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Function E

Definition

Define E : `1(N)→ C by

E(y) = 1 +
∞∑

m=1

(−1)m
∞∑

k1=1

∞∑
k2=k1+2

. . .
∞∑

km=km−1+2

yk1 yk2 . . . ykm .

For a finite number of complex variables we identify E(y1, y2, . . . , yn) with E(y) where
y = (y1, y2, . . . , yn, 0, 0, 0, . . . ).

E is well defined on `1(N) due to estimation

|E(y)| ≤ exp ‖y‖1.

E is a continuous functional on `1(N) which is not linear. Especially, for any y ∈ `1(N), it
satisfies limit relations

lim
n→∞

E(y1, y2, . . . , yn) = E(y) and lim
n→∞

E(T ny) = 1

where T stands for unilateral right-shift operator on the space of complex sequence.

Function E fulfills many nice and simple algebraic and combinatorial identities.

Function E have been developed for investigation of various spectral properties of Jacobi
operators and it found many application here (not the scope of this talk).
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Recurrence Rule and Continued Fraction

For y ∈ `1(N), E satisfies recurrence rule

E(y) = E(Ty)− y1 E(T 2y).

Consequently, function E is related to the Stieltjes continued fraction (S-fraction). For a given
y ∈ `1(N) such that E(y) 6= 0, it holds

E(Ty)
E(y)

=
1

1−
y1

1−
y2

1−
y3

1− . . .

.

The LHS of the last identity can be viewed as a formal power series in countably many
indeterminates y = {yk}∞k=1. They forms the ring C[[y ]].
People realized there is certain connection between an S-fraction and formal power series a
long time ago:

T.J.Stieltjes: Recherches sur les fractions continues, 1894-95.

Particularly, they study cases when yk = xek where ek is a fixed complex sequence and x is
a complex variable:

L.J.Rogers: On the representation of certain asymptotic series
as convergent continued fractions, 1907.

František Štampach (FNSPE, CTU) Continued Fraction in Spectral Analysis May 2013 4 / 15



Recurrence Rule and Continued Fraction

For y ∈ `1(N), E satisfies recurrence rule

E(y) = E(Ty)− y1 E(T 2y).

Consequently, function E is related to the Stieltjes continued fraction (S-fraction). For a given
y ∈ `1(N) such that E(y) 6= 0, it holds

E(Ty)
E(y)

=
1

1−
y1

1−
y2

1−
y3

1− . . .

.

The LHS of the last identity can be viewed as a formal power series in countably many
indeterminates y = {yk}∞k=1. They forms the ring C[[y ]].
People realized there is certain connection between an S-fraction and formal power series a
long time ago:

T.J.Stieltjes: Recherches sur les fractions continues, 1894-95.

Particularly, they study cases when yk = xek where ek is a fixed complex sequence and x is
a complex variable:

L.J.Rogers: On the representation of certain asymptotic series
as convergent continued fractions, 1907.

František Štampach (FNSPE, CTU) Continued Fraction in Spectral Analysis May 2013 4 / 15



Recurrence Rule and Continued Fraction

For y ∈ `1(N), E satisfies recurrence rule

E(y) = E(Ty)− y1 E(T 2y).

Consequently, function E is related to the Stieltjes continued fraction (S-fraction). For a given
y ∈ `1(N) such that E(y) 6= 0, it holds

E(Ty)
E(y)

=
1

1−
y1

1−
y2

1−
y3

1− . . .

.

The LHS of the last identity can be viewed as a formal power series in countably many
indeterminates y = {yk}∞k=1. They forms the ring C[[y ]].

People realized there is certain connection between an S-fraction and formal power series a
long time ago:

T.J.Stieltjes: Recherches sur les fractions continues, 1894-95.

Particularly, they study cases when yk = xek where ek is a fixed complex sequence and x is
a complex variable:

L.J.Rogers: On the representation of certain asymptotic series
as convergent continued fractions, 1907.

František Štampach (FNSPE, CTU) Continued Fraction in Spectral Analysis May 2013 4 / 15



Recurrence Rule and Continued Fraction

For y ∈ `1(N), E satisfies recurrence rule

E(y) = E(Ty)− y1 E(T 2y).

Consequently, function E is related to the Stieltjes continued fraction (S-fraction). For a given
y ∈ `1(N) such that E(y) 6= 0, it holds

E(Ty)
E(y)

=
1

1−
y1

1−
y2

1−
y3

1− . . .

.

