An Invitation to the Non-self-adjoint Church

František Štampach

$$
A \neq A^{*}
$$

Contents

(1) An operator with empty spectrum

(2) Shift operators

(3) Research topics - open problems

Classical QM \rightarrow "Nice world with fancy actors."

Classical Quantum Mechanics works with
self-adjoint operators acting on a separable Hilbert space.

Classical QM \rightarrow "Nice world with fancy actors."

Classical Quantum Mechanics works with
self-adjoint operators acting on a separable Hilbert space.

Q: Can an operator have empty spectrum?

Classical QM \rightarrow "Nice world with fancy actors."

Classical Quantum Mechanics works with
self-adjoint operators acting on a separable Hilbert space.

Q: Can an operator have empty spectrum?

- A bounded $\Longrightarrow \sigma(A) \neq \emptyset$ (Liouville's theorem)

Classical QM \rightarrow "Nice world with fancy actors."

Classical Quantum Mechanics works with
self-adjoint operators acting on a separable Hilbert space.

Q: Can an operator have empty spectrum?

- A bounded $\Longrightarrow \sigma(A) \neq \emptyset$ (Liouville's theorem)
- $A=A^{*}\left(\right.$ possibly unbounded) $\Longrightarrow \sigma(A) \neq \emptyset$ (the above claim $+r(A)=\|A\|$ for $A=A^{*}$)

Classical QM \rightarrow "Nice world with fancy actors."

Classical Quantum Mechanics works with
self-adjoint operators acting on a separable Hilbert space.

Q: Can an operator have empty spectrum?

- A bounded $\Longrightarrow \sigma(A) \neq \emptyset$ (Liouville's theorem)
- $A=A^{*}$ (possibly unbounded) $\Longrightarrow \sigma(A) \neq \emptyset$ (the above claim $+r(A)=\|A\|$ for $A=A^{*}$)

Partial A: Well, if it exists, then it has to be an unbounded and non-self-adjoint operator.

Intermezzo - Volterra integral operators

- For $\mathcal{K} \in C\left([0,1]^{2}\right)$, put

$$
K f(x):=\int_{0}^{x} \mathcal{K}(x, y) f(y) \mathrm{d} y, \quad x \in[0,1] .
$$

Intermezzo - Volterra integral operators

- For $\mathcal{K} \in C\left([0,1]^{2}\right)$, put

$$
K f(x):=\int_{0}^{x} \mathcal{K}(x, y) f(y) \mathrm{d} y, \quad x \in[0,1] .
$$

- One has $K \in \mathcal{B}(C([0,1]))$ since $\|K\| \leq\|\mathcal{K}\|_{\infty}$.

Intermezzo - Volterra integral operators

- For $\mathcal{K} \in C\left([0,1]^{2}\right)$, put

$$
K f(x):=\int_{0}^{x} \mathcal{K}(x, y) f(y) \mathrm{d} y, \quad x \in[0,1] .
$$

- One has $K \in \mathcal{B}(C([0,1]))$ since $\|K\| \leq\|\mathcal{K}\|_{\infty}$.
- In fact, K is compact (Arzela-Ascoli).

Intermezzo - Volterra integral operators

- For $\mathcal{K} \in C\left([0,1]^{2}\right)$, put

$$
K f(x):=\int_{0}^{x} \mathcal{K}(x, y) f(y) \mathrm{d} y, \quad x \in[0,1] .
$$

- One has $K \in \mathcal{B}(C([0,1]))$ since $\|K\| \leq\|\mathcal{K}\|_{\infty}$.
- In fact, K is compact (Arzela-Ascoli).

$$
\text { Q: What is } \sigma(K) ?
$$

Intermezzo - Volterra integral operators

- For $\mathcal{K} \in C\left([0,1]^{2}\right)$, put

$$
K f(x):=\int_{0}^{x} \mathcal{K}(x, y) f(y) \mathrm{d} y, \quad x \in[0,1] .
$$

- One has $K \in \mathcal{B}(C([0,1]))$ since $\|K\| \leq\|\mathcal{K}\|_{\infty}$.
- In fact, K is compact (Arzela-Ascoli).

$$
\text { Q: What is } \sigma(K) ?
$$

- By induction in $n \in \mathbb{N}_{0}$, one verifies that

$$
\left|K^{n} f(x)\right| \leq \frac{x^{n}\|\mathcal{K}\|_{\infty}^{n}}{n!}\|f\|_{\infty}, \quad \forall x \in[0,1] .
$$

Intermezzo - Volterra integral operators

- For $\mathcal{K} \in C\left([0,1]^{2}\right)$, put

$$
K f(x):=\int_{0}^{x} \mathcal{K}(x, y) f(y) \mathrm{d} y, \quad x \in[0,1] .
$$

- One has $K \in \mathcal{B}(C([0,1]))$ since $\|K\| \leq\|\mathcal{K}\|_{\infty}$.
- In fact, K is compact (Arzela-Ascoli).

$$
\text { Q: What is } \sigma(K) \text { ? }
$$

- By induction in $n \in \mathbb{N}_{0}$, one verifies that

$$
\left|K^{n} f(x)\right| \leq \frac{x^{n}\|\mathcal{K}\|_{\infty}^{n}}{n!}\|f\|_{\infty}, \quad \forall x \in[0,1] .
$$

- Therefore

$$
\left\|K^{n}\right\| \leq \frac{\|\mathcal{K}\|_{\infty}^{n}}{n!}
$$

Intermezzo - Volterra integral operators

- For $\mathcal{K} \in C\left([0,1]^{2}\right)$, put

$$
K f(x):=\int_{0}^{x} \mathcal{K}(x, y) f(y) \mathrm{d} y, \quad x \in[0,1] .
$$

- One has $K \in \mathcal{B}(C([0,1]))$ since $\|K\| \leq\|\mathcal{K}\|_{\infty}$.
- In fact, K is compact (Arzela-Ascoli).

Q: What is $\sigma(K)$?

- By induction in $n \in \mathbb{N}_{0}$, one verifies that

$$
\left|K^{n} f(x)\right| \leq \frac{x^{n}\|\mathcal{K}\|_{\infty}^{n}}{n!}\|f\|_{\infty}, \quad \forall x \in[0,1] .
$$

- Therefore

$$
\left\|K^{n}\right\| \leq \frac{\|\mathcal{K}\|_{\infty}^{n}}{n!}
$$

- And thus

$$
r(K)=\lim _{n \rightarrow \infty}\left\|K^{n}\right\|^{1 / n}=0
$$

Intermezzo - Volterra integral operators

- For $\mathcal{K} \in C\left([0,1]^{2}\right)$, put

$$
K f(x):=\int_{0}^{x} \mathcal{K}(x, y) f(y) \mathrm{d} y, \quad x \in[0,1] .
$$

- One has $K \in \mathcal{B}(C([0,1]))$ since $\|K\| \leq\|\mathcal{K}\|_{\infty}$.
- In fact, K is compact (Arzela-Ascoli).

Q: What is $\sigma(K)$?

- By induction in $n \in \mathbb{N}_{0}$, one verifies that

$$
\left|K^{n} f(x)\right| \leq \frac{x^{n}\|\mathcal{K}\|_{\infty}^{n}}{n!}\|f\|_{\infty}, \quad \forall x \in[0,1] .
$$

- Therefore

$$
\left\|K^{n}\right\| \leq \frac{\|\mathcal{K}\|_{\infty}^{n}}{n!}
$$

- And thus

$$
r(K)=\lim _{n \rightarrow \infty}\left\|K^{n}\right\|^{1 / n}=0 .
$$

- Conclusion:

$$
\sigma(K)=\{0\} .
$$

Intermezzo - Inverse to the Volterra integral operator

- Fix $\lambda \in \mathbb{C}$ and consider $\mathcal{K}(x, y):=e^{\lambda(x-y)}$. Thus

$$
K_{\lambda} f(x)=\int_{0}^{x} e^{\lambda(x-y)} f(y) \mathrm{d} y
$$

Intermezzo - Inverse to the Volterra integral operator

- Fix $\lambda \in \mathbb{C}$ and consider $\mathcal{K}(x, y):=e^{\lambda(x-y)}$. Thus

$$
K_{\lambda} f(x)=\int_{0}^{x} e^{\lambda(x-y)} f(y) \mathrm{d} y .
$$

- Kernel: Let $K_{\lambda} f=0$ for some $f \in C([0,1])$. By differentiation, one gets

$$
0=\frac{\mathrm{d}}{\mathrm{~d} x} K_{\lambda} f(x)=f(x)+\lambda K_{\lambda} f(x)=f(x), \quad \forall x \in(0,1)
$$

Intermezzo - Inverse to the Volterra integral operator

- Fix $\lambda \in \mathbb{C}$ and consider $\mathcal{K}(x, y):=e^{\lambda(x-y)}$. Thus

$$
K_{\lambda} f(x)=\int_{0}^{x} e^{\lambda(x-y)} f(y) \mathrm{d} y .
$$

- Kernel: Let $K_{\lambda} f=0$ for some $f \in C([0,1])$. By differentiation, one gets

$$
0=\frac{\mathrm{d}}{\mathrm{~d} x} K_{\lambda} f(x)=f(x)+\lambda K_{\lambda} f(x)=f(x), \quad \forall x \in(0,1) .
$$

- Hence Ker $K_{\lambda}=\{0\}$ and K_{λ} is invertible.

Intermezzo - Inverse to the Volterra integral operator

- Fix $\lambda \in \mathbb{C}$ and consider $\mathcal{K}(x, y):=e^{\lambda(x-y)}$. Thus

$$
K_{\lambda} f(x)=\int_{0}^{x} e^{\lambda(x-y)} f(y) \mathrm{d} y .
$$

- Kernel: Let $K_{\lambda} f=0$ for some $f \in C([0,1])$. By differentiation, one gets

$$
0=\frac{\mathrm{d}}{\mathrm{~d} x} K_{\lambda} f(x)=f(x)+\lambda K_{\lambda} f(x)=f(x), \quad \forall x \in(0,1)
$$

- Hence Ker $K_{\lambda}=\{0\}$ and K_{λ} is invertible.
- Range: It is easy to see that: $\operatorname{Ran} K_{\lambda} \subset\left\{g \in C^{1}([0,1]) \mid g(0)=0\right\}$.

