Spectral analysis of a complex Jacobi matrix associated with Jacobian elliptic functions

František Štampach
jointly with Petr Siegl

Mathematisches Institut, Universität Bern

Young Researchers Workshop on Spectral Theory
October 28, 2015
(1) Introduction-Jacobi operator
2) Intermezzo I-Jacobian elliptic functions
(3) Spectral analysis - the self-adjoint case
4. Spectral analysis - the non-self-adjoint case
(5) Intermezzo II-values of $|\operatorname{sn}(u K(\alpha), \alpha)|$

Jacobi operator

- For $\alpha \in \mathbb{C}$, the semi-infinite Jacobi matrix

$$
\left(\begin{array}{cccccc}
0 & 1 & & & & \\
1 & 0 & 2 \alpha & & & \\
& 2 \alpha & 0 & 3 & & \\
& & 3 & 0 & 4 \alpha & \\
& & & \ddots & \ddots & \ddots
\end{array}\right)
$$

determines a unique densely defined closed operator $J(\alpha)$ acting on $\ell^{2}(\mathbb{N})$.

Jacobi operator

- For $\alpha \in \mathbb{C}$, the semi-infinite Jacobi matrix

$$
\left(\begin{array}{cccccc}
0 & 1 & & & & \\
1 & 0 & 2 \alpha & & & \\
& 2 \alpha & 0 & 3 & & \\
& & 3 & 0 & 4 \alpha & \\
& & & \ddots & \ddots & \ddots
\end{array}\right)
$$

determines a unique densely defined closed operator $J(\alpha)$ acting on $\ell^{2}(\mathbb{N})$.

- The aim of this talk is the investigation of spectral properties of $J(\alpha)$ for $\alpha \in \mathbb{C}$.

Jacobi operator

- For $\alpha \in \mathbb{C}$, the semi-infinite Jacobi matrix

$$
\left(\begin{array}{cccccc}
0 & 1 & & & & \\
1 & 0 & 2 \alpha & & & \\
& 2 \alpha & 0 & 3 & & \\
& & 3 & 0 & 4 \alpha & \\
& & & \ddots & \ddots & \ddots
\end{array}\right)
$$

determines a unique densely defined closed operator $J(\alpha)$ acting on $\ell^{2}(\mathbb{N})$.

- The aim of this talk is the investigation of spectral properties of $J(\alpha)$ for $\alpha \in \mathbb{C}$.
- We will restrict with α on the unit disk $|\alpha| \leq 1$. The spectral properties of $J(\alpha)$ for $|\alpha|>1$ are very similar to those for $|\alpha|<1$.

Jacobi operator

- For $\alpha \in \mathbb{C}$, the semi-infinite Jacobi matrix

$$
\left(\begin{array}{cccccc}
0 & 1 & & & & \\
1 & 0 & 2 \alpha & & & \\
& 2 \alpha & 0 & 3 & & \\
& & 3 & 0 & 4 \alpha & \\
& & & \ddots & \ddots & \ddots
\end{array}\right)
$$

determines a unique densely defined closed operator $J(\alpha)$ acting on $\ell^{2}(\mathbb{N})$.

- The aim of this talk is the investigation of spectral properties of $J(\alpha)$ for $\alpha \in \mathbb{C}$.
- We will restrict with α on the unit disk $|\alpha| \leq 1$. The spectral properties of $J(\alpha)$ for $|\alpha|>1$ are very similar to those for $|\alpha|<1$.
- $J(\alpha)$ is self-adjoint iff $\alpha \in \mathbb{R}$.

Jacobi operator

- For $\alpha \in \mathbb{C}$, the semi-infinite Jacobi matrix

$$
\left(\begin{array}{cccccc}
0 & 1 & & & & \\
1 & 0 & 2 \alpha & & & \\
& 2 \alpha & 0 & 3 & & \\
& & 3 & 0 & 4 \alpha & \\
& & & \ddots & \ddots & \ddots
\end{array}\right)
$$

determines a unique densely defined closed operator $J(\alpha)$ acting on $\ell^{2}(\mathbb{N})$.

- The aim of this talk is the investigation of spectral properties of $J(\alpha)$ for $\alpha \in \mathbb{C}$.
- We will restrict with α on the unit disk $|\alpha| \leq 1$. The spectral properties of $J(\alpha)$ for $|\alpha|>1$ are very similar to those for $|\alpha|<1$.
- $J(\alpha)$ is self-adjoint iff $\alpha \in \mathbb{R}$.
- In general, $J(\alpha)$ is C-self-adjoint, for C the complex conjugate operator, i.e.,

$$
J(\alpha)^{*}=C J(\alpha) C
$$

Jacobi operator

- For $\alpha \in \mathbb{C}$, the semi-infinite Jacobi matrix

$$
\left(\begin{array}{cccccc}
0 & 1 & & & & \\
1 & 0 & 2 \alpha & & & \\
& 2 \alpha & 0 & 3 & & \\
& & 3 & 0 & 4 \alpha & \\
& & & \ddots & \ddots & \ddots
\end{array}\right)
$$

determines a unique densely defined closed operator $J(\alpha)$ acting on $\ell^{2}(\mathbb{N})$.

