Spectral analysis of non-self-adjoint Jacobi operator associated with Jacobian elliptic functions

František Štampach
jointly with Petr Siegl

Workskop on Operator Theory, Complex Analysis, and A?pplications 2016 June 21-24

Contents

(1) Complex Jacobi matrices - generalities

2 The Jacobi matrix associated with Jacobian elliptic functions
(3) Intermezzo I-Jacobian elliptic functions

4 Spectral analysis - the self-adjoint case
(5) Spectral analysis - the non-self-adjoint case

6 Intermezzo II - extremal properties of $|\operatorname{sn}(u K(m) \mid m)|$

Jacobi operators associated with complex semi-infinite Jacobi matrix

- To the semi-infinite Jacobi matrix

$$
\mathcal{J}=\left(\begin{array}{ccccc}
b_{1} & a_{1} & & & \\
a_{1} & b_{2} & a_{2} & & \\
& a_{2} & b_{3} & a_{3} & \\
& & \ddots & \ddots & \ddots
\end{array}\right)
$$

where $b_{n} \in \mathbb{C}$ and $a_{n} \in \mathbb{C} \backslash\{0\}$, we associate two operators $J_{\min }$ and $J_{\max }$ acting on $\ell^{2}(\mathbb{N})$.

Jacobi operators associated with complex semi-infinite Jacobi matrix

- To the semi-infinite Jacobi matrix

$$
\mathcal{J}=\left(\begin{array}{ccccc}
b_{1} & a_{1} & & & \\
a_{1} & b_{2} & a_{2} & & \\
& a_{2} & b_{3} & a_{3} & \\
& & \ddots & \ddots & \ddots
\end{array}\right)
$$

where $b_{n} \in \mathbb{C}$ and $a_{n} \in \mathbb{C} \backslash\{0\}$, we associate two operators $J_{\min }$ and $J_{\max }$ acting on $\ell^{2}(\mathbb{N})$.

- $J_{\text {min }}$ is the operator closure of J_{0}, an operator defined on $\operatorname{span}\left\{e_{n} \mid n \in \mathbb{N}\right\}$ by

$$
J_{0} e_{n}:=a_{n-1} e_{n-1}+b_{n} e_{n}+a_{n} e_{n+1}, \quad \forall n \in \mathbb{N},\left(a_{0}:=0\right)
$$

Jacobi operators associated with complex semi-infinite Jacobi matrix

- To the semi-infinite Jacobi matrix

$$
\mathcal{J}=\left(\begin{array}{ccccc}
b_{1} & a_{1} & & & \\
a_{1} & b_{2} & a_{2} & & \\
& a_{2} & b_{3} & a_{3} & \\
& & \ddots & \ddots & \ddots
\end{array}\right)
$$

where $b_{n} \in \mathbb{C}$ and $a_{n} \in \mathbb{C} \backslash\{0\}$, we associate two operators $J_{\min }$ and $J_{\max }$ acting on $\ell^{2}(\mathbb{N})$.

- $J_{\text {min }}$ is the operator closure of J_{0}, an operator defined on $\operatorname{span}\left\{e_{n} \mid n \in \mathbb{N}\right\}$ by

$$
J_{0} e_{n}:=a_{n-1} e_{n-1}+b_{n} e_{n}+a_{n} e_{n+1}, \quad \forall n \in \mathbb{N},\left(a_{0}:=0\right)
$$

- $J_{\text {max }}$ acts as $J_{\text {max }} x:=\mathcal{J} \cdot x$ (formal matrix product) on vectors from

$$
\operatorname{Dom} J_{\max }=\left\{x \in \ell^{2}(\mathbb{N}) \mid \mathcal{J} \cdot x \in \ell^{2}(\mathbb{N})\right\}
$$

Jacobi operators associated with complex semi-infinite Jacobi matrix

- To the semi-infinite Jacobi matrix

$$
\mathcal{J}=\left(\begin{array}{ccccc}
b_{1} & a_{1} & & & \\
a_{1} & b_{2} & a_{2} & & \\
& a_{2} & b_{3} & a_{3} & \\
& & \ddots & \ddots & \ddots
\end{array}\right)
$$

where $b_{n} \in \mathbb{C}$ and $a_{n} \in \mathbb{C} \backslash\{0\}$, we associate two operators $J_{\min }$ and $J_{\max }$ acting on $\ell^{2}(\mathbb{N})$.

- $J_{\text {min }}$ is the operator closure of J_{0}, an operator defined on $\operatorname{span}\left\{e_{n} \mid n \in \mathbb{N}\right\}$ by

$$
J_{0} e_{n}:=a_{n-1} e_{n-1}+b_{n} e_{n}+a_{n} e_{n+1}, \quad \forall n \in \mathbb{N},\left(a_{0}:=0\right)
$$

- $J_{\text {max }}$ acts as $J_{\text {max }} x:=\mathcal{J} \cdot x$ (formal matrix product) on vectors from

$$
\operatorname{Dom} J_{\max }=\left\{x \in \ell^{2}(\mathbb{N}) \mid \mathcal{J} \cdot x \in \ell^{2}(\mathbb{N})\right\}
$$

- Both operators $J_{\min }$ and $J_{\max }$ are closed and densely defined.

Jacobi operators associated with complex semi-infinite Jacobi matrix

- To the semi-infinite Jacobi matrix

$$
\mathcal{J}=\left(\begin{array}{ccccc}
b_{1} & a_{1} & & & \\
a_{1} & b_{2} & a_{2} & & \\
& a_{2} & b_{3} & a_{3} & \\
& & \ddots & \ddots & \ddots
\end{array}\right)
$$

where $b_{n} \in \mathbb{C}$ and $a_{n} \in \mathbb{C} \backslash\{0\}$, we associate two operators $J_{\min }$ and $J_{\max }$ acting on $\ell^{2}(\mathbb{N})$.

- $J_{\text {min }}$ is the operator closure of J_{0}, an operator defined on $\operatorname{span}\left\{e_{n} \mid n \in \mathbb{N}\right\}$ by

$$
J_{0} e_{n}:=a_{n-1} e_{n-1}+b_{n} e_{n}+a_{n} e_{n+1}, \quad \forall n \in \mathbb{N},\left(a_{0}:=0\right)
$$

- $J_{\max }$ acts as $J_{\max } x:=\mathcal{J} \cdot x$ (formal matrix product) on vectors from

$$
\operatorname{Dom} J_{\max }=\left\{x \in \ell^{2}(\mathbb{N}) \mid \mathcal{J} \cdot x \in \ell^{2}(\mathbb{N})\right\} .
$$

- Both operators $J_{\min }$ and $J_{\max }$ are closed and densely defined. They are related as

$$
J_{\max }^{*}=C J_{\min } C \quad \text { and } \quad J_{\min }^{*}=C J_{\max } C
$$

where C is the complex conjugation operator, $(C x)_{n}=\overline{x_{n}}$.

Proper case and spectrum of Jacobi operator

- Any closed operator A having $\operatorname{span}\left\{e_{n} \mid n \in \mathbb{N}\right\} \subset \operatorname{Dom}(A)$ and defined by the matrix product satisfies $J_{\min } \subset A \subset J_{\text {max }}$.

