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An operator with empty spectrum

Classical QM → “Nice world with fancy actors.”

Classical Quantum Mechanics works with
self-adjoint operators acting on a separable Hilbert space.

Q: Can an operator have empty spectrum?

A bounded =⇒ σ(A) 6= ∅ (Liouville’s theorem)

A = A∗ (possibly unbounded) =⇒ σ(A) 6= ∅ (the above claim + r(A) = ‖A‖ for A = A∗)

Partial A: Well, if it exists, then it has to be an unbounded and non-self-adjoint operator.
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František Štampach (MAFIA) Non-self-adjoint Operators July 10-13, 2017 3 / 20



An operator with empty spectrum

Classical QM → “Nice world with fancy actors.”

Classical Quantum Mechanics works with
self-adjoint operators acting on a separable Hilbert space.

Q: Can an operator have empty spectrum?

A bounded =⇒ σ(A) 6= ∅ (Liouville’s theorem)

A = A∗ (possibly unbounded) =⇒ σ(A) 6= ∅ (the above claim + r(A) = ‖A‖ for A = A∗)

Partial A: Well, if it exists, then it has to be an unbounded and non-self-adjoint operator.
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An operator with empty spectrum

Intermezzo - Volterra integral operators

For K ∈ C([0, 1]2), put

Kf(x) :=

∫ x

0
K(x, y)f(y)dy, x ∈ [0, 1].

One has K ∈ B(C([0, 1])) since ‖K‖ ≤ ‖K‖∞.
In fact, K is compact (Arzela–Ascoli).

Q: What is σ(K)?

By induction in n ∈ N0, one verifies that

|Knf(x)| ≤
xn‖K‖n∞

n!
‖f‖∞, ∀x ∈ [0, 1].

Therefore

‖Kn‖ ≤
‖K‖n∞
n!

.

And thus
r(K) = lim

n→∞
‖Kn‖1/n = 0.

Conclusion:
σ(K) = {0}.
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An operator with empty spectrum

Intermezzo - Inverse to the Volterra integral operator

Fix λ ∈ C and consider K(x, y) := eλ(x−y). Thus

Kλf(x) =

∫ x

0
eλ(x−y)f(y)dy.

Kernel: Let Kλf = 0 for some f ∈ C([0, 1]). By differentiation, one gets

0 =
d

dx
Kλf(x) = f(x) + λKλf(x) = f(x), ∀x ∈ (0, 1).

Hence KerKλ = {0} and Kλ is invertible.

Range: It is easy to see that:

RanKλ =︸︷︷︸
in fact

{g ∈ C1([0, 1]) | g(0) = 0}.

The opposite inclusion: ? ∃f ∈ C([0, 1]) such that Kλf = g?

∫ x

0
e−λyf(y)dy = e−λxg(x)  e−λxf(x) =

d

dx

(
e−λxg(x)

)
,

f(x) = eλx
d

dx

(
e−λxg(x)

)
= g′(x)− λg(x) ∈ C([0, 1]).
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An operator with empty spectrum

An operator with empty spectrum

Define
Tg := g′, DomT := RanKλ = {g ∈ C1([0, 1]) | g(0) = 0}.

We’ve got, for arbitrary λ ∈ C,

(Kλ)−1 g = g′ − λg = (T − λ)g

 Kλ = (T − λ)−1.

Conclusion: σ(T ) = ∅.

Remark: The operator T acts on the Banach space C([0, 1]). A similar example works on the
Hilbert space L2(0, 1):

Tg := g′, DomT := {g ∈ AC([0, 1]) | g(0) = 0},

where
AC([0, 1]) = {g a.c. on [0, 1] | g′ ∈ L2(0, 1)}.

Then σ(T ) = ∅.
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František Štampach (MAFIA) Non-self-adjoint Operators July 10-13, 2017 6 / 20



An operator with empty spectrum

An operator with empty spectrum

Define
Tg := g′, DomT := RanKλ = {g ∈ C1([0, 1]) | g(0) = 0}.

We’ve got, for arbitrary λ ∈ C,

(Kλ)−1 g = g′ − λg = (T − λ)g  Kλ = (T − λ)−1.

Conclusion: σ(T ) = ∅.

