On the eigenvalue problem for a certain class of infinite Jacobi matrices

František Štampach

Faculty of Nuclear Sciences and Physical Engineering, CTU in Prague

Fourth School and Workshop on "Mathematical Methods in Quantum Mechanics"

February 17, 2011

Outline

(1) Functions \mathfrak{E} and \mathfrak{F}

- Definition of \mathfrak{E} and \mathfrak{F} and its properties
- Two examples
(2) Symmetric Jacobi matrices
- Decomposition of a symmetric Jacobi matrix
- Characteristic function in terms of \mathfrak{F}
(3) Main results
- More on the characteristic function
- Eigenvalues as zeros of the characteristic function

4 Examples

- Ex. 1 - unbouded operator
- Ex. 2 - compact operator
- Ex. 3 - compact operator with zero diagonal

Functions \mathfrak{E} and \mathfrak{F}

Definition

Let me define $\mathfrak{E}: D \rightarrow \mathbb{C}$ a $\mathfrak{F}: D \rightarrow \mathbb{C}$ by relations

$$
\mathfrak{E}(x)=1+\sum_{m=1}^{\infty} \sum_{k_{1}=1}^{\infty} \sum_{k_{2}=k_{1}+2}^{\infty} \ldots \sum_{k_{m}=k_{m-1}+2}^{\infty} x_{k_{1}} x_{k_{1}+1} x_{k_{2}} x_{k_{2}+1} \ldots x_{k_{m}} x_{k_{m}+1}
$$

and

$$
\mathfrak{F}(x)=1+\sum_{m=1}^{\infty}(-1)^{m} \sum_{k_{1}=1}^{\infty} \sum_{k_{2}=k_{1}+2}^{\infty} \ldots \sum_{k_{m}=k_{m-1}+2}^{\infty} x_{k_{1}} x_{k_{1}+1} x_{k_{2}} x_{k_{2}+1} \ldots x_{k_{m}} x_{k_{m}+1}
$$

where

$$
D=\left\{\left\{x_{k}\right\}_{k=1}^{\infty} \subset \mathbb{C} ; \sum_{k=1}^{\infty}\left|x_{k} x_{k+1}\right|<\infty\right\} .
$$

For a finite number of complex variables let me identify $\mathfrak{F}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ with $\mathfrak{F}(x)$ where $x=\left(x_{1}, x_{2}, \ldots, x_{n}, 0,0,0, \ldots\right)$ and similarly for \mathfrak{E}.

Properties of \mathfrak{E} and \mathfrak{F}

- Note that the domain D is not a linear space. One has, however, $\ell^{2}(\mathbb{N}) \subset D$.

Properties of \mathfrak{E} and \mathfrak{F}

- Note that the domain D is not a linear space. One has, however, $\ell^{2}(\mathbb{N}) \subset D$.
- Functions \mathfrak{E} and \mathfrak{F} restricted on $\ell^{2}(\mathbb{N})$ are continuous functionals on $\ell^{2}(\mathbb{N})$.

Properties of \mathfrak{E} and \mathfrak{F}

- Note that the domain D is not a linear space. One has, however, $\ell^{2}(\mathbb{N}) \subset D$.
- Functions \mathfrak{E} and \mathfrak{F} restricted on $\ell^{2}(\mathbb{N})$ are continuous functionals on $\ell^{2}(\mathbb{N})$.
- For all $x \in D$ and $k=1,2, \ldots$ one has
where T denote the truncation operator from the left defined on the space of all sequences:

$$
T\left(\left\{x_{k}\right\}_{k=1}^{\infty}\right)=\left\{x_{k+1}\right\}_{k=1}^{\infty} .
$$

Properties of \mathfrak{E} and \mathfrak{F}

- Note that the domain D is not a linear space. One has, however, $\ell^{2}(\mathbb{N}) \subset D$.
- Functions \mathfrak{E} and \mathfrak{F} restricted on $\ell^{2}(\mathbb{N})$ are continuous functionals on $\ell^{2}(\mathbb{N})$.
- For all $x \in D$ and $k=1,2, \ldots$ one has

Recursive relations

$$
\begin{aligned}
\mathfrak{F}(x) & =\mathfrak{F}\left(x_{1}, \ldots, x_{k}\right) \mathfrak{F}\left(T^{k} x\right)-\mathfrak{F}\left(x_{1}, \ldots, x_{k-1}\right) x_{k} x_{k+1} \mathfrak{F}\left(T^{k+1} x\right), \\
\mathfrak{E}(x) & =\mathfrak{E}\left(x_{1}, \ldots, x_{k}\right) \mathfrak{E}\left(T^{\kappa} x\right)+\mathfrak{E}\left(x_{1}, \ldots, x_{k-1}\right) x_{k} x_{k+1} \mathfrak{E}\left(T^{k+1} x\right),
\end{aligned}
$$

where T denote the truncation operator from the left defined on the space of all sequences:

$$
T\left(\left\{x_{k}\right\}_{k=1}^{\infty}\right)=\left\{x_{k+1}\right\}_{k=1}^{\infty} .
$$

Properties of \mathfrak{E} and \mathfrak{F}

- Note that the domain D is not a linear space. One has, however, $\ell^{2}(\mathbb{N}) \subset D$.
- Functions \mathfrak{E} and \mathfrak{F} restricted on $\ell^{2}(\mathbb{N})$ are continuous functionals on $\ell^{2}(\mathbb{N})$.
- For all $x \in D$ and $k=1,2, \ldots$ one has