Proper case and spectrum of Jacobi operator

- Any closed operator A having $\operatorname{span}\left\{e_{n} \mid n \in \mathbb{N}\right\} \subset \operatorname{Dom}(A)$ and defined by the matrix product satisfies $J_{\text {min }} \subset A \subset J_{\text {max }}$.
- In general $J_{\text {min }} \neq J_{\text {max }}$. If $J_{\text {min }}=J_{\text {max }}$, the matrix \mathcal{J} is called proper and the operator $J:=J_{\min } \equiv J_{\max }$ the Jacobi operator associated with \mathcal{J}.

Proper case and spectrum of Jacobi operator

- Any closed operator A having $\operatorname{span}\left\{e_{n} \mid n \in \mathbb{N}\right\} \subset \operatorname{Dom}(A)$ and defined by the matrix product satisfies $J_{\text {min }} \subset A \subset J_{\text {max }}$.
- In general $J_{\text {min }} \neq J_{\text {max }}$. If $J_{\text {min }}=J_{\text {max }}$, the matrix \mathcal{J} is called proper and the operator $J:=J_{\min } \equiv J_{\max }$ the Jacobi operator associated with \mathcal{J}.
- Let $J_{\min }=J_{\max }=: J$. Then

$$
J^{*}=C J C .
$$

Proper case and spectrum of Jacobi operator

- Any closed operator A having $\operatorname{span}\left\{e_{n} \mid n \in \mathbb{N}\right\} \subset \operatorname{Dom}(A)$ and defined by the matrix product satisfies $J_{\text {min }} \subset A \subset J_{\text {max }}$.
- In general $J_{\text {min }} \neq J_{\text {max }}$. If $J_{\text {min }}=J_{\text {max }}$, the matrix \mathcal{J} is called proper and the operator $J:=J_{\min } \equiv J_{\max }$ the Jacobi operator associated with \mathcal{J}.
- Let $J_{\min }=J_{\max }=: J$. Then

$$
J^{*}=C J C .
$$

As a consequence,

$$
\sigma_{r}(J)=\emptyset .
$$

Proper case and spectrum of Jacobi operator

- Any closed operator A having $\operatorname{span}\left\{e_{n} \mid n \in \mathbb{N}\right\} \subset \operatorname{Dom}(A)$ and defined by the matrix product satisfies $J_{\text {min }} \subset A \subset J_{\text {max }}$.
- In general $J_{\text {min }} \neq J_{\text {max }}$. If $J_{\text {min }}=J_{\text {max }}$, the matrix \mathcal{J} is called proper and the operator $J:=J_{\min } \equiv J_{\max }$ the Jacobi operator associated with \mathcal{J}.
- Let $J_{\min }=J_{\max }=: J$. Then

$$
J^{*}=C J C .
$$

As a consequence,

$$
\sigma_{r}(J)=\emptyset .
$$

- We have the decomposition:

$$
\sigma(J)=\sigma_{p}(J) \cup \sigma_{c}(J)=\sigma_{p}(J) \cup \sigma_{\text {ess }}(J)
$$

Proper case and spectrum of Jacobi operator

- Any closed operator A having $\operatorname{span}\left\{e_{n} \mid n \in \mathbb{N}\right\} \subset \operatorname{Dom}(A)$ and defined by the matrix product satisfies $J_{\text {min }} \subset A \subset J_{\text {max }}$.
- In general $J_{\text {min }} \neq J_{\text {max }}$. If $J_{\text {min }}=J_{\text {max }}$, the matrix \mathcal{J} is called proper and the operator $J:=J_{\min } \equiv J_{\max }$ the Jacobi operator associated with \mathcal{J}.
- Let $J_{\min }=J_{\max }=: J$. Then

$$
J^{*}=C J C .
$$

As a consequence,

$$
\sigma_{r}(J)=\emptyset .
$$

- We have the decomposition:

$$
\sigma(J)=\sigma_{p}(J) \cup \sigma_{c}(J)=\sigma_{p}(J) \cup \sigma_{\text {ess }}(J)
$$

where the essential spectrum has the simple characterization:

$$
\sigma_{\text {ess }}(J)=\{z \in \mathbb{C} \mid \operatorname{Ran}(J-z) \text { is not closed }\} .
$$

Contents

(1) Complex Jacobi matrices - generalities

2 The Jacobi matrix associated with Jacobian elliptic functions
3) Intermezzo I-Jacobian elliptic functions

4 Spectral analysis - the self-adjoint case
(5) Spectral analysis - the non-self-adjoint case
6. Intermezzo II - extremal properties of $|\operatorname{sn}(u K(m) \mid m)|$

The Jacobi matrix associated with Jacobian elliptic functions

- For $\alpha \in \mathbb{C}$, the semi-infinite Jacobi matrix

$$
\mathcal{J}=\left(\begin{array}{cccccc}
0 & 1 & & & & \\
1 & 0 & 2 \alpha & & & \\
& 2 \alpha & 0 & 3 & & \\
& & 3 & 0 & 4 \alpha & \\
& & & \ddots & \ddots & \ddots
\end{array}\right)
$$

is proper, and hence it determines a unique densely defined closed operator $J(\alpha)$.

The Jacobi matrix associated with Jacobian elliptic functions

- For $\alpha \in \mathbb{C}$, the semi-infinite Jacobi matrix

$$
\mathcal{J}=\left(\begin{array}{cccccc}
0 & 1 & & & & \\
1 & 0 & 2 \alpha & & & \\
& 2 \alpha & 0 & 3 & & \\
& & 3 & 0 & 4 \alpha & \\
& & & \ddots & \ddots & \ddots
\end{array}\right)
$$

is proper, and hence it determines a unique densely defined closed operator $J(\alpha)$.

- The aim of this talk is the investigation of spectral properties of $J(\alpha)$ for $\alpha \in \mathbb{C}$.

The Jacobi matrix associated with Jacobian elliptic functions

- For $\alpha \in \mathbb{C}$, the semi-infinite Jacobi matrix

$$
\mathcal{J}=\left(\begin{array}{cccccc}
0 & 1 & & & & \\
1 & 0 & 2 \alpha & & & \\
& 2 \alpha & 0 & 3 & & \\
& & 3 & 0 & 4 \alpha & \\
& & & \ddots & \ddots & \ddots
\end{array}\right)
$$

is proper, and hence it determines a unique densely defined closed operator $J(\alpha)$.

- The aim of this talk is the investigation of spectral properties of $J(\alpha)$ for $\alpha \in \mathbb{C}$.
- We will restrict with α to the unit disk $|\alpha| \leq 1$. The spectral properties of $J(\alpha)$ for $|\alpha|>1$ are very similar to those for $|\alpha|<1$.

Contents

(1) Complex Jacobi matrices - generalities

2 The Jacobi matrix associated with Jacobian elliptic functions

3 Intermezzo I-Jacobian elliptic functions

4 Spectral analysis - the self-adjoint case
(5) Spectral analysis - the non-self-adjoint case

6 Intermezzo II - extremal properties of $|\operatorname{sn}(u K(m) \mid m)|$

Jacobian elliptic functions

- For $0 \leq \alpha \leq 1$, the integral (incomplete elliptic of 1 st kind)

$$
u=\int_{0}^{\varphi} \frac{\mathrm{d} \theta}{\sqrt{1-\alpha^{2} \sin ^{2} \theta}}
$$

measures the arc length of an ellipse.

