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Toeplitz matrices with real spectrum

Toeplitz matrix

Toeplitz matrix:

Tn(a) =
(
aj−k

)n−1

j,k=0
=


a0 a−1 a−2 . . . a−n+1

a1 a0 a−1 . . . a−n+2

a2 a1 a0 . . . a−n+3

. . . . . . . . . . . . . . .
an−1 an−2 an−3 . . . a0

,
where an ∈ C.

Symbol of T (a):

a(z) =
∞∑

n=−∞
anz

n.

Question: For what symbol a are the eigenvalues of Tn(a) “asymptotically real”, as n→∞?
More precisely, let

Λ(a) := {λ ∈ C | lim inf
n→∞

dist (λ, spec(Tn(a))) = 0}

i.e., λ ∈ Λ(a) if and only if ∃nk ↗∞ ∃λk ∈ spec(Tnk (a)) s.t. λk → λ.

The question: determine the class of symbols a for which

Λ(a) ⊂ R.
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Toeplitz matrices with real spectrum

Clearly, if Tn(a) is Hermitian for all n, then Λ(a) ⊂ R.

Tn(a) = T ∗n(a), ∀n ∈ N ⇐⇒ a(T) ⊂ R.

In other words: In the Hermitian case, there exists a Jordan curve in C (namely, the unit
circle) on which the symbol is a real-valued function.

And this is the clue ...

Theorem:

1 Let the symbol a be given by the Laurent series
∑
n

anz
n which is absolutely convergent in

an annulus r ≤ |z| ≤ R, where r ≤ 1 and R ≥ 1.
2 Let the above annulus contain (an image of) a Jordan curve γ such that a ◦ γ is real-valued.

Then Λ(a) ⊂ R. In fact, one has much more:

spec(Tn(a)) ⊂ R, ∀n ∈ N.

Remark:
If a is analytic in C \ {0} (especially, if a is a Laurent polynomial), then the assumption 1 can be
omitted.
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Toeplitz matrices with real spectrum

The case of banded Toeplitz matrices

Question: If Λ(a) ⊂ R, can the set Λ(a) be approached from the complex plane? That is, can
spec(Tn(a)) contain non-real eigenvalues for some n?

Answer: No, if a is a Laurent polynomial!

Theorem:

Let b = b(z) be a Laurent polynomial which is neither a polynomial in z nor in 1/z. The following
claims are equivalent:

1 Λ(b) ⊂ R;
2 The set b−1(R) contains a Jordan curve (with 0 in its interior).
3 For all n ∈ N, spec(Tn(b)) ⊂ R.

Remark:
It is a very surprising feature of banded Toeplitz matrices that the asymptotic reality of the eigen-
values (claim 1) forces all eigenvalues of all Tn(b) to be real (claim 3). Hence, if, for instance, the
2×2 matrix T2(b) has a non-real eigenvalue, there is no chance for the limiting set Λ(b) to be real!
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Toeplitz matrices with real spectrum

Examples

1 Tridiagonal Toeplitz matrix:

b(z) = z−1 + az, (a ∈ C \ {0}).

Then
Λ(b) ⊂ R ⇐⇒ a > 0.

2 Four-diagonal Toeplitz matrix:

b(z) = z−1 + az + bz2, (a ∈ C, b ∈ C \ {0}).

Then
Λ(b) ⊂ R ⇐⇒ a3 ≥ 27b2 > 0.

3 A banded Toeplitz matrix:

b(z) = z−r (1 + az)r+s , (r, s ∈ N, a ∈ R \ {0}).

Then Λ(b) ⊂ R.
4 And many more...
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Toeplitz matrices with real spectrum

Numerical examples

b(z) = z−3 − z−2 + 7z−1 + 9z − 2z2 + 2z3 − z4

b(z) = z−3 − z−2 + 7z−1 + 9z+ 2z2 + 2z3 − z4
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The asymptotic eigenvalue distribution

History on the topic

We consider banded Toeplitz matrices only −→ the classical topic;

b(z) =
s∑

k=−r
akz

k, where a−ras 6= 0 and r, s ∈ N.

The set Λ(b) can be described in terms of zeros of the polynomial z 7→ zr(b(z)− λ) [Schmidt
and Spitzer, 1960].

