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Functions E and F

Definition

Let me define E : D → C a F : D → C by relations

E(x) = 1 +
∞∑

m=1

∞∑
k1=1

∞∑
k2=k1+2

. . .

∞∑
km=km−1+2

xk1 xk1+1xk2 xk2+1 . . . xkm xkm+1

and

F(x) = 1 +
∞∑

m=1

(−1)m
∞∑

k1=1

∞∑
k2=k1+2

. . .

∞∑
km=km−1+2

xk1 xk1+1xk2 xk2+1 . . . xkm xkm+1,

where

D =

{
{xk}∞k=1 ⊂ C;

∞∑
k=1

|xk xk+1| <∞

}
.

For a finite number of complex variables let me identify F(x1, x2, . . . , xn) with F(x)
where x = (x1, x2, . . . , xn, 0, 0, 0, . . . ) and similarly for E.
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Properties of E and F

Note that the domain D is not a linear space. One has, however, `2(N) ⊂ D.

Functions E and F restricted on `2(N) are continuous functionals on `2(N).

For all x ∈ D and k = 1, 2, . . . one has

Recursive relations

F(x) = F(x1, . . . , xk )F(T k x)− F(x1, . . . , xk−1)xk xk+1F(T k+1x),

E(x) = E(x1, . . . , xk )E(T k x) + E(x1, . . . , xk−1)xk xk+1E(T k+1x),

where T denote the truncation operator from the left defined on the space of all
sequences:

T ({xk}∞k=1) = {xk+1}∞k=1.

Especially for k = 1, one gets simple relations

F(x) = F(Tx)− x1x2 F(T 2x),

E(x) = E(Tx) + x1x2 E(T 2x).
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Two examples

1 The case of geometric sequence:

Let t ,w ∈ C, |t | < 1, then it holds

F
({

tk−1w
}∞

k=1

)
= 1 +

∞∑
m=1

(−1)m tm(2m−1)w2m

(1− t2)(1− t4) . . . (1− t2m)
,

E
({

tk−1w
}∞

k=1

)
= 1 +

∞∑
m=1

tm(2m−1)w2m

(1− t2)(1− t4) . . . (1− t2m)
.

Functions on RHSs can be identified with a q-hypergeometric series 0φ1.
2 The case of Bessel functions:

Let w ∈ C a ν /∈ −N, then it holds

Jν(2w) =
wν

Γ(ν + 1)
F

({
w

ν + k

}∞
k=1

)
, Iν(2w) =

wν

Γ(ν + 1)
E

({
w

ν + k

}∞
k=1

)
.

Recursive relations for F and E written in this special case has the form:
wJν−1(2w)− νJν(2w) + wJν+1(2w) = 0,

wIν−1(2w)− νIν(2w)− wIν+1(2w) = 0.
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The symmetric Jacobi matrix

Let positive sequence {wn}∞n=1 and real sequence {λn}∞n=1 to be given.

Let me denote

J :=


λ1 w1
w1 λ2 w2

w2 λ3 w3

. . .
. . .

. . .

 .

Let Jn be the n-th truncation of J, i.e. Jn = (PnJPn) � Ran Pn, where Pn is the
orthogonal projection on the space spanned by {e1, e2, . . . , en}. In other words,

Jn =


λ1 w1
w1 λ2 w2

. . .
. . .

. . .
wn−2 λn−1 wn−1

wn−1 λn

 .

Proposition

Any eigenvalue of J regarded as an operator in `2(N) is simple.
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Decomposition of a symmetric Jacobi matrix

Jacobi matrix Jn can be decomposed into the product

Jn = GnJ̃nGn,

where

Gn = diag(γ1, γ2, . . . , γn) and

J̃n =



λ̃1 1
1 λ̃2 1

. . .
. . .

. . .
. . .

. . .
. . .

1 λ̃n−1 1

1 λ̃n

 .

Next, λ̃k = λk/γ
2

k and

γ2k−1 =
k−1∏
j=1

w2j

w2j−1
, γ2k = w1

k−1∏
j=1

w2j+1

w2j
, k = 1, 2, 3, . . . .

Alternatively, sequence {γn} can be defined recursively as γ1 = 1, γk+1 = wk/γk .
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Characteristic function in terms of F

Let n ∈ N and {xj}n
j=1 ⊂ C then one has

F(x1, x2, . . . , xn) = det


1 x1
x2 1 x2

. . .
. . .

. . .
. . .

. . .
. . .

xn−1 1 xn−1
xn 1

 .

The characteristic function of a finite symmetric Jacobi matrix can be expressed in
terms of F:

Let n ∈ N a z ∈ C, then it holds

det(Jn − zIn) =

(
n∏

k=1

(λn − z)

)
F

(
γ2

1

λ1 − z
,

γ2
2

λ2 − z
, . . . ,

γ2
n

λn − z

)
.