Jacobian elliptic functions

- For $0 \leq \alpha \leq 1$, the integral (incomplete elliptic of 1st kind)

$$
u=\int_{0}^{\varphi} \frac{\mathrm{d} \theta}{\sqrt{1-\alpha^{2} \sin ^{2} \theta}}
$$

measures the arc length of an ellipse.

- Its inverse $\varphi(u)=\operatorname{am}(u, \alpha)$ is known as the amplitude.

Jacobian elliptic functions

- For $0 \leq \alpha \leq 1$, the integral (incomplete elliptic of 1st kind)

$$
u=\int_{0}^{\varphi} \frac{\mathrm{d} \theta}{\sqrt{1-\alpha^{2} \sin ^{2} \theta}}
$$

measures the arc length of an ellipse.

- Its inverse $\varphi(u)=\operatorname{am}(u, \alpha)$ is known as the amplitude.
- The (copolar) triplet of JEF:

$$
\begin{aligned}
\operatorname{sn}(u, \alpha) & =\sin \operatorname{am}(u, \alpha) \\
\operatorname{cn}(u, \alpha) & =\cos \operatorname{am}(u, \alpha) \\
\operatorname{dn}(u, \alpha) & =\sqrt{1-\alpha^{2} \sin ^{2} \operatorname{am}(u, \alpha)}
\end{aligned}
$$

Jacobian elliptic functions

- For $0 \leq \alpha \leq 1$, the integral (incomplete elliptic of 1st kind)

$$
u=\int_{0}^{\varphi} \frac{\mathrm{d} \theta}{\sqrt{1-\alpha^{2} \sin ^{2} \theta}}
$$

measures the arc length of an ellipse.

- Its inverse $\varphi(u)=\operatorname{am}(u, \alpha)$ is known as the amplitude.
- The (copolar) triplet of JEF:

$$
\begin{aligned}
\operatorname{sn}(u, \alpha) & =\sin \operatorname{am}(u, \alpha) \\
\operatorname{cn}(u, \alpha) & =\cos \operatorname{am}(u, \alpha) \\
\operatorname{dn}(u, \alpha) & =\sqrt{1-\alpha^{2} \sin ^{2} \operatorname{am}(u, \alpha)}
\end{aligned}
$$

- Complete elliptic integral of the first kind:

$$
K(\alpha)=\int_{0}^{\pi / 2} \frac{\mathrm{~d} \theta}{\sqrt{1-\alpha^{2} \sin ^{2} \theta}}
$$

Jacobian elliptic functions

- For $0 \leq \alpha \leq 1$, the integral (incomplete elliptic of 1st kind)

$$
u=\int_{0}^{\varphi} \frac{\mathrm{d} \theta}{\sqrt{1-\alpha^{2} \sin ^{2} \theta}}
$$

measures the arc length of an ellipse.

- Its inverse $\varphi(u)=\operatorname{am}(u, \alpha)$ is known as the amplitude.
- The (copolar) triplet of JEF:

$$
\begin{aligned}
& \operatorname{sn}(u, \alpha)=\sin \operatorname{am}(u, \alpha) \\
& \operatorname{cn}(u, \alpha)=\cos \operatorname{am}(u, \alpha) \\
& \operatorname{dn}(u, \alpha)=\sqrt{1-\alpha^{2} \sin ^{2} \operatorname{am}(u, \alpha)}
\end{aligned}
$$

- Complete elliptic integral of the first kind:

$$
K(\alpha)=\int_{0}^{\pi / 2} \frac{\mathrm{~d} \theta}{\sqrt{1-\alpha^{2} \sin ^{2} \theta}}
$$

- JEFs are meromorphic functions in u (with α fixed) as well as meromorphic functions in α (with u fixed). While K is analytic in the cut-plane $\mathbb{C} \backslash((-\infty,-1] \cup[1, \infty))$.

Jacobian elliptic functions - plotting

Contents

(1) Complex Jacobi matrices - generalities

2 The Jacobi matrix associated with Jacobian elliptic functions
(3) Intermezzo I-Jacobian elliptic functions

4 Spectral analysis - the self-adjoint case
(5) Spectral analysis - the non-self-adjoint case

6 Intermezzo II - extremal properties of $|\operatorname{sn}(u K(m) \mid m)|$

Spectral analysis of $J(\alpha)$ in the self-adjoint case

- We start with the identities

$$
\left\langle e_{1}, J(\alpha)^{2 n+1} e_{1}\right\rangle=0 \quad \text { and } \quad\left\langle e_{1}, J(\alpha)^{2 n} e_{1}\right\rangle=C_{2 n}(\alpha)
$$

Spectral analysis of $J(\alpha)$ in the self-adjoint case

- We start with the identities

$$
\left\langle e_{1}, J(\alpha)^{2 n+1} e_{1}\right\rangle=0 \quad \text { and } \quad\left\langle e_{1}, J(\alpha)^{2 n} e_{1}\right\rangle=C_{2 n}(\alpha)
$$

where $C_{2 n}$ are polynomials that can be defined via the generating function formula:

$$
\operatorname{cn}(z, \alpha)=\sum_{n=0}^{\infty} \frac{(-1)^{n} C_{2 n}(\alpha)}{(2 n)!} z^{2 n}
$$

Spectral analysis of $J(\alpha)$ in the self-adjoint case

- We start with the identities

$$
\left\langle e_{1}, J(\alpha)^{2 n+1} e_{1}\right\rangle=0 \quad \text { and } \quad\left\langle e_{1}, J(\alpha)^{2 n} e_{1}\right\rangle=C_{2 n}(\alpha)
$$

where $C_{2 n}$ are polynomials that can be defined via the generating function formula:

$$
\operatorname{cn}(z, \alpha)=\sum_{n=0}^{\infty} \frac{(-1)^{n} C_{2 n}(\alpha)}{(2 n)!} z^{2 n} .
$$

- Hence we may write

$$
\operatorname{cn}(z, \alpha)=\sum_{n=0}^{\infty} \frac{(\mathrm{i} z)^{n}}{n!}\left\langle e_{1}, J(\alpha)^{n} e_{1}\right\rangle=\sum_{n=0}^{\infty} \frac{(\mathrm{i} z)^{n}}{n!} \int_{\mathbb{R}} x^{n} \mathrm{~d} \mu(x)=\int_{\mathbb{R}} e^{i x z} \mathrm{~d} \mu(x)
$$

where we denote $\mu(\cdot):=\left\langle e_{1}, E_{J}(\cdot) e_{1}\right\rangle$.