The weak limit of the eigenvalue-counting measures of Tn(b):

µn =
1

n

n∑
k=1

δ
λ
(n)
k

exists, as n→∞, and is absolutely continuous measure µ supported on Λ(b) whose density
can be expressed in terms of zeros of z 7→ zr(b(z)− λ) [Hirschman Jr., 1967].
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The asymptotic eigenvalue distribution

The limiting measure and the Jordan curve without critical points

1 Let Tn(b) be a banded Toeplitz matrix with real elements:

b(z) =
s∑

k=−r
ak︸︷︷︸
∈R

zk, where a−ras 6= 0 and r, s ∈ N.

(Then both Λ(b) and b−1(R) are symmetric w.r.t. R.)

2 Suppose the Jordan curve γ is present in b−1(R) and assume, additionally, that γ admits
a polar parametrization:

γ(t) = ρ(t)eit, t ∈ [−π, π].

Theorem:

Let b′(γ(t)) 6= 0 for all t ∈ (0, π). Then b ◦ γ restricted to (0, π) is either strictly increasing or
decreasing; the limiting measure µ is supported on the interval [α, β] := b(γ([0, π])) and its
density satisfies

dµ

dx
(x) = ±

1

π

d

dx
(b ◦ γ)−1(x),

for x ∈ (α, β), where the + sign is used when b ◦ γ increases on (0, π), and the − sign is used
otherwise.
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The asymptotic eigenvalue distribution

Numerical illustration - the Jordan curve without critical points of b

b(z) = z−3 − z−2 + 7z−1 + 9z − 2z2 + 2z3 − z4,
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The asymptotic eigenvalue distribution

The limiting measure and the Jordan curve with critical points

If γ((0, π)) contains some critical points of b, then the description of µ is slightly more
complicated.

Theorem:

Suppose that b and γ are as before and let ` ∈ N0 be the number of critical points of b in γ((0, π))
and 0 =: φ0 < φ1 < · · · < φ` < φ`+1 := π are such that b′(γ(φj)) = 0 for all 0 ≤ j ≤ `+ 1.
Then b ◦ γ restricted to (φi−1, φi) is strictly monotone for all 1 ≤ i ≤ `+ 1, and the limiting
measure µ = µ1 + µ2 + · · ·+ µ`+1, where µi is an absolutely continuous measure supported on
[αi, βi] := b(γ([φi−1, φi])) whose density is given by

dµi

dx
(x) = ±

1

π

d

dx
(b ◦ γ)−1(x)

for all x ∈ (αi, βi) and all i ∈ {1, 2, . . . , `+ 1}. The + sign is used when b ◦ γ increases on
(αi, βi), and the − sign is used otherwise.
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The asymptotic eigenvalue distribution

Numerical illustration - the Jordan curve with critical points of b

b(z) = z−3 + z−2 + z−1 + z + z2 + z3
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František Štampach (Stockholm University) Spectral analysis of Jacobi operators June 5-9, 2017 13 / 21



The asymptotic eigenvalue distribution

Numerical illustration - the Jordan curve with critical points of b

b(z) = z−3 + z−2 + z−1 + z + z2 + z3
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Connections to the Hamburger Moment Problem and Orthogonal Polynomials

The limiting measure as a solution of the HMP

We consider real Laurent polynomial symbols:

b(z) =
s∑

k=−r
ak︸︷︷︸
∈R

zk, where a−ras 6= 0 and r, s ∈ N.

Proposition:

Let b−1(R) contains a Jordan curve. Then the limiting measure µ coincides with the unique
solution of the determinate HMP with moments

hm :=
1

2π

∫ π

−π
bm
(
eit
)

dt, m ∈ N0.

Corollary:

If b−1(R) contains a Jordan curve, then the moment Hankel matrix Hn := (hi+j)
n−1
i,j=0 is

positive-definite for all n ∈ N0.

Open problem: The opposite implication: Hn > 0, ∀n ∈ N0
?

=⇒ Λ(b) ⊂ R.
(If a counter-example exists, C \ Λ(b) has to be disconnected.)

František Štampach (Stockholm University) Spectral analysis of Jacobi operators June 5-9, 2017 15 / 21



Connections to the Hamburger Moment Problem and Orthogonal Polynomials

The limiting measure as a solution of the HMP

We consider real Laurent polynomial symbols:

b(z) =
s∑

k=−r
ak︸︷︷︸
∈R

zk, where a−ras 6= 0 and r, s ∈ N.