The LHS of the last identity can be viewed as a formal power series in countably many
indeterminates y = {yk}∞k=1. They forms the ring C[[y ]].
People realized there is certain connection between an S-fraction and formal power series a
long time ago:

T.J.Stieltjes: Recherches sur les fractions continues, 1894-95.

Particularly, they study cases when yk = xek where ek is a fixed complex sequence and x is
a complex variable:

L.J.Rogers: On the representation of certain asymptotic series
as convergent continued fractions, 1907.

František Štampach (FNSPE, CTU) Continued Fraction in Spectral Analysis May 2013 4 / 15



Formal S-fraction and formal power series

But how exactly one associates the S-fraction with a formal power series?

Let a = {ak}∞k=1 ⊂ C. The formal Stieltjes continued fraction

1
1 −

a1

1 −
a2

1 −
a3

1 − · · ·

is regarded here as a sequence of convergents An/Bn, n = 0, 1, 2, . . ., with An,Bn ∈ C[a]
defined by the usual recurrence rules A0 = 0, A1 = 1, B0 = B1 = 1, and

An = An−1 − an−1An−2, Bn = Bn−1 − an−1Bn−2, n ≥ 2.

Since the constant term of Bn equals 1 for any n, the convergents An/Bn can also be treated
as formal power series AnB

−1
n .

Sequence AnB
−1
n is always convergent in C[[a]] equipped with canonical (product) topology.

Thus with every formal S-fraction there is naturally associated a unique formal
power series f (a) in the indeterminates a.
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Explicit expression for f (a)

For a multiindex m ∈ N` denote by |m| =
∑`

j=1 mj its order and by d(m) = ` its length.

For N ∈ N define

M(N) =

{
m ∈

N⋃
`=1

N`; |m| = N

}
.

For a multiindex m ∈ N` put

β(m) :=

`−1∏
j=1

(mj + mj+1 − 1
mj+1

)
, α(m) :=

β(m)

m1
.

Theorem

The formal power series f (a) ∈ C[[a]] associated with the formal Stieltjes continued fraction is
given by the formula

f (a) = 1 +
∞∑

N=1

∑
m∈M(N)

β(m)

d(m)∏
j=1

a
mj
j .

Surprisingly, the explicit formula for f (a) has been derived much later:

A. J. Zajta, W. Pandikow: Conversion of continued fractions into power series, 1975.
P. Flajolet: Combinatorial aspects of continued fractions, 1980.
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Formula for logarithm of E

Theorem

In the ring of formal power series in the indeterminates y1, . . . , yn, one has

logE(y1, . . . , yn) = −
∞∑

N=1

∑
m∈M(N)
d(m)<n

α(m)

n−d(m)∑
k=1

d(m)∏
j=1

y
mj
k+j−1.

For a complex sequence y = {yk}∞k=1 such that ‖y‖1 < log 2 one has

logE(y) = −
∞∑

N=1

∑
m∈M(N)

α(m)
∞∑

k=1

d(m)∏
j=1

y
mj
k+j−1.

Main ingredients for the proof:
It holds identity E(y1, . . . , yn) = det(I + Y ) where Y is an (n + 1)× (n + 1) with elements in
terms of y1, . . . , yn.
Since det exp(A) = exp(Tr A) and so log det(I + Y ) = Tr log(I + Y ), one gets

logE (y1, . . . , yn) = Tr log(I + Y ) = −
∞∑

N=1

1
N

Tr Y N .

To find an expression for Tr Y N is a hard combinatorial work of the proof.
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N=1

1
N

Tr Y N .

To find an expression for Tr Y N is a hard combinatorial work of the proof.
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Logarithm of the power series of S-fraction

As a consequence of the formula for logarithm of E and its relation with an S-fraction one gets
the following identity.

Theorem

Let f (a) ∈ C[[a]] be the formal power series expansion of the formal Stieltjes continued fraction.
Then

log f (a) =
∞∑

N=1

∑
m∈M(N)

α(m)

d(m)∏
j=1

a
mj
j .

This formula seems to be new. (Really?)

By using this result one can rediscover the power series expansion f (a) which has been
found in 1975.
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Simple Example

Perhaps the simplest example is obtained if we set aj = z, for all j ∈ N, in the formal
S-fraction. The formula for logarithm then yields

log
(

1
1 −

z
1 −

z
1 −

z
1 −

. . .

)
=
∞∑

N=1

1
2N

(2N
N

)
zN = log

2
1 +
√

1− 4z
.

