2} & a_{n-3} & \dots & a_0 \end{pmatrix},$$

where $a_n \in \mathbb{C}$.

• Symbol of T(a):

$$a(z) = \sum_{n = -\infty}^{\infty} a_n z^n.$$

Question: For what symbol *a* are the eigenvalues of *T_n(a)* "asymptotically real", as *n* → ∞?
 More precisely, let

$$\Lambda(a) := \{\lambda \in \mathbb{C} \mid \liminf_{n \to \infty} \operatorname{dist} (\lambda, \operatorname{spec}(T_n(a))) = 0\}$$

i.e., $\lambda \in \Lambda(a)$ if and only if $\exists n_k \nearrow \infty \ \exists \lambda_k \in \operatorname{spec}(T_{n_k}(a))$ s.t. $\lambda_k \to \lambda$.

• The question: determine the class of symbols *a* for which

$$\Lambda(a) \subset \mathbb{R}.$$

・ロト ・回ト ・ヨト ・ヨト … ヨ

• Clearly, if $T_n(a)$ is Hermitian for all n, then $\Lambda(a) \subset \mathbb{R}$.

・ロト ・回 ト ・ヨト ・ヨト

- Clearly, if $T_n(a)$ is Hermitian for all n, then $\Lambda(a) \subset \mathbb{R}$.
- ۲

$$T_n(a) = T_n^*(a), \ \forall n \in \mathbb{N} \quad \Longleftrightarrow \quad a(\mathbb{T}) \subset \mathbb{R}.$$

ヘロン 人間 とくほど 人間 とう

- Clearly, if $T_n(a)$ is Hermitian for all n, then $\Lambda(a) \subset \mathbb{R}$.
- ۲

 In other words: In the Hermitian case, there exists a Jordan curve in C (namely, the unit circle) on which the symbol is a real-valued function.

・ロ・・ (日・・ (日・・ (日・)

- Clearly, if $T_n(a)$ is Hermitian for all n, then $\Lambda(a) \subset \mathbb{R}$.
- ۲

- In other words: In the Hermitian case, there exists a Jordan curve in C (namely, the unit circle) on which the symbol is a real-valued function.
- And this is the clue ...

・ロン ・回 ・ ・ ヨン・

- Clearly, if $T_n(a)$ is Hermitian for all n, then $\Lambda(a) \subset \mathbb{R}$.
- ۲

- In other words: In the Hermitian case, there exists a Jordan curve in C (namely, the unit circle) on which the symbol is a real-valued function.
- And this is the clue ...

・ロト ・回ト ・ヨト ・ヨト … ヨ

- Clearly, if $T_n(a)$ is Hermitian for all n, then $\Lambda(a) \subset \mathbb{R}$.
- ۲

- In other words: In the Hermitian case, there exists a Jordan curve in C (namely, the unit circle) on which the symbol is a real-valued function.
- And this is the clue ...

Theorem: Let the symbol *a* be given by the Laurent series ∑ a_nzⁿ which is absolutely convergent in an annulus r ≤ |z| ≤ R, where r ≤ 1 and R ≥ 1. Let the above annulus contain (an image of) a Jordan curve γ such that a ∘ γ is **real-valued**.

- Clearly, if $T_n(a)$ is Hermitian for all n, then $\Lambda(a) \subset \mathbb{R}$.
- ۲

- In other words: In the Hermitian case, there exists a Jordan curve in C (namely, the unit circle) on which the symbol is a real-valued function.
- And this is the clue ...

```
Theorem:
Let the symbol a be given by the Laurent series ∑<sub>n</sub> a<sub>n</sub>z<sup>n</sup> which is absolutely convergent in an annulus r ≤ |z| ≤ R, where r ≤ 1 and R ≥ 1.
Let the above annulus contain (an image of) a Jordan curve γ such that a ∘ γ is real-valued. Then Λ(a) ⊂ ℝ.
```

- Clearly, if $T_n(a)$ is Hermitian for all n, then $\Lambda(a) \subset \mathbb{R}$.
- ۲

- In other words: In the Hermitian case, there exists a Jordan curve in C (namely, the unit circle) on which the symbol is a real-valued function.
- And this is the clue ...

```
Theorem:
Let the symbol a be given by the Laurent series ∑<sub>n</sub> a<sub>n</sub>z<sup>n</sup> which is absolutely convergent in an annulus r ≤ |z| ≤ R, where r ≤ 1 and R ≥ 1.
Let the above annulus contain (an image of) a Jordan curve γ such that a ∘ γ is real-valued. Then Λ(a) ⊂ ℝ. In fact, one has much more:
spec(T<sub>n</sub>(a)) ⊂ ℝ, ∀n ∈ ℕ.
```

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

- Clearly, if $T_n(a)$ is Hermitian for all n, then $\Lambda(a) \subset \mathbb{R}$.
- ۲

- In other words: In the Hermitian case, there exists a Jordan curve in ℂ (namely, the unit circle) on which the symbol is a real-valued function.
- And this is the clue ...

Theorem: Let the symbol *a* be given by the Laurent series ∑_n a_nzⁿ which is absolutely convergent in an annulus r ≤ |z| ≤ R, where r ≤ 1 and R ≥ 1. Let the above annulus contain (an image of) a Jordan curve γ such that a ∘ γ is real-valued. Then Λ(a) ⊂ ℝ. In fact, one has much more: spec(T_n(a)) ⊂ ℝ, ∀n ∈ ℕ.