Recursive relations

$$
\begin{aligned}
\mathfrak{F}(x) & =\mathfrak{F}\left(x_{1}, \ldots, x_{k}\right) \mathfrak{F}\left(T^{k} x\right)-\mathfrak{F}\left(x_{1}, \ldots, x_{k-1}\right) x_{k} x_{k+1} \mathfrak{F}\left(T^{k+1} x\right), \\
\mathfrak{E}(x) & =\mathfrak{E}\left(x_{1}, \ldots, x_{k}\right) \mathfrak{E}\left(T^{k} x\right)+\mathfrak{E}\left(x_{1}, \ldots, x_{k-1}\right) x_{k} x_{k+1} \mathfrak{E}\left(T^{k+1} x\right),
\end{aligned}
$$

where T denote the truncation operator from the left defined on the space of all sequences:

$$
T\left(\left\{x_{k}\right\}_{k=1}^{\infty}\right)=\left\{x_{k+1}\right\}_{k=1}^{\infty} .
$$

- Especially for $k=1$, one gets simple relations

$$
\begin{aligned}
\mathfrak{F}(x) & =\mathfrak{F}(T x)-x_{1} x_{2} \mathfrak{F}\left(T^{2} x\right), \\
\mathfrak{E}(x) & =\mathfrak{E}(T x)+x_{1} x_{2} \mathfrak{E}\left(T^{2} x\right) .
\end{aligned}
$$

Two examples

(1) The case of geometric sequence:

Two examples

(1) The case of geometric sequence:

Let $t, w \in \mathbb{C},|t|<1$, then it holds

$$
\begin{aligned}
& \mathfrak{F}\left(\left\{t^{k-1} w\right\}_{k=1}^{\infty}\right)=1+\sum_{m=1}^{\infty}(-1)^{m} \frac{t^{m(2 m-1)} w^{2 m}}{\left(1-t^{2}\right)\left(1-t^{4}\right) \ldots\left(1-t^{2 m}\right)}, \\
& \mathfrak{E}\left(\left\{t^{k-1} w\right\}_{k=1}^{\infty}\right)=1+\sum_{m=1}^{\infty} \frac{t^{m(2 m-1)} w^{2 m}}{\left(1-t^{2}\right)\left(1-t^{4}\right) \ldots\left(1-t^{2 m}\right)} .
\end{aligned}
$$

Two examples

(1) The case of geometric sequence:

Let $t, w \in \mathbb{C},|t|<1$, then it holds

$$
\begin{gathered}
\mathfrak{F}\left(\left\{t^{k-1} w\right\}_{k=1}^{\infty}\right)=1+\sum_{m=1}^{\infty}(-1)^{m} \frac{t^{m(2 m-1)} w^{2 m}}{\left(1-t^{2}\right)\left(1-t^{4}\right) \ldots\left(1-t^{2 m}\right)}, \\
\mathfrak{E}\left(\left\{t^{k-1} w\right\}_{k=1}^{\infty}\right)=1+\sum_{m=1}^{\infty} \frac{t^{m(2 m-1)} w^{2 m}}{\left(1-t^{2}\right)\left(1-t^{4}\right) \ldots\left(1-t^{2 m}\right)}
\end{gathered}
$$

- Functions on RHSs can be identified with a q-hypergeometric series ${ }_{0} \phi_{1}$.

Two examples

(1) The case of geometric sequence:

Let $t, w \in \mathbb{C},|t|<1$, then it holds

$$
\begin{gathered}
\mathfrak{F}\left(\left\{t^{k-1} w\right\}_{k=1}^{\infty}\right)=1+\sum_{m=1}^{\infty}(-1)^{m} \frac{t^{m(2 m-1)} w^{2 m}}{\left(1-t^{2}\right)\left(1-t^{4}\right) \ldots\left(1-t^{2 m}\right)} \\
\mathfrak{E}\left(\left\{t^{k-1} w\right\}_{k=1}^{\infty}\right)=1+\sum_{m=1}^{\infty} \frac{t^{m(2 m-1)} w^{2 m}}{\left(1-t^{2}\right)\left(1-t^{4}\right) \ldots\left(1-t^{2 m}\right)}
\end{gathered}
$$

- Functions on RHSs can be identified with a q-hypergeometric series $0 \phi_{1}$.
(2) The case of Bessel functions:

Two examples

(1) The case of geometric sequence:

Let $t, w \in \mathbb{C},|t|<1$, then it holds

$$
\begin{gathered}
\mathfrak{F}\left(\left\{t^{k-1} w\right\}_{k=1}^{\infty}\right)=1+\sum_{m=1}^{\infty}(-1)^{m} \frac{t^{m(2 m-1)} w^{2 m}}{\left(1-t^{2}\right)\left(1-t^{4}\right) \ldots\left(1-t^{2 m}\right)}, \\
\mathfrak{E}\left(\left\{t^{k-1} w\right\}_{k=1}^{\infty}\right)=1+\sum_{m=1}^{\infty} \frac{t^{m(2 m-1)} w^{2 m}}{\left(1-t^{2}\right)\left(1-t^{4}\right) \ldots\left(1-t^{2 m}\right)}
\end{gathered}
$$

- Functions on RHSs can be identified with a q-hypergeometric series $0 \phi_{1}$.