Intermezzo - Inverse to the Volterra integral operator

- Fix $\lambda \in \mathbb{C}$ and consider $\mathcal{K}(x, y):=e^{\lambda(x-y)}$. Thus

$$
K_{\lambda} f(x)=\int_{0}^{x} e^{\lambda(x-y)} f(y) \mathrm{d} y .
$$

- Kernel: Let $K_{\lambda} f=0$ for some $f \in C([0,1])$. By differentiation, one gets

$$
0=\frac{\mathrm{d}}{\mathrm{~d} x} K_{\lambda} f(x)=f(x)+\lambda K_{\lambda} f(x)=f(x), \quad \forall x \in(0,1)
$$

- Hence Ker $K_{\lambda}=\{0\}$ and K_{λ} is invertible.
- Range: It is easy to see that: $\operatorname{Ran} K_{\lambda} \underbrace{=}\left\{g \in C^{1}([0,1]) \mid g(0)=0\right\}$. in fact

Intermezzo - Inverse to the Volterra integral operator

- Fix $\lambda \in \mathbb{C}$ and consider $\mathcal{K}(x, y):=e^{\lambda(x-y)}$. Thus

$$
K_{\lambda} f(x)=\int_{0}^{x} e^{\lambda(x-y)} f(y) \mathrm{d} y .
$$

- Kernel: Let $K_{\lambda} f=0$ for some $f \in C([0,1])$. By differentiation, one gets

$$
0=\frac{\mathrm{d}}{\mathrm{~d} x} K_{\lambda} f(x)=f(x)+\lambda K_{\lambda} f(x)=f(x), \quad \forall x \in(0,1)
$$

- Hence Ker $K_{\lambda}=\{0\}$ and K_{λ} is invertible.
- Range: It is easy to see that: $\operatorname{Ran} K_{\lambda} \underbrace{=}\left\{g \in C^{1}([0,1]) \mid g(0)=0\right\}$. in fact
- The opposite inclusion: ? $\exists f \in C([0,1])$ such that $K_{\lambda} f=g$?

Intermezzo - Inverse to the Volterra integral operator

- Fix $\lambda \in \mathbb{C}$ and consider $\mathcal{K}(x, y):=e^{\lambda(x-y)}$. Thus

$$
K_{\lambda} f(x)=\int_{0}^{x} e^{\lambda(x-y)} f(y) \mathrm{d} y .
$$

- Kernel: Let $K_{\lambda} f=0$ for some $f \in C([0,1])$. By differentiation, one gets

$$
0=\frac{\mathrm{d}}{\mathrm{~d} x} K_{\lambda} f(x)=f(x)+\lambda K_{\lambda} f(x)=f(x), \quad \forall x \in(0,1)
$$

- Hence Ker $K_{\lambda}=\{0\}$ and K_{λ} is invertible.
- Range: It is easy to see that: $\operatorname{Ran} K_{\lambda} \underbrace{=}\left\{g \in C^{1}([0,1]) \mid g(0)=0\right\}$. in fact
- The opposite inclusion: ? $\exists f \in C([0,1])$ such that $K_{\lambda} f=g$?

$$
\int_{0}^{x} e^{-\lambda y} f(y) \mathrm{d} y=e^{-\lambda x} g(x)
$$

Intermezzo - Inverse to the Volterra integral operator

- Fix $\lambda \in \mathbb{C}$ and consider $\mathcal{K}(x, y):=e^{\lambda(x-y)}$. Thus

$$
K_{\lambda} f(x)=\int_{0}^{x} e^{\lambda(x-y)} f(y) \mathrm{d} y .
$$

- Kernel: Let $K_{\lambda} f=0$ for some $f \in C([0,1])$. By differentiation, one gets

$$
0=\frac{\mathrm{d}}{\mathrm{~d} x} K_{\lambda} f(x)=f(x)+\lambda K_{\lambda} f(x)=f(x), \quad \forall x \in(0,1)
$$

- Hence Ker $K_{\lambda}=\{0\}$ and K_{λ} is invertible.
- Range: It is easy to see that: $\operatorname{Ran} K_{\lambda} \underbrace{=}\left\{g \in C^{1}([0,1]) \mid g(0)=0\right\}$. in fact
- The opposite inclusion: ? $\exists f \in C([0,1])$ such that $K_{\lambda} f=g$?

$$
\int_{0}^{x} e^{-\lambda y} f(y) \mathrm{d} y=e^{-\lambda x} g(x) \quad \rightsquigarrow \quad e^{-\lambda x} f(x)=\frac{\mathrm{d}}{\mathrm{~d} x}\left(e^{-\lambda x} g(x)\right)
$$

Intermezzo - Inverse to the Volterra integral operator

- Fix $\lambda \in \mathbb{C}$ and consider $\mathcal{K}(x, y):=e^{\lambda(x-y)}$. Thus

$$
K_{\lambda} f(x)=\int_{0}^{x} e^{\lambda(x-y)} f(y) \mathrm{d} y .
$$

- Kernel: Let $K_{\lambda} f=0$ for some $f \in C([0,1])$. By differentiation, one gets

$$
0=\frac{\mathrm{d}}{\mathrm{~d} x} K_{\lambda} f(x)=f(x)+\lambda K_{\lambda} f(x)=f(x), \quad \forall x \in(0,1)
$$

- Hence Ker $K_{\lambda}=\{0\}$ and K_{λ} is invertible.
- Range: It is easy to see that: $\operatorname{Ran} K_{\lambda} \underbrace{=}\left\{g \in C^{1}([0,1]) \mid g(0)=0\right\}$. in fact
- The opposite inclusion: ? $\exists f \in C([0,1])$ such that $K_{\lambda} f=g$?

$$
\begin{gathered}
\int_{0}^{x} e^{-\lambda y} f(y) \mathrm{d} y=e^{-\lambda x} g(x) \quad \rightsquigarrow \quad e^{-\lambda x} f(x)=\frac{\mathrm{d}}{\mathrm{~d} x}\left(e^{-\lambda x} g(x)\right) \\
f(x)=e^{\lambda x} \frac{\mathrm{~d}}{\mathrm{~d} x}\left(e^{-\lambda x} g(x)\right)
\end{gathered}
$$

Intermezzo - Inverse to the Volterra integral operator

- Fix $\lambda \in \mathbb{C}$ and consider $\mathcal{K}(x, y):=e^{\lambda(x-y)}$. Thus

$$
K_{\lambda} f(x)=\int_{0}^{x} e^{\lambda(x-y)} f(y) \mathrm{d} y .
$$

- Kernel: Let $K_{\lambda} f=0$ for some $f \in C([0,1])$. By differentiation, one gets

$$
0=\frac{\mathrm{d}}{\mathrm{~d} x} K_{\lambda} f(x)=f(x)+\lambda K_{\lambda} f(x)=f(x), \quad \forall x \in(0,1)
$$

- Hence Ker $K_{\lambda}=\{0\}$ and K_{λ} is invertible.
- Range: It is easy to see that: $\operatorname{Ran} K_{\lambda} \underbrace{=}\left\{g \in C^{1}([0,1]) \mid g(0)=0\right\}$. in fact
- The opposite inclusion: ? $\exists f \in C([0,1])$ such that $K_{\lambda} f=g$?

$$
\begin{gathered}
\int_{0}^{x} e^{-\lambda y} f(y) \mathrm{d} y=e^{-\lambda x} g(x) \quad \rightsquigarrow \quad e^{-\lambda x} f(x)=\frac{\mathrm{d}}{\mathrm{~d} x}\left(e^{-\lambda x} g(x)\right) \\
f(x)=e^{\lambda x} \frac{\mathrm{~d}}{\mathrm{~d} x}\left(e^{-\lambda x} g(x)\right)=g^{\prime}(x)-\lambda g(x)
\end{gathered}
$$

Intermezzo - Inverse to the Volterra integral operator

- Fix $\lambda \in \mathbb{C}$ and consider $\mathcal{K}(x, y):=e^{\lambda(x-y)}$. Thus

$$
K_{\lambda} f(x)=\int_{0}^{x} e^{\lambda(x-y)} f(y) \mathrm{d} y .
$$

- Kernel: Let $K_{\lambda} f=0$ for some $f \in C([0,1])$. By differentiation, one gets

$$
0=\frac{\mathrm{d}}{\mathrm{~d} x} K_{\lambda} f(x)=f(x)+\lambda K_{\lambda} f(x)=f(x), \quad \forall x \in(0,1)
$$

- Hence Ker $K_{\lambda}=\{0\}$ and K_{λ} is invertible.
- Range: It is easy to see that: $\operatorname{Ran} K_{\lambda} \underbrace{=}\left\{g \in C^{1}([0,1]) \mid g(0)=0\right\}$. in fact
- The opposite inclusion: ? $\exists f \in C([0,1])$ such that $K_{\lambda} f=g$?

$$
\begin{gathered}
\int_{0}^{x} e^{-\lambda y} f(y) \mathrm{d} y=e^{-\lambda x} g(x) \quad \rightsquigarrow \quad e^{-\lambda x} f(x)=\frac{\mathrm{d}}{\mathrm{~d} x}\left(e^{-\lambda x} g(x)\right) \\
f(x)=e^{\lambda x} \frac{\mathrm{~d}}{\mathrm{~d} x}\left(e^{-\lambda x} g(x)\right)=g^{\prime}(x)-\lambda g(x) \in C([0,1])
\end{gathered}
$$

An operator with empty spectrum

- Define

$$
T g:=g^{\prime}, \quad \operatorname{Dom} T:=\operatorname{Ran} K_{\lambda}=\left\{g \in C^{1}([0,1]) \mid g(0)=0\right\}
$$

An operator with empty spectrum

- Define

$$
T g:=g^{\prime}, \quad \operatorname{Dom} T:=\operatorname{Ran} K_{\lambda}=\left\{g \in C^{1}([0,1]) \mid g(0)=0\right\}
$$

- We've got, for arbitrary $\lambda \in \mathbb{C}$,

$$
\left(K_{\lambda}\right)^{-1} g=g^{\prime}-\lambda g=(T-\lambda) g
$$

An operator with empty spectrum

- Define

$$
T g:=g^{\prime}, \quad \operatorname{Dom} T:=\operatorname{Ran} K_{\lambda}=\left\{g \in C^{1}([0,1]) \mid g(0)=0\right\} .
$$

- We've got, for arbitrary $\lambda \in \mathbb{C}$,

$$
\left(K_{\lambda}\right)^{-1} g=g^{\prime}-\lambda g=(T-\lambda) g \quad \rightsquigarrow \quad K_{\lambda}=(T-\lambda)^{-1} .
$$

An operator with empty spectrum

- Define

$$
T g:=g^{\prime}, \quad \operatorname{Dom} T:=\operatorname{Ran} K_{\lambda}=\left\{g \in C^{1}([0,1]) \mid g(0)=0\right\} .
$$

- We've got, for arbitrary $\lambda \in \mathbb{C}$,

$$
\left(K_{\lambda}\right)^{-1} g=g^{\prime}-\lambda g=(T-\lambda) g \quad \rightsquigarrow \quad K_{\lambda}=(T-\lambda)^{-1} .
$$

- Conclusion: $\sigma(T)=\emptyset$.