Remark:

If *a* is analytic in $\mathbb{C} \setminus \{0\}$ (especially, if *a* is a Laurent polynomial), then the assumption \bigcirc can be omitted.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

• Question: If $\Lambda(a) \subset \mathbb{R}$, can the set $\Lambda(a)$ be approached from the complex plane? That is, can $\operatorname{spec}(T_n(a))$ contain non-real eigenvalues for some n?

- Question: If $\Lambda(a) \subset \mathbb{R}$, can the set $\Lambda(a)$ be approached from the complex plane? That is, can $\operatorname{spec}(T_n(a))$ contain non-real eigenvalues for some n?
- Answer: No, if *a* is a Laurent polynomial!

- Question: If $\Lambda(a) \subset \mathbb{R}$, can the set $\Lambda(a)$ be approached from the complex plane? That is, can $\operatorname{spec}(T_n(a))$ contain non-real eigenvalues for some n?
- Answer: No, if *a* is a Laurent polynomial!

Theorem:

Let b = b(z) be a Laurent polynomial which is neither a polynomial in z nor in 1/z. The following claims are equivalent:

- Question: If $\Lambda(a) \subset \mathbb{R}$, can the set $\Lambda(a)$ be approached from the complex plane? That is, can $\operatorname{spec}(T_n(a))$ contain non-real eigenvalues for some n?
- Answer: No, if *a* is a Laurent polynomial!

Theorem:

Let b = b(z) be a Laurent polynomial which is neither a polynomial in z nor in 1/z. The following claims are equivalent:

- Question: If $\Lambda(a) \subset \mathbb{R}$, can the set $\Lambda(a)$ be approached from the complex plane? That is, can $\operatorname{spec}(T_n(a))$ contain non-real eigenvalues for some n?
- Answer: No, if *a* is a Laurent polynomial!

Theorem:

Let b = b(z) be a Laurent polynomial which is neither a polynomial in z nor in 1/z. The following claims are equivalent:

- $\ \ \, \bullet \ \ \, \Lambda(b) \subset \mathbb{R};$
- 2 The set $b^{-1}(\mathbb{R})$ contains a Jordan curve (with 0 in its interior).

・ロット (母) ・ ヨ) ・ ヨ)

- Question: If $\Lambda(a) \subset \mathbb{R}$, can the set $\Lambda(a)$ be approached from the complex plane? That is, can $\operatorname{spec}(T_n(a))$ contain non-real eigenvalues for some n?
- Answer: No, if *a* is a Laurent polynomial!

Theorem:

Let b = b(z) be a Laurent polynomial which is neither a polynomial in z nor in 1/z. The following claims are equivalent:

- $\ \ \, \bullet \ \ \, \Lambda(b) \subset \mathbb{R};$
- 2 The set $b^{-1}(\mathbb{R})$ contains a Jordan curve (with 0 in its interior).
- **③** For all $n \in \mathbb{N}$, spec $(T_n(b)) \subset \mathbb{R}$.

- Question: If $\Lambda(a) \subset \mathbb{R}$, can the set $\Lambda(a)$ be approached from the complex plane? That is, can $\operatorname{spec}(T_n(a))$ contain non-real eigenvalues for some n?
- Answer: No, if *a* is a Laurent polynomial!

Theorem: Let b = b(z) be a Laurent polynomial which is neither a polynomial in z nor in 1/z. The following claims are equivalent: • $\Lambda(b) \subset \mathbb{R}$; • The set $b^{-1}(\mathbb{R})$ contains a Jordan curve (with 0 in its interior). • For all $n \in \mathbb{N}$, spec $(T_n(b)) \subset \mathbb{R}$.

Remark:

It is a very surprising feature of banded Toeplitz matrices that the asymptotic reality of the eigenvalues (claim 1) forces all eigenvalues of all $T_n(b)$ to be real (claim 3). Hence, if, for instance, the 2×2 matrix $T_2(b)$ has a non-real eigenvalue, there is no chance for the limiting set $\Lambda(b)$ to be real!

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

Tridiagonal Toeplitz matrix:

$$b(z) = z^{-1} + az, \qquad (a \in \mathbb{C} \setminus \{0\}).$$

Then

 $\Lambda(b)\subset \mathbb{R}\quad \Longleftrightarrow \quad a>0.$

ヘロア 人間 アメヨア 人間 アー

Tridiagonal Toeplitz matrix:

$$b(z) = z^{-1} + az, \qquad (a \in \mathbb{C} \setminus \{0\}).$$

Then

$$\Lambda(b) \subset \mathbb{R} \quad \Longleftrightarrow \quad a > 0.$$

Pour-diagonal Toeplitz matrix:

$$b(z) = z^{-1} + az + bz^2, \qquad (a \in \mathbb{C}, b \in \mathbb{C} \setminus \{0\}).$$

Then

$$\Lambda(b) \subset \mathbb{R} \quad \Longleftrightarrow \quad a^3 \ge 27b^2 > 0.$$

・ロト ・回ト ・ヨト ・ヨト

Tridiagonal Toeplitz matrix:

$$b(z) = z^{-1} + az, \qquad (a \in \mathbb{C} \setminus \{0\}).$$

Then

$$\Lambda(b) \subset \mathbb{R} \quad \Longleftrightarrow \quad a > 0.$$

Pour-diagonal Toeplitz matrix:

$$b(z) = z^{-1} + az + bz^2, \qquad (a \in \mathbb{C}, b \in \mathbb{C} \setminus \{0\}).$$

Then

$$\Lambda(b) \subset \mathbb{R} \quad \Longleftrightarrow \quad a^3 \ge 27b^2 > 0.$$

A banded Toeplitz matrix:

$$b(z) = z^{-r} \left(1 + az\right)^{r+s}, \qquad (r, s \in \mathbb{N}, a \in \mathbb{R} \setminus \{0\}).$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Then $\Lambda(b) \subset \mathbb{R}$.