(2) The case of Bessel functions:

Let $w \in \mathbb{C}$ a $\nu \notin-\mathbb{N}$, then it holds

$$
J_{\nu}(2 w)=\frac{w^{\nu}}{\Gamma(\nu+1)} \mathfrak{F}\left(\left\{\frac{w}{\nu+k}\right\}_{k=1}^{\infty}\right), \quad I_{\nu}(2 w)=\frac{w^{\nu}}{\Gamma(\nu+1)} \mathfrak{E}\left(\left\{\frac{w}{\nu+k}\right\}_{k=1}^{\infty}\right)
$$

Two examples

(1) The case of geometric sequence:

Let $t, w \in \mathbb{C},|t|<1$, then it holds

$$
\begin{gathered}
\mathfrak{F}\left(\left\{t^{k-1} w\right\}_{k=1}^{\infty}\right)=1+\sum_{m=1}^{\infty}(-1)^{m} \frac{t^{m(2 m-1)} w^{2 m}}{\left(1-t^{2}\right)\left(1-t^{4}\right) \ldots\left(1-t^{2 m}\right)}, \\
\mathfrak{E}\left(\left\{t^{k-1} w\right\}_{k=1}^{\infty}\right)=1+\sum_{m=1}^{\infty} \frac{t^{m(2 m-1)} w^{2 m}}{\left(1-t^{2}\right)\left(1-t^{4}\right) \ldots\left(1-t^{2 m}\right)}
\end{gathered}
$$

- Functions on RHSs can be identified with a q-hypergeometric series $0 \phi_{1}$.

(2) The case of Bessel functions:

Let $w \in \mathbb{C}$ a $\nu \notin-\mathbb{N}$, then it holds

$$
J_{\nu}(2 w)=\frac{w^{\nu}}{\Gamma(\nu+1)} \mathfrak{F}\left(\left\{\frac{w}{\nu+k}\right\}_{k=1}^{\infty}\right), \quad I_{\nu}(2 w)=\frac{w^{\nu}}{\Gamma(\nu+1)} \mathfrak{E}\left(\left\{\frac{w}{\nu+k}\right\}_{k=1}^{\infty}\right)
$$

- Recursive relations for \mathfrak{F} and \mathfrak{E} written in this special case has the form:

$$
\begin{aligned}
w J_{\nu-1}(2 w)-\nu J_{\nu}(2 w)+w J_{\nu+1}(2 w) & =0 \\
w I_{\nu-1}(2 w)-\nu I_{\nu}(2 w)-w I_{\nu+1}(2 w) & =0 .
\end{aligned}
$$

The symmetric Jacobi matrix

- Let positive sequence $\left\{w_{n}\right\}_{n=1}^{\infty}$ and real sequence $\left\{\lambda_{n}\right\}_{n=1}^{\infty}$ to be given.
- Let me denote

$$
J:=\left(\begin{array}{ccccc}
\lambda_{1} & w_{1} & & & \\
w_{1} & \lambda_{2} & w_{2} & & \\
& w_{2} & \lambda_{3} & w_{3} & \\
& & \ddots & \ddots & \ddots
\end{array}\right) .
$$

- Let J_{n} be the n-th truncation of J, i.e. $J_{n}=\left(P_{n} J P_{n}\right) \upharpoonleft \operatorname{Ran} P_{n}$, where P_{n} is the orthogonal projection on the space spanned by $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$. In other words,

$$
J_{n}=\left(\begin{array}{ccccc}
\lambda_{1} & w_{1} & & & \\
w_{1} & \lambda_{2} & w_{2} & & \\
& \ddots & \ddots & \ddots & \\
& & w_{n-2} & \lambda_{n-1} & w_{n-1} \\
& & & w_{n-1} & \lambda_{n}
\end{array}\right)
$$

Proposition

Any eigenvalue of J regarded as an operator in $\ell^{2}(\mathbb{N})$ is simple.

Decomposition of a symmetric Jacobi matrix

Jacobi matrix J_{n} can be decomposed into the product

$$
J_{n}=G_{n} \tilde{J}_{n} G_{n},
$$

where

- $\boldsymbol{G}_{n}=\operatorname{diag}\left(\gamma_{1}, \gamma_{2}, \ldots, \gamma_{n}\right)$ and

Decomposition of a symmetric Jacobi matrix

Jacobi matrix J_{n} can be decomposed into the product

$$
J_{n}=G_{n} \tilde{J}_{n} G_{n},
$$

where

- $G_{n}=\operatorname{diag}\left(\gamma_{1}, \gamma_{2}, \ldots, \gamma_{n}\right)$ and
-

$$
\tilde{J}_{n}=\left(\begin{array}{cccccc}
\tilde{\lambda}_{1} & 1 & & & & \\
1 & \tilde{\lambda}_{2} & 1 & & & \\
& \ddots & \ddots & \ddots & & \\
& & \ddots & \ddots & \ddots & \\
& & & 1 & \tilde{\lambda}_{n-1} & 1 \\
& & & & 1 & \tilde{\lambda}_{n}
\end{array}\right)
$$

Decomposition of a symmetric Jacobi matrix

Jacobi matrix J_{n} can be decomposed into the product

$$
J_{n}=G_{n} \tilde{J}_{n} G_{n},
$$

where

- $G_{n}=\operatorname{diag}\left(\gamma_{1}, \gamma_{2}, \ldots, \gamma_{n}\right)$ and
-

$$
\tilde{J}_{n}=\left(\begin{array}{cccccc}
\tilde{\lambda}_{1} & 1 & & & & \\
1 & \tilde{\lambda}_{2} & 1 & & & \\
& \ddots & \ddots & \ddots & & \\
& & \ddots & \ddots & \ddots & \\
& & & 1 & \tilde{\lambda}_{n-1} & 1 \\
& & & & 1 & \tilde{\lambda}_{n}
\end{array}\right)
$$

- Next, $\tilde{\lambda}_{k}=\lambda_{k} / \gamma_{k}^{2}$ and

$$
\gamma_{2 k-1}=\prod_{j=1}^{k-1} \frac{w_{2 j}}{w_{2 j-1}}, \gamma_{2 k}=w_{1} \prod_{j=1}^{k-1} \frac{w_{2 j+1}}{w_{2 j}}, k=1,2,3, \ldots
$$

