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Complex Jacobi matrices - generalities

Jacobi operators associated with complex semi-infinite Jacobi matrix

@ To the semi-infinite Jacobi matrix

b1 a1
a1 be a2
j = ag b3 as

where b, € C and a,, € C\ {0}, we associate two operators Jyin and Jmax acting on £2(N).
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Complex Jacobi matrices - generalities

Jacobi operators associated with complex semi-infinite Jacobi matrix

@ To the semi-infinite Jacobi matrix

b1 a1
a1 be a2
j = ag b3 as

where b, € C and a,, € C\ {0}, we associate two operators Jyin and Jmax acting on £2(N).
@ Jmin is the operator closure of Jo, an operator defined on span{e,, | n € N} by

Joen = ap—1en—1 +bnen +anept1, Vn €N, (CLQ = 0).
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Complex Jacobi matrices - generalities

Jacobi operators associated with complex semi-infinite Jacobi matrix

@ To the semi-infinite Jacobi matrix

b1 a1
a1 be a2
j = ag b3 as

where b, € C and a,, € C\ {0}, we associate two operators Jyin and Jmax acting on £2(N).
@ Jmin is the operator closure of Jo, an operator defined on span{e,, | n € N} by

Joen :=an—1€pn—1 + bnen + An€n+41, Vn € N, (CLO = 0).
@ Jmax acts as Jmaxz := J - = (formal matrix product) on vectors from

Dom Jmax = {z € £2(N) | J -z € £2(N)}.
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Complex Jacobi matrices - generalities

Jacobi operators associated with complex semi-infinite Jacobi matrix

@ To the semi-infinite Jacobi matrix

b1 a1
a1 be a2
j = ag b3 as

where b, € C and a,, € C\ {0}, we associate two operators Jyin and Jmax acting on £2(N).
@ Jmin is the operator closure of Jo, an operator defined on span{e,, | n € N} by

Joen :=an—1€pn—1 + bnen + An€n+41, Vn € N, (0«0 = 0).
@ Jmax acts as Jmaxz := J - = (formal matrix product) on vectors from
Dom Jmax = {z € £2(N) | J -z € £2(N)}.

@ Both operators Jnin and Jmax are closed and densely defined.
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Complex Jacobi matrices - generalities

Jacobi operators associated with complex semi-infinite Jacobi matrix

@ To the semi-infinite Jacobi matrix

b1 a1
a1 be a2
j = ag b3 as

where b, € C and a,, € C\ {0}, we associate two operators Jyin and Jmax acting on £2(N).
@ Jmin is the operator closure of Jo, an operator defined on span{e,, | n € N} by

Joen :=an—1€n—1 +bnen + anent1, Vn €N, (ag:=0).
@ Jmax acts as Jmaxz := J - = (formal matrix product) on vectors from
Dom Jmax = {z € £2(N) | J -z € £2(N)}.
@ Both operators Jy,in and Jmax are closed and densely defined. They are related as
Jrax = CJminC  and  J3, = CJnaxC

where C'is the complex conjugation operator, (Cz),, = Zp.
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Complex Jacobi matrices - generalities

Proper case and spectrum of Jacobi operator

@ Any closed operator A having span{e, | n € N} C Dom(A) and defined by the matrix
product satisfies Jyin C A C Jmax-

Frantisek Stampach (Stockholm University) Complex Jacobi Matrix associated with JEF June 21-24 4/31



Proper case and spectrum of Jacobi operator

@ Any closed operator A having span{e, | n € N} C Dom(A) and defined by the matrix
product satisfies Jyin C A C Jmax-

@ In general Jyin # Jmax. If Jmin = Jmax, the matrix 7 is called proper and the operator
J := Jmin = Jmax the Jacobi operator associated with 7.
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Proper case and spectrum of Jacobi operator

@ Any closed operator A having span{e, | n € N} C Dom(A) and defined by the matrix
product satisfies Jyin C A C Jmax-

@ In general Jyin # Jmax. If Jmin = Jmax, the matrix 7 is called proper and the operator
J := Jmin = Jmax the Jacobi operator associated with 7.
@ Let Jmin = Jmax =: J. Then
J*=CJC.
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Proper case and spectrum of Jacobi operator

@ Any closed operator A having span{e, | n € N} C Dom(A) and defined by the matrix
product satisfies Jyin C A C Jmax-

@ In general Jyin # Jmax. If Jmin = Jmax, the matrix 7 is called proper and the operator
J := Jmin = Jmax the Jacobi operator associated with 7.