Proposition:

Let b−1(R) contains a Jordan curve. Then the limiting measure µ coincides with the unique
solution of the determinate HMP with moments

hm :=
1

2π

∫ π

−π
bm
(
eit
)

dt, m ∈ N0.

Corollary:

If b−1(R) contains a Jordan curve, then the moment Hankel matrix Hn := (hi+j)
n−1
i,j=0 is

positive-definite for all n ∈ N0.

Open problem: The opposite implication: Hn > 0, ∀n ∈ N0
?

=⇒ Λ(b) ⊂ R.
(If a counter-example exists, C \ Λ(b) has to be disconnected.)
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Connections to the Hamburger Moment Problem and Orthogonal Polynomials

The limiting measure as the orthogonality measure of OGPs

If b−1(R) contains a Jordan curve, then there is a family of OGPs {pn}∞n=0 orthogonal w.r.t.
the limiting measure µ.

What are the properties of pn?

What can be said about the mapping b 7→ ({an}, {bn}), where

pn+1(x) = (x− bn+1)pn(x)− a2npn−1(x), n ∈ N ?

Proposition:

Let b−1(R) contains a Jordan curve and let no non-real critical point of b is located on this Jordan
curve. Then

1 the Jordan curve intersects R at exactly two points whose b-images are the endpoints of the
interval Λ(b) = [α, β];

2 the OGPs {pn} belong to the Blumenthal–Nevai class M((β − α)/2, (α+ β)/2), i.e.,

lim
n→∞

an =
β − α

4
and lim

n→∞
bn =

α+ β

2
.
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František Štampach (Stockholm University) Spectral analysis of Jacobi operators June 5-9, 2017 16 / 21



Connections to the Hamburger Moment Problem and Orthogonal Polynomials

The limiting measure as the orthogonality measure of OGPs

If b−1(R) contains a Jordan curve, then there is a family of OGPs {pn}∞n=0 orthogonal w.r.t.
the limiting measure µ.

What are the properties of pn?

What can be said about the mapping b 7→ ({an}, {bn}), where

pn+1(x) = (x− bn+1)pn(x)− a2npn−1(x), n ∈ N ?

Proposition:

Let b−1(R) contains a Jordan curve and let no non-real critical point of b is located on this Jordan
curve. Then

1 the Jordan curve intersects R at exactly two points whose b-images are the endpoints of the
interval Λ(b) = [α, β];

2 the OGPs {pn} belong to the Blumenthal–Nevai class M((β − α)/2, (α+ β)/2), i.e.,

lim
n→∞

an =
β − α

4
and lim

n→∞
bn =

α+ β

2
.
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Connections to the Hamburger Moment Problem and Orthogonal Polynomials

Example 1/4

Let
b(z) =

1

zr
(1 + az)r+s, (a > 0, r, s ∈ N).

Jordan curve (wlog a = 1):

γ(t) =
sin r

r+s
t

sin s
r+s

t
eit, t ∈ [−π, π].

b(γ(t)) =
sinr+s t

sinr
(

r
r+s

t
)

sins
(

s
r+s

t
) ∈ R, ∀t ∈ [−π, π],

b′(γ(t)) 6= 0 for all t ∈ (0, π) and b(γ(0)) = (r + s)r+sr−rs−s and b(γ(π)) = 0. Hence

Λ(b) = suppµ =

[
0,

(r + s)r+s

rrss

]
⊃ specTn(b) ∀n ∈ N.

František Štampach (Stockholm University) Spectral analysis of Jacobi operators June 5-9, 2017 17 / 21



Connections to the Hamburger Moment Problem and Orthogonal Polynomials

Example 1/4

Let
b(z) =

1

zr
(1 + az)r+s, (a > 0, r, s ∈ N).