Decomposition of a symmetric Jacobi matrix

Jacobi matrix J_{n} can be decomposed into the product

$$
J_{n}=G_{n} \tilde{J}_{n} G_{n},
$$

where

- $G_{n}=\operatorname{diag}\left(\gamma_{1}, \gamma_{2}, \ldots, \gamma_{n}\right)$ and
-

$$
\tilde{J}_{n}=\left(\begin{array}{cccccc}
\tilde{\lambda}_{1} & 1 & & & & \\
1 & \tilde{\lambda}_{2} & 1 & & & \\
& \ddots & \ddots & \ddots & & \\
& & \ddots & \ddots & \ddots & \\
& & & 1 & \tilde{\lambda}_{n-1} & 1 \\
& & & & 1 & \tilde{\lambda}_{n}
\end{array}\right)
$$

- Next, $\tilde{\lambda}_{k}=\lambda_{k} / \gamma_{k}^{2}$ and

$$
\gamma_{2 k-1}=\prod_{j=1}^{k-1} \frac{w_{2 j}}{w_{2 j-1}}, \gamma_{2 k}=w_{1} \prod_{j=1}^{k-1} \frac{w_{2 j+1}}{w_{2 j}}, k=1,2,3, \ldots
$$

- Alternatively, sequence $\left\{\gamma_{n}\right\}$ can be defined recursively as $\gamma_{1}=1, \gamma_{k+1}=w_{k} / \gamma_{k}$.

Characteristic function in terms of \mathfrak{F}

Let $n \in \mathbb{N}$ and $\left\{x_{j}\right\}_{j=1}^{n} \subset \mathbb{C}$ then one has

$$
\mathfrak{F}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\operatorname{det}\left(\begin{array}{cccccc}
1 & x_{1} & & & & \\
x_{2} & 1 & x_{2} & & & \\
& \ddots & \ddots & \ddots & & \\
& & \ddots & \ddots & \ddots & \\
& & & x_{n-1} & 1 & x_{n-1} \\
& & & & x_{n} & 1
\end{array}\right)
$$

Characteristic function in terms of \mathfrak{F}

Let $n \in \mathbb{N}$ and $\left\{x_{j}\right\}_{j=1}^{n} \subset \mathbb{C}$ then one has

$$
\mathfrak{F}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\operatorname{det}\left(\begin{array}{cccccc}
1 & x_{1} & & & & \\
x_{2} & 1 & x_{2} & & & \\
& \ddots & \ddots & \ddots & & \\
& & \ddots & \ddots & \ddots & \\
& & & x_{n-1} & 1 & x_{n-1} \\
& & & & x_{n} & 1
\end{array}\right)
$$

- The characteristic function of a finite symmetric Jacobi matrix can be expressed in terms of \mathfrak{F} :

Characteristic function in terms of \mathfrak{F}

Let $n \in \mathbb{N}$ and $\left\{x_{j}\right\}_{j=1}^{n} \subset \mathbb{C}$ then one has

$$
\mathfrak{F}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\operatorname{det}\left(\begin{array}{cccccc}
1 & x_{1} & & & & \\
x_{2} & 1 & x_{2} & & & \\
& \ddots & \ddots & \ddots & & \\
& & \ddots & \ddots & \ddots & \\
& & & x_{n-1} & 1 & x_{n-1} \\
& & & & x_{n} & 1
\end{array}\right)
$$

- The characteristic function of a finite symmetric Jacobi matrix can be expressed in terms of \mathfrak{F} :

Let $n \in \mathbb{N}$ a $z \in \mathbb{C}$, then it holds

$$
\operatorname{det}\left(J_{n}-z I_{n}\right)=\left(\prod_{k=1}^{n}\left(\lambda_{n}-z\right)\right) \mathfrak{F}\left(\frac{\gamma_{1}^{2}}{\lambda_{1}-z}, \frac{\gamma_{2}^{2}}{\lambda_{2}-z}, \ldots, \frac{\gamma_{n}^{2}}{\lambda_{n}-z}\right) .
$$

Characteristic function in terms of \mathfrak{F}

Let $n \in \mathbb{N}$ and $\left\{x_{j}\right\}_{j=1}^{n} \subset \mathbb{C}$ then one has

$$
\mathfrak{F}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\operatorname{det}\left(\begin{array}{cccccc}
1 & x_{1} & & & & \\
x_{2} & 1 & x_{2} & & & \\
& \ddots & \ddots & \ddots & & \\
& & \ddots & \ddots & \ddots & \\
& & & x_{n-1} & 1 & x_{n-1} \\
& & & & x_{n} & 1
\end{array}\right)
$$

- The characteristic function of a finite symmetric Jacobi matrix can be expressed in terms of \mathfrak{F} :

Let $n \in \mathbb{N}$ a $z \in \mathbb{C}$, then it holds

$$
\operatorname{det}\left(J_{n}-z I_{n}\right)=\left(\prod_{k=1}^{n}\left(\lambda_{n}-z\right)\right) \mathfrak{F}\left(\frac{\gamma_{1}^{2}}{\lambda_{1}-z}, \frac{\gamma_{2}^{2}}{\lambda_{2}-z}, \ldots, \frac{\gamma_{n}^{2}}{\lambda_{n}-z}\right) .
$$

- Q: What one can say about the function $\mathfrak{F}\left(\left\{\frac{\gamma_{k}^{2}}{\lambda_{k}-z}\right\}_{k=1}^{\infty}\right)$?