Q: What one can say about the function F
({

γ2
k

λk−z

}∞
k=1

)
?

Q: Is this function related to the spectrum of J somehow?
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Properties of the characteristic function

In the rest suppose:

Let λ ≡ {λn} is either bounded or unbounded with finite set of accumulation points
der(λ).

Let for at least one z ∈ C \ der(λ) it holds

∞∑
n=1

w2
n

|λn − z||λn+1 − z| <∞.

Proposition

The function

FJ (z) := F

({
γ2

k

λk − z

}∞
k=1

)
is analytic on C \ λ and it has poles in points z ∈ λ \ der(λ) of order

rz =
∞∑

n=1

δ(λn,z) <∞. Moreover, all zeros of the function FJ (z) are simple.
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Main results

For k =, 0, 1, . . . , let me denote

ξk (z) :=
k∏

l=1

(
wl−1

z − λl

)
F

(
T k
{

γ2
n

λn − z

}∞
k=1

)
(w0 := 1).

Then, by using the recurrence rule for the function F, one finds out the equation

wk−1ξk−1(z) + (λk − z)ξk (z) + wkξk+1(z) = 0

holds for all k = 1, 2, . . . .

Since the solution of equation Jξ = zξ is uniquely determined by the first entry ξ1

of vector ξ, one arrives at the following proposition.

If

ξ0(z) ≡ FJ (z) ≡ F

({
γ2

k

λk − z

}∞
k=1

)
= 0

for some z ∈ C \ λ, then z is an eigenvalue of J and vector ξ(z) ≡ {ξk (z)}∞k=1 is the
respective eigenvector.
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Main results

Theorem

Let J be self-adjoint. Then it holds

Z(J) = specp(J) \ der(λ)

where Z(J) denotes a union of the set of all zeros of FJ (z) with set{
z ∈ λ \ der(λ) : lim

z′→z
(z − z′)rz FJ (z′) = 0

}
.

Proposition

Let limn→∞ wn = 0 then every accumulation point of λ belongs to the essential
spectrum of J, i.e.

der(λ) ⊂ specess(J).
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Example 1 (unbounded operator)

Let λn = αn, α 6= 0 and wn = w > 0, n = 1, 2, . . . . With this choice one has

J =

 α w
w 2α w

w 3α w

. . .
. . .

. . .

 , γn =

{
1, if n odd
w , if n even.

The characteristic function can be expressed as

FJ (z) =
(w
α

) z
α

Γ
(

1− z
α

)
J− z

α

(
2w
α

)
.

Since the term (w/α)
z
α Γ(1− z/α) does not effect zeros of FJ (z) and, moreover,

the term Γ(1− z/α) causes singularities in z = α, 2α, . . . , one arrives at the
following expression for the spectrum

spec(J) = {z ∈ R; J− z
α

(
2w
α

)
= 0}

and the formula for the k th entry of the respective eigenvector

vk (z) = (−1)k Jk− z
α

(
2w
α

)
.
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Example 2 (compact operator)

Let λn = 1/n and wn = 1/
√

n(n + 1), n = 1, 2, . . . . Then matrix J has the form

J =


1 1/

√
2

1/
√

2 1/2 1/
√

6
1/
√

6 1/3 1/
√

12

. . .
. . .

. . .

 . (1)

In this case one has

FJ (z) =
∞∑

s=0

1
zs

1
s!

s∏
j=1

1
1− jz

= z−
1
z Γ

(
1− 1

z

)
J− 1

z

(
2
z

)
.

By the main result, one gets

spec(J) =

{
1
z
∈ R : J−z(2z) = 0

}
∪ {0}

and the k th entry of the respective eigenvector has the form

vk (z) =
√

kJk− 1
z

(
2
z

)
.
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Example 3 (compact operator with zero diagonal)

Let λn = 0, wn = β/
√

(n + α)(n + α + 1), α > −1, β > 0, n = 1, 2, . . . . Then the
results are

spec(J) =

{
2β
z
∈ R; Jα(z) = 0

}
∪ {0},

vk (z) =
√
α + kJα+k

(
2β
z

)
.

Let λn = 0 and wn = αqn−1, 0 < q < 1, α > 0, n = 1, 2 . . . . Then

spec(J) = {αz ∈ R; 0φ1(; 0; q2,−qz−2) = 0} ∪ {0},

vk (z) := q
(k−1)(k−2)

2

(α
z

)k
0φ1

(
; 0; q2,−q2k+1

(α
z

)2
)
.
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Let λn = 0 and wn = αqn−1, 0 < q < 1, α > 0, n = 1, 2 . . . . Then

spec(J) = {αz ∈ R; 0φ1(; 0; q2,−qz−2) = 0} ∪ {0},

vk (z) := q
(k−1)(k−2)

2

(α
z

)k
0φ1

(
; 0; q2,−q2k+1

(α
z

)2
)
.
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Thank you!
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