Tridiagonal Toeplitz matrix:

$$b(z) = z^{-1} + az, \qquad (a \in \mathbb{C} \setminus \{0\}).$$

Then

$$\Lambda(b) \subset \mathbb{R} \quad \Longleftrightarrow \quad a > 0.$$

Pour-diagonal Toeplitz matrix:

$$b(z) = z^{-1} + az + bz^2, \qquad (a \in \mathbb{C}, b \in \mathbb{C} \setminus \{0\}).$$

Then

$$\Lambda(b) \subset \mathbb{R} \quad \Longleftrightarrow \quad a^3 \ge 27b^2 > 0.$$

A banded Toeplitz matrix:

$$b(z) = z^{-r} (1 + az)^{r+s}, \qquad (r, s \in \mathbb{N}, a \in \mathbb{R} \setminus \{0\})$$

Then $\Lambda(b) \subset \mathbb{R}$.

And many more...

・ロト ・回 ・ ・ ヨ ・ ・ ヨ ・

Numerical examples

František Štampach (Stockholm University)

< ■> ■ つへの June 5-9, 2017 7/21

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Numerical examples

Toeplitz matrices with real spectrum

Connections to the Hamburger Moment Problem and Orthogonal Polynomials

František Štampach (Stockholm University)

・ロト ・回ト ・ヨト ・ヨト

History on the topic

• We consider **banded** Toeplitz matrices only \longrightarrow the classical topic;

$$b(z) = \sum_{k=-r}^{s} a_k z^k$$
, where $a_{-r} a_s \neq 0$ and $r, s \in \mathbb{N}$.

・ロン ・回 と ・ ヨン・

History on the topic

• We consider **banded** Toeplitz matrices only \longrightarrow the classical topic;

$$b(z) = \sum_{k=-r}^{s} a_k z^k$$
, where $a_{-r} a_s \neq 0$ and $r, s \in \mathbb{N}$.

• The set $\Lambda(b)$ can be described in terms of zeros of the polynomial $z \mapsto z^r(b(z) - \lambda)$ [Schmidt and Spitzer, 1960].

History on the topic

• We consider **banded** Toeplitz matrices only \longrightarrow the classical topic;

$$b(z) = \sum_{k=-r}^{s} a_k z^k$$
, where $a_{-r}a_s \neq 0$ and $r, s \in \mathbb{N}$.

- The set $\Lambda(b)$ can be described in terms of zeros of the polynomial $z \mapsto z^r(b(z) \lambda)$ [Schmidt and Spitzer, 1960].
- The weak limit of the eigenvalue-counting measures of $T_n(b)$:

$$\mu_n = \frac{1}{n} \sum_{k=1}^n \delta_{\lambda_k^{(n)}}$$

exists, as $n \to \infty$, and is absolutely continuous measure μ supported on $\Lambda(b)$ whose density can be expressed in terms of zeros of $z \mapsto z^r(b(z) - \lambda)$ [Hirschman Jr., 1967].

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

The limiting measure and the Jordan curve without critical points

• Let $T_n(b)$ be a banded Toeplitz matrix with **real** elements:

$$b(z) = \sum_{k=-r}^{s} \underbrace{a_k}_{\in \mathbb{R}} z^k$$
, where $a_{-r}a_s \neq 0$ and $r, s \in \mathbb{N}$.

(Then both $\Lambda(b)$ and $b^{-1}(\mathbb{R})$ are symmetric w.r.t. \mathbb{R} .)

・ロト ・回ト ・ヨト ・ヨト

The limiting measure and the Jordan curve without critical points

• Let $T_n(b)$ be a banded Toeplitz matrix with **real** elements:

$$b(z) = \sum_{k=-r}^{s} \underbrace{a_k}_{\in \mathbb{R}} z^k$$
, where $a_{-r}a_s \neq 0$ and $r, s \in \mathbb{N}$.

(Then both $\Lambda(b)$ and $b^{-1}(\mathbb{R})$ are symmetric w.r.t. \mathbb{R} .)

Our Suppose the Jordan curve γ is present in b⁻¹(ℝ) and assume, additionally, that γ admits a polar parametrization:

$$\gamma(t) = \rho(t)e^{\mathrm{i}t}, \quad t \in [-\pi, \pi].$$

The limiting measure and the Jordan curve without critical points

• Let $T_n(b)$ be a banded Toeplitz matrix with **real** elements:

$$b(z) = \sum_{k=-r}^{s} \underbrace{a_k}_{\in \mathbb{R}} z^k$$
, where $a_{-r}a_s \neq 0$ and $r, s \in \mathbb{N}$.

(Then both $\Lambda(b)$ and $b^{-1}(\mathbb{R})$ are symmetric w.r.t. \mathbb{R} .)