@ Let Jnin = Jmax =: J. Then

J*=CJC.
As a consequence,
or(J)=0.
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Complex Jacobi matrices - generalities

Proper case and spectrum of Jacobi operator

@ Any closed operator A having span{e, | n € N} C Dom(A) and defined by the matrix
product satisfies Jyin C A C Jmax-

@ In general Jyin # Jmax. If Jmin = Jmax, the matrix 7 is called proper and the operator
J := Jmin = Jmax the Jacobi operator associated with 7.

@ Let Jnin = Jmax =: J. Then
J*=CJcC.

As a consequence,
or(J)=0.

@ We have the decomposition:

o(J) = op(J)Uae(J) = op(J) Uaess(J)
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Proper case and spectrum of Jacobi operator

@ Any closed operator A having span{e, | n € N} C Dom(A) and defined by the matrix
product satisfies Jyin C A C Jmax-

@ In general Jyin # Jmax. If Jmin = Jmax, the matrix 7 is called proper and the operator
J := Jmin = Jmax the Jacobi operator associated with 7.

o Let Jmin = Jmax =: J. Then
J*=CJC.

As a consequence,
or(J)=0.
@ We have the decomposition:
o(J) = 0p(J) Uoe(J) = op(J) Udess ()
where the essential spectrum has the simple characterization:

Oess(J) = {z € C| Ran(J — z) is not closed }.
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The Jacobi matrix associated with Jacobian elliptic functions

The Jacobi matrix associated with Jacobian elliptic functions

@ For a € C, the semi-infinite Jacobi matrix

0 1
1 0 2
20 0O 3

is proper, and hence it determines a unique densely defined closed operator J(«).
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The Jacobi matrix associated with Jacobian elliptic functions

The Jacobi matrix associated with Jacobian elliptic functions

@ For a € C, the semi-infinite Jacobi matrix

0 1
1 0 2
20 0O 3

is proper, and hence it determines a unique densely defined closed operator J(«).
@ The aim of this talk is the investigation of spectral properties of J(«) for « € C.
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The Jacobi matrix associated with Jacobian elliptic functions

The Jacobi matrix associated with Jacobian elliptic functions

@ For a € C, the semi-infinite Jacobi matrix

0 1
1 0 2
20 0O 3

is proper, and hence it determines a unique densely defined closed operator J(«).
@ The aim of this talk is the investigation of spectral properties of J(«) for « € C.

@ We will restrict with « to the unit disk || < 1. The spectral properties of J(«) for |a] > 1 are
very similar to those for |a| < 1.
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Intermezzo | - Jacobian elliptic functions

Jacobian elliptic functions

@ For 0 < a < 1, the integral (incomplete elliptic of 1st kind)

/‘P de
u= —_—
0 v/1—a?sin?6

measures the arc length of an ellipse.
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Intermezzo | - Jacobian elliptic functions

Jacobian elliptic functions

@ For 0 < a < 1, the integral (incomplete elliptic of 1st kind)

/V’ dé

u = —_—_——

0 v1—a2?sin?0
measures the arc length of an ellipse.

@ lts inverse p(u) = am(u, a) is known as the amplitude.
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Intermezzo | - Jacobian elliptic functions

Jacobian elliptic functions

@ For 0 < a < 1, the integral (incomplete elliptic of 1st kind)

/¢’ dé
U= ——
0 v1—a2?sin?0
measures the arc length of an ellipse.
@ lts inverse p(u) = am(u, a) is known as the amplitude.
@ The (copolar) triplet of JEF:
sn(u, o) = sinam(u, a),

cn(u, o) = cosam(u, a),

dn(u,a) = \/1 — a2 sin? am(u, a).
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Intermezzo | - Jacobian elliptic functions

Jacobian elliptic functions

@ For 0 < a < 1, the integral (incomplete elliptic of 1st kind)