- The aim of this talk is the investigation of spectral properties of $J(\alpha)$ for $\alpha \in \mathbb{C}$.
- We will restrict with α on the unit disk $|\alpha| \leq 1$. The spectral properties of $J(\alpha)$ for $|\alpha|>1$ are very similar to those for $|\alpha|<1$.
- $J(\alpha)$ is self-adjoint iff $\alpha \in \mathbb{R}$.
- In general, $J(\alpha)$ is C-self-adjoint, for C the complex conjugate operator, i.e.,

$$
J(\alpha)^{*}=C J(\alpha) C
$$

- Consequences: $\sigma_{r}(J(\alpha))=\emptyset$ and

$$
\sigma_{e 1}(J(\alpha))=\sigma_{e 2}(J(\alpha))=\sigma_{e 3}(J(\alpha))=\sigma_{e 4}(J(\alpha))
$$

Contents

(1) Introduction-Jacobi operator
(2) Intermezzo I-Jacobian elliptic functions
(3) Spectral analysis - the self-adjoint case

4 Spectral analysis - the non-self-adjoint case
(5) Intermezzo II-values of $|\operatorname{sn}(u K(\alpha), \alpha)|$

Jacobian elliptic functions

- For $0 \leq \alpha \leq 1$, the integral (incomplete elliptic of 1 st kind)

$$
u=\int_{0}^{\varphi} \frac{\mathrm{d} \theta}{\sqrt{1-\alpha^{2} \sin ^{2} \theta}}
$$

measures the arc length of an ellipse.

Jacobian elliptic functions

- For $0 \leq \alpha \leq 1$, the integral (incomplete elliptic of 1 st kind)

$$
u=\int_{0}^{\varphi} \frac{\mathrm{d} \theta}{\sqrt{1-\alpha^{2} \sin ^{2} \theta}}
$$

measures the arc length of an ellipse.

- Its inverse $\varphi(u)=\mathrm{am}(u, \alpha)$ is known as the amplitude.

Jacobian elliptic functions

- For $0 \leq \alpha \leq 1$, the integral (incomplete elliptic of 1st kind)

$$
u=\int_{0}^{\varphi} \frac{\mathrm{d} \theta}{\sqrt{1-\alpha^{2} \sin ^{2} \theta}}
$$

measures the arc length of an ellipse.

- Its inverse $\varphi(u)=\mathrm{am}(u, \alpha)$ is known as the amplitude.
- The (copolar) triplet of JEF:

$$
\begin{aligned}
& \operatorname{sn}(u, \alpha)=\sin \mathrm{am}(u, \alpha) \\
& \operatorname{cn}(u, \alpha)=\cos \operatorname{am}(u, \alpha) \\
& \operatorname{dn}(u, \alpha)=\sqrt{1-\alpha^{2} \sin ^{2} \operatorname{am}(u, \alpha)}
\end{aligned}
$$

Jacobian elliptic functions

- For $0 \leq \alpha \leq 1$, the integral (incomplete elliptic of 1st kind)

$$
u=\int_{0}^{\varphi} \frac{\mathrm{d} \theta}{\sqrt{1-\alpha^{2} \sin ^{2} \theta}}
$$

measures the arc length of an ellipse.

- Its inverse $\varphi(u)=\mathrm{am}(u, \alpha)$ is known as the amplitude.
- The (copolar) triplet of JEF:

$$
\begin{aligned}
& \operatorname{sn}(u, \alpha)=\sin \operatorname{am}(u, \alpha) \\
& \operatorname{cn}(u, \alpha)=\cos \operatorname{am}(u, \alpha) \\
& \operatorname{dn}(u, \alpha)=\sqrt{1-\alpha^{2} \sin ^{2} \operatorname{am}(u, \alpha)}
\end{aligned}
$$

- Complete elliptic integral of the first kind:

$$
K(\alpha)=\int_{0}^{\pi / 2} \frac{\mathrm{~d} \theta}{\sqrt{1-\alpha^{2} \sin ^{2} \theta}}
$$

Jacobian elliptic functions

- For $0 \leq \alpha \leq 1$, the integral (incomplete elliptic of 1st kind)

$$
u=\int_{0}^{\varphi} \frac{\mathrm{d} \theta}{\sqrt{1-\alpha^{2} \sin ^{2} \theta}}
$$

measures the arc length of an ellipse.

- Its inverse $\varphi(u)=\mathrm{am}(u, \alpha)$ is known as the amplitude.
- The (copolar) triplet of JEF:

$$
\begin{aligned}
& \operatorname{sn}(u, \alpha)=\sin \mathrm{am}(u, \alpha) \\
& \operatorname{cn}(u, \alpha)=\cos \operatorname{am}(u, \alpha) \\
& \operatorname{dn}(u, \alpha)=\sqrt{1-\alpha^{2} \sin ^{2} \operatorname{am}(u, \alpha)}
\end{aligned}
$$

- Complete elliptic integral of the first kind:

$$
K(\alpha)=\int_{0}^{\pi / 2} \frac{\mathrm{~d} \theta}{\sqrt{1-\alpha^{2} \sin ^{2} \theta}}
$$

- JEFs are meromorphic functions in u (with α fixed) as well as meromorphic functions in α (with u fixed). While K is analytic in the cut-plane $\mathbb{C} \backslash((-\infty,-1] \cup[1, \infty))$.