Since c(z) = 2/(1 +
√

1− 4z) is known to be the generating function for the Catalan
numbers, one derives this way an identity relating β(m) with Catalan numbers,∑

m∈M(N)

β(m) = CN :=
1

N + 1

(2N
N

)
.
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The Rogers-Ramanujan continued fraction

The generalized Rogers-Ramanujan continued fraction

1
1 +

z
1 +

qz
1 +

q2z
1 +

q3z
1 +

. . .

represents a more involved example.

Theorem

The power series expansion R(z; q) in the variable z of the generalized Rogers-Ramanujan
continued fraction fulfills

R(z; q) = 1 +
∞∑

N=1

 ∑
m∈M(N)

β(m) qε1(m)

(−z)N

and

log R(z; q) =
∞∑

N=1

 ∑
m∈M(N)

α(m) qε1(m)

(−z)N

where

ε1(m) =

d(m)∑
j=1

(j − 1)mj .
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The Rogers-Ramanujan continued fraction

For 0 < q < 1 and z ∈ C, it can be shown

E
(
{−zqk−1}∞k=1

)
= 0φ1(; 0; q, z).

Consequently, for R(z; q) it holds

R(z; q) = 0φ1(; 0; q, qz)/ 0φ1(; 0; q, z).

By putting z = q one arrives at the Rogers-Ramanujan continued fraction

1
1 +

q
1 +

q2

1 +

q3

1 +
. . . .

Its convergents are expressible in terms of the q-Fibonacci numbers of the first and second
kind:

F0(q) = 0, F1(q) = 1, Fn(q) = Fn−1(q) + qn−2Fn−2(q) for n ≥ 2,

and
F̂0(q) = 0, F̂1(q) = 1, F̂n(q) = F̂n−1(q) + qn−1F̂n−2(q) for n ≥ 2.

See L. Carlitz: Fibonacci notes 3: q-Fibonacci numbers, 1974.
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The Rogers-Ramanujan continued fraction

For 0 < q < 1, there exists the limits

F∞(q) = lim
n→∞

Fn(q) = 1 + q + q2 + q3 + 2q4 + 2q5 + 3q6 + 3q7 + 4q8 + 5q9 + . . . ,

F̂∞(q) = lim
n→∞

F̂n(q) = 1 + q2 + q3 + q4 + q5 + 2q6 + 2q7 + 3q8 + 3q9 + 4q10 + . . . .

By using the relation between E and 0φ1 again, one finds well known identities

F∞(q) = 0φ1( ; 0; q, q), F̂∞(q) = 0φ1( ; 0; q, q2).

Consequently, one arrives at the known relation

R(q) := R(q, q) = F̂∞(q)/F∞(q).

The celebrated Rogers-Ramanujan identities extend this identity to a much stronger result by
showing

0φ1( ; 0; q, q) =
∏

N3n≡1,4 mod 5

(
1− qn)−1

and
0φ1( ; 0; q, q2) =

∏
N3n≡2,3 mod 5

(
1− qn)−1

.
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The Rogers-Ramanujan continued fraction

Power series formulas for R(q) and log R(q) yields

R(q) = 1 +
∞∑
`=1

∑
m∈N`

(−1)|m|β(m) qm1+2m2+...+`m`

and

log R(q) =
∞∑
`=1

∑
m∈N`

(−1)|m|α(m) qm1+2m2+...+`m` .

The summands can be expressed in terms of q-Fibonacci numbers:

∑
m∈N`

(−1)|m| β(m) qm1+2m2+...+`m` =
(−1)`q(`+1)`/2

F`+1(q)F`+2(q)
,

and ∑
m∈N`

(−1)|m|α(m) qm1+2m2+...+`m` = log

(
F̂`+1(q)F`+1(q)

F̂`(q)F`+2(q)

)
,

for ` ∈ N.
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A note on the role of generalized continued fractions in spectral analysis

Under some assumptions on sequences {an} and {bn}, the generalized continued fraction

1
z − b1 −

a2
1

z − b2 −
a2

2
z − b3 −

a2
3

z − b4 −
. . . .

converges locally uniformly on C \ R.

This function, known as the Weyl m-function m(z) in the theory of Jacobi operators, plays a
fundamental role in the spectral theory of those operators.

Since m(z) is the Stieltjes transform of a Borel measure µJ , which is closely related with the
spectral measure of Jacobi operator J, it encodes many information about the spectrum of J.

Function m(z) is of significant importance also in the theory of Orthogonal Polynomials or the
Moment Problem.

Consequently, results concerning continued fractions are of much interest even in the
Mathematical Physics community!
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Thank you, and enjoy Beskydy!
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