/V’ dé
U= ——
0 v1—a2?sin?0
measures the arc length of an ellipse.
@ lts inverse p(u) = am(u, a) is known as the amplitude.
@ The (copolar) triplet of JEF:
sn(u, o) = sinam(u, a),

cn(u, o) = cosam(u, a),

dn(u,a) = \/1 — a2 sin? am(u, a).
@ Complete elliptic integral of the first kind:

/2 de

0 \/17a2sin29'

K(a) =
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Intermezzo | - Jacobian elliptic functions

Jacobian elliptic functions

@ For 0 < a < 1, the integral (incomplete elliptic of 1st kind)

/V’ dé
U= ——
0 v1—a2?sin?0
measures the arc length of an ellipse.
@ lts inverse p(u) = am(u, a) is known as the amplitude.
@ The (copolar) triplet of JEF:
sn(u, o) = sinam(u, a),

cn(u, o) = cosam(u, a),

dn(u,a) = \/1 — a2 sin? am(u, a).
@ Complete elliptic integral of the first kind:

/2 de
0 \/1fa2sin29'

@ JEFs are meromorphic functions in w (with o fixed) as well as meromorphic functions in «
(with v fixed). While K is analytic in the cut-plane C \ ((—oo, —1] U [1, 00)).

K(a) =
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Intermezzo | - Jacobian elliptic functions

Jacobian elliptic functions - plotting

— 8

out(4}.

—C
—d
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Spectral analysis - the self-adjoint case

Spectral analysis of J(«) in the self-adjoint case

@ We start with the identities

(e1,J(@)®tle) =0 and (e1,J(a)?"er) = Can(a)
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Spectral analysis - the self-adjoint case

Spectral analysis of J(«) in the self-adjoint case

@ We start with the identities
(e1,J(@)®tle) =0 and (e1,J(a)?"er) = Can(a)

where Cs,, are polynomials that can be defined via the generating function formula:

o (=D)"Can(a) o
Cn(z,a):T;)TH)QIZQ .
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Spectral analysis - the self-adjoint case

Spectral analysis of J(«) in the self-adjoint case

@ We start with the identities
(e1,J(@)®tle) =0 and (e1,J(a)?"er) = Can(a)

where Cs,, are polynomials that can be defined via the generating function formula:

o (=D)"Can(a) o
Cn(z,a):T;)TH)QIZQ .

@ Hence we may write

— - (iz)n e a)er) = - w ™" z) = eiwz T
enlee) = 30 S feng(@"en = 30 /R () /R du(z).

n

where we denote u(-) := (e1, Ej(-)e1).
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Spectral analysis - the self-adjoint case

Spectral analysis of J(«) in the self-adjoint case

@ We start with the identities

(e1,J(@)®tle) =0 and (e1,J(a)?"er) = Can(a)
where Cs,, are polynomials that can be defined via the generating function formula:

X (—=1)"Cop (o n
o) = 32 o)

n=0

@ Hence we may write

— - (iz)n e a)er) = - w ™" z) = eimz T
ene) = 30 o fen(@ren) = 30 S [anou) = [ e dnte)

where we denote u(-) := (e1, Ej(-)e1).

@ We get
Flp](z) = en(z, a).
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Spectral analysis - the self-adjoint case

Spectral analysis of J(«) in the self-adjoint case

@ We start with the identities

(e1,J(@)®tle) =0 and (e1,J(a)?"er) = Can(a)
where Cs,, are polynomials that can be defined via the generating function formula:

> (—=1)"Con (a n
o) = 32 o)

n=0

@ Hence we may write

— - (iz)n e a)er) = - w ™" z) = eimz T
ene) = 30 o fen(@ren) = 30 S [anou) = [ e dnte)

where we denote u(-) := (e1, Ej(-)e1).

@ We get
Flul(z) = en(z, ).