Contents

(1) Introduction-Jacobi operator
2) Intermezzo I-Jacobian elliptic functions
(3) Spectral analysis - the self-adjoint case

4 Spectral analysis - the non-self-adjoint case
(5) Intermezzo II-values of $|\operatorname{sn}(u K(\alpha), \alpha)|$

Spectral analysis of $J(\alpha)$ in the self-adjoint case

- We start with the identities

$$
\left\langle e_{1}, J(\alpha)^{2 n+1} e_{1}\right\rangle=0 \quad \text { and } \quad\left\langle e_{1}, J(\alpha)^{2 n} e_{1}\right\rangle=C_{2 n}(\alpha)
$$

Spectral analysis of $J(\alpha)$ in the self-adjoint case

- We start with the identities

$$
\left\langle e_{1}, J(\alpha)^{2 n+1} e_{1}\right\rangle=0 \quad \text { and } \quad\left\langle e_{1}, J(\alpha)^{2 n} e_{1}\right\rangle=C_{2 n}(\alpha)
$$

where $C_{2 n}$ are polynomials that can be defined via the generating function formula:

$$
\operatorname{cn}(z, \alpha)=\sum_{n=0}^{\infty} \frac{(-1)^{n} C_{2 n}(\alpha)}{(2 n)!} z^{2 n}
$$

Spectral analysis of $J(\alpha)$ in the self-adjoint case

- We start with the identities

$$
\left\langle e_{1}, J(\alpha)^{2 n+1} e_{1}\right\rangle=0 \quad \text { and } \quad\left\langle e_{1}, J(\alpha)^{2 n} e_{1}\right\rangle=C_{2 n}(\alpha)
$$

where $C_{2 n}$ are polynomials that can be defined via the generating function formula:

$$
\operatorname{cn}(z, \alpha)=\sum_{n=0}^{\infty} \frac{(-1)^{n} C_{2 n}(\alpha)}{(2 n)!} z^{2 n}
$$

- Hence we may write

$$
\operatorname{cn}(z, \alpha)=\sum_{n=0}^{\infty} \frac{(\mathrm{iz})^{n}}{n!}\left\langle e_{1}, J(\alpha)^{n} e_{1}\right\rangle=\sum_{n=0}^{\infty} \frac{(\mathrm{i} z)^{n}}{n!} \int_{\mathbb{R}} x^{n} \mathrm{~d} \mu(x)=\int_{\mathbb{R}} e^{i x z} \mathrm{~d} \mu(x)
$$

where we denote $\mu(\cdot):=\left\langle e_{1}, E_{J}(\cdot) e_{1}\right\rangle$.

Spectral analysis of $J(\alpha)$ in the self-adjoint case

- We start with the identities

$$
\left\langle e_{1}, J(\alpha)^{2 n+1} e_{1}\right\rangle=0 \quad \text { and } \quad\left\langle e_{1}, J(\alpha)^{2 n} e_{1}\right\rangle=C_{2 n}(\alpha)
$$

where $C_{2 n}$ are polynomials that can be defined via the generating function formula:

$$
\operatorname{cn}(z, \alpha)=\sum_{n=0}^{\infty} \frac{(-1)^{n} C_{2 n}(\alpha)}{(2 n)!} z^{2 n}
$$

- Hence we may write

$$
\operatorname{cn}(z, \alpha)=\sum_{n=0}^{\infty} \frac{(\mathrm{i} z)^{n}}{n!}\left\langle e_{1}, J(\alpha)^{n} e_{1}\right\rangle=\sum_{n=0}^{\infty} \frac{(\mathrm{i} z)^{n}}{n!} \int_{\mathbb{R}} x^{n} \mathrm{~d} \mu(x)=\int_{\mathbb{R}} e^{i x z} \mathrm{~d} \mu(x)
$$

where we denote $\mu(\cdot):=\left\langle e_{1}, E_{J}(\cdot) e_{1}\right\rangle$.

- We get

$$
\mathcal{F}[\mu](z)=\operatorname{cn}(z, \alpha)
$$

Spectral analysis of $J(\alpha)$ in the self-adjoint case

- We start with the identities

$$
\left\langle e_{1}, J(\alpha)^{2 n+1} e_{1}\right\rangle=0 \quad \text { and } \quad\left\langle e_{1}, J(\alpha)^{2 n} e_{1}\right\rangle=C_{2 n}(\alpha)
$$

where $C_{2 n}$ are polynomials that can be defined via the generating function formula:

$$
\operatorname{cn}(z, \alpha)=\sum_{n=0}^{\infty} \frac{(-1)^{n} C_{2 n}(\alpha)}{(2 n)!} z^{2 n}
$$

- Hence we may write

$$
\operatorname{cn}(z, \alpha)=\sum_{n=0}^{\infty} \frac{(\mathrm{iz})^{n}}{n!}\left\langle e_{1}, J(\alpha)^{n} e_{1}\right\rangle=\sum_{n=0}^{\infty} \frac{(\mathrm{i} z)^{n}}{n!} \int_{\mathbb{R}} x^{n} \mathrm{~d} \mu(x)=\int_{\mathbb{R}} e^{i x z} \mathrm{~d} \mu(x)
$$

where we denote $\mu(\cdot):=\left\langle e_{1}, E_{J}(\cdot) e_{1}\right\rangle$.

