On the eigenvalue problem for a certain class of infinite Jacobi matrices

František Štampach

Faculty of Nuclear Sciences and Physical Engineering, CTU in Prague

Fourth School and Workshop on "Mathematical Methods in Quantum Mechanics"

February 17, 2011

Outline

Functions \mathfrak{E} and \mathfrak{F}

- Definition of & and & and its properties
- Two examples

Symmetric Jacobi matrices

- Decomposition of a symmetric Jacobi matrix
- Characteristic function in terms of \mathfrak{F}

Main results

- More on the characteristic function
- Eigenvalues as zeros of the characteristic function

Examples

- Ex.1 unbouded operator
- Ex.2 compact operator
- Ex.3 compact operator with zero diagonal

Definition

Let me define $\mathfrak{E}: D \to \mathbb{C}$ a $\mathfrak{F}: D \to \mathbb{C}$ by relations

$$\mathfrak{E}(x) = 1 + \sum_{m=1}^{\infty} \sum_{k_1=1}^{\infty} \sum_{k_2=k_1+2}^{\infty} \dots \sum_{k_m=k_{m-1}+2}^{\infty} x_{k_1} x_{k_1+1} x_{k_2} x_{k_2+1} \dots x_{k_m} x_{k_m+1}$$

and

$$\mathfrak{F}(x) = 1 + \sum_{m=1}^{\infty} (-1)^m \sum_{k_1=1}^{\infty} \sum_{k_2=k_1+2}^{\infty} \dots \sum_{k_m=k_{m-1}+2}^{\infty} x_{k_1} x_{k_1+1} x_{k_2} x_{k_2+1} \dots x_{k_m} x_{k_m+1},$$

where

$$D = \left\{ \{x_k\}_{k=1}^{\infty} \subset \mathbb{C}; \sum_{k=1}^{\infty} |x_k x_{k+1}| < \infty \right\}.$$

For a finite number of complex variables let me identify $\mathfrak{F}(x_1, x_2, ..., x_n)$ with $\mathfrak{F}(x)$ where $x = (x_1, x_2, ..., x_n, 0, 0, 0, ...)$ and similarly for \mathfrak{E} .

• Note that the domain *D* is not a linear space. One has, however, $\ell^2(\mathbb{N}) \subset D$.

- Note that the domain *D* is not a linear space. One has, however, $\ell^2(\mathbb{N}) \subset D$.
- Functions \mathfrak{E} and \mathfrak{F} restricted on $\ell^2(\mathbb{N})$ are continuous functionals on $\ell^2(\mathbb{N})$.

- Note that the domain *D* is not a linear space. One has, however, $\ell^2(\mathbb{N}) \subset D$.
- Functions \mathfrak{E} and \mathfrak{F} restricted on $\ell^2(\mathbb{N})$ are continuous functionals on $\ell^2(\mathbb{N})$.
- For all $x \in D$ and $k = 1, 2, \ldots$ one has

where T denote the truncation operator from the left defined on the space of all sequences:

$$T({x_k}_{k=1}^\infty) = {x_{k+1}}_{k=1}^\infty.$$

- Note that the domain *D* is not a linear space. One has, however, $\ell^2(\mathbb{N}) \subset D$.
- Functions \mathfrak{E} and \mathfrak{F} restricted on $\ell^2(\mathbb{N})$ are continuous functionals on $\ell^2(\mathbb{N})$.
- For all $x \in D$ and $k = 1, 2, \ldots$ one has

Recursive relations

$$\mathfrak{F}(x) = \mathfrak{F}(x_1, \ldots, x_k) \mathfrak{F}(T^k x) - \mathfrak{F}(x_1, \ldots, x_{k-1}) x_k x_{k+1} \mathfrak{F}(T^{k+1} x),$$

$$\mathfrak{E}(x) = \mathfrak{E}(x_1, \ldots, x_k) \mathfrak{E}(T^k x) + \mathfrak{E}(x_1, \ldots, x_{k-1}) x_k x_{k+1} \mathfrak{E}(T^{k+1} x),$$

where T denote the truncation operator from the left defined on the space of all sequences:

$$T({x_k}_{k=1}^\infty) = {x_{k+1}}_{k=1}^\infty.$$

- Note that the domain *D* is not a linear space. One has, however, $\ell^2(\mathbb{N}) \subset D$.
- Functions \mathfrak{E} and \mathfrak{F} restricted on $\ell^2(\mathbb{N})$ are continuous functionals on $\ell^2(\mathbb{N})$.
- For all $x \in D$ and $k = 1, 2, \ldots$ one has