Spectral analysis of $J(\alpha)$ in the self-adjoint case

- We start with the identities

$$
\left\langle e_{1}, J(\alpha)^{2 n+1} e_{1}\right\rangle=0 \quad \text { and } \quad\left\langle e_{1}, J(\alpha)^{2 n} e_{1}\right\rangle=C_{2 n}(\alpha)
$$

where $C_{2 n}$ are polynomials that can be defined via the generating function formula:

$$
\operatorname{cn}(z, \alpha)=\sum_{n=0}^{\infty} \frac{(-1)^{n} C_{2 n}(\alpha)}{(2 n)!} z^{2 n} .
$$

- Hence we may write

$$
\operatorname{cn}(z, \alpha)=\sum_{n=0}^{\infty} \frac{(\mathrm{i} z)^{n}}{n!}\left\langle e_{1}, J(\alpha)^{n} e_{1}\right\rangle=\sum_{n=0}^{\infty} \frac{(\mathrm{i} z)^{n}}{n!} \int_{\mathbb{R}} x^{n} \mathrm{~d} \mu(x)=\int_{\mathbb{R}} e^{i x z} \mathrm{~d} \mu(x)
$$

where we denote $\mu(\cdot):=\left\langle e_{1}, E_{J}(\cdot) e_{1}\right\rangle$.

- We get

$$
\mathcal{F}[\mu](z)=\operatorname{cn}(z, \alpha) .
$$

Spectral analysis of $J(\alpha)$ in the self-adjoint case

- We start with the identities

$$
\left\langle e_{1}, J(\alpha)^{2 n+1} e_{1}\right\rangle=0 \quad \text { and } \quad\left\langle e_{1}, J(\alpha)^{2 n} e_{1}\right\rangle=C_{2 n}(\alpha)
$$

where $C_{2 n}$ are polynomials that can be defined via the generating function formula:

$$
\operatorname{cn}(z, \alpha)=\sum_{n=0}^{\infty} \frac{(-1)^{n} C_{2 n}(\alpha)}{(2 n)!} z^{2 n}
$$

- Hence we may write

$$
\operatorname{cn}(z, \alpha)=\sum_{n=0}^{\infty} \frac{(\mathrm{i} z)^{n}}{n!}\left\langle e_{1}, J(\alpha)^{n} e_{1}\right\rangle=\sum_{n=0}^{\infty} \frac{(\mathrm{i} z)^{n}}{n!} \int_{\mathbb{R}} x^{n} \mathrm{~d} \mu(x)=\int_{\mathbb{R}} e^{i x z} \mathrm{~d} \mu(x)
$$

where we denote $\mu(\cdot):=\left\langle e_{1}, E_{J}(\cdot) e_{1}\right\rangle$.

- We get

$$
\mathcal{F}[\mu](z)=\operatorname{cn}(z, \alpha)
$$

Consequently, by applying the inverse Fourier transform to the function $\operatorname{cn}(z ; \alpha)$, one may recover the spectral measure μ !

Spectral analysis of $J(\alpha)$ for $\alpha \in(-1,1)$

- For $\alpha \in(-1,1)$, the evaluation of the inverse Fourier transform yields

$$
\mu(t)=\frac{\pi}{\alpha K} \sum_{n=0}^{\infty} \frac{q^{n+1 / 2}}{1+q^{2 n+1}}\left[\delta\left(t-\frac{(2 n+1) \pi}{2 K}\right)+\delta\left(t+\frac{(2 n+1) \pi}{2 K}\right)\right]
$$

where the nome $q=q(\alpha)(|q|<1)$.

Spectral analysis of $J(\alpha)$ for $\alpha \in(-1,1)$

- For $\alpha \in(-1,1)$, the evaluation of the inverse Fourier transform yields

$$
\mu(t)=\frac{\pi}{\alpha K} \sum_{n=0}^{\infty} \frac{q^{n+1 / 2}}{1+q^{2 n+1}}\left[\delta\left(t-\frac{(2 n+1) \pi}{2 K}\right)+\delta\left(t+\frac{(2 n+1) \pi}{2 K}\right)\right]
$$

where the nome $q=q(\alpha)(|q|<1)$.

- Hence the measure μ is discrete supported by the set

$$
\operatorname{supp} \mu=\frac{\pi}{2 K}(2 \mathbb{Z}+1)
$$

Spectral analysis of $J(\alpha)$ for $\alpha \in(-1,1)$

- For $\alpha \in(-1,1)$, the evaluation of the inverse Fourier transform yields

$$
\mu(t)=\frac{\pi}{\alpha K} \sum_{n=0}^{\infty} \frac{q^{n+1 / 2}}{1+q^{2 n+1}}\left[\delta\left(t-\frac{(2 n+1) \pi}{2 K}\right)+\delta\left(t+\frac{(2 n+1) \pi}{2 K}\right)\right]
$$

where the nome $q=q(\alpha)(|q|<1)$.

- Hence the measure μ is discrete supported by the set

$$
\operatorname{supp} \mu=\frac{\pi}{2 K}(2 \mathbb{Z}+1)
$$

- This implies that, for $\alpha \in(-1,1)$, the spectrum of $J(\alpha)$ is discrete and

$$
\sigma(J(\alpha))=\sigma_{p}(J(\alpha))=\frac{\pi}{2 K}(2 \mathbb{Z}+1) .
$$

Spectral analysis of $J(\alpha)$ for $\alpha \in(-1,1)$

- For $\alpha \in(-1,1)$, the evaluation of the inverse Fourier transform yields

$$
\mu(t)=\frac{\pi}{\alpha K} \sum_{n=0}^{\infty} \frac{q^{n+1 / 2}}{1+q^{2 n+1}}\left[\delta\left(t-\frac{(2 n+1) \pi}{2 K}\right)+\delta\left(t+\frac{(2 n+1) \pi}{2 K}\right)\right]
$$

where the nome $q=q(\alpha)(|q|<1)$.

- Hence the measure μ is discrete supported by the set

$$
\operatorname{supp} \mu=\frac{\pi}{2 K}(2 \mathbb{Z}+1)
$$

- This implies that, for $\alpha \in(-1,1)$, the spectrum of $J(\alpha)$ is discrete and

$$
\sigma(J(\alpha))=\sigma_{p}(J(\alpha))=\frac{\pi}{2 K}(2 \mathbb{Z}+1) .
$$

- In addition, we can also compute the Weyl m-function $m(z ; \alpha):=\left\langle e_{1},(J(\alpha)-z)^{-1} e_{1}\right\rangle$, since

$$
m(z, \alpha)=\mathrm{i} \mathcal{L}[\operatorname{cn}(t, \alpha)](-\mathrm{i} z), \quad \text { for } \Re z>0 .
$$

Spectral analysis of $J(\alpha)$ for $\alpha \in(-1,1)$

- For $\alpha \in(-1,1)$, the evaluation of the inverse Fourier transform yields

$$
\mu(t)=\frac{\pi}{\alpha K} \sum_{n=0}^{\infty} \frac{q^{n+1 / 2}}{1+q^{2 n+1}}\left[\delta\left(t-\frac{(2 n+1) \pi}{2 K}\right)+\delta\left(t+\frac{(2 n+1) \pi}{2 K}\right)\right]
$$

where the nome $q=q(\alpha)(|q|<1)$.