- We get

$$
\mathcal{F}[\mu](z)=\operatorname{cn}(z, \alpha)
$$

Consequently, by applying the inverse Fourier transform to the function $\mathrm{cn}(z ; \alpha)$, one may recover the spectral measure μ !

Spectral analysis of $J(\alpha)$ for $\alpha \in(-1,1)$

- For $\alpha \in(-1,1)$, the evaluation of the inverse Fourier transform yields

$$
\mu(t)=\frac{\pi}{\alpha K} \sum_{n=0}^{\infty} \frac{q^{n+1 / 2}}{1+q^{2 n+1}}\left[\delta\left(t-\frac{(2 n+1) \pi}{2 K}\right)+\delta\left(t+\frac{(2 n+1) \pi}{2 K}\right)\right]
$$

where the nome $q=q(\alpha)(|q|<1)$.

Spectral analysis of $J(\alpha)$ for $\alpha \in(-1,1)$

- For $\alpha \in(-1,1)$, the evaluation of the inverse Fourier transform yields

$$
\mu(t)=\frac{\pi}{\alpha K} \sum_{n=0}^{\infty} \frac{q^{n+1 / 2}}{1+q^{2 n+1}}\left[\delta\left(t-\frac{(2 n+1) \pi}{2 K}\right)+\delta\left(t+\frac{(2 n+1) \pi}{2 K}\right)\right]
$$

where the nome $q=q(\alpha)(|q|<1)$.

- Hence the measure μ is discrete supported by the set

$$
\operatorname{supp} \mu=\frac{\pi}{2 K}(2 \mathbb{Z}+1)
$$

Spectral analysis of $J(\alpha)$ for $\alpha \in(-1,1)$

- For $\alpha \in(-1,1)$, the evaluation of the inverse Fourier transform yields

$$
\mu(t)=\frac{\pi}{\alpha K} \sum_{n=0}^{\infty} \frac{q^{n+1 / 2}}{1+q^{2 n+1}}\left[\delta\left(t-\frac{(2 n+1) \pi}{2 K}\right)+\delta\left(t+\frac{(2 n+1) \pi}{2 K}\right)\right]
$$

where the nome $q=q(\alpha)(|q|<1)$.

- Hence the measure μ is discrete supported by the set

$$
\operatorname{supp} \mu=\frac{\pi}{2 K}(2 \mathbb{Z}+1)
$$

- This implies that, for $\alpha \in(-1,1)$, the spectrum of $J(\alpha)$ is discrete and

$$
\sigma(J(\alpha))=\sigma_{p}(J(\alpha))=\frac{\pi}{2 K}(2 \mathbb{Z}+1) .
$$

Spectral analysis of $J(\alpha)$ for $\alpha \in(-1,1)$

- For $\alpha \in(-1,1)$, the evaluation of the inverse Fourier transform yields

$$
\mu(t)=\frac{\pi}{\alpha K} \sum_{n=0}^{\infty} \frac{q^{n+1 / 2}}{1+q^{2 n+1}}\left[\delta\left(t-\frac{(2 n+1) \pi}{2 K}\right)+\delta\left(t+\frac{(2 n+1) \pi}{2 K}\right)\right]
$$

where the nome $q=q(\alpha)(|q|<1)$.

- Hence the measure μ is discrete supported by the set

$$
\operatorname{supp} \mu=\frac{\pi}{2 K}(2 \mathbb{Z}+1)
$$

- This implies that, for $\alpha \in(-1,1)$, the spectrum of $J(\alpha)$ is discrete and

$$
\sigma(J(\alpha))=\sigma_{p}(J(\alpha))=\frac{\pi}{2 K}(2 \mathbb{Z}+1) .
$$

- In addition, we can also compute the Weyl m-function $m(z ; \alpha):=\left\langle e_{1},(J(\alpha)-z)^{-1} e_{1}\right\rangle$, since

$$
m(z, \alpha)=\mathrm{i} \mathcal{L}[\operatorname{cn}(t, \alpha)](-\mathrm{i} z), \quad \text { for } \Re z>0 .
$$

- For $\alpha \in(-1,1)$, the evaluation of the inverse Fourier transform yields

$$
\mu(t)=\frac{\pi}{\alpha K} \sum_{n=0}^{\infty} \frac{q^{n+1 / 2}}{1+q^{2 n+1}}\left[\delta\left(t-\frac{(2 n+1) \pi}{2 K}\right)+\delta\left(t+\frac{(2 n+1) \pi}{2 K}\right)\right]
$$

where the nome $q=q(\alpha)(|q|<1)$.