An operator with empty spectrum

- Define

$$
T g:=g^{\prime}, \quad \operatorname{Dom} T:=\operatorname{Ran} K_{\lambda}=\left\{g \in C^{1}([0,1]) \mid g(0)=0\right\} .
$$

- We've got, for arbitrary $\lambda \in \mathbb{C}$,

$$
\left(K_{\lambda}\right)^{-1} g=g^{\prime}-\lambda g=(T-\lambda) g \quad \rightsquigarrow \quad K_{\lambda}=(T-\lambda)^{-1} .
$$

- Conclusion: $\sigma(T)=\emptyset$.

Remark: The operator T acts on the Banach space $C([0,1])$. A similar example works on the Hilbert space $L^{2}(0,1)$:

$$
T g:=g^{\prime}, \quad \operatorname{Dom} T:=\{g \in A C([0,1]) \mid g(0)=0\}
$$

where

$$
A C([0,1])=\left\{g \text { a.c. on }[0,1] \mid g^{\prime} \in L^{2}(0,1)\right\} .
$$

Then $\sigma(T)=\emptyset$.

Contents

(1) An operator with empty spectrum

(2) Shift operators

(3) Research topics - open problems

Parts of the spectrum - Introduction

- Spectrum:
$\lambda \in \rho(T) \equiv \mathbb{C} \backslash \sigma(T) \quad$ def $\quad T-\lambda$ is invertible with bounded inverse.

Parts of the spectrum - Introduction

- Spectrum:

$$
\lambda \in \rho(T) \equiv \mathbb{C} \backslash \sigma(T) \quad \stackrel{\text { def }}{\Longleftrightarrow} T-\lambda \text { is invertible with bounded inverse. }
$$

- Parts of the spectrum:
(i) $T-\lambda$ not injective $\quad \rightsquigarrow \quad \lambda \in \sigma_{p}(T)$
(ii) $T-\lambda$ injective but not surjective $\left\{\begin{array}{lll}\operatorname{Ran}(T-\lambda) \text { dense } & \rightsquigarrow & \lambda \in \sigma_{c}(T) \\ \operatorname{Ran}(T-\lambda) \text { not dense } & \rightsquigarrow & \lambda \in \sigma_{r}(T)\end{array}\right.$

Parts of the spectrum - Introduction

- Spectrum:

$$
\lambda \in \rho(T) \equiv \mathbb{C} \backslash \sigma(T) \quad \stackrel{\text { def }}{\Longleftrightarrow} T-\lambda \text { is invertible with bounded inverse. }
$$

- Parts of the spectrum:
(i) $T-\lambda$ not injective $\quad \rightsquigarrow \quad \lambda \in \sigma_{p}(T)$
(ii) $T-\lambda$ injective but not surjective $\left\{\begin{array}{lll}\operatorname{Ran}(T-\lambda) \text { dense } & \rightsquigarrow & \lambda \in \sigma_{c}(T) \\ \operatorname{Ran}(T-\lambda) \text { not dense } & \rightsquigarrow & \lambda \in \sigma_{r}(T)\end{array}\right.$
- Physical (QM) interpretation:
(a) $\sigma_{p}(T)$-bound states
(b) $\sigma_{c}(T)$ - scattering states
(c) $\sigma_{r}(T)$ - no interpretation (???)

Parts of the spectrum - Introduction

- Spectrum:

$$
\lambda \in \rho(T) \equiv \mathbb{C} \backslash \sigma(T) \quad \stackrel{\text { def }}{\Longleftrightarrow} T-\lambda \text { is invertible with bounded inverse. }
$$

- Parts of the spectrum:
(i) $T-\lambda$ not injective $\quad \rightsquigarrow \quad \lambda \in \sigma_{p}(T)$
(ii) $T-\lambda$ injective but not surjective $\left\{\begin{array}{lll}\operatorname{Ran}(T-\lambda) \text { dense } & \rightsquigarrow & \lambda \in \sigma_{c}(T) \\ \operatorname{Ran}(T-\lambda) \text { not dense } & \rightsquigarrow & \lambda \in \sigma_{r}(T)\end{array}\right.$
- Physical (QM) interpretation:
(a) $\sigma_{p}(T)$-bound states
(b) $\sigma_{c}(T)$ - scattering states
(c) $\sigma_{r}(T)$ - no interpretation (???)
- (ad a) Intuition: "Bound states are not many - cannot form a continuous set"
(orthogonal eigenvectors, separability).

Parts of the spectrum - Introduction

- Spectrum:

$$
\lambda \in \rho(T) \equiv \mathbb{C} \backslash \sigma(T) \quad \stackrel{\text { def }}{\Longleftrightarrow} T-\lambda \text { is invertible with bounded inverse. }
$$

- Parts of the spectrum:
(i) $T-\lambda$ not injective $\quad \rightsquigarrow \quad \lambda \in \sigma_{p}(T)$
(ii) $T-\lambda$ injective but not surjective $\left\{\begin{array}{lll}\operatorname{Ran}(T-\lambda) \text { dense } & \rightsquigarrow & \lambda \in \sigma_{c}(T) \\ \operatorname{Ran}(T-\lambda) \text { not dense } & \rightsquigarrow & \lambda \in \sigma_{r}(T)\end{array}\right.$
- Physical (QM) interpretation:
(a) $\sigma_{p}(T)$-bound states
(b) $\sigma_{c}(T)$ - scattering states
(c) $\sigma_{r}(T)$ - no interpretation (???)
- (ad a) Intuition: "Bound states are not many - cannot form a continuous set"
(orthogonal eigenvectors, separability).
- $(\mathrm{ad} c)$ Residual spectrum not present in $\mathrm{QM}: T=T^{*} \quad \Longrightarrow \quad \sigma_{r}(T)=\emptyset$.

Parts of the spectrum - Introduction

- Spectrum:

$$
\lambda \in \rho(T) \equiv \mathbb{C} \backslash \sigma(T) \quad \stackrel{\text { def }}{\Longleftrightarrow} T-\lambda \text { is invertible with bounded inverse. }
$$

- Parts of the spectrum:
(i) $T-\lambda$ not injective $\quad \rightsquigarrow \quad \lambda \in \sigma_{p}(T)$
(ii) $T-\lambda$ injective but not surjective $\left\{\begin{array}{lll}\operatorname{Ran}(T-\lambda) \text { dense } & \rightsquigarrow & \lambda \in \sigma_{c}(T) \\ \operatorname{Ran}(T-\lambda) \text { not dense } & \rightsquigarrow & \lambda \in \sigma_{r}(T)\end{array}\right.$
- Physical (QM) interpretation:
(a) $\sigma_{p}(T)$-bound states
(b) $\sigma_{c}(T)$ - scattering states
(c) $\sigma_{r}(T)$ - no interpretation (???)
- (ad a) Intuition: "Bound states are not many - cannot form a continuous set"
(orthogonal eigenvectors, separability).
- $(\mathrm{ad} c)$ Residual spectrum not present in $\mathrm{QM}: T=T^{*} \quad \Longrightarrow \quad \sigma_{r}(T)=\emptyset$.

The above comments fail to hold if $T \neq T^{*}$.

Simple but important observation

- Easy exercise:

$$
\operatorname{Ker} T^{*}=(\operatorname{Ran} T)^{\perp}
$$

Simple but important observation

- Easy exercise:

$$
\operatorname{Ker} T^{*}=(\operatorname{Ran} T)^{\perp}
$$

- Corollaries of $\operatorname{Ker}\left(T^{*}-\bar{\lambda}\right)=(\operatorname{Ran}(T-\lambda))^{\perp}$:

$$
\begin{aligned}
&(i) \lambda \in \sigma_{r}(T) \\
& \text { (ii) } \quad \lambda \in \sigma_{p}(T) \Longrightarrow \bar{\lambda} \in \sigma_{p}\left(T^{*}\right) \\
& \bar{\lambda} \in \sigma_{p}\left(T^{*}\right) \cup \sigma_{r}\left(T^{*}\right)
\end{aligned}
$$

Two good candidates for counter-examples

- On $\ell^{2}(\mathbb{N})$, define

$$
R\left(x_{1}, x_{2}, \ldots\right):=\left(0, x_{1}, x_{2}, \ldots\right) \quad \text { and } \quad L\left(x_{1}, x_{2}, \ldots\right):=\left(x_{2}, x_{3}, \ldots\right)
$$

Two good candidates for counter-examples

- On $\ell^{2}(\mathbb{N})$, define

$$
R\left(x_{1}, x_{2}, \ldots\right):=\left(0, x_{1}, x_{2}, \ldots\right) \quad \text { and } \quad L\left(x_{1}, x_{2}, \ldots\right):=\left(x_{2}, x_{3}, \ldots\right) .
$$

- $\|R\|=\|L\|=1$

Two good candidates for counter-examples

- On $\ell^{2}(\mathbb{N})$, define

$$
R\left(x_{1}, x_{2}, \ldots\right):=\left(0, x_{1}, x_{2}, \ldots\right) \quad \text { and } \quad L\left(x_{1}, x_{2}, \ldots\right):=\left(x_{2}, x_{3}, \ldots\right)
$$

- $\|R\|=\|L\|=1 \quad \Rightarrow \quad \sigma(R), \sigma(L) \subset \overline{\mathbb{D}}$.

Two good candidates for counter-examples

- On $\ell^{2}(\mathbb{N})$, define

$$
R\left(x_{1}, x_{2}, \ldots\right):=\left(0, x_{1}, x_{2}, \ldots\right) \quad \text { and } \quad L\left(x_{1}, x_{2}, \ldots\right):=\left(x_{2}, x_{3}, \ldots\right) .
$$

- $\|R\|=\|L\|=1 \quad \Rightarrow \quad \sigma(R), \sigma(L) \subset \overline{\mathbb{D}}$.
- $L^{*}=R$.