Characteristic function in terms of \mathfrak{F}

Let $n \in \mathbb{N}$ and $\left\{x_{j}\right\}_{j=1}^{n} \subset \mathbb{C}$ then one has

$$
\mathfrak{F}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\operatorname{det}\left(\begin{array}{cccccc}
1 & x_{1} & & & & \\
x_{2} & 1 & x_{2} & & & \\
& \ddots & \ddots & \ddots & & \\
& & \ddots & \ddots & \ddots & \\
& & & x_{n-1} & 1 & x_{n-1} \\
& & & & x_{n} & 1
\end{array}\right)
$$

- The characteristic function of a finite symmetric Jacobi matrix can be expressed in terms of \mathfrak{F} :

Let $n \in \mathbb{N}$ a $z \in \mathbb{C}$, then it holds

$$
\operatorname{det}\left(J_{n}-z I_{n}\right)=\left(\prod_{k=1}^{n}\left(\lambda_{n}-z\right)\right) \mathfrak{F}\left(\frac{\gamma_{1}^{2}}{\lambda_{1}-z}, \frac{\gamma_{2}^{2}}{\lambda_{2}-z}, \ldots, \frac{\gamma_{n}^{2}}{\lambda_{n}-z}\right) .
$$

- Q: What one can say about the function $\mathfrak{F}\left(\left\{\frac{\gamma_{k}^{2}}{\lambda_{k}-2}\right\}_{k=1}^{\infty}\right)$?
- Q: Is this function related to the spectrum of J somehow?

Properties of the characteristic function

- In the rest suppose:

Properties of the characteristic function

- In the rest suppose:
- Let $\lambda \equiv\left\{\lambda_{n}\right\}$ is either bounded or unbounded with finite set of accumulation points $\operatorname{der}(\lambda)$.

Properties of the characteristic function

- In the rest suppose:
- Let $\lambda \equiv\left\{\lambda_{n}\right\}$ is either bounded or unbounded with finite set of accumulation points $\operatorname{der}(\lambda)$.
- Let for at least one $z \in \mathbb{C} \backslash \operatorname{der}(\lambda)$ it holds

$$
\sum_{n=1}^{\infty} \frac{w_{n}^{2}}{\left|\lambda_{n}-z\right|\left|\lambda_{n+1}-z\right|}<\infty
$$

Properties of the characteristic function

- In the rest suppose:
- Let $\lambda \equiv\left\{\lambda_{n}\right\}$ is either bounded or unbounded with finite set of accumulation points $\operatorname{der}(\lambda)$.
- Let for at least one $z \in \mathbb{C} \backslash \operatorname{der}(\lambda)$ it holds

$$
\sum_{n=1}^{\infty} \frac{w_{n}^{2}}{\left|\lambda_{n}-z\right|\left|\lambda_{n+1}-z\right|}<\infty
$$

Proposition

The function

$$
F_{J}(z):=\mathfrak{F}\left(\left\{\frac{\gamma_{k}^{2}}{\lambda_{k}-z}\right\}_{k=1}^{\infty}\right)
$$

is analytic on $\mathbb{C} \backslash \bar{\lambda}$ and it has poles in points $z \in \lambda \backslash \operatorname{der}(\lambda)$ of order
$r_{z}=\sum_{n=1}^{\infty} \delta_{\left(\lambda_{n}, z\right)}<\infty$. Moreover, all zeros of the function $F_{J}(z)$ are simple.

Main results

- For $k=, 0,1, \ldots$, let me denote

Main results

- For $k=, 0,1, \ldots$, let me denote

$$
\xi_{k}(z):=\prod_{l=1}^{k}\left(\frac{w_{l-1}}{z-\lambda_{l}}\right) \mathfrak{F}\left(T^{k}\left\{\frac{\gamma_{n}^{2}}{\lambda_{n}-z}\right\}_{k=1}^{\infty}\right) \quad\left(w_{0}:=1\right)
$$

Main results

- For $k=, 0,1, \ldots$, let me denote

$$
\xi_{k}(z):=\prod_{l=1}^{k}\left(\frac{w_{l-1}}{z-\lambda_{l}}\right) \mathfrak{F}\left(T^{k}\left\{\frac{\gamma_{n}^{2}}{\lambda_{n}-z}\right\}_{k=1}^{\infty}\right) \quad\left(w_{0}:=1\right)
$$

- Then, by using the recurrence rule for the function \mathfrak{F}, one finds out the equation

$$
w_{k-1} \xi_{k-1}(z)+\left(\lambda_{k}-z\right) \xi_{k}(z)+w_{k} \xi_{k+1}(z)=0
$$

holds for all $k=1,2, \ldots$.

Main results

- For $k=, 0,1, \ldots$, let me denote

$$
\xi_{k}(z):=\prod_{l=1}^{k}\left(\frac{w_{l-1}}{z-\lambda_{l}}\right) \mathfrak{F}\left(T^{k}\left\{\frac{\gamma_{n}^{2}}{\lambda_{n}-z}\right\}_{k=1}^{\infty}\right) \quad\left(w_{0}:=1\right)
$$

- Then, by using the recurrence rule for the function \mathfrak{F}, one finds out the equation

$$
w_{k-1} \xi_{k-1}(z)+\left(\lambda_{k}-z\right) \xi_{k}(z)+w_{k} \xi_{k+1}(z)=0
$$

holds for all $k=1,2, \ldots$.

- Since the solution of equation $J \xi=z \xi$ is uniquely determined by the first entry ξ_{1} of vector ξ, one arrives at the following proposition.