- Hence the measure μ is discrete supported by the set

$$
\operatorname{supp} \mu=\frac{\pi}{2 K}(2 \mathbb{Z}+1)
$$

- This implies that, for $\alpha \in(-1,1)$, the spectrum of $J(\alpha)$ is discrete and

$$
\sigma(J(\alpha))=\sigma_{p}(J(\alpha))=\frac{\pi}{2 K}(2 \mathbb{Z}+1) .
$$

- In addition, we can also compute the Weyl m-function $m(z ; \alpha):=\left\langle e_{1},(J(\alpha)-z)^{-1} e_{1}\right\rangle$, since

$$
m(z, \alpha)=\mathrm{i} \mathcal{L}[\operatorname{cn}(t, \alpha)](-\mathrm{i} z), \quad \text { for } \Re z>0 .
$$

- It results in the formula

$$
m(z, \alpha)=\frac{2 \pi z}{\alpha K} \sum_{n=0}^{\infty} \frac{q^{n+1 / 2}}{1+q^{2 n+1}} \frac{1}{\frac{(2 n+1)^{2} \pi^{2}}{4 K^{2}}-z^{2}}
$$

Spectral analysis of $J(\alpha)$ for $\alpha= \pm 1$

- Recall that

$$
\mathcal{F}[\mu](z)=\operatorname{cn}(z, \pm 1)=\frac{1}{\cosh (z)} .
$$

Spectral analysis of $J(\alpha)$ for $\alpha= \pm 1$

- Recall that

$$
\mathcal{F}[\mu](z)=\operatorname{cn}(z, \pm 1)=\frac{1}{\cosh (z)}
$$

- By applying the inverse Fourier transform, one concludes that μ is absolutely continuous measure supported on \mathbb{R} and its density equals

$$
\frac{\mathrm{d} \mu}{\mathrm{~d} t}=\frac{1}{2 \cosh (\pi t / 2)}, \quad \forall t \in \mathbb{R}
$$

Spectral analysis of $J(\alpha)$ for $\alpha= \pm 1$

- Recall that

$$
\mathcal{F}[\mu](z)=\operatorname{cn}(z, \pm 1)=\frac{1}{\cosh (z)} .
$$

- By applying the inverse Fourier transform, one concludes that μ is absolutely continuous measure supported on \mathbb{R} and its density equals

$$
\frac{\mathrm{d} \mu}{\mathrm{~d} t}=\frac{1}{2 \cosh (\pi t / 2)}, \quad \forall t \in \mathbb{R}
$$

- This implies that the spectrum of $J(\pm 1)$ is purely absolutely continuous and

$$
\sigma(J(\pm 1))=\sigma_{a c}(J(\pm 1))=\mathbb{R}
$$

Spectrum of $J(\alpha)$ in the self-adjoint case - animation

Contents

(1) Introduction-Jacobi operator
(2) Intermezzo I-Jacobian elliptic functions
(3) Spectral analysis - the self-adjoint case

4 Spectral analysis - the non-self-adjoint case
(5) Intermezzo II-values of $|\operatorname{sn}(u K(\alpha), \alpha)|$

Spectral analysis of $J(\alpha)$ for $|\alpha|<1$

- For $|\alpha|<1$, the operator $J(\alpha)$ can be viewed as a perturbation of $J(0)$ with relative bound smaller than 1.

Spectral analysis of $J(\alpha)$ for $|\alpha|<1$

- For $|\alpha|<1$, the operator $J(\alpha)$ can be viewed as a perturbation of $J(0)$ with relative bound smaller than 1.
- Consequently, the spectrum of $J(\alpha)$ is discrete if $|\alpha|<1$.

Spectral analysis of $J(\alpha)$ for $|\alpha|<1$

- For $|\alpha|<1$, the operator $J(\alpha)$ can be viewed as a perturbation of $J(0)$ with relative bound smaller than 1.
- Consequently, the spectrum of $J(\alpha)$ is discrete if $|\alpha|<1$.
- In addition, by an analyticity argument it can be shown the formula for the Weyl m-function

$$
m(z, \alpha)=\frac{2 \pi z}{\alpha K} \sum_{n=0}^{\infty} \frac{q^{n+1 / 2}}{1+q^{2 n+1}} \frac{1}{\frac{(2 n+1)^{2} \pi^{2}}{4 K^{2}}-z^{2}}
$$

remains true for all $z \in \rho(J(\alpha))$ and $|\alpha|<1$.

- For $|\alpha|<1$, the operator $J(\alpha)$ can be viewed as a perturbation of $J(0)$ with relative bound smaller than 1.
- Consequently, the spectrum of $J(\alpha)$ is discrete if $|\alpha|<1$.
- In addition, by an analyticity argument it can be shown the formula for the Weyl m-function

$$
m(z, \alpha)=\frac{2 \pi z}{\alpha K} \sum_{n=0}^{\infty} \frac{q^{n+1 / 2}}{1+q^{2 n+1}} \frac{1}{\frac{(2 n+1)^{2} \pi^{2}}{4 K^{2}}-z^{2}}
$$

remains true for all $z \in \rho(J(\alpha))$ and $|\alpha|<1$.

- It implies (in the non-self-adjoint case, too!) that

$$
\sigma(J(\alpha))=\frac{\pi}{2 K}(2 \mathbb{Z}+1)
$$

and all the eigenvalues are simple.