Two good candidates for counter-examples

- On $\ell^{2}(\mathbb{N})$, define

$$
R\left(x_{1}, x_{2}, \ldots\right):=\left(0, x_{1}, x_{2}, \ldots\right) \quad \text { and } \quad L\left(x_{1}, x_{2}, \ldots\right):=\left(x_{2}, x_{3}, \ldots\right)
$$

- $\|R\|=\|L\|=1 \quad \Rightarrow \quad \sigma(R), \sigma(L) \subset \overline{\mathbb{D}}$.
- $L^{*}=R$.

$$
L x=\lambda x
$$

Two good candidates for counter-examples

- On $\ell^{2}(\mathbb{N})$, define

$$
R\left(x_{1}, x_{2}, \ldots\right):=\left(0, x_{1}, x_{2}, \ldots\right) \quad \text { and } \quad L\left(x_{1}, x_{2}, \ldots\right):=\left(x_{2}, x_{3}, \ldots\right)
$$

- $\|R\|=\|L\|=1 \quad \Rightarrow \quad \sigma(R), \sigma(L) \subset \overline{\mathbb{D}}$.
- $L^{*}=R$.

$$
L x=\lambda x \quad \Leftrightarrow \quad x_{n+1}=\lambda x_{n}
$$

Two good candidates for counter-examples

- On $\ell^{2}(\mathbb{N})$, define

$$
R\left(x_{1}, x_{2}, \ldots\right):=\left(0, x_{1}, x_{2}, \ldots\right) \quad \text { and } \quad L\left(x_{1}, x_{2}, \ldots\right):=\left(x_{2}, x_{3}, \ldots\right)
$$

- $\|R\|=\|L\|=1 \quad \Rightarrow \quad \sigma(R), \sigma(L) \subset \overline{\mathbb{D}}$.
- $L^{*}=R$.

$$
L x=\lambda x \quad \Leftrightarrow \quad x_{n+1}=\lambda x_{n} \quad \Leftrightarrow \quad x_{n+1}=\lambda^{n} x_{1}
$$

Two good candidates for counter-examples

- On $\ell^{2}(\mathbb{N})$, define

$$
R\left(x_{1}, x_{2}, \ldots\right):=\left(0, x_{1}, x_{2}, \ldots\right) \quad \text { and } \quad L\left(x_{1}, x_{2}, \ldots\right):=\left(x_{2}, x_{3}, \ldots\right)
$$

- $\|R\|=\|L\|=1 \quad \Rightarrow \quad \sigma(R), \sigma(L) \subset \overline{\mathbb{D}}$.
- $L^{*}=R$.

$$
L x=\lambda x \quad \Leftrightarrow \quad x_{n+1}=\lambda x_{n} \quad \Leftrightarrow \quad x_{n+1}=\lambda^{n} x_{1} \in \ell^{2}(\mathbb{N}) \quad \Leftrightarrow \quad|\lambda|<1
$$

Two good candidates for counter-examples

- On $\ell^{2}(\mathbb{N})$, define

$$
R\left(x_{1}, x_{2}, \ldots\right):=\left(0, x_{1}, x_{2}, \ldots\right) \quad \text { and } \quad L\left(x_{1}, x_{2}, \ldots\right):=\left(x_{2}, x_{3}, \ldots\right)
$$

- $\|R\|=\|L\|=1 \quad \Rightarrow \quad \sigma(R), \sigma(L) \subset \overline{\mathbb{D}}$.
- $L^{*}=R$.

$$
L x=\lambda x \quad \Leftrightarrow \quad x_{n+1}=\lambda x_{n} \quad \Leftrightarrow \quad x_{n+1}=\lambda^{n} x_{1} \in \ell^{2}(\mathbb{N}) \quad \Leftrightarrow \quad|\lambda|<1
$$

- Conclusion: $\sigma_{p}(L)=\mathbb{D}$ and $\sigma(L)=\overline{\mathbb{D}}$.

Two good candidates for counter-examples

- On $\ell^{2}(\mathbb{N})$, define

$$
R\left(x_{1}, x_{2}, \ldots\right):=\left(0, x_{1}, x_{2}, \ldots\right) \quad \text { and } \quad L\left(x_{1}, x_{2}, \ldots\right):=\left(x_{2}, x_{3}, \ldots\right)
$$

- $\|R\|=\|L\|=1 \quad \Rightarrow \quad \sigma(R), \sigma(L) \subset \overline{\mathbb{D}}$.
- $L^{*}=R$.

$$
L x=\lambda x \quad \Leftrightarrow \quad x_{n+1}=\lambda x_{n} \quad \Leftrightarrow \quad x_{n+1}=\lambda^{n} x_{1} \in \ell^{2}(\mathbb{N}) \quad \Leftrightarrow \quad|\lambda|<1
$$

- Conclusion: $\sigma_{p}(L)=\mathbb{D}$ and $\sigma(L)=\overline{\mathbb{D}}$.

$$
R x=\lambda x
$$

Two good candidates for counter-examples

- On $\ell^{2}(\mathbb{N})$, define

$$
R\left(x_{1}, x_{2}, \ldots\right):=\left(0, x_{1}, x_{2}, \ldots\right) \quad \text { and } \quad L\left(x_{1}, x_{2}, \ldots\right):=\left(x_{2}, x_{3}, \ldots\right)
$$

- $\|R\|=\|L\|=1 \quad \Rightarrow \quad \sigma(R), \sigma(L) \subset \overline{\mathbb{D}}$.
- $L^{*}=R$.

$$
L x=\lambda x \quad \Leftrightarrow \quad x_{n+1}=\lambda x_{n} \quad \Leftrightarrow \quad x_{n+1}=\lambda^{n} x_{1} \in \ell^{2}(\mathbb{N}) \quad \Leftrightarrow \quad|\lambda|<1
$$

- Conclusion: $\sigma_{p}(L)=\mathbb{D}$ and $\sigma(L)=\overline{\mathbb{D}}$.

$$
R x=\lambda x \quad \Leftrightarrow \quad x_{1}=0 \wedge x_{n-1}=\lambda x_{n}
$$

Two good candidates for counter-examples

- On $\ell^{2}(\mathbb{N})$, define

$$
R\left(x_{1}, x_{2}, \ldots\right):=\left(0, x_{1}, x_{2}, \ldots\right) \quad \text { and } \quad L\left(x_{1}, x_{2}, \ldots\right):=\left(x_{2}, x_{3}, \ldots\right)
$$

- $\|R\|=\|L\|=1 \quad \Rightarrow \quad \sigma(R), \sigma(L) \subset \overline{\mathbb{D}}$.
- $L^{*}=R$.

$$
L x=\lambda x \quad \Leftrightarrow \quad x_{n+1}=\lambda x_{n} \quad \Leftrightarrow \quad x_{n+1}=\lambda^{n} x_{1} \in \ell^{2}(\mathbb{N}) \quad \Leftrightarrow \quad|\lambda|<1
$$

- Conclusion: $\sigma_{p}(L)=\mathbb{D}$ and $\sigma(L)=\overline{\mathbb{D}}$.

$$
R x=\lambda x \quad \Leftrightarrow \quad x_{1}=0 \wedge x_{n-1}=\lambda x_{n} \quad \Leftrightarrow \quad x=0
$$

Two good candidates for counter-examples

- On $\ell^{2}(\mathbb{N})$, define

$$
R\left(x_{1}, x_{2}, \ldots\right):=\left(0, x_{1}, x_{2}, \ldots\right) \quad \text { and } \quad L\left(x_{1}, x_{2}, \ldots\right):=\left(x_{2}, x_{3}, \ldots\right)
$$

- $\|R\|=\|L\|=1 \quad \Rightarrow \quad \sigma(R), \sigma(L) \subset \overline{\mathbb{D}}$.
- $L^{*}=R$.

$$
L x=\lambda x \quad \Leftrightarrow \quad x_{n+1}=\lambda x_{n} \quad \Leftrightarrow \quad x_{n+1}=\lambda^{n} x_{1} \in \ell^{2}(\mathbb{N}) \quad \Leftrightarrow \quad|\lambda|<1
$$

- Conclusion: $\sigma_{p}(L)=\mathbb{D}$ and $\sigma(L)=\overline{\mathbb{D}}$.

$$
R x=\lambda x \quad \Leftrightarrow \quad x_{1}=0 \wedge x_{n-1}=\lambda x_{n} \quad \Leftrightarrow \quad x=0
$$

- Conclusion: $\sigma_{p}(R)=\emptyset$

Two good candidates for counter-examples

- On $\ell^{2}(\mathbb{N})$, define

$$
R\left(x_{1}, x_{2}, \ldots\right):=\left(0, x_{1}, x_{2}, \ldots\right) \quad \text { and } \quad L\left(x_{1}, x_{2}, \ldots\right):=\left(x_{2}, x_{3}, \ldots\right)
$$

- $\|R\|=\|L\|=1 \quad \Rightarrow \quad \sigma(R), \sigma(L) \subset \overline{\mathbb{D}}$.
- $L^{*}=R$.

$$
L x=\lambda x \quad \Leftrightarrow \quad x_{n+1}=\lambda x_{n} \quad \Leftrightarrow \quad x_{n+1}=\lambda^{n} x_{1} \in \ell^{2}(\mathbb{N}) \quad \Leftrightarrow \quad|\lambda|<1
$$

- Conclusion: $\sigma_{p}(L)=\mathbb{D}$ and $\sigma(L)=\overline{\mathbb{D}}$.

$$
R x=\lambda x \quad \Leftrightarrow \quad x_{1}=0 \wedge x_{n-1}=\lambda x_{n} \quad \Leftrightarrow \quad x=0
$$

- Conclusion: $\sigma_{p}(R)=\emptyset \quad \Rightarrow \quad \sigma_{r}(L)=\emptyset$

Two good candidates for counter-examples

- On $\ell^{2}(\mathbb{N})$, define

$$
R\left(x_{1}, x_{2}, \ldots\right):=\left(0, x_{1}, x_{2}, \ldots\right) \quad \text { and } \quad L\left(x_{1}, x_{2}, \ldots\right):=\left(x_{2}, x_{3}, \ldots\right)
$$

- $\|R\|=\|L\|=1 \quad \Rightarrow \quad \sigma(R), \sigma(L) \subset \overline{\mathbb{D}}$.
- $L^{*}=R$.

$$
L x=\lambda x \quad \Leftrightarrow \quad x_{n+1}=\lambda x_{n} \quad \Leftrightarrow \quad x_{n+1}=\lambda^{n} x_{1} \in \ell^{2}(\mathbb{N}) \quad \Leftrightarrow \quad|\lambda|<1
$$

- Conclusion: $\sigma_{p}(L)=\mathbb{D}$ and $\sigma(L)=\overline{\mathbb{D}}$.

$$
R x=\lambda x \quad \Leftrightarrow \quad x_{1}=0 \wedge x_{n-1}=\lambda x_{n} \quad \Leftrightarrow \quad x=0
$$

- Conclusion: $\sigma_{p}(R)=\emptyset \quad \Rightarrow \quad \sigma_{r}(L)=\emptyset \quad \Rightarrow \quad \sigma_{c}(L)=\mathbb{T}$.