(2) Suppose the Jordan curve γ is present in $b^{-1}(\mathbb{R})$ and assume, additionally, that γ admits a polar parametrization:

$$\gamma(t) = \rho(t)e^{it}, \quad t \in [-\pi, \pi].$$

Theorem:

Let $b'(\gamma(t)) \neq 0$ for all $t \in (0, \pi)$. Then $b \circ \gamma$ restricted to $(0, \pi)$ is either strictly increasing or decreasing; the limiting measure μ is supported on the interval $[\alpha, \beta] := b(\gamma([0, \pi]))$ and its density satisfies

$$\frac{\mathrm{d}\mu}{\mathrm{d}x}(x) = \pm \frac{1}{\pi} \frac{\mathrm{d}}{\mathrm{d}x} (b \circ \gamma)^{-1}(x),$$

for $x \in (\alpha, \beta)$, where the + sign is used when $b \circ \gamma$ increases on $(0, \pi)$, and the - sign is used otherwise.
$$b(z) = z^{-3} - z^{-2} + 7z^{-1} + 9z - 2z^{2} + 2z^{3} - z^{4},$$

(I)

$$b(z) = z^{-3} - z^{-2} + 7z^{-1} + 9z - 2z^2 + 2z^3 - z^4,$$

$$b(z) = z^{-3} - z^{-2} + 7z^{-1} + 9z - 2z^2 + 2z^3 - z^4,$$

• If $\gamma((0,\pi))$ contains some critical points of *b*, then the description of μ is slightly more complicated.

• If $\gamma((0,\pi))$ contains some critical points of *b*, then the description of μ is slightly more complicated.

• If $\gamma((0,\pi))$ contains some critical points of *b*, then the description of μ is slightly more complicated.

• If $\gamma((0,\pi))$ contains some critical points of *b*, then the description of μ is slightly more complicated.

Theorem:

Suppose that b and γ are as before and let

• If $\gamma((0,\pi))$ contains some critical points of b, then the description of μ is slightly more complicated.

Theorem:

Suppose that *b* and γ are as before and let $\ell \in \mathbb{N}_0$ be the number of critical points of *b* in $\gamma((0, \pi))$ and $0 =: \phi_0 < \phi_1 < \cdots < \phi_\ell < \phi_{\ell+1} := \pi$ are such that $b'(\gamma(\phi_j)) = 0$ for all $0 \le j \le \ell + 1$.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

 If γ((0, π)) contains some critical points of b, then the description of μ is slightly more complicated.

Theorem:

Suppose that *b* and γ are as before and let $\ell \in \mathbb{N}_0$ be the number of critical points of *b* in $\gamma((0, \pi))$ and $0 =: \phi_0 < \phi_1 < \cdots < \phi_\ell < \phi_{\ell+1} := \pi$ are such that $b'(\gamma(\phi_j)) = 0$ for all $0 \le j \le \ell + 1$. Then $b \circ \gamma$ restricted to (ϕ_{i-1}, ϕ_i) is strictly monotone for all $1 \le i \le \ell + 1$, and the limiting measure $\mu = \mu_1 + \mu_2 + \cdots + \mu_{\ell+1}$, where μ_i is an absolutely continuous measure supported on $[\alpha_i, \beta_i] := b(\gamma([\phi_{i-1}, \phi_i]))$ whose density is given by

$$\frac{\mathrm{d}\mu_i}{\mathrm{d}x}(x) = \pm \frac{1}{\pi} \frac{\mathrm{d}}{\mathrm{d}x} (b \circ \gamma)^{-1}(x)$$

for all $x \in (\alpha_i, \beta_i)$ and all $i \in \{1, 2, \dots, \ell + 1\}$. The + sign is used when $b \circ \gamma$ increases on (α_i, β_i) , and the - sign is used otherwise.

$$b(z) = z^{-3} + z^{-2} + z^{-1} + z + z^2 + z^3$$

イロト イヨト イヨト イヨ

イロト イヨト イヨト イヨ

František Štampach (Stockholm University)

イロト イヨト イヨト イヨ

$$b(z) = z^{-3} + z^{-2} + z^{-1} + z + z^{2} + z^{3}$$

František Štampach (Stockholm University)

Spectral analysis of Jacobi operators

František Štampach (Stockholm University)

Spectral analysis of Jacobi operators

František Štampach (Stockholm University)

Spectral analysis of Jacobi operators

František Štampach (Stockholm University)

Spectral analysis of Jacobi operators

Contents

Toeplitz matrices with real spectrum

The asymptotic eigenvalue distribution

Connections to the Hamburger Moment Problem and Orthogonal Polynomials

• We consider real Laurent polynomial symbols:

$$b(z) = \sum_{k=-r}^{s} \underbrace{a_k}_{\in \mathbb{R}} z^k$$
, where $a_{-r}a_s \neq 0$ and $r, s \in \mathbb{N}$.

・ロト ・回ト ・ヨト ・ヨト

• We consider real Laurent polynomial symbols:

$$b(z) = \sum_{k=-r}^{s} \underbrace{a_k}_{\in \mathbb{R}} z^k$$
, where $a_{-r}a_s \neq 0$ and $r, s \in \mathbb{N}$.