- Hence the measure μ is discrete supported by the set

$$
\operatorname{supp} \mu=\frac{\pi}{2 K}(2 \mathbb{Z}+1)
$$

- This implies that, for $\alpha \in(-1,1)$, the spectrum of $J(\alpha)$ is discrete and

$$
\sigma(J(\alpha))=\sigma_{p}(J(\alpha))=\frac{\pi}{2 K}(2 \mathbb{Z}+1) .
$$

- In addition, we can also compute the Weyl m-function $m(z ; \alpha):=\left\langle e_{1},(J(\alpha)-z)^{-1} e_{1}\right\rangle$, since

$$
m(z, \alpha)=\mathrm{i} \mathcal{L}[\operatorname{cn}(t, \alpha)](-\mathrm{i} z), \quad \text { for } \Re z>0 .
$$

- It results in the formula

$$
m(z, \alpha)=\frac{2 \pi z}{\alpha K} \sum_{n=0}^{\infty} \frac{q^{n+1 / 2}}{1+q^{2 n+1}} \frac{1}{\frac{(2 n+1)^{2} \pi^{2}}{4 K^{2}}-z^{2}}
$$

Spectral analysis of $J(\alpha)$ for $\alpha= \pm 1$

- Recall that

$$
\mathcal{F}[\mu](z)=\operatorname{cn}(z, \pm 1)=\frac{1}{\cosh (z)}
$$

Spectral analysis of $J(\alpha)$ for $\alpha= \pm 1$

- Recall that

$$
\mathcal{F}[\mu](z)=\operatorname{cn}(z, \pm 1)=\frac{1}{\cosh (z)}
$$

- By applying the inverse Fourier transform, one concludes that μ is absolutely continuous measure supported on \mathbb{R} and its density equals

$$
\frac{\mathrm{d} \mu}{\mathrm{~d} t}=\frac{1}{2 \cosh (\pi t / 2)}, \quad \forall t \in \mathbb{R}
$$

Spectral analysis of $J(\alpha)$ for $\alpha= \pm 1$

- Recall that

$$
\mathcal{F}[\mu](z)=\operatorname{cn}(z, \pm 1)=\frac{1}{\cosh (z)}
$$

- By applying the inverse Fourier transform, one concludes that μ is absolutely continuous measure supported on \mathbb{R} and its density equals

$$
\frac{\mathrm{d} \mu}{\mathrm{~d} t}=\frac{1}{2 \cosh (\pi t / 2)}, \quad \forall t \in \mathbb{R}
$$

- This implies that the spectrum of $J(\pm 1)$ is purely absolutely continuous and

$$
\sigma(J(\pm 1))=\sigma_{a c}(J(\pm 1))=\mathbb{R} .
$$

Spectrum of $J(\alpha)$ in the self-adjoint case - animation

Contents

(1) Complex Jacobi matrices - generalities

2 The Jacobi matrix associated with Jacobian elliptic functions
3) Intermezzo I-Jacobian elliptic functions

4 Spectral analysis - the self-adjoint case
(5) Spectral analysis - the non-self-adjoint case

6 Intermezzo II - extremal properties of $|\operatorname{sn}(u K(m) \mid m)|$

Spectral analysis of $J(\alpha)$ for $|\alpha|<1$

- For $|\alpha|<1$, the operator $J(\alpha)$ can be viewed as a perturbation of $J(0)$ with relative bound smaller than 1.

Spectral analysis of $J(\alpha)$ for $|\alpha|<1$

- For $|\alpha|<1$, the operator $J(\alpha)$ can be viewed as a perturbation of $J(0)$ with relative bound smaller than 1.
- Consequently, the spectrum of $J(\alpha)$ is discrete if $|\alpha|<1$.

Spectral analysis of $J(\alpha)$ for $|\alpha|<1$

- For $|\alpha|<1$, the operator $J(\alpha)$ can be viewed as a perturbation of $J(0)$ with relative bound smaller than 1.
- Consequently, the spectrum of $J(\alpha)$ is discrete if $|\alpha|<1$.
- In addition, by an analyticity argument it can be shown the formula for the Weyl m-function

$$
m(z, \alpha)=\frac{2 \pi z}{\alpha K} \sum_{n=0}^{\infty} \frac{q^{n+1 / 2}}{1+q^{2 n+1}} \frac{1}{\frac{(2 n+1)^{2} \pi^{2}}{4 K^{2}}-z^{2}}
$$

remains true for all $z \in \rho(J(\alpha))$ and $|\alpha|<1$.

Spectral analysis of $J(\alpha)$ for $|\alpha|<1$

- For $|\alpha|<1$, the operator $J(\alpha)$ can be viewed as a perturbation of $J(0)$ with relative bound smaller than 1.
- Consequently, the spectrum of $J(\alpha)$ is discrete if $|\alpha|<1$.
- In addition, by an analyticity argument it can be shown the formula for the Weyl m-function

$$
m(z, \alpha)=\frac{2 \pi z}{\alpha K} \sum_{n=0}^{\infty} \frac{q^{n+1 / 2}}{1+q^{2 n+1}} \frac{1}{\frac{(2 n+1)^{2} \pi^{2}}{4 K^{2}}-z^{2}}
$$

remains true for all $z \in \rho(J(\alpha))$ and $|\alpha|<1$.

- It implies (in the non-self-adjoint case, too!) that

$$
\sigma(J(\alpha))=\frac{\pi}{2 K}(2 \mathbb{Z}+1) .
$$

and all the eigenvalues are simple.

Eigenvectors of $J(\alpha)$ for $|\alpha|<1$

Proposition

Let $0<|\alpha|<1$ and $N \in \mathbb{Z}$, then the vector $v^{(N)}$ given by formulas

$$
v_{2 k+1}^{(N)}=\mathrm{i}(-1)^{k} \alpha^{k} \int_{0}^{2 \pi} e^{-\mathrm{i}(N+1 / 2) s} \operatorname{cn}\left(\frac{K s}{\pi}, \alpha\right) \operatorname{sn}^{2 k}\left(\frac{K s}{\pi}, \alpha\right) \mathrm{d} s
$$

and

$$
v_{2 k+2}^{(N)}=(-1)^{k+1} \alpha^{k} \int_{0}^{2 \pi} e^{-\mathrm{i}(N+1 / 2) s} \mathrm{dn}\left(\frac{K s}{\pi}, \alpha\right) \operatorname{sn}^{2 k+1}\left(\frac{K s}{\pi}, \alpha\right) \mathrm{d} s
$$

for $k \geq 0$, is the eigenvector of $J(\alpha)$ corresponding to the eigenvalue $\frac{\pi}{2 K}(2 N+1)$.

Eigenvectors of $J(\alpha)$ for $|\alpha|<1$

Proposition

Let $0<|\alpha|<1$ and $N \in \mathbb{Z}$, then the vector $v^{(N)}$ given by formulas

$$
v_{2 k+1}^{(N)}=\mathrm{i}(-1)^{k} \alpha^{k} \int_{0}^{2 \pi} e^{-\mathrm{i}(N+1 / 2) s} \text { cn }\left(\frac{K s}{\pi}, \alpha\right) \operatorname{sn}^{2 k}\left(\frac{K s}{\pi}, \alpha\right) \mathrm{d} s
$$

and

$$
v_{2 k+2}^{(N)}=(-1)^{k+1} \alpha^{k} \int_{0}^{2 \pi} e^{-\mathrm{i}(N+1 / 2) s} \operatorname{dn}\left(\frac{K s}{\pi}, \alpha\right) \operatorname{sn}^{2 k+1}\left(\frac{K s}{\pi}, \alpha\right) \mathrm{d} s,
$$

for $k \geq 0$, is the eigenvector of $J(\alpha)$ corresponding to the eigenvalue $\frac{\pi}{2 K}(2 N+1)$. In addition, the set $\left\{v^{(N)} \mid N \in \mathbb{Z}\right\}$ is complete in $\ell^{2}(\mathbb{N})$.