Remark: The operator T acts on the Banach space C([0, 1]). A similar example works on the
Hilbert space L2(0, 1):

Tg := g′, DomT := {g ∈ AC([0, 1]) | g(0) = 0},

where
AC([0, 1]) = {g a.c. on [0, 1] | g′ ∈ L2(0, 1)}.

Then σ(T ) = ∅.
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Shift operators

Parts of the spectrum - Introduction

Spectrum:

λ ∈ ρ(T ) ≡ C \ σ(T )
def⇐⇒ T − λ is invertible with bounded inverse.

Parts of the spectrum:

(i) T − λ not injective  λ ∈ σp(T )

(ii) T − λ injective but not surjective

{
Ran(T − λ) dense  λ ∈ σc(T )

Ran(T − λ) not dense  λ ∈ σr(T )

Physical (QM) interpretation:
(a) σp(T ) - bound states
(b) σc(T ) - scattering states
(c) σr(T ) - no interpretation (???)

(ad a) Intuition: “Bound states are not many - cannot form a continuous set”
(orthogonal eigenvectors, separability).

(ad c) Residual spectrum not present in QM: T = T ∗ =⇒ σr(T ) = ∅.

The above comments fail to hold if T 6= T ∗.
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František Štampach (MAFIA) Non-self-adjoint Operators July 10-13, 2017 8 / 20



Shift operators

Parts of the spectrum - Introduction

Spectrum:

λ ∈ ρ(T ) ≡ C \ σ(T )
def⇐⇒ T − λ is invertible with bounded inverse.

Parts of the spectrum:

(i) T − λ not injective  λ ∈ σp(T )

(ii) T − λ injective but not surjective

{
Ran(T − λ) dense  λ ∈ σc(T )

Ran(T − λ) not dense  λ ∈ σr(T )

Physical (QM) interpretation:
(a) σp(T ) - bound states
(b) σc(T ) - scattering states
(c) σr(T ) - no interpretation (???)

(ad a) Intuition: “Bound states are not many - cannot form a continuous set”
(orthogonal eigenvectors, separability).

(ad c) Residual spectrum not present in QM: T = T ∗ =⇒ σr(T ) = ∅.

The above comments fail to hold if T 6= T ∗.
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Shift operators

Simple but important observation

Easy exercise:
KerT ∗ = (RanT )⊥.

Corollaries of Ker(T ∗ − λ) = (Ran(T − λ))⊥:

(i) λ ∈ σr(T ) =⇒ λ ∈ σp(T ∗)

(ii) λ ∈ σp(T ) =⇒ λ ∈ σp(T ∗) ∪ σr(T ∗)
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Shift operators

Two good candidates for counter-examples

On `2(N), define

R(x1, x2, . . . ) := (0, x1, x2, . . . ) and L(x1, x2, . . . ) := (x2, x3, . . . ).

‖R‖ = ‖L‖ = 1

⇒ σ(R), σ(L) ⊂ D.

L∗ = R.

Lx = λx ⇔ xn+1 = λxn ⇔ xn+1 = λnx1 ∈ `2(N) ⇔ |λ| < 1

Conclusion: σp(L) = D and σ(L) = D.

Rx = λx ⇔ x1 = 0 ∧ xn−1 = λxn ⇔ x = 0

Conclusion: σp(R) = ∅

⇒ σr(L) = ∅ ⇒ σc(L) = T.

σp(L) = D ⇒ D ⊂ σp(R)︸ ︷︷ ︸
=∅

∪σr(R) = σr(R).

Conclusion: σc(R) = T (since T 3 λ ∈ σr(R) ⇒ λ ∈ σp(L) = D).
In total:

σp(L) = D, σc(L) = T, σr(L) = ∅

σp(R) = ∅, σc(R) = T, σr(R) = D
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Research topics - open problems

Where NSA operators can appear

Operator and Spectral Theory: general properties of NSA operators possessing additional
symmetry, real spectrum, similarity to SA operators, basiness of eigenvectors (completeness,
Schauder, Riezs), perturbation theory, spectral approximation, pseudospectral analysis,
generalized eigenvalue problems - matrix pencils, ...

Mathematical Physics: optics, damped systems, quantum resonances, hydro- and
magnetohydrodynamics, superconductivity, graphene, NSA QM - PT -symmetry (?), ...