Recursive relations

$$\mathfrak{F}(x) = \mathfrak{F}(x_1, \ldots, x_k) \mathfrak{F}(T^k x) - \mathfrak{F}(x_1, \ldots, x_{k-1}) x_k x_{k+1} \mathfrak{F}(T^{k+1} x),$$

$$\mathfrak{E}(x) = \mathfrak{E}(x_1, \ldots, x_k) \mathfrak{E}(T^k x) + \mathfrak{E}(x_1, \ldots, x_{k-1}) x_k x_{k+1} \mathfrak{E}(T^{k+1} x),$$

where T denote the truncation operator from the left defined on the space of all sequences:

$$T({x_k}_{k=1}^\infty) = {x_{k+1}}_{k=1}^\infty.$$

• Especially for k = 1, one gets simple relations

$$\mathfrak{F}(x) = \mathfrak{F}(Tx) - x_1 x_2 \mathfrak{F}(T^2 x),$$
$$\mathfrak{E}(x) = \mathfrak{E}(Tx) + x_1 x_2 \mathfrak{E}(T^2 x).$$

The case of geometric sequence:

• The case of geometric sequence:

Let $t, w \in \mathbb{C}$, |t| < 1, then it holds

$$\mathfrak{F}\left(\left\{t^{k-1}w\right\}_{k=1}^{\infty}\right) = 1 + \sum_{m=1}^{\infty} (-1)^m \frac{t^{m(2m-1)}w^{2m}}{(1-t^2)(1-t^4)\dots(1-t^{2m})},$$
$$\mathfrak{E}\left(\left\{t^{k-1}w\right\}_{k=1}^{\infty}\right) = 1 + \sum_{m=1}^{\infty} \frac{t^{m(2m-1)}w^{2m}}{(1-t^2)(1-t^4)\dots(1-t^{2m})}.$$

The case of geometric sequence:

Let $t, w \in \mathbb{C}, |t| < 1$, then it holds

$$\mathfrak{F}\left(\left\{t^{k-1}w\right\}_{k=1}^{\infty}\right) = 1 + \sum_{m=1}^{\infty} (-1)^m \frac{t^{m(2m-1)}w^{2m}}{(1-t^2)(1-t^4)\dots(1-t^{2m})},$$
$$\mathfrak{E}\left(\left\{t^{k-1}w\right\}_{k=1}^{\infty}\right) = 1 + \sum_{m=1}^{\infty} \frac{t^{m(2m-1)}w^{2m}}{(1-t^2)(1-t^4)\dots(1-t^{2m})}.$$

• Functions on RHSs can be identified with a q-hypergeometric series $_0\phi_1$.

The case of geometric sequence:

Let $t, w \in \mathbb{C}, |t| < 1$, then it holds

$$\mathfrak{F}\left(\left\{t^{k-1}w\right\}_{k=1}^{\infty}\right) = 1 + \sum_{m=1}^{\infty} (-1)^m \frac{t^{m(2m-1)}w^{2m}}{(1-t^2)(1-t^4)\dots(1-t^{2m})},$$
$$\mathfrak{E}\left(\left\{t^{k-1}w\right\}_{k=1}^{\infty}\right) = 1 + \sum_{m=1}^{\infty} \frac{t^{m(2m-1)}w^{2m}}{(1-t^2)(1-t^4)\dots(1-t^{2m})}.$$

Functions on RHSs can be identified with a q-hypergeometric series ₀φ₁.
 The case of Bessel functions:

The case of geometric sequence:

Let $t, w \in \mathbb{C}, |t| < 1$, then it holds

$$\mathfrak{F}\left(\left\{t^{k-1}w\right\}_{k=1}^{\infty}\right) = 1 + \sum_{m=1}^{\infty} (-1)^m \frac{t^{m(2m-1)}w^{2m}}{(1-t^2)(1-t^4)\dots(1-t^{2m})},$$
$$\mathfrak{E}\left(\left\{t^{k-1}w\right\}_{k=1}^{\infty}\right) = 1 + \sum_{m=1}^{\infty} \frac{t^{m(2m-1)}w^{2m}}{(1-t^2)(1-t^4)\dots(1-t^{2m})}.$$