Consequently, by applying the inverse Fourier transform to the function cn(z; «), one may
recover the spectral measure !
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Spectral analysis - the self-adjoint case

Spectral analysis of J(«) for o € (—1,1)

@ For o € (—1,1), the evaluation of the inverse Fourier transform yields

I N (2n+ )7 (2n+ 1w
“(t)’aKnZ:Ourq%H ot o) POt Tk

where the nome ¢ = ¢(a) (|¢| < 1).
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Spectral analysis - the self-adjoint case

Spectral analysis of J(«) for o € (—1,1)

@ For o € (—1,1), the evaluation of the inverse Fourier transform yields

I N (2n+ )7 (2n+ 1w
“(t)’aKnZ:Ourq%H ot o) POt Tk

where the nome g = q(«) (|q| < 1).
@ Hence the measure p is discrete supported by the set

™
supp p = ﬁ(22+1).
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Spectral analysis - the self-adjoint case

Spectral analysis of J(«) for a € (—1,1)

@ For o € (—1,1), the evaluation of the inverse Fourier transform yields

pu(t) = — i i {5 (t _n+ UW) +45 (t+ @n+ Dm l)w)}

2K 2K

where the nome ¢ = ¢(«) (|g| < 1).
@ Hence the measure p is discrete supported by the set
K
=—(2Z+1).
suppu = 5o (2Z+1)
@ This implies that, for o € (—1, 1), the spectrum of J(«) is discrete and

o(J(e)) = op(J (@) = 3= (2Z+1).
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Spectral analysis - the self-adjoint case

Spectral analysis of J(«) for a € (—1,1)

@ For o € (—1,1), the evaluation of the inverse Fourier transform yields

pu(t) = — i i {5 (t _n+ UW) +45 (t+ @n+ Dm l)w)}

2K 2K

where the nome g = q(«) (|q| < 1).

@ Hence the measure p is discrete supported by the set
K
2K
@ This implies that, for o € (—1, 1), the spectrum of J(«) is discrete and

supp p = (2Z+1).

o(J(e)) = op(J (@) = 3= (2Z+1).

@ In addition, we can also compute the Weyl m-function m(z; a) := (e1, (J(a) — z) "le1), since

m(z, ) = iLlen(t, )](—iz), for Rz > 0.
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Spectral analysis - the self-adjoint case

Spectral analysis of J(«) for a € (—1,1)
@ For o € (—1,1), the evaluation of the inverse Fourier transform yields
I N (2n+ )7 (2n+ 1w
“(t)’aKZ1+q2n+1 ot o) POt Tk

where the nome g = q(«) (|q| < 1).
@ Hence the measure p is discrete supported by the set

™
supp p = ﬁ(22+1)'

@ This implies that, for o € (—1, 1), the spectrum of J(«) is discrete and
™
o(J(@) = op(J(@) = 31 (2Z+1).

@ In addition, we can also compute the Weyl m-function m(z; a) := (e1, (J(a) — z) "le1), since
m(z, ) = iLlen(t, )](—iz), for Rz > 0.
@ It results in the formula
2nz o gntl/2 1

- 2n+1 (2n+41)272 :
a = 1+gq (n4K)27r 2

m(z, )
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Spectral analysis - the self-adjoint case

Spectral analysis of J(«) for o = £1

@ Recall that 1

Flul(z) = cen(z, £1) = m.
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Spectral analysis - the self-adjoint case

Spectral analysis of J(«) for o = +1

@ Recall that 1

cosh(z)’

@ By applying the inverse Fourier transform, one concludes that p is absolutely continuous
measure supported on R and its density equals

Flul(z) = en(z, £1) =

du 1

— =———, VteR
dt  2cosh(wt/2)
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Spectral analysis - the self-adjoint case

Spectral analysis of J(«) for a = £1

@ Recall that 1

cosh(z)’

@ By applying the inverse Fourier transform, one concludes that p is absolutely continuous
measure supported on R and its density equals

Flul(z) = en(z, £1) =

du 1

— =———, VteR
dt  2cosh(wt/2) €

@ This implies that the spectrum of J(£1) is purely absolutely continuous and

o(J(£1)) = oac(J(£1)) = R.
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Spectral analysis - the self-adjoint case

Spectrum of J(«) in the self-adjoint case - animation
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Spectral analysis - the non-self-adjoint case

Spectral analysis of J(«) for |a| < 1

@ For |a| < 1, the operator J(«a) can be viewed as a perturbation of J(0) with relative bound
smaller than 1.
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Spectral analysis - the non-self-adjoint case

Spectral analysis of J(«) for |a| < 1

@ For |a| < 1, the operator J(«a) can be viewed as a perturbation of J(0) with relative bound
smaller than 1.