Proposition:

Let $b^{-1}(\mathbb{R})$ contains a Jordan curve. Then the limiting measure μ coincides with the unique solution of the determinate HMP with moments

$$h_m := \frac{1}{2\pi} \int_{-\pi}^{\pi} b^m \left(e^{\mathrm{i}t} \right) \mathrm{d}t, \quad m \in \mathbb{N}_0.$$

• We consider real Laurent polynomial symbols:

$$b(z) = \sum_{k=-r}^{s} \underbrace{a_k}_{\in \mathbb{R}} z^k$$
, where $a_{-r}a_s \neq 0$ and $r, s \in \mathbb{N}$.

Proposition:

Let $b^{-1}(\mathbb{R})$ contains a Jordan curve. Then the limiting measure μ coincides with the unique solution of the determinate HMP with moments

$$h_m := \frac{1}{2\pi} \int_{-\pi}^{\pi} b^m \left(e^{\mathrm{i}t} \right) \mathrm{d}t, \quad m \in \mathbb{N}_0.$$

Corollary:

If $b^{-1}(\mathbb{R})$ contains a Jordan curve, then the moment Hankel matrix $H_n := (h_{i+j})_{i,j=0}^{n-1}$ is positive-definite for all $n \in \mathbb{N}_0$.

František Štampach (Stockholm University)

• We consider real Laurent polynomial symbols:

$$b(z) = \sum_{k=-r}^{s} \underbrace{a_k}_{\in \mathbb{R}} z^k$$
, where $a_{-r}a_s \neq 0$ and $r, s \in \mathbb{N}$.

Proposition:

Let $b^{-1}(\mathbb{R})$ contains a Jordan curve. Then the limiting measure μ coincides with the unique solution of the determinate HMP with moments

$$h_m := \frac{1}{2\pi} \int_{-\pi}^{\pi} b^m \left(e^{\mathrm{i}t} \right) \mathrm{d}t, \quad m \in \mathbb{N}_0.$$

Corollary:

If $b^{-1}(\mathbb{R})$ contains a Jordan curve, then the moment Hankel matrix $H_n := (h_{i+j})_{i,j=0}^{n-1}$ is positive-definite for all $n \in \mathbb{N}_0$.

Open problem: The opposite implication: $H_n > 0, \forall n \in \mathbb{N}_0 \implies \Lambda(b) \subset \mathbb{R}.$

• We consider real Laurent polynomial symbols:

$$b(z) = \sum_{k=-r}^{s} \underbrace{a_k}_{\in \mathbb{R}} z^k$$
, where $a_{-r}a_s \neq 0$ and $r, s \in \mathbb{N}$.

Proposition:

Let $b^{-1}(\mathbb{R})$ contains a Jordan curve. Then the limiting measure μ coincides with the unique solution of the determinate HMP with moments

$$h_m := \frac{1}{2\pi} \int_{-\pi}^{\pi} b^m \left(e^{\mathrm{i}t} \right) \mathrm{d}t, \quad m \in \mathbb{N}_0.$$

Corollary:

If $b^{-1}(\mathbb{R})$ contains a Jordan curve, then the moment Hankel matrix $H_n := (h_{i+j})_{i,j=0}^{n-1}$ is positive-definite for all $n \in \mathbb{N}_0$.

Open problem: The opposite implication: $H_n > 0$, $\forall n \in \mathbb{N}_0 \stackrel{?}{\Longrightarrow} \Lambda(b) \subset \mathbb{R}$. (If a counter-example exists, $\mathbb{C} \setminus \Lambda(b)$ has to be disconnected.)

František Štampach (Stockholm University)

Spectral analysis of Jacobi operators

June 5-9, 2017 15 / 21

• If $b^{-1}(\mathbb{R})$ contains a Jordan curve, then there is a family of OGPs $\{p_n\}_{n=0}^{\infty}$ orthogonal w.r.t. the limiting measure μ .

・ロト ・回 ・ ・ ヨ ・ ・ ヨ ・

- If $b^{-1}(\mathbb{R})$ contains a Jordan curve, then there is a family of OGPs $\{p_n\}_{n=0}^{\infty}$ orthogonal w.r.t. the limiting measure μ .
- What are the properties of p_n ?

- If $b^{-1}(\mathbb{R})$ contains a Jordan curve, then there is a family of OGPs $\{p_n\}_{n=0}^{\infty}$ orthogonal w.r.t. the limiting measure μ .
- What are the properties of p_n ?
- What can be said about the mapping $b \mapsto (\{a_n\}, \{b_n\})$, where

$$p_{n+1}(x) = (x - b_{n+1})p_n(x) - a_n^2 p_{n-1}(x), \quad n \in \mathbb{N}?$$

・ロト ・回ト ・ヨト ・ヨト … ヨ

- If $b^{-1}(\mathbb{R})$ contains a Jordan curve, then there is a family of OGPs $\{p_n\}_{n=0}^{\infty}$ orthogonal w.r.t. the limiting measure μ .
- What are the properties of p_n ?
- What can be said about the mapping $b \mapsto (\{a_n\}, \{b_n\})$, where

$$p_{n+1}(x) = (x - b_{n+1})p_n(x) - a_n^2 p_{n-1}(x), \quad n \in \mathbb{N}?$$

Proposition:

Let $b^{-1}(\mathbb{R})$ contains a Jordan curve and let no non-real critical point of b is located on this Jordan curve. Then