Functions on RHSs can be identified with a q-hypergeometric series ₀φ₁.
 2 The case of Bessel functions:

Let $w \in \mathbb{C}$ a $\nu \notin -\mathbb{N}$, then it holds

$$J_{\nu}(2w) = \frac{w^{\nu}}{\Gamma(\nu+1)} \mathfrak{F}\left(\left\{\frac{w}{\nu+k}\right\}_{k=1}^{\infty}\right), \qquad l_{\nu}(2w) = \frac{w^{\nu}}{\Gamma(\nu+1)} \mathfrak{E}\left(\left\{\frac{w}{\nu+k}\right\}_{k=1}^{\infty}\right).$$

The case of geometric sequence:

Let $t, w \in \mathbb{C}, |t| < 1$, then it holds

$$\mathfrak{F}\left(\left\{t^{k-1}w\right\}_{k=1}^{\infty}\right) = 1 + \sum_{m=1}^{\infty} (-1)^m \frac{t^{m(2m-1)}w^{2m}}{(1-t^2)(1-t^4)\dots(1-t^{2m})},$$
$$\mathfrak{E}\left(\left\{t^{k-1}w\right\}_{k=1}^{\infty}\right) = 1 + \sum_{m=1}^{\infty} \frac{t^{m(2m-1)}w^{2m}}{(1-t^2)(1-t^4)\dots(1-t^{2m})}.$$

Functions on RHSs can be identified with a q-hypergeometric series ₀φ₁.
 2 The case of Bessel functions:

Let $w \in \mathbb{C}$ a $\nu \notin -\mathbb{N}$, then it holds

$$J_{\nu}(2w) = \frac{w^{\nu}}{\Gamma(\nu+1)}\mathfrak{F}\left(\left\{\frac{w}{\nu+k}\right\}_{k=1}^{\infty}\right), \qquad l_{\nu}(2w) = \frac{w^{\nu}}{\Gamma(\nu+1)}\mathfrak{E}\left(\left\{\frac{w}{\nu+k}\right\}_{k=1}^{\infty}\right).$$

• Recursive relations for \mathfrak{F} and \mathfrak{E} written in this special case has the form:

$$\begin{split} & wJ_{\nu-1}(2w) - \nu J_{\nu}(2w) + wJ_{\nu+1}(2w) &= 0, \\ & wI_{\nu-1}(2w) - \nu I_{\nu}(2w) - wI_{\nu+1}(2w) &= 0. \end{split}$$

- Let positive sequence $\{w_n\}_{n=1}^{\infty}$ and real sequence $\{\lambda_n\}_{n=1}^{\infty}$ to be given.
- Let me denote

$$J:=egin{pmatrix} \lambda_1 & w_1 & & \ w_1 & \lambda_2 & w_2 & \ w_2 & \lambda_3 & w_3 & \ & \ddots & \ddots & \ddots \end{pmatrix}.$$

• Let J_n be the *n*-th truncation of J, i.e. $J_n = (P_n J P_n) | \operatorname{Ran} P_n$, where P_n is the orthogonal projection on the space spanned by $\{e_1, e_2, \ldots, e_n\}$. In other words,

Proposition

Any eigenvalue of *J* regarded as an operator in $\ell^2(\mathbb{N})$ is simple.

František Štampach (FNSPE, CTU)

Jacobi matrix J_n can be decomposed into the product

$$J_n = G_n \tilde{J}_n G_n,$$

where

•
$$G_n = \operatorname{diag}(\gamma_1, \gamma_2, \ldots, \gamma_n)$$
 and

Jacobi matrix J_n can be decomposed into the product

$$J_n = G_n \tilde{J}_n G_n,$$

where

•
$$G_n = \operatorname{diag}(\gamma_1, \gamma_2, \ldots, \gamma_n)$$
 and

۲

Jacobi matrix J_n can be decomposed into the product

$$J_n = G_n \tilde{J}_n G_n,$$

where

• Next, $\tilde{\lambda}_k = \lambda_k / \gamma_k^2$ and

$$\gamma_{2k-1} = \prod_{j=1}^{k-1} \frac{w_{2j}}{w_{2j-1}}, \ \gamma_{2k} = w_1 \prod_{j=1}^{k-1} \frac{w_{2j+1}}{w_{2j}}, \ k = 1, 2, 3, \dots$$