Two good candidates for counter-examples

- On $\ell^{2}(\mathbb{N})$, define

$$
R\left(x_{1}, x_{2}, \ldots\right):=\left(0, x_{1}, x_{2}, \ldots\right) \quad \text { and } \quad L\left(x_{1}, x_{2}, \ldots\right):=\left(x_{2}, x_{3}, \ldots\right)
$$

- $\|R\|=\|L\|=1 \quad \Rightarrow \quad \sigma(R), \sigma(L) \subset \overline{\mathbb{D}}$.
- $L^{*}=R$.

$$
L x=\lambda x \quad \Leftrightarrow \quad x_{n+1}=\lambda x_{n} \quad \Leftrightarrow \quad x_{n+1}=\lambda^{n} x_{1} \in \ell^{2}(\mathbb{N}) \quad \Leftrightarrow \quad|\lambda|<1
$$

- Conclusion: $\sigma_{p}(L)=\mathbb{D}$ and $\sigma(L)=\overline{\mathbb{D}}$.

$$
R x=\lambda x \quad \Leftrightarrow \quad x_{1}=0 \wedge x_{n-1}=\lambda x_{n} \quad \Leftrightarrow \quad x=0
$$

- Conclusion: $\sigma_{p}(R)=\emptyset \quad \Rightarrow \quad \sigma_{r}(L)=\emptyset \quad \Rightarrow \quad \sigma_{c}(L)=\mathbb{T}$.

$$
\sigma_{p}(L)=\mathbb{D} \quad \Rightarrow \quad \mathbb{D} \subset \sigma_{p}(R) \cup \sigma_{r}(R)
$$

Two good candidates for counter-examples

- On $\ell^{2}(\mathbb{N})$, define

$$
R\left(x_{1}, x_{2}, \ldots\right):=\left(0, x_{1}, x_{2}, \ldots\right) \quad \text { and } \quad L\left(x_{1}, x_{2}, \ldots\right):=\left(x_{2}, x_{3}, \ldots\right)
$$

- $\|R\|=\|L\|=1 \quad \Rightarrow \quad \sigma(R), \sigma(L) \subset \overline{\mathbb{D}}$.
- $L^{*}=R$.

$$
L x=\lambda x \quad \Leftrightarrow \quad x_{n+1}=\lambda x_{n} \quad \Leftrightarrow \quad x_{n+1}=\lambda^{n} x_{1} \in \ell^{2}(\mathbb{N}) \quad \Leftrightarrow \quad|\lambda|<1
$$

- Conclusion: $\sigma_{p}(L)=\mathbb{D}$ and $\sigma(L)=\overline{\mathbb{D}}$.

$$
R x=\lambda x \quad \Leftrightarrow \quad x_{1}=0 \wedge x_{n-1}=\lambda x_{n} \quad \Leftrightarrow \quad x=0
$$

- Conclusion: $\sigma_{p}(R)=\emptyset \quad \Rightarrow \quad \sigma_{r}(L)=\emptyset \quad \Rightarrow \quad \sigma_{c}(L)=\mathbb{T}$.
-

$$
\sigma_{p}(L)=\mathbb{D} \quad \Rightarrow \quad \mathbb{D} \subset \underbrace{\sigma_{p}(R)}_{=\emptyset} \cup \sigma_{r}(R)=\sigma_{r}(R) .
$$

Two good candidates for counter-examples

- On $\ell^{2}(\mathbb{N})$, define

$$
R\left(x_{1}, x_{2}, \ldots\right):=\left(0, x_{1}, x_{2}, \ldots\right) \quad \text { and } \quad L\left(x_{1}, x_{2}, \ldots\right):=\left(x_{2}, x_{3}, \ldots\right)
$$

- $\|R\|=\|L\|=1 \quad \Rightarrow \quad \sigma(R), \sigma(L) \subset \overline{\mathbb{D}}$.
- $L^{*}=R$.

$$
L x=\lambda x \quad \Leftrightarrow \quad x_{n+1}=\lambda x_{n} \quad \Leftrightarrow \quad x_{n+1}=\lambda^{n} x_{1} \in \ell^{2}(\mathbb{N}) \quad \Leftrightarrow \quad|\lambda|<1
$$

- Conclusion: $\sigma_{p}(L)=\mathbb{D}$ and $\sigma(L)=\overline{\mathbb{D}}$.

$$
R x=\lambda x \quad \Leftrightarrow \quad x_{1}=0 \wedge x_{n-1}=\lambda x_{n} \quad \Leftrightarrow \quad x=0
$$

- Conclusion: $\sigma_{p}(R)=\emptyset \quad \Rightarrow \quad \sigma_{r}(L)=\emptyset \quad \Rightarrow \quad \sigma_{c}(L)=\mathbb{T}$.
-

$$
\sigma_{p}(L)=\mathbb{D} \quad \Rightarrow \quad \mathbb{D} \subset \underbrace{\sigma_{p}(R)}_{=\emptyset} \cup \sigma_{r}(R)=\sigma_{r}(R) .
$$

- Conclusion: $\sigma_{c}(R)=\mathbb{T}$ (since $\left.\mathbb{T} \ni \lambda \in \sigma_{r}(R) \Rightarrow \bar{\lambda} \in \sigma_{p}(L)=\mathbb{D}\right)$.

Two good candidates for counter-examples

- On $\ell^{2}(\mathbb{N})$, define

$$
R\left(x_{1}, x_{2}, \ldots\right):=\left(0, x_{1}, x_{2}, \ldots\right) \quad \text { and } \quad L\left(x_{1}, x_{2}, \ldots\right):=\left(x_{2}, x_{3}, \ldots\right) \text {. }
$$

- $\|R\|=\|L\|=1 \quad \Rightarrow \quad \sigma(R), \sigma(L) \subset \overline{\mathbb{D}}$.
- $L^{*}=R$.

$$
L x=\lambda x \quad \Leftrightarrow \quad x_{n+1}=\lambda x_{n} \quad \Leftrightarrow \quad x_{n+1}=\lambda^{n} x_{1} \in \ell^{2}(\mathbb{N}) \quad \Leftrightarrow \quad|\lambda|<1
$$

- Conclusion: $\sigma_{p}(L)=\mathbb{D}$ and $\sigma(L)=\overline{\mathbb{D}}$.

$$
R x=\lambda x \quad \Leftrightarrow \quad x_{1}=0 \wedge x_{n-1}=\lambda x_{n} \quad \Leftrightarrow \quad x=0
$$

- Conclusion: $\sigma_{p}(R)=\emptyset \quad \Rightarrow \quad \sigma_{r}(L)=\emptyset \quad \Rightarrow \quad \sigma_{c}(L)=\mathbb{T}$.
-

$$
\sigma_{p}(L)=\mathbb{D} \Rightarrow \mathbb{D} \subset \underbrace{\sigma_{p}(R)}_{=\emptyset} \cup \sigma_{r}(R)=\sigma_{r}(R) .
$$

- Conclusion: $\sigma_{c}(R)=\mathbb{T}$ (since $\left.\mathbb{T} \ni \lambda \in \sigma_{r}(R) \Rightarrow \bar{\lambda} \in \sigma_{p}(L)=\mathbb{D}\right)$.
- In total:

Two good candidates for counter-examples

- On $\ell^{2}(\mathbb{N})$, define

$$
R\left(x_{1}, x_{2}, \ldots\right):=\left(0, x_{1}, x_{2}, \ldots\right) \quad \text { and } \quad L\left(x_{1}, x_{2}, \ldots\right):=\left(x_{2}, x_{3}, \ldots\right) \text {. }
$$

- $\|R\|=\|L\|=1 \quad \Rightarrow \quad \sigma(R), \sigma(L) \subset \overline{\mathbb{D}}$.
- $L^{*}=R$.

$$
L x=\lambda x \quad \Leftrightarrow \quad x_{n+1}=\lambda x_{n} \quad \Leftrightarrow \quad x_{n+1}=\lambda^{n} x_{1} \in \ell^{2}(\mathbb{N}) \quad \Leftrightarrow \quad|\lambda|<1
$$

- Conclusion: $\sigma_{p}(L)=\mathbb{D}$ and $\sigma(L)=\overline{\mathbb{D}}$.

$$
R x=\lambda x \quad \Leftrightarrow \quad x_{1}=0 \wedge x_{n-1}=\lambda x_{n} \quad \Leftrightarrow \quad x=0
$$

- Conclusion: $\sigma_{p}(R)=\emptyset \quad \Rightarrow \quad \sigma_{r}(L)=\emptyset \quad \Rightarrow \quad \sigma_{c}(L)=\mathbb{T}$.
-

$$
\sigma_{p}(L)=\mathbb{D} \quad \Rightarrow \quad \mathbb{D} \subset \underbrace{\sigma_{p}(R)}_{=\emptyset} \cup \sigma_{r}(R)=\sigma_{r}(R) .
$$

- Conclusion: $\sigma_{c}(R)=\mathbb{T}$ (since $\left.\mathbb{T} \ni \lambda \in \sigma_{r}(R) \Rightarrow \bar{\lambda} \in \sigma_{p}(L)=\mathbb{D}\right)$.
- In total:

$$
\sigma_{p}(L)=\mathbb{D}, \quad \sigma_{c}(L)=\mathbb{T}, \quad \sigma_{r}(L)=\emptyset
$$

Two good candidates for counter-examples

- On $\ell^{2}(\mathbb{N})$, define

$$
R\left(x_{1}, x_{2}, \ldots\right):=\left(0, x_{1}, x_{2}, \ldots\right) \quad \text { and } \quad L\left(x_{1}, x_{2}, \ldots\right):=\left(x_{2}, x_{3}, \ldots\right)
$$

- $\|R\|=\|L\|=1 \quad \Rightarrow \quad \sigma(R), \sigma(L) \subset \overline{\mathbb{D}}$.
- $L^{*}=R$.

$$
L x=\lambda x \quad \Leftrightarrow \quad x_{n+1}=\lambda x_{n} \quad \Leftrightarrow \quad x_{n+1}=\lambda^{n} x_{1} \in \ell^{2}(\mathbb{N}) \quad \Leftrightarrow \quad|\lambda|<1
$$

- Conclusion: $\sigma_{p}(L)=\mathbb{D}$ and $\sigma(L)=\overline{\mathbb{D}}$.