Main results

- For $k=, 0,1, \ldots$, let me denote

$$
\xi_{k}(z):=\prod_{l=1}^{k}\left(\frac{w_{l-1}}{z-\lambda_{l}}\right) \mathfrak{F}\left(T^{k}\left\{\frac{\gamma_{n}^{2}}{\lambda_{n}-z}\right\}_{k=1}^{\infty}\right) \quad\left(w_{0}:=1\right)
$$

- Then, by using the recurrence rule for the function \mathfrak{F}, one finds out the equation

$$
w_{k-1} \xi_{k-1}(z)+\left(\lambda_{k}-z\right) \xi_{k}(z)+w_{k} \xi_{k+1}(z)=0
$$

holds for all $k=1,2, \ldots$.

- Since the solution of equation $J \xi=z \xi$ is uniquely determined by the first entry ξ_{1} of vector ξ, one arrives at the following proposition.

If

$$
\xi_{0}(z) \equiv F_{J}(z) \equiv \mathfrak{F}\left(\left\{\frac{\gamma_{k}^{2}}{\lambda_{k}-z}\right\}_{k=1}^{\infty}\right)=0
$$

for some $z \in \mathbb{C} \backslash \bar{\lambda}$, then z is an eigenvalue of J and vector $\xi(z) \equiv\left\{\xi_{k}(z)\right\}_{k=1}^{\infty}$ is the respective eigenvector.

Main results

Theorem

Let J be self-adjoint. Then it holds

$$
\mathcal{Z}(J)=\operatorname{spec}_{p}(J) \backslash \operatorname{der}(\lambda)
$$

where $\mathcal{Z}(J)$ denotes a union of the set of all zeros of $F_{J}(z)$ with set

$$
\left\{z \in \lambda \backslash \operatorname{der}(\lambda): \lim _{z^{\prime} \rightarrow z}\left(z-z^{\prime}\right)^{r_{2}} F_{J}\left(z^{\prime}\right)=0\right\} .
$$

Proposition

Let $\lim _{n \rightarrow \infty} w_{n}=0$ then every accumulation point of λ belongs to the essential spectrum of J, i.e.

$$
\operatorname{der}(\lambda) \subset \operatorname{spec}_{e s s}(J) .
$$

Example 1 (unbounded operator)

- Let $\lambda_{n}=\alpha n, \alpha \neq 0$ and $w_{n}=w>0, n=1,2, \ldots$. With this choice one has

$$
J=\left(\begin{array}{ccccc}
\alpha & w & & & \\
w & 2 \alpha & w & & \\
& w & 3 \alpha & w & \\
& & \ddots & \ddots & \ddots
\end{array}\right), \quad \gamma_{n}=\left\{\begin{array}{lll}
1, & \text { if } n \text { odd } \\
& &
\end{array}\right.
$$

Example 1 (unbounded operator)

- Let $\lambda_{n}=\alpha n, \alpha \neq 0$ and $w_{n}=w>0, n=1,2, \ldots$. With this choice one has

$$
J=\left(\begin{array}{ccccc}
\alpha & w & & & \\
w & 2 \alpha & w & & \\
w & 3 & w & \\
& & \ddots & \ddots & \ddots
\end{array}\right), \quad \gamma_{n}=\left\{\begin{array}{lll}
1, & \text { if } n \text { odd } \\
w, & \text { if } n \text { even. }
\end{array}\right.
$$

- The characteristic function can be expressed as

Example 1 (unbounded operator)

- Let $\lambda_{n}=\alpha n, \alpha \neq 0$ and $w_{n}=w>0, n=1,2, \ldots$. With this choice one has

$$
J=\left(\begin{array}{ccccc}
\alpha & w & & & \\
w & 2 \alpha & w & & \\
w & 3 & & \\
& & \ddots & & \\
& & \ddots & \ddots & \ddots
\end{array}\right), \quad \gamma_{n}=\left\{\begin{array}{lll}
1, & \text { if } n \text { odd } \\
w, & \text { if } n \text { even. }
\end{array}\right.
$$

- The characteristic function can be expressed as

$$
F_{J}(z)=\left(\frac{w}{\alpha}\right)^{\frac{z}{\alpha}} \Gamma\left(1-\frac{z}{\alpha}\right) J_{-\frac{z}{\alpha}}\left(\frac{2 w}{\alpha}\right) .
$$

Example 1 (unbounded operator)

- Let $\lambda_{n}=\alpha n, \alpha \neq 0$ and $w_{n}=w>0, n=1,2, \ldots$. With this choice one has

$$
J=\left(\begin{array}{ccccc}
\alpha & w & & & \\
w & 2 \alpha & w & & \\
& w & 3 \alpha & w & \\
& & \ddots & \ddots & \ddots
\end{array}\right), \quad \gamma_{n}=\left\{\begin{array}{lll}
1, & \text { if } n \text { odd } \\
& &
\end{array}\right.
$$

- The characteristic function can be expressed as

$$
F_{J}(z)=\left(\frac{w}{\alpha}\right)^{\frac{z}{\alpha}} \Gamma\left(1-\frac{z}{\alpha}\right) J_{-\frac{z}{\alpha}}\left(\frac{2 w}{\alpha}\right) .
$$

- Since the term $(w / \alpha)^{\frac{z}{\alpha}} \Gamma(1-z / \alpha)$ does not effect zeros of $F_{J}(z)$ and, moreover, the term $\Gamma(1-z / \alpha)$ causes singularities in $z=\alpha, 2 \alpha, \ldots$, one arrives at the following expression for the spectrum
and the formula for the k th entry of the respective eigenvector

Example 1 (unbounded operator)

- Let $\lambda_{n}=\alpha n, \alpha \neq 0$ and $w_{n}=w>0, n=1,2, \ldots$. With this choice one has

$$
J=\left(\begin{array}{ccccc}
\alpha & w & & & \\
w & 2 \alpha & w & & \\
& w & 3 \alpha & w & \\
& & \ddots & \ddots & \ddots
\end{array}\right), \quad \gamma_{n}=\left\{\begin{array}{lll}
1, & \text { if } n \text { odd } \\
w, & \text { if } n \text { even. }
\end{array}\right.
$$