Eigenvectors of $J(\alpha)$ for $|\alpha|<1$

Proposition

Let $0<|\alpha|<1$ and $N \in \mathbb{Z}$, then the vector $v^{(N)}$ given by formulas

$$
v_{2 k+1}^{(N)}=\mathrm{i}(-1)^{k} \alpha^{k} \int_{0}^{2 \pi} e^{-\mathrm{i}(N+1 / 2) s} \operatorname{cn}\left(\frac{K s}{\pi}, \alpha\right) \operatorname{sn}^{2 k}\left(\frac{K s}{\pi}, \alpha\right) \mathrm{d} s
$$

and

$$
v_{2 k+2}^{(N)}=(-1)^{k+1} \alpha^{k} \int_{0}^{2 \pi} e^{-\mathrm{i}(N+1 / 2) s} \operatorname{dn}\left(\frac{K s}{\pi}, \alpha\right) \operatorname{sn}^{2 k+1}\left(\frac{K s}{\pi}, \alpha\right) \mathrm{d} s,
$$

for $k \geq 0$, is the eigenvector of $J(\alpha)$ corresponding to the eigenvalue $\frac{\pi}{2 K}(2 N+1)$. In addition, the set $\left\{v^{(N)} \mid N \in \mathbb{Z}\right\}$ is complete in $\ell^{2}(\mathbb{N})$.

Interesting open problems:

Eigenvectors of $J(\alpha)$ for $|\alpha|<1$

Proposition

Let $0<|\alpha|<1$ and $N \in \mathbb{Z}$, then the vector $v^{(N)}$ given by formulas

$$
v_{2 k+1}^{(N)}=\mathrm{i}(-1)^{k} \alpha^{k} \int_{0}^{2 \pi} e^{-\mathrm{i}(N+1 / 2) s} \operatorname{cn}\left(\frac{K s}{\pi}, \alpha\right) \operatorname{sn}^{2 k}\left(\frac{K s}{\pi}, \alpha\right) \mathrm{d} s
$$

and

$$
v_{2 k+2}^{(N)}=(-1)^{k+1} \alpha^{k} \int_{0}^{2 \pi} e^{-\mathrm{i}(N+1 / 2) s} \operatorname{dn}\left(\frac{K s}{\pi}, \alpha\right) \operatorname{sn}^{2 k+1}\left(\frac{K s}{\pi}, \alpha\right) \mathrm{d} s,
$$

for $k \geq 0$, is the eigenvector of $J(\alpha)$ corresponding to the eigenvalue $\frac{\pi}{2 K}(2 N+1)$. In addition, the set $\left\{v^{(N)} \mid N \in \mathbb{Z}\right\}$ is complete in $\ell^{2}(\mathbb{N})$.

Interesting open problems:

(1)

$$
\left\|v^{(N)}\right\|=?
$$

Eigenvectors of $J(\alpha)$ for $|\alpha|<1$

Proposition

Let $0<|\alpha|<1$ and $N \in \mathbb{Z}$, then the vector $v^{(N)}$ given by formulas

$$
v_{2 k+1}^{(N)}=\mathrm{i}(-1)^{k} \alpha^{k} \int_{0}^{2 \pi} e^{-\mathrm{i}(N+1 / 2) s} \text { cn }\left(\frac{K s}{\pi}, \alpha\right) \operatorname{sn}^{2 k}\left(\frac{K s}{\pi}, \alpha\right) \mathrm{d} s
$$

and

$$
v_{2 k+2}^{(N)}=(-1)^{k+1} \alpha^{k} \int_{0}^{2 \pi} e^{-\mathrm{i}(N+1 / 2) s} \operatorname{dn}\left(\frac{K s}{\pi}, \alpha\right) \operatorname{sn}^{2 k+1}\left(\frac{K s}{\pi}, \alpha\right) \mathrm{d} s
$$

for $k \geq 0$, is the eigenvector of $J(\alpha)$ corresponding to the eigenvalue $\frac{\pi}{2 K}(2 N+1)$. In addition, the set $\left\{v^{(N)} \mid N \in \mathbb{Z}\right\}$ is complete in $\ell^{2}(\mathbb{N})$.

Interesting open problems:

(1)

$$
\left\|v^{(N)}\right\|=? \quad \text { or } \quad\left\|v^{(N)}\right\| \sim ? \text { for } N \rightarrow \pm \infty .
$$

Eigenvectors of $J(\alpha)$ for $|\alpha|<1$

Proposition

Let $0<|\alpha|<1$ and $N \in \mathbb{Z}$, then the vector $v^{(N)}$ given by formulas

$$
v_{2 k+1}^{(N)}=\mathrm{i}(-1)^{k} \alpha^{k} \int_{0}^{2 \pi} e^{-\mathrm{i}(N+1 / 2) s} \operatorname{cn}\left(\frac{K s}{\pi}, \alpha\right) \operatorname{sn}^{2 k}\left(\frac{K s}{\pi}, \alpha\right) \mathrm{d} s
$$

and

$$
v_{2 k+2}^{(N)}=(-1)^{k+1} \alpha^{k} \int_{0}^{2 \pi} e^{-\mathrm{i}(N+1 / 2) s} \operatorname{dn}\left(\frac{K s}{\pi}, \alpha\right) \operatorname{sn}^{2 k+1}\left(\frac{K s}{\pi}, \alpha\right) \mathrm{d} s,
$$

for $k \geq 0$, is the eigenvector of $J(\alpha)$ corresponding to the eigenvalue $\frac{\pi}{2 K}(2 N+1)$. In addition, the set $\left\{v^{(N)} \mid N \in \mathbb{Z}\right\}$ is complete in $\ell^{2}(\mathbb{N})$.

Interesting open problems:

©

$$
\left\|v^{(N)}\right\|=? \quad \text { or } \quad\left\|v^{(N)}\right\| \sim ? \text { for } N \rightarrow \pm \infty
$$

(2) Is $\left\{v^{(N)} \mid N \in \mathbb{Z}\right\}$ the Riezs basis of $\ell^{2}(\mathbb{N})$?

Spectrum of $J(\alpha)$ in the non-self-adjoint case - animation

Spectral analysis of $J(\alpha)$ for $|\alpha|=1$

Proposition

If $|\alpha|=1, \alpha \neq \pm 1$, then

$$
\sigma(J(\alpha))=\sigma_{e s s}(J(\alpha))=\mathbb{C}
$$

Spectral analysis of $J(\alpha)$ for $|\alpha|=1$

Proposition

If $|\alpha|=1, \alpha \neq \pm 1$, then

$$
\sigma(J(\alpha))=\sigma_{\text {ess }}(J(\alpha))=\mathbb{C}
$$

Main thoughts of the proof:

- The proof is based on the construction of a singular sequence to $J(\alpha)$ for every $z \in \mathbb{C}$.