Jacobi matrix J_n can be decomposed into the product

$$J_n = G_n \tilde{J}_n G_n,$$

where

• Next, $\tilde{\lambda}_k = \lambda_k / \gamma_k^2$ and

$$\gamma_{2k-1} = \prod_{j=1}^{k-1} \frac{w_{2j}}{w_{2j-1}}, \ \gamma_{2k} = w_1 \prod_{j=1}^{k-1} \frac{w_{2j+1}}{w_{2j}}, \ k = 1, 2, 3, \dots$$

• Alternatively, sequence $\{\gamma_n\}$ can be defined recursively as $\gamma_1 = 1$, $\gamma_{k+1} = w_k/\gamma_k$.

Characteristic function in terms of $\boldsymbol{\mathfrak{F}}$

Let $n \in \mathbb{N}$ and $\{x_j\}_{j=1}^n \subset \mathbb{C}$ then one has

Characteristic function in terms of $\ensuremath{\mathfrak{F}}$

Let $n \in \mathbb{N}$ and $\{x_j\}_{j=1}^n \subset \mathbb{C}$ then one has

 The characteristic function of a finite symmetric Jacobi matrix can be expressed in terms of 3: Let $n \in \mathbb{N}$ and $\{x_j\}_{j=1}^n \subset \mathbb{C}$ then one has

 The characteristic function of a finite symmetric Jacobi matrix can be expressed in terms of 3:

Let $n \in \mathbb{N}$ a $z \in \mathbb{C}$, then it holds

$$\det(J_n - zI_n) = \left(\prod_{k=1}^n (\lambda_n - z)\right) \mathfrak{F}\left(\frac{\gamma_1^2}{\lambda_1 - z}, \frac{\gamma_2^2}{\lambda_2 - z}, \dots, \frac{\gamma_n^2}{\lambda_n - z}\right).$$

Let $n \in \mathbb{N}$ and $\{x_j\}_{j=1}^n \subset \mathbb{C}$ then one has

 The characteristic function of a finite symmetric Jacobi matrix can be expressed in terms of 3:

Let $n \in \mathbb{N}$ a $z \in \mathbb{C}$, then it holds

$$\det(J_n - zI_n) = \left(\prod_{k=1}^n (\lambda_n - z)\right) \mathfrak{F}\left(\frac{\gamma_1^2}{\lambda_1 - z}, \frac{\gamma_2^2}{\lambda_2 - z}, \dots, \frac{\gamma_n^2}{\lambda_n - z}\right).$$

• Q: What one can say about the function $\mathfrak{F}\left(\left\{\frac{\gamma_k^2}{\lambda_k-z}\right\}_{k=1}^{\infty}\right)$?

Let $n \in \mathbb{N}$ and $\{x_j\}_{j=1}^n \subset \mathbb{C}$ then one has

 The characteristic function of a finite symmetric Jacobi matrix can be expressed in terms of 3:

Let $n \in \mathbb{N}$ a $z \in \mathbb{C}$, then it holds

$$\det(J_n - zI_n) = \left(\prod_{k=1}^n (\lambda_n - z)\right) \mathfrak{F}\left(\frac{\gamma_1^2}{\lambda_1 - z}, \frac{\gamma_2^2}{\lambda_2 - z}, \dots, \frac{\gamma_n^2}{\lambda_n - z}\right).$$

- Q: What one can say about the function $\mathfrak{F}\left(\left\{\frac{\gamma_k^2}{\lambda_k-z}\right\}_{k=1}^{\infty}\right)$?
- Q: Is this function related to the spectrum of J somehow?

• In the rest suppose:

- In the rest suppose:
- Let λ ≡ {λ_n} is either bounded or unbounded with finite set of accumulation points der(λ).

