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Complex Jacobi matrices - generalities

Jacobi operators associated with complex semi-infinite Jacobi matrix

To the semi-infinite Jacobi matrix

J =


b1 a1
a1 b2 a2

a2 b3 a3
. . .

. . .
. . .


where bn ∈ C and an ∈ C \ {0}, we associate two operators Jmin and Jmax acting on `2(N).

Jmin is the operator closure of J0, an operator defined on span{en | n ∈ N} by

J0en := an−1en−1 + bnen + anen+1, ∀n ∈ N, (a0 := 0).

Jmax acts as Jmaxx := J · x (formal matrix product) on vectors from

Dom Jmax = {x ∈ `2(N) | J · x ∈ `2(N)}.

Both operators Jmin and Jmax are closed and densely defined.

They are related as

J∗max = CJminC and J∗min = CJmaxC

where C is the complex conjugation operator, (Cx)n = xn.
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Complex Jacobi matrices - generalities

Proper case and spectrum of Jacobi operator

Any closed operator A having span{en | n ∈ N} ⊂ Dom(A) and defined by the matrix
product satisfies Jmin ⊂ A ⊂ Jmax.

In general Jmin 6= Jmax. If Jmin = Jmax, the matrix J is called proper and the operator
J := Jmin ≡ Jmax the Jacobi operator associated with J .

Let Jmin = Jmax =: J . Then
J∗ = CJC.

As a consequence,
σr(J) = ∅.

We have the decomposition:

σ(J) = σp(J) ∪ σc(J) = σp(J) ∪ σess(J)

where the essential spectrum has the simple characterization:

σess(J) = {z ∈ C | Ran(J − z) is not closed }.
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The Jacobi matrix associated with Jacobian elliptic functions
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František Štampach (Stockholm University) Complex Jacobi Matrix associated with JEF June 21-24 5 / 31



The Jacobi matrix associated with Jacobian elliptic functions

The Jacobi matrix associated with Jacobian elliptic functions

For α ∈ C, the semi-infinite Jacobi matrix

J =


0 1
1 0 2α

2α 0 3
3 0 4α

. . .
. . .

. . .


is proper, and hence it determines a unique densely defined closed operator J(α).

The aim of this talk is the investigation of spectral properties of J(α) for α ∈ C.

We will restrict with α to the unit disk |α| ≤ 1. The spectral properties of J(α) for |α| > 1 are
very similar to those for |α| < 1.
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Intermezzo I - Jacobian elliptic functions

Jacobian elliptic functions

For 0 ≤ α ≤ 1, the integral (incomplete elliptic of 1st kind)

u =

∫ ϕ

0

dθ√
1− α2 sin2 θ

measures the arc length of an ellipse.

Its inverse ϕ(u) = am(u, α) is known as the amplitude.

The (copolar) triplet of JEF:

sn(u, α) = sin am(u, α),

cn(u, α) = cos am(u, α),

dn(u, α) =

√
1− α2 sin2 am(u, α).

Complete elliptic integral of the first kind:

K(α) =

∫ π/2

0

dθ√
1− α2 sin2 θ

.

JEFs are meromorphic functions in u (with α fixed) as well as meromorphic functions in α
(with u fixed). While K is analytic in the cut-plane C \ ((−∞,−1] ∪ [1,∞)).
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František Štampach (Stockholm University) Complex Jacobi Matrix associated with JEF June 21-24 8 / 31



Intermezzo I - Jacobian elliptic functions

Jacobian elliptic functions

For 0 ≤ α ≤ 1, the integral (incomplete elliptic of 1st kind)

u =

∫ ϕ

0

dθ√
1− α2 sin2 θ

measures the arc length of an ellipse.

Its inverse ϕ(u) = am(u, α) is known as the amplitude.

The (copolar) triplet of JEF:

sn(u, α) = sin am(u, α),

cn(u, α) = cos am(u, α),

dn(u, α) =

√
1− α2 sin2 am(u, α).

Complete elliptic integral of the first kind:

K(α) =

∫ π/2

0

dθ√
1− α2 sin2 θ

.

JEFs are meromorphic functions in u (with α fixed) as well as meromorphic functions in α
(with u fixed). While K is analytic in the cut-plane C \ ((−∞,−1] ∪ [1,∞)).
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Intermezzo I - Jacobian elliptic functions

Jacobian elliptic functions - plotting
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Spectral analysis - the self-adjoint case

Spectral analysis of J(α) in the self-adjoint case

We start with the identities

〈e1, J(α)2n+1e1〉 = 0 and 〈e1, J(α)2ne1〉 = C2n(α)

where C2n are polynomials that can be defined via the generating function formula:

cn(z, α) =

∞∑
n=0

(−1)nC2n(α)

(2n)!
z2n.