・ロト ・回ト ・ヨト ・ヨト … ヨ

- If $b^{-1}(\mathbb{R})$ contains a Jordan curve, then there is a family of OGPs $\{p_n\}_{n=0}^{\infty}$ orthogonal w.r.t. the limiting measure μ .
- What are the properties of p_n ?
- What can be said about the mapping $b \mapsto (\{a_n\}, \{b_n\})$, where

$$p_{n+1}(x) = (x - b_{n+1})p_n(x) - a_n^2 p_{n-1}(x), \quad n \in \mathbb{N}?$$

Proposition:

Let $b^{-1}(\mathbb{R})$ contains a Jordan curve and let no non-real critical point of b is located on this Jordan curve. Then

the Jordan curve intersects R at exactly two points whose *b*-images are the endpoints of the interval Λ(b) = [α, β];

- If $b^{-1}(\mathbb{R})$ contains a Jordan curve, then there is a family of OGPs $\{p_n\}_{n=0}^{\infty}$ orthogonal w.r.t. the limiting measure μ .
- What are the properties of p_n ?
- What can be said about the mapping $b \mapsto (\{a_n\}, \{b_n\})$, where

$$p_{n+1}(x) = (x - b_{n+1})p_n(x) - a_n^2 p_{n-1}(x), \quad n \in \mathbb{N}?$$

Proposition:

Let $b^{-1}(\mathbb{R})$ contains a Jordan curve and let no non-real critical point of b is located on this Jordan curve. Then

- the Jordan curve intersects R at exactly two points whose *b*-images are the endpoints of the interval Λ(b) = [α, β];
- 2 the OGPs $\{p_n\}$ belong to the Blumenthal–Nevai class $M((\beta \alpha)/2, (\alpha + \beta)/2)$, i.e.,

$$\lim_{n \to \infty} a_n = \frac{\beta - \alpha}{4} \quad \text{and} \quad \lim_{n \to \infty} b_n = \frac{\alpha + \beta}{2}.$$

◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ のへで

Example 1/4

Let

$$b(z) = \frac{1}{z^r} (1+az)^{r+s},$$
 $(a > 0, r, s \in \mathbb{N}).$

Example 1/4

Let

$$b(z) = \frac{1}{z^r} (1 + az)^{r+s}, \qquad (a > 0, r, s \in \mathbb{N}).$$

• Jordan curve (wlog a = 1):

$$\gamma(t) = \frac{\sin \frac{r}{r+s}t}{\sin \frac{s}{r+s}t} e^{it}, \quad t \in [-\pi, \pi].$$

<ロ> <同> <同> < 同> < 同>
Let

۲

$$b(z) = \frac{1}{z^r} (1+az)^{r+s}, \qquad (a > 0, r, s \in \mathbb{N}).$$

• Jordan curve (wlog a = 1):

$$\gamma(t) = \frac{\sin \frac{r}{r+s}t}{\sin \frac{s}{r+s}t} e^{it}, \quad t \in [-\pi, \pi].$$

$$b(\gamma(t)) = \frac{\sin^{r+s} t}{\sin^r \left(\frac{r}{r+s}t\right) \sin^s \left(\frac{s}{r+s}t\right)} \in \mathbb{R}, \quad \forall t \in [-\pi, \pi],$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Let

۵

$$b(z) = \frac{1}{z^r} (1+az)^{r+s}, \qquad (a > 0, r, s \in \mathbb{N}).$$

• Jordan curve (wlog a = 1):

$$\gamma(t) = \frac{\sin \frac{r}{r+s}t}{\sin \frac{s}{r+s}t} e^{it}, \quad t \in [-\pi, \pi].$$

$$b(\gamma(t)) = \frac{\sin^{r+s} t}{\sin^r \left(\frac{r}{r+s}t\right) \sin^s \left(\frac{s}{r+s}t\right)} \in \mathbb{R}, \quad \forall t \in [-\pi, \pi],$$

• $b'(\gamma(t)) \neq 0$ for all $t \in (0,\pi)$ and $b(\gamma(0)) = (r+s)^{r+s}r^{-r}s^{-s}$ and $b(\gamma(\pi)) = 0$. Hence

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Let

۵

$$b(z) = \frac{1}{z^r} (1+az)^{r+s}, \qquad (a > 0, r, s \in \mathbb{N}).$$

• Jordan curve (wlog a = 1):

$$\gamma(t) = \frac{\sin \frac{r}{r+s}t}{\sin \frac{s}{r+s}t} e^{it}, \quad t \in [-\pi, \pi].$$

$$b(\gamma(t)) = \frac{\sin^{r+s} t}{\sin^r \left(\frac{r}{r+s}t\right) \sin^s \left(\frac{s}{r+s}t\right)} \in \mathbb{R}, \quad \forall t \in [-\pi, \pi],$$

• $b'(\gamma(t)) \neq 0$ for all $t \in (0,\pi)$ and $b(\gamma(0)) = (r+s)^{r+s}r^{-r}s^{-s}$ and $b(\gamma(\pi)) = 0$. Hence

$$\Lambda(b) = \operatorname{supp} \mu = \left[0, \frac{(r+s)^{r+s}}{r^r s^s}\right]$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Let