Eigenvectors of $J(\alpha)$ for $|\alpha|<1$

Proposition

Let $0<|\alpha|<1$ and $N \in \mathbb{Z}$, then the vector $v^{(N)}$ given by formulas

$$
v_{2 k+1}^{(N)}=\mathrm{i}(-1)^{k} \alpha^{k} \int_{0}^{2 \pi} e^{-\mathrm{i}(N+1 / 2) s} \operatorname{cn}\left(\frac{K s}{\pi}, \alpha\right) \operatorname{sn}^{2 k}\left(\frac{K s}{\pi}, \alpha\right) \mathrm{d} s
$$

and

$$
v_{2 k+2}^{(N)}=(-1)^{k+1} \alpha^{k} \int_{0}^{2 \pi} e^{-\mathrm{i}(N+1 / 2) s} \operatorname{dn}\left(\frac{K s}{\pi}, \alpha\right) \operatorname{sn}^{2 k+1}\left(\frac{K s}{\pi}, \alpha\right) \mathrm{d} s,
$$

for $k \geq 0$, is the eigenvector of $J(\alpha)$ corresponding to the eigenvalue $\frac{\pi}{2 K}(2 N+1)$.

Eigenvectors of $J(\alpha)$ for $|\alpha|<1$

Proposition

Let $0<|\alpha|<1$ and $N \in \mathbb{Z}$, then the vector $v^{(N)}$ given by formulas

$$
v_{2 k+1}^{(N)}=\mathrm{i}(-1)^{k} \alpha^{k} \int_{0}^{2 \pi} e^{-\mathrm{i}(N+1 / 2) s} \operatorname{cn}\left(\frac{K s}{\pi}, \alpha\right) \operatorname{sn}^{2 k}\left(\frac{K s}{\pi}, \alpha\right) \mathrm{d} s
$$

and

$$
v_{2 k+2}^{(N)}=(-1)^{k+1} \alpha^{k} \int_{0}^{2 \pi} e^{-\mathrm{i}(N+1 / 2) s} \operatorname{dn}\left(\frac{K s}{\pi}, \alpha\right) \operatorname{sn}^{2 k+1}\left(\frac{K s}{\pi}, \alpha\right) \mathrm{d} s,
$$

for $k \geq 0$, is the eigenvector of $J(\alpha)$ corresponding to the eigenvalue $\frac{\pi}{2 K}(2 N+1)$. In addition, the set $\left\{v^{(N)} \mid N \in \mathbb{Z}\right\}$ is complete in $\ell^{2}(\mathbb{N})$.

Proposition

Let $0<|\alpha|<1$ and $N \in \mathbb{Z}$, then the vector $v^{(N)}$ given by formulas

$$
v_{2 k+1}^{(N)}=\mathrm{i}(-1)^{k} \alpha^{k} \int_{0}^{2 \pi} e^{-\mathrm{i}(N+1 / 2) s} \mathrm{cn}\left(\frac{K s}{\pi}, \alpha\right) \operatorname{sn}^{2 k}\left(\frac{K s}{\pi}, \alpha\right) \mathrm{d} s
$$

and

$$
v_{2 k+2}^{(N)}=(-1)^{k+1} \alpha^{k} \int_{0}^{2 \pi} e^{-\mathrm{i}(N+1 / 2) s} \mathrm{dn}\left(\frac{K s}{\pi}, \alpha\right) \operatorname{sn}^{2 k+1}\left(\frac{K s}{\pi}, \alpha\right) \mathrm{d} s,
$$

for $k \geq 0$, is the eigenvector of $J(\alpha)$ corresponding to the eigenvalue $\frac{\pi}{2 K}(2 N+1)$. In addition, the set $\left\{v^{(N)} \mid N \in \mathbb{Z}\right\}$ is complete in $\ell^{2}(\mathbb{N})$.

Interesting open problems:

Proposition

Let $0<|\alpha|<1$ and $N \in \mathbb{Z}$, then the vector $v^{(N)}$ given by formulas

$$
v_{2 k+1}^{(N)}=\mathrm{i}(-1)^{k} \alpha^{k} \int_{0}^{2 \pi} e^{-\mathrm{i}(N+1 / 2) s} \mathrm{cn}\left(\frac{K s}{\pi}, \alpha\right) \operatorname{sn}^{2 k}\left(\frac{K s}{\pi}, \alpha\right) \mathrm{d} s
$$

and

$$
v_{2 k+2}^{(N)}=(-1)^{k+1} \alpha^{k} \int_{0}^{2 \pi} e^{-\mathrm{i}(N+1 / 2) s} \mathrm{dn}\left(\frac{K s}{\pi}, \alpha\right) \operatorname{sn}^{2 k+1}\left(\frac{K s}{\pi}, \alpha\right) \mathrm{d} s,
$$

for $k \geq 0$, is the eigenvector of $J(\alpha)$ corresponding to the eigenvalue $\frac{\pi}{2 K}(2 N+1)$. In addition, the set $\left\{v^{(N)} \mid N \in \mathbb{Z}\right\}$ is complete in $\ell^{2}(\mathbb{N})$.