- The characteristic function can be expressed as

$$
F_{J}(z)=\left(\frac{w}{\alpha}\right)^{\frac{z}{\alpha}} \Gamma\left(1-\frac{z}{\alpha}\right) J_{-\frac{z}{\alpha}}\left(\frac{2 w}{\alpha}\right) .
$$

- Since the term $(w / \alpha)^{\frac{z}{\alpha}} \Gamma(1-z / \alpha)$ does not effect zeros of $F_{J}(z)$ and, moreover, the term $\Gamma(1-z / \alpha)$ causes singularities in $z=\alpha, 2 \alpha, \ldots$, one arrives at the following expression for the spectrum

$$
\operatorname{spec}(J)=\left\{z \in \mathbb{R} ; J_{-\frac{z}{\alpha}}\left(\frac{2 w}{\alpha}\right)=0\right\}
$$

and the formula for the k th entry of the respective eigenvector

Example 1 (unbounded operator)

- Let $\lambda_{n}=\alpha n, \alpha \neq 0$ and $w_{n}=w>0, n=1,2, \ldots$. With this choice one has

$$
J=\left(\begin{array}{ccccc}
\alpha & w & & & \\
w & 2 \alpha & w & & \\
& w & 3 \alpha & w & \\
& & \ddots & \ddots & \ddots
\end{array}\right), \quad \gamma_{n}=\left\{\begin{array}{lll}
1, & \text { if } n \text { odd } \\
w, & \text { if } n \text { even. }
\end{array}\right.
$$

- The characteristic function can be expressed as

$$
F_{J}(z)=\left(\frac{w}{\alpha}\right)^{\frac{z}{\alpha}} \Gamma\left(1-\frac{z}{\alpha}\right) J_{-\frac{z}{\alpha}}\left(\frac{2 w}{\alpha}\right) .
$$

- Since the term $(w / \alpha)^{\frac{z}{\alpha}} \Gamma(1-z / \alpha)$ does not effect zeros of $F_{J}(z)$ and, moreover, the term $\Gamma(1-z / \alpha)$ causes singularities in $z=\alpha, 2 \alpha, \ldots$, one arrives at the following expression for the spectrum

$$
\operatorname{spec}(J)=\left\{z \in \mathbb{R} ; J_{-\frac{z}{\alpha}}\left(\frac{2 w}{\alpha}\right)=0\right\}
$$

and the formula for the k th entry of the respective eigenvector

$$
v_{k}(z)=(-1)^{k} J_{k-\frac{z}{\alpha}}\left(\frac{2 w}{\alpha}\right)
$$

Example 2 (compact operator)

- Let $\lambda_{n}=1 / n$ and $w_{n}=1 / \sqrt{n(n+1)}, n=1,2, \ldots$ Then matrix J has the form

$$
J=\left(\begin{array}{ccccc}
1 & 1 / \sqrt{2} & & & \tag{1}\\
1 / \sqrt{2} & 1 / 2 & 1 / \sqrt{6} & & \\
& 1 / \sqrt{6} & 1 / 3 & 1 / \sqrt{12} & \\
& & \ddots & \ddots & \ddots .
\end{array}\right)
$$

Example 2 (compact operator)

- Let $\lambda_{n}=1 / n$ and $w_{n}=1 / \sqrt{n(n+1)}, n=1,2, \ldots$ Then matrix J has the form

$$
J=\left(\begin{array}{ccccc}
1 & 1 / \sqrt{2} & & & \tag{1}\\
1 / \sqrt{2} & 1 / 2 & 1 / \sqrt{6} & & \\
& 1 / \sqrt{6} & 1 / 3 & 1 / \sqrt{12} & \\
& & \ddots & \ddots & \ddots .
\end{array}\right)
$$

- In this case one has

$$
F_{J}(z)=\sum_{s=0}^{\infty} \frac{1}{z^{s}} \frac{1}{s!} \prod_{j=1}^{s} \frac{1}{1-j z}=z^{-\frac{1}{z}} \Gamma\left(1-\frac{1}{z}\right) J_{-\frac{1}{z}}\left(\frac{2}{z}\right) .
$$

By the main result, one gets
and the k th entry of the respective eigenvector has the form

Example 2 (compact operator)

- Let $\lambda_{n}=1 / n$ and $w_{n}=1 / \sqrt{n(n+1)}, n=1,2, \ldots$ Then matrix J has the form

$$
J=\left(\begin{array}{ccccc}
1 & 1 / \sqrt{2} & & & \tag{1}\\
1 / \sqrt{2} & 1 / 2 & 1 / \sqrt{6} & & \\
& 1 / \sqrt{6} & 1 / 3 & 1 / \sqrt{12} & \\
& & \ddots & \ddots & \ddots .
\end{array}\right)
$$

- In this case one has

$$
F_{J}(z)=\sum_{s=0}^{\infty} \frac{1}{z^{s}} \frac{1}{s!} \prod_{j=1}^{s} \frac{1}{1-j z}=z^{-\frac{1}{z}} \Gamma\left(1-\frac{1}{z}\right) J_{-\frac{1}{z}}\left(\frac{2}{z}\right) .
$$

By the main result, one gets

$$
\operatorname{spec}(J)=\left\{\frac{1}{z} \in \mathbb{R}: J_{-z}(2 z)=0\right\} \cup\{0\}
$$

and the k th entry of the respective eigenvector has the form

Example 2 (compact operator)