@ Consequently, the spectrum of J(«) is discrete if |a| < 1.
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Spectral analysis - the non-self-adjoint case

Spectral analysis of J(«) for |o| < 1

@ For |a| < 1, the operator J(«a) can be viewed as a perturbation of J(0) with relative bound
smaller than 1.

@ Consequently, the spectrum of J(«) is discrete if |a| < 1.
@ In addition, by an analyticity argument it can be shown the formula for the Weyl m-function

2z & q”Jrl/2 1
2.2 :
aK — 1+ g?ntl (2n2-1)2 T2

m(z, o) =
K

remains true for all z € p(J(«)) and |a] < 1.
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Spectral analysis - the non-self-adjoint case

Spectral analysis of J(«) for |a| < 1

@ For |a| < 1, the operator J(«a) can be viewed as a perturbation of J(0) with relative bound
smaller than 1.

@ Consequently, the spectrum of J(«) is discrete if |a| < 1.
@ In addition, by an analyticity argument it can be shown the formula for the Weyl m-function

27z > q”Jrl/2 1

- 2n+1 (2n+41)2x2 :
aK ‘= 1+q (nIKéﬂ 52

m(z,a)

remains true for all z € p(J(«)) and |a] < 1.
@ [t implies (in the non-self-adjoint case, too!) that

o(J(a)) = % (2Z+1).

and all the eigenvalues are simple.
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Spectral analysis - the non-self-adjoint case

Eigenvectors of J(«) for |a] < 1

Proposition
Let0 < |a] < 1and N € Z, then the vector v(™) given by formulas

2
= i(fl)kak/ . e IN+1/2)s o (E,a) sn2F (E,
0 ™ s

(N)
Vok+1

a) ds

and

27 . K K
véllj.iz = (—1)k+lo¢k/0 e IN+1/2)s gp (78,04) sn2kt1 (75704) ds,

for k > 0, is the eigenvector of J(«) corresponding to the eigenvalue %(2N +1).
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Spectral analysis - the non-self-adjoint case

Eigenvectors of J(«) for |a] < 1

Proposition

Let0 < |a] < 1and N € Z, then the vector v(™) given by formulas

27 . K K
végll = i(fl)kak/ e {N+1/2)s o (—s,a) sn2k (—S,a) ds
0 K s

and

27
= (—1)k+lo¢k/ e IN+1/2)s gp (ﬁ,a) sn2kt1 (ﬁmx) ds,
0 T

Vakt2 = =

for k > 0, is the eigenvector of J(«) corresponding to the eigenvalue %(2N +1).

In addition, the set {v™¥) | N € Z} is complete in £2(N).
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Spectral analysis - the non-self-adjoint case

Eigenvectors of J(«) for |a] < 1

Proposition
Let0 < |a] < 1and N € Z, then the vector v(™) given by formulas
2w
(N) _ . 1\k Kk —i(N+1/2)s E ) 2k (E )
- 1 ) ’ d
Vo pq = i( )a/o e cn(ﬂ_ a | sn o) ds
and )
™
végj_z = (—1)k+1ak/ e IN+1/2)s gp (ﬁ,a) sn2kt1 (ﬁ,a) ds,
0 ™ ™

for k > 0, is the eigenvector of J(«) corresponding to the eigenvalue %(2N +1).

In addition, the set {v™¥) | N € Z} is complete in £2(N).

Interesting open problems:
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Spectral analysis - the non-self-adjoint case

Eigenvectors of J(«) for |a] < 1

Proposition
Let0 < |a] < 1and N € Z, then the vector v(™) given by formulas
2w
(N) _ . 1\k Kk —i(N+1/2)s E ) 2k (E )
- 1 ) ’ d
Vo pq = i( )a/o e cn(ﬂ_ a | sn o) ds
and )
™
végj_z = (—1)k+1ak/ e IN+1/2)s gp (ﬁ,a) sn2kt1 (ﬁ,a) ds,
0 ™ ™

for k > 0, is the eigenvector of J(«) corresponding to the eigenvalue %(2N +1).

In addition, the set {v™¥) | N € Z} is complete in £2(N).