۵

$$b(z) = \frac{1}{z^r} (1+az)^{r+s}, \qquad (a > 0, r, s \in \mathbb{N}).$$

• Jordan curve (wlog a = 1):

$$\gamma(t) = \frac{\sin \frac{r}{r+s}t}{\sin \frac{s}{r+s}t} e^{it}, \quad t \in [-\pi, \pi].$$

$$b(\gamma(t)) = \frac{\sin^{r+s} t}{\sin^r \left(\frac{r}{r+s}t\right) \sin^s \left(\frac{s}{r+s}t\right)} \in \mathbb{R}, \quad \forall t \in [-\pi, \pi],$$

• $b'(\gamma(t)) \neq 0$ for all $t \in (0,\pi)$ and $b(\gamma(0)) = (r+s)^{r+s}r^{-r}s^{-s}$ and $b(\gamma(\pi)) = 0$. Hence

$$\Lambda(b) = \operatorname{supp} \mu = \left[0, \frac{(r+s)^{r+s}}{r^r s^s}\right] \supset \operatorname{spec} T_n(b) \quad \forall n \in \mathbb{N}.$$

František Štampach (Stockholm University)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

• The limiting measure μ is the solution of the moment problem with moments

$$h_m = \frac{1}{2\pi} \int_0^{2\pi} b^m \left(e^{\mathbf{i}\theta} \right) d\theta = \binom{(r+s)m}{rm}, \quad m \in \mathbb{N}_0.$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

• The limiting measure μ is the solution of the moment problem with moments

$$h_m = \frac{1}{2\pi} \int_0^{2\pi} b^m \left(e^{\mathrm{i}\theta} \right) \mathrm{d}\theta = \binom{(r+s)m}{rm}, \quad m \in \mathbb{N}_0.$$

• To obtain μ , one has to invert the function

$$b(\gamma(t)) = \frac{\sin^{r+s} t}{\sin^r \left(\frac{r}{r+s}t\right) \sin^s \left(\frac{s}{r+s}t\right)}, \quad t \in (0,\pi),$$

which cannot be done explicitly in general.

・ロト ・回ト ・ヨト ・ヨト

• The limiting measure μ is the solution of the moment problem with moments

$$h_m = \frac{1}{2\pi} \int_0^{2\pi} b^m \left(e^{\mathrm{i}\theta} \right) \mathrm{d}\theta = \binom{(r+s)m}{rm}, \quad m \in \mathbb{N}_0.$$

• To obtain μ , one has to invert the function

$$b(\gamma(t)) = \frac{\sin^{r+s} t}{\sin^r \left(\frac{r}{r+s}t\right) \sin^s \left(\frac{s}{r+s}t\right)}, \quad t \in (0,\pi),$$

which cannot be done explicitly in general.

• But the main result yields that for the distribution function of μ , $F_{\mu} := \mu([0, \cdot))$, one has

$$F_{\mu}(b(\gamma(t))) = 1 - \frac{t}{\pi}, \text{ for } t \in [0, \pi].$$

• The limiting measure μ is the solution of the moment problem with moments

$$h_m = \frac{1}{2\pi} \int_0^{2\pi} b^m \left(e^{\mathrm{i}\theta} \right) \mathrm{d}\theta = \binom{(r+s)m}{rm}, \quad m \in \mathbb{N}_0.$$

To obtain µ, one has to invert the function

$$b(\gamma(t)) = \frac{\sin^{r+s} t}{\sin^r \left(\frac{r}{r+s}t\right) \sin^s \left(\frac{s}{r+s}t\right)}, \quad t \in (0,\pi),$$

which cannot be done explicitly in general.

• But the main result yields that for the distribution function of μ , $F_{\mu} := \mu([0, \cdot))$, one has

$$F_{\mu}(b(\gamma(t))) = 1 - \frac{t}{\pi}, \text{ for } t \in [0, \pi].$$

• Explicit formulas for the Jacobi parameters a_n and b_n are not known in general but we have

$$2\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = \frac{(r+s)^{r+s}}{2r^r s^s}$$

・ロト ・回ト ・ヨト ・ヨト … ヨ

• Special cases that admit more explicit results: (r, s) = (1, 1), (1, 2), (2, 2).

イロン イヨン イヨン イヨン

- Special cases that admit more explicit results: (r, s) = (1, 1), (1, 2), (2, 2).
- The symbol:

$$b(z) = \frac{1}{z}(1+az)^3.$$

ヘロア 人間 アメヨア 人間 アー

- Special cases that admit more explicit results: (r, s) = (1, 1), (1, 2), (2, 2).
- The symbol:

$$b(z) = \frac{1}{z}(1+az)^3.$$

• Here we put a = 4/27. Then one has

$$\frac{\mathrm{d}\mu}{\mathrm{d}x}(x) = \frac{\sqrt{3}}{4\pi} \frac{\left(1 + \sqrt{1-x}\right)^{1/3} - \left(1 - \sqrt{1-x}\right)^{1/3}}{x^{2/3}\sqrt{1-x}}, \quad x \in (0,1).$$

(This density appeared earlier: Kuijlaars, Van Assche, ...)

・ロト ・回ト ・ヨト ・ヨト … ヨ

- Special cases that admit more explicit results: (r, s) = (1, 1), (1, 2), (2, 2).
- The symbol:

$$b(z) = \frac{1}{z}(1+az)^3.$$

• Here we put a = 4/27. Then one has

$$\frac{\mathrm{d}\mu}{\mathrm{d}x}(x) = \frac{\sqrt{3}}{4\pi} \frac{\left(1 + \sqrt{1 - x}\right)^{1/3} - \left(1 - \sqrt{1 - x}\right)^{1/3}}{x^{2/3}\sqrt{1 - x}}, \quad x \in (0, 1).$$

(This density appeared earlier: Kuijlaars, Van Assche, ...)