$$
R x=\lambda x \quad \Leftrightarrow \quad x_{1}=0 \wedge x_{n-1}=\lambda x_{n} \quad \Leftrightarrow \quad x=0
$$

- Conclusion: $\sigma_{p}(R)=\emptyset \quad \Rightarrow \quad \sigma_{r}(L)=\emptyset \quad \Rightarrow \quad \sigma_{c}(L)=\mathbb{T}$.
-

$$
\sigma_{p}(L)=\mathbb{D} \quad \Rightarrow \quad \mathbb{D} \subset \underbrace{\sigma_{p}(R)}_{=\emptyset} \cup \sigma_{r}(R)=\sigma_{r}(R) .
$$

- Conclusion: $\sigma_{c}(R)=\mathbb{T}$ (since $\left.\mathbb{T} \ni \lambda \in \sigma_{r}(R) \Rightarrow \bar{\lambda} \in \sigma_{p}(L)=\mathbb{D}\right)$.
- In total:

$$
\begin{array}{llll}
\sigma_{p}(L)=\mathbb{D}, & \sigma_{c}(L)=\mathbb{T}, & & \sigma_{r}(L)=\emptyset \\
\sigma_{p}(R)=\emptyset, & & \sigma_{c}(R)=\mathbb{T}, & \\
\sigma_{r}(R)=\mathbb{D}
\end{array}
$$

Contents

(1) An operator with empty spectrum

(2) Shift operators
(3) Research topics - open problems

Where NSA operators can appear

- Operator and Spectral Theory: general properties of NSA operators possessing additional symmetry, real spectrum, similarity to SA operators, basiness of eigenvectors (completeness, Schauder, Riezs), perturbation theory, spectral approximation, pseudospectral analysis, generalized eigenvalue problems - matrix pencils, ...
- Mathematical Physics: optics, damped systems, quantum resonances, hydro- and magnetohydrodynamics, superconductivity, graphene, NSA QM - $\mathcal{P} \mathcal{T}$-symmetry (?), ...
- Approximation theory and OGPs: asymptotic analysis, zero distribution of OGPs with non-standard parameters, complex orthogonality, Riemann-Hilbert problem, real-rootedness of various polynomial families, Multiple OGPs, Hermite-Padé approximants, number theory, ...
- Complex analysis: location of zeros, reality of zeros of entire functions - special functions, Laguerre-Pólya class, ...
- Numerical mathematics: reliability of approximations, pseudospectrum, stability, ...
- And much more...

Where NSA operators can appear

- Operator and Spectral Theory: general properties of NSA operators possessing additional symmetry, real spectrum, similarity to SA operators, basiness of eigenvectors (completeness, Schauder, Riezs), perturbation theory, spectral approximation, pseudospectral analysis, generalized eigenvalue problems - matrix pencils, ...
- Mathematical Physics: optics, damped systems, quantum resonances, hydro- and magnetohydrodynamics, superconductivity, graphene, NSA QM - $\mathcal{P} \mathcal{T}$-symmetry (?), ...
- Approximation theory and OGPs: asymptotic analysis, zero distribution of OGPs with non-standard parameters, complex orthogonality, Riemann-Hilbert problem, real-rootedness of various polynomial families, Multiple OGPs, Hermite-Padé approximants, number theory, ...
- Complex analysis: location of zeros, reality of zeros of entire functions-special functions, Laguerre-Pólya class, ...
- Numerical mathematics: reliability of approximations, pseudospectrum, stability, ...
- And much more...

Lets look briefly on two topics...

NSA operators with purely real spectrum

- We saw examples of NSA operators with properties being "far" from those of SA operators.

NSA operators with purely real spectrum

- We saw examples of NSA operators with properties being "far" from those of SA operators.
- NSA operators which in a sense resembles properties of SA operators (with no obvious reason) are of special interest.

NSA operators with purely real spectrum

- We saw examples of NSA operators with properties being "far" from those of SA operators.
- NSA operators which in a sense resembles properties of SA operators (with no obvious reason) are of special interest.
- Usually, the investigation focuses on operators from well-understood particular families like:

NSA operators with purely real spectrum

- We saw examples of NSA operators with properties being "far" from those of SA operators.
- NSA operators which in a sense resembles properties of SA operators (with no obvious reason) are of special interest.
- Usually, the investigation focuses on operators from well-understood particular families like: Schrödinger, Sturm-Liouville, Dirac, Jacobi, Hankel, Toeplitz, locally Toeplitz, KMS, various integral operators, BD pencils,...

NSA operators with purely real spectrum

- We saw examples of NSA operators with properties being "far" from those of SA operators.
- NSA operators which in a sense resembles properties of SA operators (with no obvious reason) are of special interest.
- Usually, the investigation focuses on operators from well-understood particular families like: Schrödinger, Sturm-Liouville, Dirac, Jacobi, Hankel, Toeplitz, locally Toeplitz, KMS, various integral operators, BD pencils,...

Q: Under what conditions can have a NSA operator/matrix (from one of the above class) purely real spectrum?

NSA operators with purely real spectrum

- We saw examples of NSA operators with properties being "far" from those of SA operators.
- NSA operators which in a sense resembles properties of SA operators (with no obvious reason) are of special interest.
- Usually, the investigation focuses on operators from well-understood particular families like: Schrödinger, Sturm-Liouville, Dirac, Jacobi, Hankel, Toeplitz, locally Toeplitz, KMS, various integral operators, BD pencils,...

Q: Under what conditions can have a NSA operator/matrix (from one of the above class) purely real spectrum?

- Ignoring some results (perturbation-like, Krein or Pontryagin spaces,...), we can say that there are not many (general) sufficient conditions guaranteeing reality of the spectrum.

NSA operators with purely real spectrum

- We saw examples of NSA operators with properties being "far" from those of SA operators.
- NSA operators which in a sense resembles properties of SA operators (with no obvious reason) are of special interest.
- Usually, the investigation focuses on operators from well-understood particular families like: Schrödinger, Sturm-Liouville, Dirac, Jacobi, Hankel, Toeplitz, locally Toeplitz, KMS, various integral operators, BD pencils,...

Q: Under what conditions can have a NSA operator/matrix (from one of the above class) purely real spectrum?

- Ignoring some results (perturbation-like, Krein or Pontryagin spaces,...), we can say that there are not many (general) sufficient conditions guaranteeing reality of the spectrum.
- Instead, there exist several very involved concrete examples:
i) $-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}+\mathrm{i} x^{3}$ on $L^{2}(\mathbb{R})$,
ii) $\frac{\mathrm{d}}{\mathrm{d} x}\left(\sin (x) \frac{\mathrm{d}}{\mathrm{d} x}\right)+\frac{\mathrm{d}}{\mathrm{d} x}$ on $L^{2}(-\pi, \pi)$,
iii) some Jacobi matrices.

Toeplitz matrices with real eigenvalues

- Toeplitz matrix:

$$
T_{n}(b)=\left(a_{j-k}\right)_{j, k=0}^{n-1}=\left(\begin{array}{ccccc}
a_{0} & a_{-1} & a_{-2} & \ldots & a_{-n+1} \\
a_{1} & a_{0} & a_{-1} & \ldots & a_{-n+2} \\
a_{2} & a_{1} & a_{0} & \ldots & a_{-n+3} \\
\ldots & \ldots & \ldots & \cdots & \ldots \\
a_{n-1} & a_{n-2} & a_{n-3} & \cdots & a_{0}
\end{array}\right)
$$

where $a_{n} \in \mathbb{C}$.

Toeplitz matrices with real eigenvalues

- Toeplitz matrix:

$$
T_{n}(b)=\left(a_{j-k}\right)_{j, k=0}^{n-1}=\left(\begin{array}{ccccc}
a_{0} & a_{-1} & a_{-2} & \ldots & a_{-n+1} \\
a_{1} & a_{0} & a_{-1} & \ldots & a_{-n+2} \\
a_{2} & a_{1} & a_{0} & \ldots & a_{-n+3} \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
a_{n-1} & a_{n-2} & a_{n-3} & \ldots & a_{0}
\end{array}\right)
$$

where $a_{n} \in \mathbb{C}$.

- Symbol of $T(b)$:

$$
b(z)=\sum_{n=-\infty}^{\infty} a_{n} z^{n} .
$$

Toeplitz matrices with real eigenvalues

- Toeplitz matrix:

$$
T_{n}(b)=\left(a_{j-k}\right)_{j, k=0}^{n-1}=\left(\begin{array}{ccccc}
a_{0} & a_{-1} & a_{-2} & \ldots & a_{-n+1} \\
a_{1} & a_{0} & a_{-1} & \ldots & a_{-n+2} \\
a_{2} & a_{1} & a_{0} & \ldots & a_{-n+3} \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
a_{n-1} & a_{n-2} & a_{n-3} & \ldots & a_{0}
\end{array}\right)
$$

where $a_{n} \in \mathbb{C}$.

- Symbol of $T(b)$:

$$
b(z)=\sum_{n=-\infty}^{\infty} a_{n} z^{n} .
$$

Theorem:

Assume (for simplicity!) that b is a Laurent polynomial. Then

$$
\sigma\left(T_{n}(b)\right) \subset \mathbb{R}, \quad \forall n \in \mathbb{N} \Longleftrightarrow b^{-1}(\mathbb{R}) \text { contains a Jordan curve. }
$$

Toeplitz matrices - explicit examples

- Tridiagonal Toeplitz matrix:

$$
b(z)=z^{-1}+a z, \quad(a \in \mathbb{C} \backslash\{0\})
$$

Then

$$
\sigma\left(T_{n}(b)\right) \subset \mathbb{R}, \quad \forall n \in \mathbb{N} \quad \Longleftrightarrow \quad a>0
$$

Toeplitz matrices - explicit examples

- Tridiagonal Toeplitz matrix:

$$
b(z)=z^{-1}+a z, \quad(a \in \mathbb{C} \backslash\{0\})
$$

Then

$$
\sigma\left(T_{n}(b)\right) \subset \mathbb{R}, \quad \forall n \in \mathbb{N} \quad \Longleftrightarrow \quad a>0
$$

- Four-diagonal Toeplitz matrix:

$$
b(z)=z^{-1}+a z+b z^{2}, \quad(a \in \mathbb{C}, b \in \mathbb{C} \backslash\{0\})
$$

Then

$$
\sigma\left(T_{n}(b)\right) \subset \mathbb{R}, \quad \forall n \in \mathbb{N} \quad \Longleftrightarrow \quad a^{3} \geq 27 b^{2}>0
$$

Toeplitz matrices - explicit examples

- Tridiagonal Toeplitz matrix:

$$
b(z)=z^{-1}+a z, \quad(a \in \mathbb{C} \backslash\{0\})
$$

Then

$$
\sigma\left(T_{n}(b)\right) \subset \mathbb{R}, \quad \forall n \in \mathbb{N} \quad \Longleftrightarrow \quad a>0
$$

- Four-diagonal Toeplitz matrix:

$$
b(z)=z^{-1}+a z+b z^{2}, \quad(a \in \mathbb{C}, b \in \mathbb{C} \backslash\{0\})
$$

Then

$$
\sigma\left(T_{n}(b)\right) \subset \mathbb{R}, \quad \forall n \in \mathbb{N} \quad \Longleftrightarrow \quad a^{3} \geq 27 b^{2}>0
$$

- A banded Toeplitz matrix:

$$
b(z)=z^{-r}(1+a z)^{r+s}, \quad(r, s \in \mathbb{N}, a \in \mathbb{R} \backslash\{0\})
$$

Then $\sigma\left(T_{n}(b)\right) \subset \mathbb{R}, \forall n \in \mathbb{N}$.

