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Jacobi operator

For α ∈ C, the semi-infinite Jacobi matrix
0 1
1 0 2α

2α 0 3
3 0 4α

. . .
. . .

. . .


determines a unique densely defined closed operator J(α) acting on `2(N).

The aim of this talk is the investigation of spectral properties of J(α) for α ∈ C.

We will restrict with α on the unit disk |α| ≤ 1. The spectral properties of J(α) for |α| > 1 are
very similar to those for |α| < 1.

J(α) is self-adjoint iff α ∈ R.

In general, J(α) is C-self-adjoint, for C the complex conjugate operator, i.e.,

J(α)∗ = CJ(α)C.

Consequences: σr (J(α)) = ∅ and

σe1(J(α)) = σe2(J(α)) = σe3(J(α)) = σe4(J(α)).
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Jacobian elliptic functions

For 0 ≤ α ≤ 1, the integral (incomplete elliptic of 1st kind)

u =

∫ ϕ

0

dθ√
1− α2 sin2 θ

measures the arc length of an ellipse.

Its inverse ϕ(u) = am(u, α) is known as the amplitude.

The (copolar) triplet of JEF:

sn(u, α) = sin am(u, α),

cn(u, α) = cos am(u, α),

dn(u, α) =
√

1− α2 sin2 am(u, α).

Complete elliptic integral of the first kind:

K (α) =

∫ π/2

0

dθ√
1− α2 sin2 θ

.

JEFs are meromorphic functions in u (with α fixed) as well as meromorphic functions in α
(with u fixed). While K is analytic in the cut-plane C \ ((−∞,−1] ∪ [1,∞)).
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Spectral analysis of J(α) in the self-adjoint case

We start with the identities

〈e1, J(α)2n+1e1〉 = 0 and 〈e1, J(α)2ne1〉 = C2n(α)

where C2n are polynomials that can be defined via the generating function formula:

cn(z, α) =
∞∑

n=0

(−1)nC2n(α)

(2n)!
z2n.

Hence we may write

cn(z, α) =
∞∑

n=0

(iz)n

n!
〈e1, J(α)ne1〉 =

∞∑
n=0

(iz)n

n!

∫
R

xndµ(x) =
∫
R

eixz dµ(x).

where we denote µ(·) := 〈e1,EJ(·)e1〉.
We get

F [µ](z) = cn(z, α).

Consequently, by applying the inverse Fourier transform to the function cn(z;α), one may
recover the spectral measure µ!
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Spectral analysis of J(α) for α ∈ (−1, 1)

For α ∈ (−1, 1), the evaluation of the inverse Fourier transform yields

µ(t) =
π

αK

∞∑
n=0

qn+1/2

1 + q2n+1

[
δ

(
t −

(2n + 1)π
2K

)
+ δ

(
t +

(2n + 1)π
2K

)]
where the nome q = q(α) (|q| < 1).

Hence the measure µ is discrete supported by the set

suppµ =
π

2K
(2Z+ 1) .

This implies that, for α ∈ (−1, 1), the spectrum of J(α) is discrete and

σ(J(α)) = σp(J(α)) =
π

2K
(2Z+ 1) .

In addition, we can also compute the Weyl m-function m(z;α) := 〈e1, (J(α)− z)−1e1〉, since

m(z, α) = iL[cn(t , α)](−iz), for <z > 0.

It results in the formula

m(z, α) =
2πz
αK

∞∑
n=0

qn+1/2

1 + q2n+1

1
(2n+1)2π2

4K 2 − z2
.
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Spectral analysis of J(α) for α = ±1

Recall that
F [µ](z) = cn(z,±1) =

1
cosh(z)

.

By applying the inverse Fourier transform, one concludes that µ is absolutely continuous
measure supported on R and its density equals

dµ
dt

=
1

2 cosh (πt/2)
, ∀t ∈ R.

This implies that the spectrum of J(±1) is purely absolutely continuous and

σ(J(±1)) = σac(J(±1)) = R.
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Spectrum of J(α) in the self-adjoint case - animation
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Spectral analysis of J(α) for |α| < 1

For |α| < 1, the operator J(α) can be viewed as a perturbation of J(0) with relative bound
smaller than 1.

Consequently, the spectrum of J(α) is discrete if |α| < 1.

In addition, by an analyticity argument it can be shown the formula for the Weyl m-function

m(z, α) =
2πz
αK

∞∑
n=0

qn+1/2

1 + q2n+1

1
(2n+1)2π2

4K 2 − z2
.

remains true for all z ∈ ρ(J(α)) and |α| < 1.

It implies (in the non-self-adjoint case, too!) that

σ(J(α)) =
π

2K
(2Z+ 1) .

and all the eigenvalues are simple.
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Eigenvectors of J(α) for |α| < 1

Proposition

Let 0 < |α| < 1 and N ∈ Z, then the vector v (N) given by formulas

v (N)
2k+1 = i(−1)kαk

∫ 2π

0
e−i(N+1/2)s cn

(
Ks
π
, α

)
sn2k

(
Ks
π
, α

)
ds

and

v (N)
2k+2 = (−1)k+1αk

∫ 2π

0
e−i(N+1/2)s dn

(
Ks
π
, α

)
sn2k+1

(
Ks
π
, α

)
ds,

for k ≥ 0, is the eigenvector of J(α) corresponding to the eigenvalue π
2K (2N + 1).

In addition, the set {v (N) | N ∈ Z} is complete in `2(N).

Interesting open problems:
1

‖v (N)‖ =?

or ‖v (N)‖ ∼ ? for N → ±∞.

2 Is {v (N) | N ∈ Z} the Riezs basis of `2(N)?
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Spectrum of J(α) in the non-self-adjoint case - animation
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Spectral analysis of J(α) for |α| = 1

Proposition

If |α| = 1, α 6= ±1, then
σ(J(α)) = σess(J(α)) = C.

Main thoughts of the proof:
The proof is based on the construction of a singular sequence to J(α) for every z ∈ C.
For a ∈ (0, 1) define sequence u(a) by putting

un(a) := anun,

where

u2k+1 := i(−1)kαk eiKz
∫ 2K

0
e−izt cn(t , α) sn2k (t , α)dt

and

u2k+2 := (−1)k+1αk eiKz
∫ 2K

0
e−izt dn(t , α) sn2k+1(t , α)dt .

Then one can verify, indeed, that

lim
a→1−

‖(J(α)− z)u(a)‖
‖u(a)‖

= 0, and w− lim
a→1−

u(a) = 0.
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Spectral analysis of J(α) for |α| = 1 - cont.

Essential for the verification of the “singular property” of the family u(a) = anun are two main
ingredients:

1 Vector u is “almost formal eigenvector”:

J(α)u = zu − 2 cos(Kz)e1.

2 Asymptotic behavior of the integrals∫ 2K

0
e−izt

{
cn(t , α)
dn(t , α)

}
snk (t , α)dt , as k →∞.

The asymptotic formulas (ingredient 2.) can be obtain by applying the saddle point method.

However, one has to know the location of global maxima of function

u → | sn(uK (α), α)|

in (0, 2) for |α| = 1, α 6= ±1.

It can be shown (not trivial!) that the function has unique global maximum at u = 1 for every
|α| = 1, α 6= ±1.
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A region in the α-plane where | sn(uK (α), α)| < 1 for u ∈ (0, 1) fixed.
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Thank you!
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