- Let $\lambda_{n}=1 / n$ and $w_{n}=1 / \sqrt{n(n+1)}, n=1,2, \ldots$ Then matrix J has the form

$$
J=\left(\begin{array}{ccccc}
1 & 1 / \sqrt{2} & & & \tag{1}\\
1 / \sqrt{2} & 1 / 2 & 1 / \sqrt{6} & & \\
& 1 / \sqrt{6} & 1 / 3 & 1 / \sqrt{12} & \\
& & \ddots & \ddots & \ddots .
\end{array}\right)
$$

- In this case one has

$$
F_{J}(z)=\sum_{s=0}^{\infty} \frac{1}{z^{s}} \frac{1}{s!} \prod_{j=1}^{s} \frac{1}{1-j z}=z^{-\frac{1}{z}} \Gamma\left(1-\frac{1}{z}\right) J_{-\frac{1}{z}}\left(\frac{2}{z}\right) .
$$

By the main result, one gets

$$
\operatorname{spec}(J)=\left\{\frac{1}{z} \in \mathbb{R}: J_{-z}(2 z)=0\right\} \cup\{0\}
$$

and the k th entry of the respective eigenvector has the form

$$
v_{k}(z)=\sqrt{k} J_{k-\frac{1}{2}}\left(\frac{2}{z}\right) .
$$

Example 3 (compact operator with zero diagonal)

- Let $\lambda_{n}=0, w_{n}=\beta / \sqrt{(n+\alpha)(n+\alpha+1)}, \alpha>-1, \beta>0, n=1,2, \ldots$ Then the results are

Example 3 (compact operator with zero diagonal)

- Let $\lambda_{n}=0, w_{n}=\beta / \sqrt{(n+\alpha)(n+\alpha+1)}, \alpha>-1, \beta>0, n=1,2, \ldots$. Then the results are

$$
\operatorname{spec}(J)=\left\{\frac{2 \beta}{z} \in \mathbb{R} ; J_{\alpha}(z)=0\right\} \cup\{0\},
$$

Example 3 (compact operator with zero diagonal)

- Let $\lambda_{n}=0, w_{n}=\beta / \sqrt{(n+\alpha)(n+\alpha+1)}, \alpha>-1, \beta>0, n=1,2, \ldots$. Then the results are

$$
\operatorname{spec}(J)=\left\{\frac{2 \beta}{z} \in \mathbb{R} ; J_{\alpha}(z)=0\right\} \cup\{0\},
$$

$$
v_{k}(z)=\sqrt{\alpha+k} J_{\alpha+k}\left(\frac{2 \beta}{z}\right) .
$$

Example 3 (compact operator with zero diagonal)

- Let $\lambda_{n}=0, w_{n}=\beta / \sqrt{(n+\alpha)(n+\alpha+1)}, \alpha>-1, \beta>0, n=1,2, \ldots$ Then the results are

$$
\operatorname{spec}(J)=\left\{\frac{2 \beta}{z} \in \mathbb{R} ; J_{\alpha}(z)=0\right\} \cup\{0\},
$$

$$
v_{k}(z)=\sqrt{\alpha+k} J_{\alpha+k}\left(\frac{2 \beta}{z}\right) .
$$

- Let $\lambda_{n}=0$ and $w_{n}=\alpha q^{n-1}, 0<q<1, \alpha>0, n=1,2 \ldots$ Then

Example 3 (compact operator with zero diagonal)

- Let $\lambda_{n}=0, w_{n}=\beta / \sqrt{(n+\alpha)(n+\alpha+1)}, \alpha>-1, \beta>0, n=1,2, \ldots$ Then the results are

$$
\operatorname{spec}(J)=\left\{\frac{2 \beta}{z} \in \mathbb{R} ; J_{\alpha}(z)=0\right\} \cup\{0\},
$$

$$
v_{k}(z)=\sqrt{\alpha+k} J_{\alpha+k}\left(\frac{2 \beta}{z}\right) .
$$

- Let $\lambda_{n}=0$ and $w_{n}=\alpha q^{n-1}, 0<q<1, \alpha>0, n=1,2 \ldots$ Then

$$
\operatorname{spec}(J)=\left\{\alpha z \in \mathbb{R} ; o \phi_{1}\left(; 0 ; q^{2},-q z^{-2}\right)=0\right\} \cup\{0\},
$$

Example 3 (compact operator with zero diagonal)

- Let $\lambda_{n}=0, w_{n}=\beta / \sqrt{(n+\alpha)(n+\alpha+1)}, \alpha>-1, \beta>0, n=1,2, \ldots$. Then the results are

$$
\operatorname{spec}(J)=\left\{\frac{2 \beta}{z} \in \mathbb{R} ; J_{\alpha}(z)=0\right\} \cup\{0\},
$$

$$
v_{k}(z)=\sqrt{\alpha+k} J_{\alpha+k}\left(\frac{2 \beta}{z}\right) .
$$

- Let $\lambda_{n}=0$ and $w_{n}=\alpha q^{n-1}, 0<q<1, \alpha>0, n=1,2 \ldots$ Then

$$
\begin{aligned}
& \operatorname{spec}(J)=\left\{\alpha z \in \mathbb{R} ; o \phi_{1}\left(; 0 ; q^{2},-q z^{-2}\right)=0\right\} \cup\{0\}, \\
& v_{k}(z):=q^{\frac{(k-1)(k-2)}{2}}\left(\frac{\alpha}{z}\right)^{k}{ }_{o \phi_{1}}\left(; 0 ; q^{2},-q^{2 k+1}\left(\frac{\alpha}{z}\right)^{2}\right) .
\end{aligned}
$$

Thank you!