Interesting open problems:

o) =
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Spectral analysis - the non-self-adjoint case

Eigenvectors of J(«) for |o| < 1

Proposition
Let0 < |a] < 1and N € Z, then the vector v(™) given by formulas
2w
(N) _ . 1\k Kk —i(N+1/2)s E ) 2k (E )
- 1 ) ’ d
Vo pq = i( )a/o e cn(ﬂ_ a | sn o) ds
and )
™
’Uélljj-Q = (—1)k+1ak/ e IN+1/2)s gp (ﬁ,a) sn2kt1 (ﬁ,a) ds,
0 7T ™

for k > 0, is the eigenvector of J(«) corresponding to the eigenvalue %(2N +1).

In addition, the set {v™¥) | N € Z} is complete in £2(N).

Interesting open problems:

oM =7 or [o™)| ~? for N — +oo.
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Spectral analysis - the non-self-adjoint case

Eigenvectors of J(«) for |o| < 1

Proposition
Let0 < |a] < 1and N € Z, then the vector v(™) given by formulas
2w
(N) _ . 1\k Kk —i(N+1/2)s E ) 2k (E )
- 1 ) ’ d
Vo pq = i( )a/o e cn(ﬂ_ a | sn o) ds
and )
™
’Uélljj-Q = (—1)k+1ak/ e IN+1/2)s gp (ﬁ,a) sn2kt1 (ﬁ,a) ds,
0 7T ™

for k > 0, is the eigenvector of J(«) corresponding to the eigenvalue %(2N +1).

In addition, the set {v™¥) | N € Z} is complete in £2(N).

Interesting open problems:

oM =7 or [o™)| ~? for N — +oo.

Q Is {vY) | N € Z} the Riezs basis of £2(N)?
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Spectral analysis - the non-self-adjoint case

Spectrum of J(«) in the non-self-adjoint case - animation
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Spectral analysis - the non-self-adjoint case

Spectral analysis of J(«) for |a| =1

Proposition

If |a| =1, a # %1, then

o(J(a)) = oess(J(a)) = C.
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Spectral analysis - the non-self-adjoint case

Spectral analysis of J(«) for |a| =1

Proposition

If |a| = 1, a # £1, then
U(J(a)) = Uess(J(a)) =C.

Main thoughts of the proof:
@ The proof is based on the construction of a singular sequence to J(«) for every z € C.
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Spectral analysis - the non-self-adjoint case

Spectral analysis of J(«) for |a| =1

Proposition

If |a] = 1, a # %1, then
U(J(a)) = Uess(J(a)) =C.

Main thoughts of the proof:
@ The proof is based on the construction of a singular sequence to J(«) for every z € C.
@ Fora € (0, 1) define sequence u(a) by putting

un(a) == a"un,

where
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Spectral analysis - the non-self-adjoint case

Spectral analysis of J(«) for |a| =1

Proposition

If |a] = 1, a # %1, then
U(J(a)) = Uess(J(a)) =C.

Main thoughts of the proof:
@ The proof is based on the construction of a singular sequence to J(«) for every z € C.
@ Fora € (0, 1) define sequence u(a) by putting

un(a) == a"un,
where
Ukt = i(—l)kake‘K’z/ e ! en(t, o) sn?* (¢, a)dt
0
and

Ukt 1= (—l)k"’lake‘Kz/ e #t dn(t, a) sn?* T (¢, )dt.
0
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Spectral analysis - the non-self-adjoint case

Spectral analysis of J(«) for |a| =1

Proposition

If |a] = 1, a # %1, then
U(J(a)) = Uess(J(a)) =C.

Main thoughts of the proof:
@ The proof is based on the construction of a singular sequence to J(«) for every z € C.
@ Fora € (0, 1) define sequence u(a) by putting

un(a) == a"un,
where
Ukt = i(—l)kake‘K’z/ e ! en(t, o) sn?* (¢, a)dt
0
and

Ukt 1= (—l)k"’lake‘Kz/ e #t dn(t, a) sn?* T (¢, )dt.
0

@ Then one can verify, indeed, that

[(J(a) = z)u(a)]|

Jm [a(@)] =0, and W—al;r{li u(a) = 0.
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Spectral analysis - the non-self-adjoint case

Spectral analysis of J(«) for |a| =1 - cont.