- In the rest suppose:
- Let λ ≡ {λ_n} is either bounded or unbounded with finite set of accumulation points der(λ).
- Let for at least one $z \in \mathbb{C} \setminus \operatorname{der}(\lambda)$ it holds

$$\sum_{n=1}^{\infty} \frac{w_n^2}{|\lambda_n-z||\lambda_{n+1}-z|} < \infty.$$

- In the rest suppose:
- Let λ ≡ {λ_n} is either bounded or unbounded with finite set of accumulation points der(λ).
- Let for at least one $z \in \mathbb{C} \setminus \operatorname{der}(\lambda)$ it holds

$$\sum_{n=1}^{\infty} \frac{w_n^2}{|\lambda_n-z||\lambda_{n+1}-z|} < \infty.$$

Proposition

The function

$$F_J(z) := \mathfrak{F}\left(\left\{\frac{\gamma_k^2}{\lambda_k - z}\right\}_{k=1}^{\infty}\right)$$

is analytic on $\mathbb{C} \setminus \overline{\lambda}$ and it has poles in points $z \in \lambda \setminus \text{der}(\lambda)$ of order

 $r_z = \sum_{n=1}^{\infty} \delta_{(\lambda_n, z)} < \infty$. Moreover, all zeros of the function $F_J(z)$ are simple.

• For $k = 0, 1, \ldots$, let me denote

Main results

• For $k = 0, 1, \ldots$, let me denote

$$\xi_k(z) := \prod_{l=1}^k \left(\frac{w_{l-1}}{z - \lambda_l} \right) \mathfrak{F} \left(T^k \left\{ \frac{\gamma_n^2}{\lambda_n - z} \right\}_{k=1}^\infty \right) \qquad (w_0 := 1).$$

Main results

• For *k* =, 0, 1, ..., let me denote

$$\xi_k(z) := \prod_{l=1}^k \left(\frac{w_{l-1}}{z - \lambda_l} \right) \mathfrak{F} \left(T^k \left\{ \frac{\gamma_n^2}{\lambda_n - z} \right\}_{k=1}^{\infty} \right) \qquad (w_0 := 1).$$

• Then, by using the recurrence rule for the function \mathfrak{F} , one finds out the equation

$$W_{k-1}\xi_{k-1}(z) + (\lambda_k - z)\xi_k(z) + W_k\xi_{k+1}(z) = 0$$

holds for all $k = 1, 2, \ldots$

• For *k* =, 0, 1, ..., let me denote

$$\xi_k(z) := \prod_{l=1}^k \left(\frac{w_{l-1}}{z - \lambda_l} \right) \mathfrak{F} \left(T^k \left\{ \frac{\gamma_n^2}{\lambda_n - z} \right\}_{k=1}^{\infty} \right) \qquad (w_0 := 1).$$

• Then, by using the recurrence rule for the function \mathfrak{F} , one finds out the equation

$$W_{k-1}\xi_{k-1}(z) + (\lambda_k - z)\xi_k(z) + W_k\xi_{k+1}(z) = 0$$

holds for all $k = 1, 2, \ldots$

Since the solution of equation Jξ = zξ is uniquely determined by the first entry ξ₁ of vector ξ, one arrives at the following proposition.

• For *k* =, 0, 1, ..., let me denote

$$\xi_k(z) := \prod_{l=1}^k \left(\frac{w_{l-1}}{z - \lambda_l} \right) \mathfrak{F} \left(T^k \left\{ \frac{\gamma_n^2}{\lambda_n - z} \right\}_{k=1}^{\infty} \right) \qquad (w_0 := 1).$$

 $\bullet\,$ Then, by using the recurrence rule for the function $\mathfrak{F},$ one finds out the equation

$$W_{k-1}\xi_{k-1}(z) + (\lambda_k - z)\xi_k(z) + W_k\xi_{k+1}(z) = 0$$

holds for all $k = 1, 2, \ldots$

Since the solution of equation *J*ξ = *z*ξ is uniquely determined by the first entry ξ₁ of vector ξ, one arrives at the following proposition.

lf

$$\xi_0(z) \equiv F_J(z) \equiv \mathfrak{F}\left(\left\{\frac{\gamma_k^2}{\lambda_k - z}\right\}_{k=1}^{\infty}\right) = 0$$

for some $z \in \mathbb{C} \setminus \overline{\lambda}$, then z is an eigenvalue of J and vector $\xi(z) \equiv {\xi_k(z)}_{k=1}^{\infty}$ is the respective eigenvector.