Hence we may write

cn(z, α) =
∞∑
n=0

(iz)n

n!
〈e1, J(α)ne1〉 =

∞∑
n=0

(iz)n

n!

∫
R
xndµ(x) =

∫
R
eixzdµ(x).

where we denote µ(·) := 〈e1, EJ (·)e1〉.
We get

F [µ](z) = cn(z, α).

Consequently, by applying the inverse Fourier transform to the function cn(z;α), one may
recover the spectral measure µ!
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František Štampach (Stockholm University) Complex Jacobi Matrix associated with JEF June 21-24 11 / 31



Spectral analysis - the self-adjoint case

Spectral analysis of J(α) for α ∈ (−1, 1)

For α ∈ (−1, 1), the evaluation of the inverse Fourier transform yields

µ(t) =
π

αK

∞∑
n=0

qn+1/2

1 + q2n+1

[
δ

(
t−

(2n+ 1)π

2K

)
+ δ

(
t+

(2n+ 1)π

2K

)]
where the nome q = q(α) (|q| < 1).

Hence the measure µ is discrete supported by the set

suppµ =
π

2K
(2Z+ 1) .

This implies that, for α ∈ (−1, 1), the spectrum of J(α) is discrete and

σ(J(α)) = σp(J(α)) =
π

2K
(2Z+ 1) .

In addition, we can also compute the Weyl m-function m(z;α) := 〈e1, (J(α)− z)−1e1〉, since

m(z, α) = iL[cn(t, α)](−iz), for <z > 0.

It results in the formula

m(z, α) =
2πz

αK

∞∑
n=0

qn+1/2

1 + q2n+1

1
(2n+1)2π2

4K2 − z2
.
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σ(J(α)) = σp(J(α)) =
π

2K
(2Z+ 1) .

In addition, we can also compute the Weyl m-function m(z;α) := 〈e1, (J(α)− z)−1e1〉, since

m(z, α) = iL[cn(t, α)](−iz), for <z > 0.

It results in the formula

m(z, α) =
2πz

αK

∞∑
n=0

qn+1/2

1 + q2n+1

1
(2n+1)2π2

4K2 − z2
.
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Spectral analysis - the self-adjoint case

Spectral analysis of J(α) for α = ±1

Recall that
F [µ](z) = cn(z,±1) =

1

cosh(z)
.

By applying the inverse Fourier transform, one concludes that µ is absolutely continuous
measure supported on R and its density equals

dµ
dt

=
1

2 cosh (πt/2)
, ∀t ∈ R.

This implies that the spectrum of J(±1) is purely absolutely continuous and

σ(J(±1)) = σac(J(±1)) = R.
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František Štampach (Stockholm University) Complex Jacobi Matrix associated with JEF June 21-24 13 / 31



Spectral analysis - the self-adjoint case

Spectrum of J(α) in the self-adjoint case - animation
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Spectral analysis - the non-self-adjoint case

Contents

1 Complex Jacobi matrices - generalities

2 The Jacobi matrix associated with Jacobian elliptic functions

3 Intermezzo I - Jacobian elliptic functions

4 Spectral analysis - the self-adjoint case
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6 Intermezzo II - extremal properties of | sn(uK(m) | m)|
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Spectral analysis - the non-self-adjoint case

Spectral analysis of J(α) for |α| < 1

For |α| < 1, the operator J(α) can be viewed as a perturbation of J(0) with relative bound
smaller than 1.

Consequently, the spectrum of J(α) is discrete if |α| < 1.

In addition, by an analyticity argument it can be shown the formula for the Weyl m-function

m(z, α) =
2πz

αK

∞∑
n=0

qn+1/2

1 + q2n+1

1
(2n+1)2π2

4K2 − z2
.

remains true for all z ∈ ρ(J(α)) and |α| < 1.

It implies (in the non-self-adjoint case, too!) that

σ(J(α)) =
π

2K
(2Z+ 1) .

and all the eigenvalues are simple.
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Spectral analysis - the non-self-adjoint case

Eigenvectors of J(α) for |α| < 1

Proposition

Let 0 < |α| < 1 and N ∈ Z, then the vector v(N) given by formulas

v
(N)
2k+1 = i(−1)kαk

∫ 2π

0
e−i(N+1/2)s cn

(
Ks

π
, α

)
sn2k

(
Ks

π
, α

)
ds

and

v
(N)
2k+2 = (−1)k+1αk

∫ 2π

0
e−i(N+1/2)s dn

(
Ks

π
, α

)
sn2k+1

(
Ks

π
, α

)
ds,

for k ≥ 0, is the eigenvector of J(α) corresponding to the eigenvalue
π

2K
(2N + 1).