Essential for the verification of the “singular property” of the family u(a) = a™u,, are two main
ingredients:
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Spectral analysis - the non-self-adjoint case

Spectral analysis of J(«) for |a| =1 - cont.

Essential for the verification of the “singular property” of the family u(a) = a™u,, are two main
ingredients:

@ Vector u is “almost formal eigenvector™:

J(a)u = zu — 2 cos(Kz)eq.
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Spectral analysis - the non-self-adjoint case

Spectral analysis of J(«) for |a] =1 - cont.

Essential for the verification of the “singular property” of the family u(a) = a™u,, are two main
ingredients:

@ Vector u is “almost formal eigenvector™:
J(a)u = zu — 2 cos(Kz)eq.

@ Asymptotic behavior of the integrals

2K
/ eIzt {SE((? 2))} sn®(t,)dt, ask — oo.
0 k)
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Spectral analysis - the non-self-adjoint case

Spectral analysis of J(«) for |o| = 1 - cont.

Essential for the verification of the “singular property” of the family u(a) = a™u,, are two main
ingredients:

@ Vector u is “almost formal eigenvector™:
J(a)u = zu — 2 cos(Kz)eq.

@ Asymptotic behavior of the integrals
2K
—izt Cn(t, Ol) k
[) ¢ {dn(t7 a)} sn”(t,a)dt, ask — oo.

@ The asymptotic formulas (ingredient 2.) can be obtain by applying the saddle point method.
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Spectral analysis - the non-self-adjoint case

Spectral analysis of J(«) for |a| =1 - cont.

Essential for the verification of the “singular property” of the family u(a) = a™u,, are two main
ingredients:

@ Vector u is “almost formal eigenvector™:
J(a)u = zu — 2 cos(Kz)eq.

@ Asymptotic behavior of the integrals
2K
—izt Cn(t, Ol) k
[) ¢ {dn(t7 a)} sn”(t,a)dt, ask — oo.

@ The asymptotic formulas (ingredient 2.) can be obtain by applying the saddle point method.
@ However, one has to know the location of global maxima of function

u — |sn(uK(a),a)|

in (0,2) for |a| =1, a # £1.
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Spectral analysis - the non-self-adjoint case

Spectral analysis of J(«) for |a| =1 - cont.

Essential for the verification of the “singular property” of the family u(a) = a™u,, are two main
ingredients:

@ Vector u is “almost formal eigenvector™:
J(a)u = zu — 2 cos(Kz)eq.

@ Asymptotic behavior of the integrals
2K
—izt Cn(t, Ol) k
[) ¢ {dn(t7 Ot)} sn”(t,a)dt, ask — oo.

@ The asymptotic formulas (ingredient 2.) can be obtain by applying the saddle point method.
@ However, one has to know the location of global maxima of function

u — |sn(uK(a),a)|

in (0,2) for |a| =1, a # £1.

@ [t can be shown (not trivial!) that the function has unique global maximum at « = 1 for every
lal =1, o # £1.
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Intermezzo Il - extremal properties of | sn(uwK (m) | m)|

Contents

© Intermezzo Il - extremal properties of | sn(uk (m) | m)|
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Intermezzo Il - extremal properties of | sn(uwK (m) | m)|

On the extremal properties of |sn(uK(m) | m)|

All the necessary properties _
known when m € (0, 1)
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Intermezzo Il - extremal properties of | sn(uwK (m) | m)|

On the extremal properties of |sn(uK(m) | m)|

Transf. modulus m from
the unit circle to (0, 1)
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Intermezzo Il - extremal properties of | sn(uwK (m) | m)|

On the extremal properties of | sn(uK(m) | m)|

Im

Transf. modulus m from
the unit circle to (0, 1)

sn2(uK(m) | m) = 1 crf + 525% cos2 0 — ce1 + iss1ddy 7
vm crf RS 828% cos2 0 + cc1 — iss1ddy

where Sm > 0,m = €119 and s = sn(uK (cos? 0) | cos? 0), s1 = sn(uK (sin? §) | sin? §), etc.
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Intermezzo Il - extremal properties of | sn(uwK (m) | m)|

On the extremal properties of |sn(uK(m) | m)|

Im

|sn(uK(m) | m)| <1 forall m € oD with the equality only for m = 1.
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Intermezzo Il - extremal properties of | sn(uwK (m) | m)|