Approximation theory and OGPs: asymptotic analysis, zero distribution of OGPs with
non-standard parameters, complex orthogonality, Riemann–Hilbert problem, real-rootedness
of various polynomial families, Multiple OGPs, Hermite–Padé approximants, number theory, ...

Complex analysis: location of zeros, reality of zeros of entire functions - special functions,
Laguerre–Pólya class, ...

Numerical mathematics: reliability of approximations, pseudospectrum, stability, ...

And much more...

Operator and Spectral Theory: general properties of NSA operators possessing additional
symmetry, real spectrum, similarity to SA operators, basiness of eigenvectors (completeness,
Schauder, Riezs), perturbation theory, spectral approximation, pseudospectral analysis,
generalized eigenvalue problems - matrix pencils, ...
Mathematical Physics: optics, damped systems, quantum resonances, hydro- and
magnetohydrodynamics, superconductivity, graphene, NSA QM - PT -symmetry (?), ...
Approximation theory and OGPs: asymptotic analysis, zero distribution of OGPs with
non-standard parameters, complex orthogonality, Riemann–Hilbert problem, real-rootedness
of various polynomial families, Multiple OGPs, Hermite–Padé approximants, number theory, ...
Complex analysis: location of zeros, reality of zeros of entire functions - special functions,
Laguerre–Pólya class, ...
Numerical mathematics: reliability of approximations, pseudospectrum, stability, ...
And much more...

Lets look briefly on two topics...
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Complex analysis: location of zeros, reality of zeros of entire functions - special functions,
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Research topics - open problems

NSA operators with purely real spectrum

We saw examples of NSA operators with properties being “far” from those of SA operators.

NSA operators which in a sense resembles properties of SA operators (with no obvious
reason) are of special interest.

Usually, the investigation focuses on operators from well-understood particular families like:

Schrödinger, Sturm–Liouville, Dirac, Jacobi, Hankel, Toeplitz, locally Toeplitz, KMS,
various integral operators, BD pencils,...

Q: Under what conditions can have a NSA operator/matrix (from one of the above class) purely
real spectrum?

Ignoring some results (perturbation-like, Krein or Pontryagin spaces,...), we can say that there
are not many (general) sufficient conditions guaranteeing reality of the spectrum.

Instead, there exist several very involved concrete examples:

i) −
d2

dx2
+ ix3 on L2(R), ii)

d

dx

(
sin(x)

d

dx

)
+

d

dx
on L2(−π, π),

iii) some Jacobi matrices.
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Research topics - open problems

Toeplitz matrices with real eigenvalues

Toeplitz matrix:

Tn(b) =
(
aj−k

)n−1

j,k=0
=


a0 a−1 a−2 . . . a−n+1

a1 a0 a−1 . . . a−n+2

a2 a1 a0 . . . a−n+3

. . . . . . . . . . . . . . .
an−1 an−2 an−3 . . . a0

,
where an ∈ C.

Symbol of T (b):

b(z) =

∞∑
n=−∞

anz
n.

Theorem:

Assume (for simplicity!) that b is a Laurent polynomial. Then

σ(Tn(b)) ⊂ R, ∀n ∈ N ⇐⇒ b−1(R) contains a Jordan curve.
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Research topics - open problems

Toeplitz matrices - explicit examples

Tridiagonal Toeplitz matrix:

b(z) = z−1 + az, (a ∈ C \ {0}).

Then
σ(Tn(b)) ⊂ R, ∀n ∈ N ⇐⇒ a > 0.

Four-diagonal Toeplitz matrix:

b(z) = z−1 + az + bz2, (a ∈ C, b ∈ C \ {0}).

Then
σ(Tn(b)) ⊂ R, ∀n ∈ N ⇐⇒ a3 ≥ 27b2 > 0.

A banded Toeplitz matrix:

b(z) = z−r (1 + az)r+s , (r, s ∈ N, a ∈ R \ {0}).

Then σ(Tn(b)) ⊂ R, ∀n ∈ N.

A non-banded Toeplitz matrix:

b(z) = eaz + eb/z , (ab > 0).

Then σ(Tn(b)) ⊂ R, ∀n ∈ N.
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Then
σ(Tn(b)) ⊂ R, ∀n ∈ N ⇐⇒ a > 0.

Four-diagonal Toeplitz matrix:

b(z) = z−1 + az + bz2, (a ∈ C, b ∈ C \ {0}).