Theorem

Let J be self-adjoint. Then it holds

$$\mathfrak{Z}(J) = \operatorname{spec}_{\rho}(J) \setminus \operatorname{der}(\lambda)$$

where $\mathfrak{Z}(J)$ denotes a union of the set of all zeros of $F_J(z)$ with set

$$\left\{z\in\lambda\setminus\operatorname{der}(\lambda):\lim_{z'\to z}(z-z')^{r_z}\mathcal{F}_J(z')=0\right\}.$$

Proposition

Let $\lim_{n\to\infty} w_n = 0$ then every accumulation point of λ belongs to the essential spectrum of *J*, i.e.

$$\operatorname{der}(\lambda) \subset \operatorname{spec}_{ess}(J).$$

Example 1 (unbounded operator)

• Let $\lambda_n = \alpha n$, $\alpha \neq 0$ and $w_n = w > 0$, n = 1, 2, ... With this choice one has

$$J = \begin{pmatrix} \stackrel{\alpha}{w} & \stackrel{w}{w} \\ \stackrel{\alpha}{w} & \stackrel{\alpha}{3\alpha} & \stackrel{w}{w} \\ & \ddots & \ddots & \ddots \end{pmatrix}, \qquad \qquad \gamma_n = \begin{cases} 1, & \text{if } n \text{ odd} \\ w, & \text{if } n \text{ even.} \end{cases}$$

$$J = \begin{pmatrix} \stackrel{\alpha}{w} \stackrel{w}{2\alpha} & w \\ \stackrel{w}{w} \stackrel{3\alpha}{3\alpha} & w \\ & \ddots & \ddots & \ddots \end{pmatrix}, \qquad \qquad \gamma_n = \begin{cases} 1, & \text{if } n \text{ odd} \\ w, & \text{if } n \text{ even.} \end{cases}$$

• The characteristic function can be expressed as

$$J = \begin{pmatrix} \alpha & w \\ w & 2\alpha & w \\ w & 3\alpha & w \\ \ddots & \ddots & \ddots \end{pmatrix}, \qquad \gamma_n = \begin{cases} 1, & \text{if } n \text{ odd} \\ w, & \text{if } n \text{ even.} \end{cases}$$

• The characteristic function can be expressed as

$$F_{J}(z) = \left(\frac{w}{\alpha}\right)^{\frac{z}{\alpha}} \Gamma\left(1 - \frac{z}{\alpha}\right) J_{-\frac{z}{\alpha}}\left(\frac{2w}{\alpha}\right).$$

$$J = \begin{pmatrix} \stackrel{\alpha}{w} \stackrel{w}{2\alpha} & w \\ \stackrel{w}{w} \stackrel{3\alpha}{2\alpha} & w \\ & \ddots & \ddots & \ddots \end{pmatrix}, \qquad \gamma_n = \begin{cases} 1, & \text{if } n \text{ odd} \\ w, & \text{if } n \text{ even.} \end{cases}$$

• The characteristic function can be expressed as

$$F_{J}(z) = \left(\frac{w}{\alpha}\right)^{\frac{z}{\alpha}} \Gamma\left(1-\frac{z}{\alpha}\right) J_{-\frac{z}{\alpha}}\left(\frac{2w}{\alpha}\right).$$

• Since the term $(w/\alpha)^{\frac{z}{\alpha}}\Gamma(1-z/\alpha)$ does not effect zeros of $F_J(z)$ and, moreover, the term $\Gamma(1-z/\alpha)$ causes singularities in $z = \alpha, 2\alpha, \ldots$, one arrives at the following expression for the spectrum

and the formula for the kth entry of the respective eigenvector

$$J = \begin{pmatrix} \stackrel{\alpha}{w} & \stackrel{w}{w} \\ \stackrel{w}{w} & \stackrel{\alpha}{3\alpha} & w \\ & \ddots & \ddots & \ddots \end{pmatrix}, \qquad \gamma_n = \begin{cases} 1, & \text{if } n \text{ odd} \\ w, & \text{if } n \text{ even.} \end{cases}$$

• The characteristic function can be expressed as

$$\mathsf{F}_{J}(z) = \left(\frac{w}{\alpha}\right)^{\frac{z}{\alpha}} \Gamma\left(1 - \frac{z}{\alpha}\right) J_{-\frac{z}{\alpha}}\left(\frac{2w}{\alpha}\right).$$