Spectral analysis of $J(\alpha)$ for $|\alpha|=1$

Proposition

If $|\alpha|=1, \alpha \neq \pm 1$, then

$$
\sigma(J(\alpha))=\sigma_{\text {ess }}(J(\alpha))=\mathbb{C}
$$

Main thoughts of the proof:

- The proof is based on the construction of a singular sequence to $J(\alpha)$ for every $z \in \mathbb{C}$.
- For $a \in(0,1)$ define sequence $u(a)$ by putting

$$
u_{n}(a):=a^{n} u_{n}
$$

where

Spectral analysis of $J(\alpha)$ for $|\alpha|=1$

Proposition

If $|\alpha|=1, \alpha \neq \pm 1$, then

$$
\sigma(J(\alpha))=\sigma_{\text {ess }}(J(\alpha))=\mathbb{C}
$$

Main thoughts of the proof:

- The proof is based on the construction of a singular sequence to $J(\alpha)$ for every $z \in \mathbb{C}$.
- For $a \in(0,1)$ define sequence $u(a)$ by putting

$$
u_{n}(a):=a^{n} u_{n}
$$

where

$$
u_{2 k+1}:=\mathrm{i}(-1)^{k} \alpha^{k} e^{\mathrm{i} K z} \int_{0}^{2 K} e^{-\mathrm{i} z t} \operatorname{cn}(t, \alpha) \operatorname{sn}^{2 k}(t, \alpha) \mathrm{d} t
$$

and

$$
u_{2 k+2}:=(-1)^{k+1} \alpha^{k} e^{\mathrm{i} K z} \int_{0}^{2 K} e^{-\mathrm{i} z t} \operatorname{dn}(t, \alpha) \operatorname{sn}^{2 k+1}(t, \alpha) \mathrm{d} t .
$$

Spectral analysis of $J(\alpha)$ for $|\alpha|=1$

Proposition

If $|\alpha|=1, \alpha \neq \pm 1$, then

$$
\sigma(J(\alpha))=\sigma_{\text {ess }}(J(\alpha))=\mathbb{C} .
$$

Main thoughts of the proof:

- The proof is based on the construction of a singular sequence to $J(\alpha)$ for every $z \in \mathbb{C}$.
- For $a \in(0,1)$ define sequence $u(a)$ by putting

$$
u_{n}(a):=a^{n} u_{n}
$$

where

$$
u_{2 k+1}:=\mathrm{i}(-1)^{k} \alpha^{k} e^{\mathrm{i} K z} \int_{0}^{2 K} e^{-\mathrm{i} z t} \operatorname{cn}(t, \alpha) \operatorname{sn}^{2 k}(t, \alpha) \mathrm{d} t
$$

and

$$
u_{2 k+2}:=(-1)^{k+1} \alpha^{k} e^{\mathrm{i} K z} \int_{0}^{2 K} e^{-\mathrm{i} z t} \operatorname{dn}(t, \alpha) \operatorname{sn}^{2 k+1}(t, \alpha) \mathrm{d} t .
$$

- Then one can verify, indeed, that

$$
\lim _{a \rightarrow 1-} \frac{\|(J(\alpha)-z) u(a)\|}{\|u(a)\|}=0, \quad \text { and } \quad w-\lim _{a \rightarrow 1-} u(a)=0 .
$$

Spectral analysis of $J(\alpha)$ for $|\alpha|=1$ - cont.

Essential for the verification of the "singular property" of the family $u(a)=a^{n} u_{n}$ are two main ingredients:

Spectral analysis of $J(\alpha)$ for $|\alpha|=1$ - cont.

Essential for the verification of the "singular property" of the family $u(a)=a^{n} u_{n}$ are two main ingredients:
(1) Vector u is "almost formal eigenvector":

$$
J(\alpha) u=z u-2 \cos (K z) e_{1} .
$$

Spectral analysis of $J(\alpha)$ for $|\alpha|=1$ - cont.

Essential for the verification of the "singular property" of the family $u(a)=a^{n} u_{n}$ are two main ingredients:
(1) Vector u is "almost formal eigenvector":

$$
J(\alpha) u=z u-2 \cos (K z) e_{1} .
$$

(2) Asymptotic behavior of the integrals

$$
\int_{0}^{2 K} e^{-\mathrm{i} z t}\left\{\begin{array}{l}
\operatorname{cn}(t, \alpha) \\
\operatorname{dn}(t, \alpha)
\end{array}\right\} \operatorname{sn}^{k}(t, \alpha) \mathrm{d} t, \quad \text { as } k \rightarrow \infty
$$

Spectral analysis of $J(\alpha)$ for $|\alpha|=1$ - cont.

Essential for the verification of the "singular property" of the family $u(a)=a^{n} u_{n}$ are two main ingredients:
(1) Vector u is "almost formal eigenvector":

$$
J(\alpha) u=z u-2 \cos (K z) e_{1} .
$$

(2) Asymptotic behavior of the integrals

$$
\int_{0}^{2 K} e^{-\mathrm{i} z t}\left\{\begin{array}{l}
\operatorname{cn}(t, \alpha) \\
\operatorname{dn}(t, \alpha)
\end{array}\right\} \mathrm{sn}^{k}(t, \alpha) \mathrm{d} t, \quad \text { as } k \rightarrow \infty
$$

- The asymptotic formulas (ingredient 2.) can be obtain by applying the saddle point method.

Spectral analysis of $J(\alpha)$ for $|\alpha|=1$ - cont.

Essential for the verification of the "singular property" of the family $u(a)=a^{n} u_{n}$ are two main ingredients:
(1) Vector u is "almost formal eigenvector":

$$
J(\alpha) u=z u-2 \cos (K z) e_{1} .
$$

(2) Asymptotic behavior of the integrals

$$
\int_{0}^{2 K} e^{-\mathrm{i} z t}\left\{\begin{array}{l}
\operatorname{cn}(t, \alpha) \\
\operatorname{dn}(t, \alpha)
\end{array}\right\} \mathrm{sn}^{k}(t, \alpha) \mathrm{d} t, \quad \text { as } k \rightarrow \infty
$$

- The asymptotic formulas (ingredient 2.) can be obtain by applying the saddle point method.
- However, one has to know the location of global maxima of function

$$
u \rightarrow|\operatorname{sn}(u K(\alpha), \alpha)|
$$

in $(0,2)$ for $|\alpha|=1, \alpha \neq \pm 1$.

Spectral analysis of $J(\alpha)$ for $|\alpha|=1$ - cont.

Essential for the verification of the "singular property" of the family $u(a)=a^{n} u_{n}$ are two main ingredients:
(1) Vector u is "almost formal eigenvector":

$$
J(\alpha) u=z u-2 \cos (K z) e_{1} .
$$

(2) Asymptotic behavior of the integrals

$$
\int_{0}^{2 K} e^{-\mathrm{i} z t}\left\{\begin{array}{l}
\operatorname{cn}(t, \alpha) \\
\operatorname{dn}(t, \alpha)
\end{array}\right\} \mathrm{sn}^{k}(t, \alpha) \mathrm{d} t, \quad \text { as } k \rightarrow \infty
$$

- The asymptotic formulas (ingredient 2.) can be obtain by applying the saddle point method.
- However, one has to know the location of global maxima of function

$$
u \rightarrow|\operatorname{sn}(u K(\alpha), \alpha)|
$$

in $(0,2)$ for $|\alpha|=1, \alpha \neq \pm 1$.