In addition, the set {v(N) | N ∈ Z} is complete in `2(N).

Interesting open problems:
1

‖v(N)‖ =?

or ‖v(N)‖ ∼ ? for N → ±∞.

2 Is {v(N) | N ∈ Z} the Riezs basis of `2(N)?
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Spectral analysis - the non-self-adjoint case

Spectrum of J(α) in the non-self-adjoint case - animation
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Spectral analysis - the non-self-adjoint case

Spectral analysis of J(α) for |α| = 1

Proposition

If |α| = 1, α 6= ±1, then
σ(J(α)) = σess(J(α)) = C.

Main thoughts of the proof:
The proof is based on the construction of a singular sequence to J(α) for every z ∈ C.
For a ∈ (0, 1) define sequence u(a) by putting

un(a) := anun,

where

u2k+1 := i(−1)kαkeiKz
∫ 2K

0
e−izt cn(t, α) sn2k(t, α)dt

and

u2k+2 := (−1)k+1αkeiKz
∫ 2K

0
e−izt dn(t, α) sn2k+1(t, α)dt.

Then one can verify, indeed, that

lim
a→1−

‖(J(α)− z)u(a)‖
‖u(a)‖

= 0, and w− lim
a→1−

u(a) = 0.
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František Štampach (Stockholm University) Complex Jacobi Matrix associated with JEF June 21-24 19 / 31



Spectral analysis - the non-self-adjoint case

Spectral analysis of J(α) for |α| = 1

Proposition

If |α| = 1, α 6= ±1, then
σ(J(α)) = σess(J(α)) = C.

Main thoughts of the proof:
The proof is based on the construction of a singular sequence to J(α) for every z ∈ C.
For a ∈ (0, 1) define sequence u(a) by putting

un(a) := anun,

where

u2k+1 := i(−1)kαkeiKz
∫ 2K

0
e−izt cn(t, α) sn2k(t, α)dt

and

u2k+2 := (−1)k+1αkeiKz
∫ 2K

0
e−izt dn(t, α) sn2k+1(t, α)dt.

Then one can verify, indeed, that

lim
a→1−

‖(J(α)− z)u(a)‖
‖u(a)‖

= 0, and w− lim
a→1−

u(a) = 0.
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Spectral analysis - the non-self-adjoint case

Spectral analysis of J(α) for |α| = 1 - cont.

Essential for the verification of the “singular property” of the family u(a) = anun are two main
ingredients:

1 Vector u is “almost formal eigenvector”:

J(α)u = zu− 2 cos(Kz)e1.

2 Asymptotic behavior of the integrals∫ 2K

0
e−izt

{
cn(t, α)
dn(t, α)

}
snk(t, α)dt, as k →∞.

The asymptotic formulas (ingredient 2.) can be obtain by applying the saddle point method.

However, one has to know the location of global maxima of function

u→ | sn(uK(α), α)|

in (0, 2) for |α| = 1, α 6= ±1.

It can be shown (not trivial!) that the function has unique global maximum at u = 1 for every
|α| = 1, α 6= ±1.
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0
e−izt

{
cn(t, α)
dn(t, α)

}
snk(t, α)dt, as k →∞.

The asymptotic formulas (ingredient 2.) can be obtain by applying the saddle point method.

However, one has to know the location of global maxima of function

u→ | sn(uK(α), α)|

in (0, 2) for |α| = 1, α 6= ±1.

It can be shown (not trivial!) that the function has unique global maximum at u = 1 for every
|α| = 1, α 6= ±1.
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František Štampach (Stockholm University) Complex Jacobi Matrix associated with JEF June 21-24 20 / 31



Spectral analysis - the non-self-adjoint case

Spectral analysis of J(α) for |α| = 1 - cont.

Essential for the verification of the “singular property” of the family u(a) = anun are two main
ingredients:

1 Vector u is “almost formal eigenvector”:

J(α)u = zu− 2 cos(Kz)e1.

2 Asymptotic behavior of the integrals∫ 2K

0
e−izt

{
cn(t, α)
dn(t, α)

}
snk(t, α)dt, as k →∞.

The asymptotic formulas (ingredient 2.) can be obtain by applying the saddle point method.