• Since the term $(w/\alpha)^{\frac{z}{\alpha}}\Gamma(1-z/\alpha)$ does not effect zeros of $F_J(z)$ and, moreover, the term $\Gamma(1-z/\alpha)$ causes singularities in $z = \alpha, 2\alpha, \ldots$, one arrives at the following expression for the spectrum

spec(J) = {
$$z \in \mathbb{R}$$
; $J_{-\frac{z}{\alpha}}\left(\frac{2w}{\alpha}\right) = 0$ }

and the formula for the kth entry of the respective eigenvector

$$J = \begin{pmatrix} \stackrel{\alpha}{w} & \stackrel{w}{w} \\ \stackrel{w}{w} & \stackrel{\alpha}{3\alpha} & w \\ & \ddots & \ddots & \ddots \end{pmatrix}, \qquad \gamma_n = \begin{cases} 1, & \text{if } n \text{ odd} \\ w, & \text{if } n \text{ even.} \end{cases}$$

• The characteristic function can be expressed as

$$\mathsf{F}_{J}(z) = \left(\frac{w}{\alpha}\right)^{\frac{z}{\alpha}} \Gamma\left(1 - \frac{z}{\alpha}\right) J_{-\frac{z}{\alpha}}\left(\frac{2w}{\alpha}\right).$$

• Since the term $(w/\alpha)^{\frac{z}{\alpha}}\Gamma(1-z/\alpha)$ does not effect zeros of $F_J(z)$ and, moreover, the term $\Gamma(1-z/\alpha)$ causes singularities in $z = \alpha, 2\alpha, \ldots$, one arrives at the following expression for the spectrum

spec
$$(J) = \{z \in \mathbb{R}; J_{-\frac{z}{\alpha}}\left(\frac{2w}{\alpha}\right) = 0\}$$

and the formula for the kth entry of the respective eigenvector

$$v_k(z) = (-1)^k J_{k-\frac{z}{\alpha}}\left(\frac{2w}{\alpha}\right).$$

Example 2 (compact operator)

• Let $\lambda_n = 1/n$ and $w_n = 1/\sqrt{n(n+1)}$, n = 1, 2, ... Then matrix J has the form

$$J = \begin{pmatrix} 1 & 1/\sqrt{2} \\ 1/\sqrt{2} & 1/2 & 1/\sqrt{6} \\ 1/\sqrt{6} & 1/3 & 1/\sqrt{12} \\ & \ddots & \ddots & \ddots \end{pmatrix}.$$
(1)

• Let $\lambda_n = 1/n$ and $w_n = 1/\sqrt{n(n+1)}$, n = 1, 2, ... Then matrix J has the form

$$J = \begin{pmatrix} 1 & 1/\sqrt{2} \\ 1/\sqrt{2} & 1/2 & 1/\sqrt{6} \\ 1/\sqrt{6} & 1/3 & 1/\sqrt{12} \\ & \ddots & \ddots & \ddots \end{pmatrix}.$$
(1)

In this case one has

$$F_{J}(z) = \sum_{s=0}^{\infty} \frac{1}{z^{s}} \frac{1}{s!} \prod_{j=1}^{s} \frac{1}{1-jz} = z^{-\frac{1}{2}} \Gamma\left(1-\frac{1}{z}\right) J_{-\frac{1}{z}}\left(\frac{2}{z}\right).$$

By the main result, one gets

and the kth entry of the respective eigenvector has the form

• Let $\lambda_n = 1/n$ and $w_n = 1/\sqrt{n(n+1)}$, n = 1, 2, ... Then matrix J has the form

$$J = \begin{pmatrix} 1 & 1/\sqrt{2} \\ 1/\sqrt{2} & 1/2 & 1/\sqrt{6} \\ 1/\sqrt{6} & 1/3 & 1/\sqrt{12} \\ & \ddots & \ddots & \ddots \end{pmatrix}.$$
(1)

In this case one has

$$F_J(z) = \sum_{s=0}^{\infty} \frac{1}{z^s} \frac{1}{s!} \prod_{j=1}^s \frac{1}{1-jz} = z^{-\frac{1}{z}} \Gamma\left(1-\frac{1}{z}\right) J_{-\frac{1}{z}}\left(\frac{2}{z}\right)$$