Then
σ(Tn(b)) ⊂ R, ∀n ∈ N ⇐⇒ a3 ≥ 27b2 > 0.

A banded Toeplitz matrix:

b(z) = z−r (1 + az)r+s , (r, s ∈ N, a ∈ R \ {0}).

Then σ(Tn(b)) ⊂ R, ∀n ∈ N.

A non-banded Toeplitz matrix:

b(z) = eaz + eb/z , (ab > 0).

Then σ(Tn(b)) ⊂ R, ∀n ∈ N.
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Research topics - open problems

Toeplitz matrices - numerical examples

b(z) = z−3 − z−2 + 7z−1 + 9z − 2z2 + 2z3 − z4

b(z) = z−3 − z−2 + 7z−1 + 9z+ 2z2 + 2z3 − z4
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Research topics - open problems

Spectral approximation

Let H be separable Hilbert space, {en}∞n=1 ONB of H, and A ∈ B(H).

Let Pn be OG projection onto Hn := span{e1, . . . , en}. Put An := PnA � Hn.

Q: Does σ(An) approximate σ(A) for n→∞?

Limit points of evls:

Λ(A) := {λ ∈ C | lim inf
n→∞

dist(λ, σ(An)) = 0}.

Q: Is any relation between σ(A) and Λ(A)?

A: Not in general. But...
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Research topics - open problems

Claim:

A = A∗ ⇒ σ(A) ⊂ Λ(A).

Proof:

Let λ /∈ Λ(A). Then ∃ε > 0 such that Bε(λ) ∩ σ(An) = ∅, ∀n > n0.

Important ingredient: For any T = T ∗, one has

‖(T − λ)−1‖ =
1

dist(λ, σ(T ))
, λ /∈ σ(T ).

So in this case: ‖(An − λ)−1‖ ≤ 1/ε, ∀n > n0.

Put
Bn := (An − λ)−1 ⊕ I ∈ B1/ε ⊂ B(H) (weakly precompact).

∃B ∈ B(H) such that Bn
w−→ B (cheating slightly).

It is easy to verify that Pn
s−→ I. Consequently, APn

s−→ A.

Taking the weak limits in
(A− λ)PnBn = Pn,

one gets (A− λ)B = I and similarly also B(A− λ) = I.

Hence B = (A− λ)−1 and λ /∈ σ(A).
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František Štampach (MAFIA) Non-self-adjoint Operators July 10-13, 2017 18 / 20



Research topics - open problems

Claim:

A = A∗ ⇒ σ(A) ⊂ Λ(A).

Proof:

Let λ /∈ Λ(A). Then ∃ε > 0 such that Bε(λ) ∩ σ(An) = ∅, ∀n > n0.

Important ingredient: For any T = T ∗, one has

‖(T − λ)−1‖ =
1

dist(λ, σ(T ))
, λ /∈ σ(T ).

So in this case: ‖(An − λ)−1‖ ≤ 1/ε, ∀n > n0.

Put
Bn := (An − λ)−1 ⊕ I ∈ B1/ε ⊂ B(H) (weakly precompact).

∃B ∈ B(H) such that Bn
w−→ B (cheating slightly).

It is easy to verify that Pn
s−→ I. Consequently, APn

s−→ A.

Taking the weak limits in
(A− λ)PnBn = Pn,

one gets (A− λ)B = I and similarly also B(A− λ) = I.

Hence B = (A− λ)−1 and λ /∈ σ(A).
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Research topics - open problems

Few comments:

In general, σ(A) 6= Λ(A) for A = A∗.

Additional conditions are necessary to have the equality σ(A) = Λ(A) (and several are
known for operators from particular classes).

For A 6= A∗, the inclusion σ(A) ⊂ Λ(A) does not hold (take the shift operators L,R).

Q: Are there other conditions guaranteeing σ(A) ⊂ Λ(A) or Λ(A) ⊂ σ(A)?

If A is compact, then σ(A) = Λ(A).

Q: If A is an unbounded sectorial operator with discrete spectrum, does one have Λ(A) = σ(A)?

If T (b) is possibly NSA banded Toeplitz operator on `2(N) (or Wiener–Hopf operator), then
Λ(A) ⊂ σ(A).

Q: Are there other classes of NSA operators for which Λ(A) ⊂ σ(A)?
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