• Jacobi parameters:

$$a_1^2 = 6a^2, \quad a_k^2 = \frac{9(6k-5)(6k-1)(3k-1)(3k+1)}{4(4k-3)(4k-1)^2(4k+1)}a^2, \quad \text{ for } k>1.$$

and

$$b_1 = 3a$$
, $b_k = \frac{3(36k^2 - 54k + 13)}{2(4k - 5)(4k - 1)}a$, for $k > 1$.

・ロト ・回ト ・ヨト ・ヨト … ヨ

• Polynomials p_n can be expressed as a combination of the associated Jacobi polynomials $P_n^{(\alpha,\beta)}(x;c)$ studied by J.Wimp (1987).

・ロト ・回ト ・ヨト ・ヨト

- Polynomials p_n can be expressed as a combination of the associated Jacobi polynomials $P_n^{(\alpha,\beta)}(x;c)$ studied by J.Wimp (1987).
- Recall that the associated Jacobi polynomials $P_n^{(\alpha,\beta)}(x;c)$ constitute a three-parameter family of orthogonal polynomials generated by the same recurrence as the Jacobi polynomials $P_n^{(\alpha,\beta)}(x)$, but every occurrence of n in the coefficients of the recurrence relation defining $P_n^{(\alpha,\beta)}(x)$ is replaced by n + c.

- Polynomials p_n can be expressed as a combination of the associated Jacobi polynomials $P_n^{(\alpha,\beta)}(x;c)$ studied by J.Wimp (1987).
- Recall that the associated Jacobi polynomials $P_n^{(\alpha,\beta)}(x;c)$ constitute a three-parameter family of orthogonal polynomials generated by the same recurrence as the Jacobi polynomials $P_n^{(\alpha,\beta)}(x)$, but every occurrence of n in the coefficients of the recurrence relation defining $P_n^{(\alpha,\beta)}(x)$ is replaced by n + c.
- Then, if we denote

$$r_n^{(\alpha,\beta)}(x;c) := \frac{2^n (c+\alpha+\beta+1)_n (c+1)_n}{(2c+\alpha+\beta+1)_{2n}} P_n^{(\alpha,\beta)}(2x-1;c), \quad n \in \mathbb{N}_0,$$

- Polynomials p_n can be expressed as a combination of the associated Jacobi polynomials $P_n^{(\alpha,\beta)}(x;c)$ studied by J.Wimp (1987).
- Recall that the associated Jacobi polynomials $P_n^{(\alpha,\beta)}(x;c)$ constitute a three-parameter family of orthogonal polynomials generated by the same recurrence as the Jacobi polynomials $P_n^{(\alpha,\beta)}(x)$, but every occurrence of n in the coefficients of the recurrence relation defining $P_n^{(\alpha,\beta)}(x)$ is replaced by n + c.
- Then, if we denote

$$r_n^{(\alpha,\beta)}(x;c) := \frac{2^n (c+\alpha+\beta+1)_n (c+1)_n}{(2c+\alpha+\beta+1)_{2n}} P_n^{(\alpha,\beta)}(2x-1;c), \quad n \in \mathbb{N}_0,$$

it holds

$$2^{n}p_{n}(x) = r_{n}^{(\alpha,\beta)}(x;c) - \frac{4}{27}r_{n-1}^{(\alpha,\beta)}(x;c+1) - \frac{256}{729}r_{n-2}^{(\alpha,\beta)}(x;c+2), \quad n \in \mathbb{N},$$

where $\alpha = 1/2$, $\beta = -2/3$, and c = -1/6.

- Polynomials p_n can be expressed as a combination of the associated Jacobi polynomials $P_n^{(\alpha,\beta)}(x;c)$ studied by J.Wimp (1987).
- Recall that the associated Jacobi polynomials $P_n^{(\alpha,\beta)}(x;c)$ constitute a three-parameter family of orthogonal polynomials generated by the same recurrence as the Jacobi polynomials $P_n^{(\alpha,\beta)}(x)$, but every occurrence of n in the coefficients of the recurrence relation defining $P_n^{(\alpha,\beta)}(x)$ is replaced by n + c.
- Then, if we denote

$$r_n^{(\alpha,\beta)}(x;c) := \frac{2^n (c+\alpha+\beta+1)_n (c+1)_n}{(2c+\alpha+\beta+1)_{2n}} P_n^{(\alpha,\beta)}(2x-1;c), \quad n \in \mathbb{N}_0,$$

it holds

$$2^{n}p_{n}(x) = r_{n}^{(\alpha,\beta)}(x;c) - \frac{4}{27}r_{n-1}^{(\alpha,\beta)}(x;c+1) - \frac{256}{729}r_{n-2}^{(\alpha,\beta)}(x;c+2), \quad n \in \mathbb{N},$$

where $\alpha = 1/2, \beta = -2/3$, and c = -1/6.

• This relation and the known properties of the associated Jacobi polynomials allow to derive other formulas for p_n such as: an explicit representation, a generating function, ...

◆□▶ ◆□▶ ◆臣▶ ★臣▶ 臣 のへの

Thank you!

イロト イヨト イヨト イヨト