Jordan curve (wlog a = 1):

γ(t) =
sin r

r+s
t

sin s
r+s

t
eit, t ∈ [−π, π].

b(γ(t)) =
sinr+s t

sinr
(

r
r+s

t
)

sins
(

s
r+s

t
) ∈ R, ∀t ∈ [−π, π],

b′(γ(t)) 6= 0 for all t ∈ (0, π) and b(γ(0)) = (r + s)r+sr−rs−s and b(γ(π)) = 0. Hence

Λ(b) = suppµ =

[
0,

(r + s)r+s

rrss

]
⊃ specTn(b) ∀n ∈ N.
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Connections to the Hamburger Moment Problem and Orthogonal Polynomials

Example 2/4

The limiting measure µ is the solution of the moment problem with moments

hm =
1

2π

∫ 2π

0
bm
(
eiθ
)

dθ =
((r + s)m

rm

)
, m ∈ N0.

To obtain µ, one has to invert the function

b(γ(t)) =
sinr+s t

sinr
(

r
r+s

t
)

sins
(

s
r+s

t
) , t ∈ (0, π),

which cannot be done explicitly in general.

But the main result yields that for the distribution function of µ, Fµ := µ ([0, ·)), one has

Fµ (b(γ(t))) = 1−
t

π
, for t ∈ [0, π].

Explicit formulas for the Jacobi parameters an and bn are not known in general but we have

2 lim
n→∞

an = lim
n→∞

bn =
(r + s)r+s

2rrss
.

František Štampach (Stockholm University) Spectral analysis of Jacobi operators June 5-9, 2017 18 / 21



Connections to the Hamburger Moment Problem and Orthogonal Polynomials

Example 2/4

The limiting measure µ is the solution of the moment problem with moments

hm =
1

2π

∫ 2π

0
bm
(
eiθ
)

dθ =
((r + s)m

rm

)
, m ∈ N0.

To obtain µ, one has to invert the function

b(γ(t)) =
sinr+s t

sinr
(

r
r+s

t
)

sins
(

s
r+s

t
) , t ∈ (0, π),

which cannot be done explicitly in general.

But the main result yields that for the distribution function of µ, Fµ := µ ([0, ·)), one has

Fµ (b(γ(t))) = 1−
t

π
, for t ∈ [0, π].

Explicit formulas for the Jacobi parameters an and bn are not known in general but we have

2 lim
n→∞

an = lim
n→∞

bn =
(r + s)r+s

2rrss
.
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Connections to the Hamburger Moment Problem and Orthogonal Polynomials

Example 3/4

Special cases that admit more explicit results: (r, s) = (1, 1), (1, 2), (2, 2).

The symbol:

b(z) =
1

z
(1 + az)3.

Here we put a = 4/27. Then one has

dµ

dx
(x) =

√
3

4π

(
1 +
√

1− x
)1/3 − (1−√1− x

)1/3
x2/3
√

1− x
, x ∈ (0, 1).

(This density appeared earlier: Kuijlaars, Van Assche, ...)

Jacobi parameters:

a21 = 6a2, a2k =
9(6k − 5)(6k − 1)(3k − 1)(3k + 1)

4(4k − 3)(4k − 1)2(4k + 1)
a2, for k > 1.

and

b1 = 3a, bk =
3(36k2 − 54k + 13)

2(4k − 5)(4k − 1)
a, for k > 1.
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Connections to the Hamburger Moment Problem and Orthogonal Polynomials

Example 4/4

Polynomials pn can be expressed as a combination of the associated Jacobi polynomials
P

(α,β)
n (x; c) studied by J.Wimp (1987).

Recall that the associated Jacobi polynomials P (α,β)
n (x; c) constitute a three-parameter

family of orthogonal polynomials generated by the same recurrence as the Jacobi poly-
nomials P (α,β)

n (x), but every occurrence of n in the coefficients of the recurrence relation
defining P (α,β)

n (x) is replaced by n+ c.

Then, if we denote

r
(α,β)
n (x; c) :=

2n(c+ α+ β + 1)n(c+ 1)n

(2c+ α+ β + 1)2n
P

(α,β)
n (2x− 1; c), n ∈ N0,

it holds

2npn(x) = r
(α,β)
n (x; c)−

4

27
r
(α,β)
n−1 (x; c+ 1)−

256

729
r
(α,β)
n−2 (x; c+ 2), n ∈ N,

where α = 1/2, β = −2/3, and c = −1/6.

This relation and the known properties of the associated Jacobi polynomials allow to derive
other formulas for pn such as: an explicit representation, a generating function, ...
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Connections to the Hamburger Moment Problem and Orthogonal Polynomials

Thank you!
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