On the extremal properties of |sn(uK(m) | m)|

Im

Maximum modulus...

|sn(uK(m) | m)| <1 forall m € D with the equality only for m = 1.
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Intermezzo Il - extremal properties of | sn(uwK (m) | m)|

On the extremal properties of |sn(uK(m) | m)|

Im

Anothercircle Dy = {z | |z — 1| =1}
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Intermezzo Il - extremal properties of | sn(uwK (m) | m)|

On the extremal properties of |sn(uK(m) | m)|

Im

Rm

Another circle D1 = {z | |z — 1| = 1} and another transformation formula (not displayed) ...
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Intermezzo Il - extremal properties of | sn(uwK (m) | m)|

On the extremal properties of |sn(uK(m) | m)|

Im

|sn(uK(m) | m)| <1 forall m € oD,
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Intermezzo Il - extremal properties of | sn(uwK (m) | m)|

On the extremal properties of |sn(uK(m) | m)|

|sn(uk (m) | m)| ~0 =

| sn(ukK (m) | m)| ~ 0

rm

In additon, 1iI(I)l+ |sn(uK(m £+ ie) | m + £ie)| < 1 forallm > 2 and
€—>

the function m +— sn(uK (m) | m) is bounded.
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Intermezzo Il - extremal properties of | sn(uwK (m) | m)|

On the extremal properties of | sn(uK(m) | m)|

[m

|sn(uK(m) | m)| <1 forall m ¢ Dy \D with the equality only for m = 1.
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Intermezzo Il - extremal properties of | sn(uwK (m) | m)|

On the extremal properties of | sn(uK(m) | m)|

[m

fo<u< the global maximum of m — |sn(uK(m) | m)|

1
2
is located at m = 1 with the value = 1.
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Intermezzo Il - extremal properties of | sn(uwK (m) | m)|

On the extremal properties of | sn(uK(m) | m)|

[m

1 .
If 3 <wu <1 the global maximum of m — |sn(uK(m) | m)|

is located in (1, 2) with the value > 1.
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Intermezzo Il - extremal properties of | sn(uwK (m) | m)|

On the extremal properties of |sn(uK(m) | m)| - main theorem

Theorem:

The following statements hold true.
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Intermezzo Il - extremal properties of | sn(uwK (m) | m)|

On the extremal properties of |sn(uK(m) | m)| - main theorem

Theorem:
The following statements hold true.
@ Forallue (0,1)andm ¢ {z€ C||z—1] < 1Azl > 1},itholds

|sn(K(m)u | m)| < 1.
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Intermezzo Il - extremal properties of | sn(uwK (m) | m)|

On the extremal properties of | sn(uK(m) | m)| - main theorem

Theorem:
The following statements hold true.
@ Forallue (0,1)andm ¢ {z€ C||z—1] < 1Azl > 1},itholds

|sn(K(m)u | m)| < 1.

@ Foru € (0,1/2] the function m +— |sn(K (m)u | m)| has unique global maximum located at
m = 1 with the value equal to 1, i.e.,

[sn(K(1)u|1)]=1 and |sn(K(m)u|m)| <1 forallm#1

(where the value at m = 1 is to be understood as the respective limit).
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Intermezzo Il - extremal properties of | sn(uwK (m) | m)|

On the extremal properties of | sn(uK(m) | m)| - main theorem

Theorem:
The following statements hold true.
@ Forallue (0,1)andm ¢ {z € C||z—1] < 1A|z| > 1}, it holds
|sn(K(m)u | m)| < 1.

@ Foru € (0,1/2] the function m +— |sn(K (m)u | m)| has unique global maximum located at
m = 1 with the value equal to 1, i.e.,

[sn(K(1)u|1)]=1 and |sn(K(m)u|m)| <1 forallm#1

(where the value at m = 1 is to be understood as the respective limit).
© Foru € (1/2,1), the function m — | sn(K(m)u | m)| has a global maximum located in the
interval (1, 2) with the value exceeding 1, i.e.,

maé\sn(K(m)u | m)| = |sn(K(m*)u | m*)] > 1 for some m* € (1,2).
me
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Intermezzo Il - extremal properties of | sn(uwK (m) | m)|
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Thank you!
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