However, one has to know the location of global maxima of function

u→ | sn(uK(α), α)|

in (0, 2) for |α| = 1, α 6= ±1.

It can be shown (not trivial!) that the function has unique global maximum at u = 1 for every
|α| = 1, α 6= ±1.
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Intermezzo II - extremal properties of | sn(uK(m) | m)|

Contents

1 Complex Jacobi matrices - generalities

2 The Jacobi matrix associated with Jacobian elliptic functions

3 Intermezzo I - Jacobian elliptic functions

4 Spectral analysis - the self-adjoint case

5 Spectral analysis - the non-self-adjoint case

6 Intermezzo II - extremal properties of | sn(uK(m) | m)|
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Intermezzo II - extremal properties of | sn(uK(m) | m)|

On the extremal properties of | sn(uK(m) | m)|

<m

=m

1

All the necessary properties
known when m ∈ (0, 1)

sn2(uK(m) | m) =
1
√
m

c21 + s2s21 cos
2 θ − cc1 + iss1dd1

c21 + s2s21 cos
2 θ + cc1 − iss1dd1

,

where =m > 0,m = e4iθ and s = sn(uK(cos2 θ) | cos2 θ), s1 = sn(uK(sin2 θ) | sin2 θ), etc.
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Intermezzo II - extremal properties of | sn(uK(m) | m)|

On the extremal properties of | sn(uK(m) | m)|

<m

=m

1

| sn(uK(m) | m)| ≤ 1 for all m ∈ ∂D with the equality only for m = 1.
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Intermezzo II - extremal properties of | sn(uK(m) | m)|

On the extremal properties of | sn(uK(m) | m)|

<m

=m

Maximum modulus...

1

| sn(uK(m) | m)| ≤ 1 for all m ∈ D with the equality only for m = 1.
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Intermezzo II - extremal properties of | sn(uK(m) | m)|

On the extremal properties of | sn(uK(m) | m)|

<m

=m

1

Another circle D1 = {z | |z − 1| = 1}

and another transformation formula (not displayed) ...
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On the extremal properties of | sn(uK(m) | m)|

<m

=m

1

| sn(uK(m) | m)| < 1 for all m ∈ ∂D1
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Intermezzo II - extremal properties of | sn(uK(m) | m)|

On the extremal properties of | sn(uK(m) | m)|

<m

=m

1

| sn(uK(m) | m)| ∼ 0| sn(uK(m) | m)| ∼ 0

In additon, lim
ε→0+

| sn(uK(m± iε) | m+±iε)| < 1 for all m ≥ 2 and

the function m 7→ sn(uK(m) | m) is bounded.
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On the extremal properties of | sn(uK(m) | m)|

<m

=m

1

| sn(uK(m) | m)| ≤ 1 for all m /∈ D1 \ D with the equality only for m = 1.
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Intermezzo II - extremal properties of | sn(uK(m) | m)|

On the extremal properties of | sn(uK(m) | m)|

<m

=m

1

If 0 < u ≤
1

2
the global maximum of m 7→ | sn(uK(m) | m)|

is located at m = 1 with the value = 1.
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On the extremal properties of | sn(uK(m) | m)|

<m

=m

1

If
1

2
< u < 1 the global maximum of m 7→ | sn(uK(m) | m)|

is located in (1, 2) with the value > 1.

František Štampach (Stockholm University) Complex Jacobi Matrix associated with JEF June 21-24 29 / 31



Intermezzo II - extremal properties of | sn(uK(m) | m)|

On the extremal properties of | sn(uK(m) | m)| - main theorem

Theorem:

The following statements hold true.

1 For all u ∈ (0, 1) and m /∈ {z ∈ C | |z − 1| < 1 ∧ |z| > 1}, it holds

| sn(K(m)u | m)| < 1.

2 For u ∈ (0, 1/2] the function m 7→ | sn(K(m)u | m)| has unique global maximum located at
m = 1 with the value equal to 1, i.e.,

| sn(K(1)u | 1)| = 1 and | sn(K(m)u | m)| < 1 for all m 6= 1

(where the value at m = 1 is to be understood as the respective limit).
3 For u ∈ (1/2, 1), the function m 7→ | sn(K(m)u | m)| has a global maximum located in the

interval (1, 2) with the value exceeding 1, i.e.,

max
m∈C

| sn(K(m)u | m)| = | sn(K(m∗)u | m∗)| > 1 for some m∗ ∈ (1, 2).
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František Štampach (Stockholm University) Complex Jacobi Matrix associated with JEF June 21-24 30 / 31



Intermezzo II - extremal properties of | sn(uK(m) | m)|
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