- It can be shown (not trivial!) that the function has unique global maximum at $u=1$ for every $|\alpha|=1, \alpha \neq \pm 1$.

Contents

(1) Complex Jacobi matrices - generalities

2 The Jacobi matrix associated with Jacobian elliptic functions
3) Intermezzo I-Jacobian elliptic functions

4 Spectral analysis - the self-adjoint case
(5) Spectral analysis - the non-self-adjoint case

6 Intermezzo II - extremal properties of $|\operatorname{sn}(u K(m) \mid m)|$

On the extremal properties of $|\operatorname{sn}(u K(m) \mid m)|$

On the extremal properties of $|\operatorname{sn}(u K(m) \mid m)|$

On the extremal properties of $|\operatorname{sn}(u K(m) \mid m)|$

$$
\operatorname{sn}^{2}(u K(m) \mid m)=\frac{1}{\sqrt{m}} \frac{c_{1}^{2}+s^{2} s_{1}^{2} \cos ^{2} \theta-c c_{1}+\mathrm{i} s s_{1} d d_{1}}{c_{1}^{2}+s^{2} s_{1}^{2} \cos ^{2} \theta+c c_{1}-\mathrm{i} s s_{1} d d_{1}},
$$

where $\Im m>0, m=e^{4 \mathrm{i} \theta}$ and $s=\operatorname{sn}\left(u K\left(\cos ^{2} \theta\right) \mid \cos ^{2} \theta\right), s_{1}=\operatorname{sn}\left(u K\left(\sin ^{2} \theta\right) \mid \sin ^{2} \theta\right)$, etc.

On the extremal properties of $|\operatorname{sn}(u K(m) \mid m)|$

$$
|\operatorname{sn}(u K(m) \mid m)| \leq 1 \quad \text { for all } m \in \partial \mathbb{D} \text { with the equality only for } m=1
$$

On the extremal properties of $|\operatorname{sn}(u K(m) \mid m)|$

$$
|\operatorname{sn}(u K(m) \mid m)| \leq 1 \quad \text { for all } m \in \mathbb{D} \text { with the equality only for } m=1 \text {. }
$$

On the extremal properties of $|\operatorname{sn}(u K(m) \mid m)|$

Another circle $\mathbb{D}_{1}=\{z| | z-1 \mid=1\}$

On the extremal properties of $|\operatorname{sn}(u K(m) \mid m)|$

Another circle $\mathbb{D}_{1}=\{z| | z-1 \mid=1\}$ and another transformation formula (not displayed) ...

On the extremal properties of $|\operatorname{sn}(u K(m) \mid m)|$

On the extremal properties of $|\operatorname{sn}(u K(m) \mid m)|$

$$
\text { In additon, } \lim _{\epsilon \rightarrow 0+}|\operatorname{sn}(u K(m \pm \mathrm{i} \epsilon) \mid m+ \pm \mathrm{i} \epsilon)|<1 \text { for all } m \geq 2 \text { and }
$$

the function $m \mapsto \operatorname{sn}(u K(m) \mid m)$ is bounded.

On the extremal properties of $|\operatorname{sn}(u K(m) \mid m)|$

$$
|\operatorname{sn}(u K(m) \mid m)| \leq 1 \text { for all } m \notin \mathbb{D}_{1} \backslash \mathbb{D} \text { with the equality only for } m=1
$$

On the extremal properties of $|\operatorname{sn}(u K(m) \mid m)|$

$$
\text { If } 0<u \leq \frac{1}{2} \text { the global maximum of } m \mapsto|\operatorname{sn}(u K(m) \mid m)|
$$

is located at $m=1$ with the value $=1$.

On the extremal properties of $|\operatorname{sn}(u K(m) \mid m)|$

$$
\text { If } \frac{1}{2}<u<1 \text { the global maximum of } m \mapsto|\operatorname{sn}(u K(m) \mid m)|
$$

On the extremal properties of $|\operatorname{sn}(u K(m) \mid m)|$ - main theorem

Theorem:
The following statements hold true.

On the extremal properties of $|\operatorname{sn}(u K(m) \mid m)|$ - main theorem

Theorem:
The following statements hold true.
(1) For all $u \in(0,1)$ and $m \notin\{z \in \mathbb{C}||z-1|<1 \wedge| z \mid>1\}$, it holds

$$
|\operatorname{sn}(K(m) u \mid m)|<1
$$

On the extremal properties of $|\operatorname{sn}(u K(m) \mid m)|$ - main theorem

Theorem:

The following statements hold true.
(1) For all $u \in(0,1)$ and $m \notin\{z \in \mathbb{C}||z-1|<1 \wedge| z \mid>1\}$, it holds

$$
|\operatorname{sn}(K(m) u \mid m)|<1
$$

(2) For $u \in(0,1 / 2]$ the function $m \mapsto|\operatorname{sn}(K(m) u \mid m)|$ has unique global maximum located at $m=1$ with the value equal to 1 , i.e.,

$$
|\operatorname{sn}(K(1) u \mid 1)|=1 \quad \text { and } \quad|\operatorname{sn}(K(m) u \mid m)|<1 \text { for all } m \neq 1
$$

(where the value at $m=1$ is to be understood as the respective limit).

On the extremal properties of $|\operatorname{sn}(u K(m) \mid m)|$ - main theorem

Theorem:

The following statements hold true.
(1) For all $u \in(0,1)$ and $m \notin\{z \in \mathbb{C}||z-1|<1 \wedge| z \mid>1\}$, it holds

$$
|\operatorname{sn}(K(m) u \mid m)|<1
$$

(2) For $u \in(0,1 / 2]$ the function $m \mapsto|\operatorname{sn}(K(m) u \mid m)|$ has unique global maximum located at $m=1$ with the value equal to 1 , i.e.,

$$
|\operatorname{sn}(K(1) u \mid 1)|=1 \quad \text { and } \quad|\operatorname{sn}(K(m) u \mid m)|<1 \text { for all } m \neq 1
$$

(where the value at $m=1$ is to be understood as the respective limit).
(3) For $u \in(1 / 2,1)$, the function $m \mapsto|\operatorname{sn}(K(m) u \mid m)|$ has a global maximum located in the interval $(1,2)$ with the value exceeding 1 , i.e.,

$$
\max _{m \in \mathbb{C}}|\operatorname{sn}(K(m) u \mid m)|=\left|\operatorname{sn}\left(K\left(m^{*}\right) u \mid m^{*}\right)\right|>1 \text { for some } m^{*} \in(1,2) .
$$

References:

(1) P. Siegl, F. Š.: On extremal properties of Jacobian elliptic functions with complex modulus, Math. Anal. Appl. (2016), arXiv:1512.06089.
(2) P. Siegl, F. Š.: Spectral analysis of non-self-adjoint Jacobi operator associated with Jacobian elliptic functions, arXiv:1603.01052.

Thank you!