Toeplitz matrices - explicit examples

- Tridiagonal Toeplitz matrix:

$$
b(z)=z^{-1}+a z, \quad(a \in \mathbb{C} \backslash\{0\})
$$

Then

$$
\sigma\left(T_{n}(b)\right) \subset \mathbb{R}, \quad \forall n \in \mathbb{N} \quad \Longleftrightarrow \quad a>0
$$

- Four-diagonal Toeplitz matrix:

$$
b(z)=z^{-1}+a z+b z^{2}, \quad(a \in \mathbb{C}, b \in \mathbb{C} \backslash\{0\})
$$

Then

$$
\sigma\left(T_{n}(b)\right) \subset \mathbb{R}, \quad \forall n \in \mathbb{N} \quad \Longleftrightarrow \quad a^{3} \geq 27 b^{2}>0
$$

- A banded Toeplitz matrix:

$$
b(z)=z^{-r}(1+a z)^{r+s}, \quad(r, s \in \mathbb{N}, a \in \mathbb{R} \backslash\{0\})
$$

Then $\sigma\left(T_{n}(b)\right) \subset \mathbb{R}, \forall n \in \mathbb{N}$.

- A non-banded Toeplitz matrix:

$$
b(z)=e^{a z}+e^{b / z}, \quad(a b>0)
$$

Then $\sigma\left(T_{n}(b)\right) \subset \mathbb{R}, \forall n \in \mathbb{N}$.

Toeplitz matrices - numerical examples

$$
b(z)=z^{-3}-z^{-2}+7 z^{-1}+9 z-2 z^{2}+2 z^{3}-z^{4}
$$

Toeplitz matrices - numerical examples

$$
b(z)=z^{-3}-z^{-2}+7 z^{-1}+9 z-2 z^{2}+2 z^{3}-z^{4}
$$

$$
b(z)=z^{-3}-z^{-2}+7 z^{-1}+9 z+2 z^{2}+2 z^{3}-z^{4}
$$

Spectral approximation

- Let \mathcal{H} be separable Hilbert space, $\left\{e_{n}\right\}_{n=1}^{\infty}$ ONB of \mathcal{H}, and $A \in \mathcal{B}(\mathcal{H})$.

Spectral approximation

- Let \mathcal{H} be separable Hilbert space, $\left\{e_{n}\right\}_{n=1}^{\infty}$ ONB of \mathcal{H}, and $A \in \mathcal{B}(\mathcal{H})$.
- Let P_{n} be OG projection onto $\mathcal{H}_{n}:=\operatorname{span}\left\{e_{1}, \ldots, e_{n}\right\}$. Put $A_{n}:=P_{n} A \upharpoonleft \mathcal{H}_{n}$.

Spectral approximation

- Let \mathcal{H} be separable Hilbert space, $\left\{e_{n}\right\}_{n=1}^{\infty}$ ONB of \mathcal{H}, and $A \in \mathcal{B}(\mathcal{H})$.
- Let P_{n} be OG projection onto $\mathcal{H}_{n}:=\operatorname{span}\left\{e_{1}, \ldots, e_{n}\right\}$. Put $A_{n}:=P_{n} A \upharpoonleft \mathcal{H}_{n}$.

Q: Does $\sigma\left(A_{n}\right)$ approximate $\sigma(A)$ for $n \rightarrow \infty$?

Spectral approximation

- Let \mathcal{H} be separable Hilbert space, $\left\{e_{n}\right\}_{n=1}^{\infty}$ ONB of \mathcal{H}, and $A \in \mathcal{B}(\mathcal{H})$.
- Let P_{n} be OG projection onto $\mathcal{H}_{n}:=\operatorname{span}\left\{e_{1}, \ldots, e_{n}\right\}$. Put $A_{n}:=P_{n} A \upharpoonleft \mathcal{H}_{n}$.

Q: Does $\sigma\left(A_{n}\right)$ approximate $\sigma(A)$ for $n \rightarrow \infty$?

- Limit points of evls:

$$
\Lambda(A):=\left\{\lambda \in \mathbb{C} \mid \liminf _{n \rightarrow \infty} \operatorname{dist}\left(\lambda, \sigma\left(A_{n}\right)\right)=0\right\}
$$

Spectral approximation

- Let \mathcal{H} be separable Hilbert space, $\left\{e_{n}\right\}_{n=1}^{\infty}$ ONB of \mathcal{H}, and $A \in \mathcal{B}(\mathcal{H})$.
- Let P_{n} be OG projection onto $\mathcal{H}_{n}:=\operatorname{span}\left\{e_{1}, \ldots, e_{n}\right\}$. Put $A_{n}:=P_{n} A \upharpoonleft \mathcal{H}_{n}$.

Q: Does $\sigma\left(A_{n}\right)$ approximate $\sigma(A)$ for $n \rightarrow \infty$?

- Limit points of evls:

$$
\Lambda(A):=\left\{\lambda \in \mathbb{C} \mid \liminf _{n \rightarrow \infty} \operatorname{dist}\left(\lambda, \sigma\left(A_{n}\right)\right)=0\right\}
$$

Q: Is any relation between $\sigma(A)$ and $\Lambda(A)$?

Spectral approximation

- Let \mathcal{H} be separable Hilbert space, $\left\{e_{n}\right\}_{n=1}^{\infty}$ ONB of \mathcal{H}, and $A \in \mathcal{B}(\mathcal{H})$.
- Let P_{n} be OG projection onto $\mathcal{H}_{n}:=\operatorname{span}\left\{e_{1}, \ldots, e_{n}\right\}$. Put $A_{n}:=P_{n} A \upharpoonleft \mathcal{H}_{n}$.

Q: Does $\sigma\left(A_{n}\right)$ approximate $\sigma(A)$ for $n \rightarrow \infty$?

- Limit points of evls:

$$
\Lambda(A):=\left\{\lambda \in \mathbb{C} \mid \liminf _{n \rightarrow \infty} \operatorname{dist}\left(\lambda, \sigma\left(A_{n}\right)\right)=0\right\}
$$

Q: Is any relation between $\sigma(A)$ and $\Lambda(A)$?
A: Not in general. But...

Claim:

$$
A=A^{*} \quad \Rightarrow \quad \sigma(A) \subset \Lambda(A)
$$

Claim:

Proof:

$$
A=A^{*} \quad \Rightarrow \quad \sigma(A) \subset \Lambda(A)
$$

Claim:

Proof:

- Let $\lambda \notin \Lambda(A)$. Then $\exists \epsilon>0$ such that $B_{\epsilon}(\lambda) \cap \sigma\left(A_{n}\right)=\emptyset, \forall n>n_{0}$.

Claim:

Proof:

- Let $\lambda \notin \Lambda(A)$. Then $\exists \epsilon>0$ such that $B_{\epsilon}(\lambda) \cap \sigma\left(A_{n}\right)=\emptyset, \forall n>n_{0}$.
- Important ingredient: For any $T=T^{*}$, one has

$$
\left\|(T-\lambda)^{-1}\right\|=\frac{1}{\operatorname{dist}(\lambda, \sigma(T))}, \quad \lambda \notin \sigma(T) .
$$

Claim:

Proof:

- Let $\lambda \notin \Lambda(A)$. Then $\exists \epsilon>0$ such that $B_{\epsilon}(\lambda) \cap \sigma\left(A_{n}\right)=\emptyset, \forall n>n_{0}$.
- Important ingredient: For any $T=T^{*}$, one has

$$
\left\|(T-\lambda)^{-1}\right\|=\frac{1}{\operatorname{dist}(\lambda, \sigma(T))}, \quad \lambda \notin \sigma(T) .
$$

- So in this case: $\left\|\left(A_{n}-\lambda\right)^{-1}\right\| \leq 1 / \epsilon, \forall n>n_{0}$.

Claim:

$$
A=A^{*} \quad \Rightarrow \quad \sigma(A) \subset \Lambda(A)
$$

Proof:

- Let $\lambda \notin \Lambda(A)$. Then $\exists \epsilon>0$ such that $B_{\epsilon}(\lambda) \cap \sigma\left(A_{n}\right)=\emptyset, \forall n>n_{0}$.
- Important ingredient: For any $T=T^{*}$, one has

$$
\left\|(T-\lambda)^{-1}\right\|=\frac{1}{\operatorname{dist}(\lambda, \sigma(T))}, \quad \lambda \notin \sigma(T) .
$$

- So in this case: $\left\|\left(A_{n}-\lambda\right)^{-1}\right\| \leq 1 / \epsilon, \forall n>n_{0}$.
- Put

$$
B_{n}:=\left(A_{n}-\lambda\right)^{-1} \oplus I \in B_{1 / \epsilon} \subset \mathcal{B}(\mathcal{H}) \text { (weakly precompact). }
$$

Claim:

$$
A=A^{*} \quad \Rightarrow \quad \sigma(A) \subset \Lambda(A)
$$

Proof:

- Let $\lambda \notin \Lambda(A)$. Then $\exists \epsilon>0$ such that $B_{\epsilon}(\lambda) \cap \sigma\left(A_{n}\right)=\emptyset, \forall n>n_{0}$.
- Important ingredient: For any $T=T^{*}$, one has

$$
\left\|(T-\lambda)^{-1}\right\|=\frac{1}{\operatorname{dist}(\lambda, \sigma(T))}, \quad \lambda \notin \sigma(T) .
$$

- So in this case: $\left\|\left(A_{n}-\lambda\right)^{-1}\right\| \leq 1 / \epsilon, \forall n>n_{0}$.
- Put

$$
B_{n}:=\left(A_{n}-\lambda\right)^{-1} \oplus I \in B_{1 / \epsilon} \subset \mathcal{B}(\mathcal{H}) \text { (weakly precompact). }
$$

- $\exists B \in \mathcal{B}(\mathcal{H})$ such that $B_{n} \xrightarrow{w} B$ (cheating slightly).