By the main result, one gets

$$\operatorname{spec}(J) = \left\{ \frac{1}{z} \in \mathbb{R} : J_{-z}(2z) = 0 \right\} \cup \{0\}$$

and the kth entry of the respective eigenvector has the form

• Let $\lambda_n = 1/n$ and $w_n = 1/\sqrt{n(n+1)}$, n = 1, 2, ... Then matrix J has the form

$$J = \begin{pmatrix} 1 & 1/\sqrt{2} \\ 1/\sqrt{2} & 1/2 & 1/\sqrt{6} \\ 1/\sqrt{6} & 1/3 & 1/\sqrt{12} \\ & \ddots & \ddots & \ddots \end{pmatrix}.$$
(1)

In this case one has

$$F_J(z) = \sum_{s=0}^{\infty} \frac{1}{z^s} \frac{1}{s!} \prod_{j=1}^s \frac{1}{1-jz} = z^{-\frac{1}{z}} \Gamma\left(1-\frac{1}{z}\right) J_{-\frac{1}{z}}\left(\frac{2}{z}\right)$$

By the main result, one gets

$$\operatorname{spec}(J) = \left\{ \frac{1}{z} \in \mathbb{R} : J_{-z}(2z) = 0 \right\} \cup \{0\}$$

and the kth entry of the respective eigenvector has the form

$$V_k(z) = \sqrt{k} J_{k-\frac{1}{z}}\left(\frac{2}{z}\right).$$

$$\operatorname{spec}(J) = \left\{ \frac{2\beta}{z} \in \mathbb{R}; \ J_{\alpha}(z) = 0 \right\} \cup \{0\},$$

$$\operatorname{spec}(J) = \left\{ \frac{2\beta}{z} \in \mathbb{R}; \ J_{\alpha}(z) = 0 \right\} \cup \{0\},$$

$$v_k(z) = \sqrt{\alpha + k} J_{\alpha + k} \left(\frac{2\beta}{z} \right).$$

$$\operatorname{spec}(J) = \left\{ \frac{2\beta}{z} \in \mathbb{R}; \ J_{\alpha}(z) = 0 \right\} \cup \{0\},$$

$$V_k(z) = \sqrt{\alpha + k} J_{\alpha+k}\left(\frac{2\beta}{z}\right).$$

• Let $\lambda_n = 0$ and $w_n = \alpha q^{n-1}$, 0 < q < 1, $\alpha > 0$, n = 1, 2... Then

$$\operatorname{spec}(J) = \left\{ \frac{2\beta}{z} \in \mathbb{R}; \ J_{\alpha}(z) = 0 \right\} \cup \{0\},$$

$$V_k(z) = \sqrt{\alpha + k} J_{\alpha+k}\left(\frac{2\beta}{z}\right).$$

• Let $\lambda_n = 0$ and $w_n = \alpha q^{n-1}$, 0 < q < 1, $\alpha > 0$, $n = 1, 2 \dots$ Then

spec(*J*) = {
$$\alpha z \in \mathbb{R}$$
; $_{0}\phi_{1}(; 0; q^{2}, -qz^{-2}) = 0$ } \cup {0},

$$\operatorname{spec}(J) = \left\{ \frac{2\beta}{z} \in \mathbb{R}; \ J_{\alpha}(z) = 0 \right\} \cup \{0\},$$

$$V_k(z) = \sqrt{\alpha + k} J_{\alpha+k}\left(\frac{2\beta}{z}\right).$$

• Let $\lambda_n = 0$ and $w_n = \alpha q^{n-1}$, 0 < q < 1, $\alpha > 0$, $n = 1, 2 \dots$ Then

spec(*J*) = {
$$\alpha z \in \mathbb{R}$$
; $_0\phi_1(; 0; q^2, -qz^{-2}) = 0$ } \cup {0},

$$v_{k}(z) := q^{\frac{(k-1)(k-2)}{2}} \left(\frac{\alpha}{z}\right)^{k} {}_{0}\phi_{1}\left(; 0; q^{2}, -q^{2k+1} \left(\frac{\alpha}{z}\right)^{2}\right).$$

Thank you!