Claim:

$$
A=A^{*} \quad \Rightarrow \quad \sigma(A) \subset \Lambda(A)
$$

Proof:

- Let $\lambda \notin \Lambda(A)$. Then $\exists \epsilon>0$ such that $B_{\epsilon}(\lambda) \cap \sigma\left(A_{n}\right)=\emptyset, \forall n>n_{0}$.
- Important ingredient: For any $T=T^{*}$, one has

$$
\left\|(T-\lambda)^{-1}\right\|=\frac{1}{\operatorname{dist}(\lambda, \sigma(T))}, \quad \lambda \notin \sigma(T) .
$$

- So in this case: $\left\|\left(A_{n}-\lambda\right)^{-1}\right\| \leq 1 / \epsilon, \forall n>n_{0}$.
- Put

$$
B_{n}:=\left(A_{n}-\lambda\right)^{-1} \oplus I \in B_{1 / \epsilon} \subset \mathcal{B}(\mathcal{H}) \text { (weakly precompact). }
$$

- $\exists B \in \mathcal{B}(\mathcal{H})$ such that $B_{n} \xrightarrow{w} B$ (cheating slightly).
- It is easy to verify that $P_{n} \xrightarrow{s} I$. Consequently, $A P_{n} \xrightarrow{s} A$.

Claim:

$$
A=A^{*} \quad \Rightarrow \quad \sigma(A) \subset \Lambda(A)
$$

Proof:

- Let $\lambda \notin \Lambda(A)$. Then $\exists \epsilon>0$ such that $B_{\epsilon}(\lambda) \cap \sigma\left(A_{n}\right)=\emptyset, \forall n>n_{0}$.
- Important ingredient: For any $T=T^{*}$, one has

$$
\left\|(T-\lambda)^{-1}\right\|=\frac{1}{\operatorname{dist}(\lambda, \sigma(T))}, \quad \lambda \notin \sigma(T) .
$$

- So in this case: $\left\|\left(A_{n}-\lambda\right)^{-1}\right\| \leq 1 / \epsilon, \forall n>n_{0}$.
- Put

$$
B_{n}:=\left(A_{n}-\lambda\right)^{-1} \oplus I \in B_{1 / \epsilon} \subset \mathcal{B}(\mathcal{H}) \text { (weakly precompact). }
$$

- $\exists B \in \mathcal{B}(\mathcal{H})$ such that $B_{n} \xrightarrow{w} B$ (cheating slightly).
- It is easy to verify that $P_{n} \xrightarrow{s} I$. Consequently, $A P_{n} \xrightarrow{s} A$.
- Taking the weak limits in

$$
(A-\lambda) P_{n} B_{n}=P_{n},
$$

Claim:

$$
A=A^{*} \quad \Rightarrow \quad \sigma(A) \subset \Lambda(A)
$$

Proof:

- Let $\lambda \notin \Lambda(A)$. Then $\exists \epsilon>0$ such that $B_{\epsilon}(\lambda) \cap \sigma\left(A_{n}\right)=\emptyset, \forall n>n_{0}$.
- Important ingredient: For any $T=T^{*}$, one has

$$
\left\|(T-\lambda)^{-1}\right\|=\frac{1}{\operatorname{dist}(\lambda, \sigma(T))}, \quad \lambda \notin \sigma(T) .
$$

- So in this case: $\left\|\left(A_{n}-\lambda\right)^{-1}\right\| \leq 1 / \epsilon, \forall n>n_{0}$.
- Put

$$
B_{n}:=\left(A_{n}-\lambda\right)^{-1} \oplus I \in B_{1 / \epsilon} \subset \mathcal{B}(\mathcal{H}) \text { (weakly precompact). }
$$

- $\exists B \in \mathcal{B}(\mathcal{H})$ such that $B_{n} \xrightarrow{w} B$ (cheating slightly).
- It is easy to verify that $P_{n} \xrightarrow{s} I$. Consequently, $A P_{n} \xrightarrow{s} A$.
- Taking the weak limits in

$$
(A-\lambda) P_{n} B_{n}=P_{n},
$$

one gets $(A-\lambda) B=I$ and similarly also $B(A-\lambda)=I$.

Claim:

$$
A=A^{*} \quad \Rightarrow \quad \sigma(A) \subset \Lambda(A)
$$

Proof:

- Let $\lambda \notin \Lambda(A)$. Then $\exists \epsilon>0$ such that $B_{\epsilon}(\lambda) \cap \sigma\left(A_{n}\right)=\emptyset, \forall n>n_{0}$.
- Important ingredient: For any $T=T^{*}$, one has

$$
\left\|(T-\lambda)^{-1}\right\|=\frac{1}{\operatorname{dist}(\lambda, \sigma(T))}, \quad \lambda \notin \sigma(T) .
$$

- So in this case: $\left\|\left(A_{n}-\lambda\right)^{-1}\right\| \leq 1 / \epsilon, \forall n>n_{0}$.
- Put

$$
B_{n}:=\left(A_{n}-\lambda\right)^{-1} \oplus I \in B_{1 / \epsilon} \subset \mathcal{B}(\mathcal{H}) \text { (weakly precompact). }
$$

- $\exists B \in \mathcal{B}(\mathcal{H})$ such that $B_{n} \xrightarrow{w} B$ (cheating slightly).
- It is easy to verify that $P_{n} \xrightarrow{s} I$. Consequently, $A P_{n} \xrightarrow{s} A$.
- Taking the weak limits in

$$
(A-\lambda) P_{n} B_{n}=P_{n},
$$

one gets $(A-\lambda) B=I$ and similarly also $B(A-\lambda)=I$.

- Hence $B=(A-\lambda)^{-1}$ and $\lambda \notin \sigma(A)$.

Few comments:

- In general, $\sigma(A) \neq \Lambda(A)$ for $A=A^{*}$.

Few comments:

- In general, $\sigma(A) \neq \Lambda(A)$ for $A=A^{*}$.
- Additional conditions are necessary to have the equality $\sigma(A)=\Lambda(A)$ (and several are known for operators from particular classes).

Few comments:

- In general, $\sigma(A) \neq \Lambda(A)$ for $A=A^{*}$.
- Additional conditions are necessary to have the equality $\sigma(A)=\Lambda(A)$ (and several are known for operators from particular classes).
- For $A \neq A^{*}$, the inclusion $\sigma(A) \subset \Lambda(A)$ does not hold (take the shift operators L, R).

Few comments:

- In general, $\sigma(A) \neq \Lambda(A)$ for $A=A^{*}$.
- Additional conditions are necessary to have the equality $\sigma(A)=\Lambda(A)$ (and several are known for operators from particular classes).
- For $A \neq A^{*}$, the inclusion $\sigma(A) \subset \Lambda(A)$ does not hold (take the shift operators L, R).

Q: Are there other conditions guaranteeing $\sigma(A) \subset \Lambda(A)$ or $\Lambda(A) \subset \sigma(A)$?

Few comments:

- In general, $\sigma(A) \neq \Lambda(A)$ for $A=A^{*}$.
- Additional conditions are necessary to have the equality $\sigma(A)=\Lambda(A)$ (and several are known for operators from particular classes).
- For $A \neq A^{*}$, the inclusion $\sigma(A) \subset \Lambda(A)$ does not hold (take the shift operators L, R).

Q: Are there other conditions guaranteeing $\sigma(A) \subset \Lambda(A)$ or $\Lambda(A) \subset \sigma(A)$?

- If A is compact, then $\sigma(A)=\Lambda(A)$.

Few comments:

- In general, $\sigma(A) \neq \Lambda(A)$ for $A=A^{*}$.
- Additional conditions are necessary to have the equality $\sigma(A)=\Lambda(A)$ (and several are known for operators from particular classes).
- For $A \neq A^{*}$, the inclusion $\sigma(A) \subset \Lambda(A)$ does not hold (take the shift operators L, R).

Q: Are there other conditions guaranteeing $\sigma(A) \subset \Lambda(A)$ or $\Lambda(A) \subset \sigma(A)$?

- If A is compact, then $\sigma(A)=\Lambda(A)$.

Q: If A is an unbounded sectorial operator with discrete spectrum, does one have $\Lambda(A)=\sigma(A)$?

Few comments:

- In general, $\sigma(A) \neq \Lambda(A)$ for $A=A^{*}$.
- Additional conditions are necessary to have the equality $\sigma(A)=\Lambda(A)$ (and several are known for operators from particular classes).
- For $A \neq A^{*}$, the inclusion $\sigma(A) \subset \Lambda(A)$ does not hold (take the shift operators L, R).

Q: Are there other conditions guaranteeing $\sigma(A) \subset \Lambda(A)$ or $\Lambda(A) \subset \sigma(A)$?

- If A is compact, then $\sigma(A)=\Lambda(A)$.

Q: If A is an unbounded sectorial operator with discrete spectrum, does one have $\Lambda(A)=\sigma(A)$?

- If $T(b)$ is possibly NSA banded Toeplitz operator on $\ell^{2}(\mathbb{N})$ (or Wiener-Hopf operator), then $\Lambda(A) \subset \sigma(A)$.

Few comments:

- In general, $\sigma(A) \neq \Lambda(A)$ for $A=A^{*}$.
- Additional conditions are necessary to have the equality $\sigma(A)=\Lambda(A)$ (and several are known for operators from particular classes).
- For $A \neq A^{*}$, the inclusion $\sigma(A) \subset \Lambda(A)$ does not hold (take the shift operators L, R).

Q: Are there other conditions guaranteeing $\sigma(A) \subset \Lambda(A)$ or $\Lambda(A) \subset \sigma(A)$?

- If A is compact, then $\sigma(A)=\Lambda(A)$.

Q: If A is an unbounded sectorial operator with discrete spectrum, does one have $\Lambda(A)=\sigma(A)$?

- If $T(b)$ is possibly NSA banded Toeplitz operator on $\ell^{2}(\mathbb{N})$ (or Wiener-Hopf operator), then $\Lambda(A) \subset \sigma(A)$.

Q: Are there other classes of NSA operators for which $\Lambda(A) \subset \sigma(A)$?