Interesting open problems:

(1)

$$
\left\|v^{(N)}\right\|=?
$$

Proposition

Let $0<|\alpha|<1$ and $N \in \mathbb{Z}$, then the vector $v^{(N)}$ given by formulas

$$
v_{2 k+1}^{(N)}=\mathrm{i}(-1)^{k} \alpha^{k} \int_{0}^{2 \pi} e^{-\mathrm{i}(N+1 / 2) s} \mathrm{cn}\left(\frac{K s}{\pi}, \alpha\right) \operatorname{sn}^{2 k}\left(\frac{K s}{\pi}, \alpha\right) \mathrm{d} s
$$

and

$$
v_{2 k+2}^{(N)}=(-1)^{k+1} \alpha^{k} \int_{0}^{2 \pi} e^{-\mathrm{i}(N+1 / 2) s} \mathrm{dn}\left(\frac{K s}{\pi}, \alpha\right) \operatorname{sn}^{2 k+1}\left(\frac{K s}{\pi}, \alpha\right) \mathrm{d} s,
$$

for $k \geq 0$, is the eigenvector of $J(\alpha)$ corresponding to the eigenvalue $\frac{\pi}{2 K}(2 N+1)$. In addition, the set $\left\{v^{(N)} \mid N \in \mathbb{Z}\right\}$ is complete in $\ell^{2}(\mathbb{N})$.

Interesting open problems:

(1)

$$
\left\|v^{(N)}\right\|=? \quad \text { or } \quad\left\|v^{(N)}\right\| \sim ? \text { for } N \rightarrow \pm \infty
$$

Proposition

Let $0<|\alpha|<1$ and $N \in \mathbb{Z}$, then the vector $v^{(N)}$ given by formulas

$$
v_{2 k+1}^{(N)}=\mathrm{i}(-1)^{k} \alpha^{k} \int_{0}^{2 \pi} e^{-\mathrm{i}(N+1 / 2) s} \mathrm{cn}\left(\frac{K s}{\pi}, \alpha\right) \operatorname{sn}^{2 k}\left(\frac{K s}{\pi}, \alpha\right) \mathrm{d} s
$$

and

$$
v_{2 k+2}^{(N)}=(-1)^{k+1} \alpha^{k} \int_{0}^{2 \pi} e^{-\mathrm{i}(N+1 / 2) s} \mathrm{dn}\left(\frac{K s}{\pi}, \alpha\right) \operatorname{sn}^{2 k+1}\left(\frac{K s}{\pi}, \alpha\right) \mathrm{d} s,
$$

for $k \geq 0$, is the eigenvector of $J(\alpha)$ corresponding to the eigenvalue $\frac{\pi}{2 K}(2 N+1)$. In addition, the set $\left\{v^{(N)} \mid N \in \mathbb{Z}\right\}$ is complete in $\ell^{2}(\mathbb{N})$.

Interesting open problems:

©

$$
\left\|v^{(N)}\right\|=? \quad \text { or } \quad\left\|v^{(N)}\right\| \sim ? \text { for } N \rightarrow \pm \infty
$$

(2) Is $\left\{v^{(N)} \mid N \in \mathbb{Z}\right\}$ the Riezs basis of $\ell^{2}(\mathbb{N})$?

Spectrum of $J(\alpha)$ in the non-self-adjoint case - animation

Spectral analysis of $J(\alpha)$ for $|\alpha|=1$

Proposition

If $|\alpha|=1, \alpha \neq \pm 1$, then

$$
\sigma(J(\alpha))=\sigma_{\text {ess }}(J(\alpha))=\mathbb{C}
$$

Spectral analysis of $J(\alpha)$ for $|\alpha|=1$

Proposition

If $|\alpha|=1, \alpha \neq \pm 1$, then

$$
\sigma(J(\alpha))=\sigma_{\text {ess }}(J(\alpha))=\mathbb{C}
$$

Main thoughts of the proof:

- The proof is based on the construction of a singular sequence to $J(\alpha)$ for every $z \in \mathbb{C}$.

Spectral analysis of $J(\alpha)$ for $|\alpha|=1$

Proposition

If $|\alpha|=1, \alpha \neq \pm 1$, then

$$
\sigma(J(\alpha))=\sigma_{\text {ess }}(J(\alpha))=\mathbb{C}
$$

Main thoughts of the proof:

- The proof is based on the construction of a singular sequence to $J(\alpha)$ for every $z \in \mathbb{C}$.
- For $a \in(0,1)$ define sequence $u(a)$ by putting

$$
u_{n}(a):=a^{n} u_{n}
$$

where

Spectral analysis of $J(\alpha)$ for $|\alpha|=1$

Proposition

If $|\alpha|=1, \alpha \neq \pm 1$, then

$$
\sigma(J(\alpha))=\sigma_{\text {ess }}(J(\alpha))=\mathbb{C}
$$

Main thoughts of the proof:

- The proof is based on the construction of a singular sequence to $J(\alpha)$ for every $z \in \mathbb{C}$.
- For $a \in(0,1)$ define sequence $u(a)$ by putting

$$
u_{n}(a):=a^{n} u_{n}
$$

where

$$
u_{2 k+1}:=\mathrm{i}(-1)^{k} \alpha^{k} e^{\mathrm{i} K z} \int_{0}^{2 K} e^{-\mathrm{i} z t} \mathrm{cn}(t, \alpha) \mathrm{sn}^{2 k}(t, \alpha) \mathrm{d} t
$$

and

$$
u_{2 k+2}:=(-1)^{k+1} \alpha^{k} e^{\mathrm{i} K z} \int_{0}^{2 K} e^{-\mathrm{i} z t} \operatorname{dn}(t, \alpha) \mathrm{sn}^{2 k+1}(t, \alpha) \mathrm{d} t .
$$

Proposition

If $|\alpha|=1, \alpha \neq \pm 1$, then

$$
\sigma(J(\alpha))=\sigma_{\text {ess }}(J(\alpha))=\mathbb{C}
$$

Main thoughts of the proof:

- The proof is based on the construction of a singular sequence to $J(\alpha)$ for every $z \in \mathbb{C}$.
- For $a \in(0,1)$ define sequence $u(a)$ by putting

$$
u_{n}(a):=a^{n} u_{n}
$$

where

$$
u_{2 k+1}:=\mathrm{i}(-1)^{k} \alpha^{k} e^{\mathrm{i} K z} \int_{0}^{2 K} e^{-\mathrm{i} z t} \mathrm{cn}(t, \alpha) \operatorname{sn}^{2 k}(t, \alpha) \mathrm{d} t
$$

and

$$
u_{2 k+2}:=(-1)^{k+1} \alpha^{k} e^{\mathrm{i} K z} \int_{0}^{2 K} e^{-\mathrm{i} z t} \operatorname{dn}(t, \alpha) \mathrm{sn}^{2 k+1}(t, \alpha) \mathrm{d} t
$$

- Then one can verify, indeed, that

$$
\lim _{a \rightarrow 1-} \frac{\|(J(\alpha)-z) u(a)\|}{\|u(a)\|}=0, \quad \text { and } \quad w-\lim _{a \rightarrow 1-} u(a)=0 .
$$

Spectral analysis of $J(\alpha)$ for $|\alpha|=1$ - cont.

Essential for the verification of the "singular property" of the family $u(a)=a^{n} u_{n}$ are two main ingredients:

Spectral analysis of $J(\alpha)$ for $|\alpha|=1$ - cont.

Essential for the verification of the "singular property" of the family $u(a)=a^{n} u_{n}$ are two main ingredients:
(1) Vector u is "almost formal eigenvector":

$$
J(\alpha) u=z u-2 \cos (K z) e_{1} .
$$

Spectral analysis of $J(\alpha)$ for $|\alpha|=1$ - cont.

Essential for the verification of the "singular property" of the family $u(a)=a^{n} u_{n}$ are two main ingredients:
(1) Vector u is "almost formal eigenvector":

$$
J(\alpha) u=z u-2 \cos (K z) e_{1} .
$$

(2) Asymptotic behavior of the integrals

$$
\int_{0}^{2 K} e^{-\mathrm{i} z t}\left\{\begin{array}{l}
\operatorname{cn}(t, \alpha) \\
\operatorname{dn}(t, \alpha)
\end{array}\right\} \mathrm{sn}^{k}(t, \alpha) \mathrm{d} t, \quad \text { as } k \rightarrow \infty
$$

Spectral analysis of $J(\alpha)$ for $|\alpha|=1$ - cont.

Essential for the verification of the "singular property" of the family $u(a)=a^{n} u_{n}$ are two main ingredients:
(1) Vector u is "almost formal eigenvector":

$$
J(\alpha) u=z u-2 \cos (K z) e_{1} .
$$

(2) Asymptotic behavior of the integrals

$$
\int_{0}^{2 K} e^{-\mathrm{i} z t}\left\{\begin{array}{l}
\operatorname{cn}(t, \alpha) \\
\operatorname{dn}(t, \alpha)
\end{array}\right\} \mathrm{sn}^{k}(t, \alpha) \mathrm{d} t, \quad \text { as } k \rightarrow \infty
$$

- The asymptotic formulas (ingredient 2.) can be obtain by applying the saddle point method.

Spectral analysis of $J(\alpha)$ for $|\alpha|=1$ - cont.

Essential for the verification of the "singular property" of the family $u(a)=a^{n} u_{n}$ are two main ingredients:
(1) Vector u is "almost formal eigenvector":

$$
J(\alpha) u=z u-2 \cos (K z) e_{1} .
$$

(2) Asymptotic behavior of the integrals

$$
\int_{0}^{2 K} e^{-\mathrm{i} z t}\left\{\begin{array}{l}
\operatorname{cn}(t, \alpha) \\
\operatorname{dn}(t, \alpha)
\end{array}\right\} \mathrm{sn}^{k}(t, \alpha) \mathrm{d} t, \quad \text { as } k \rightarrow \infty
$$

- The asymptotic formulas (ingredient 2.) can be obtain by applying the saddle point method.
- However, one has to know the location of global maxima of function

$$
u \rightarrow|\operatorname{sn}(u K(\alpha), \alpha)|
$$

in $(0,2)$ for $|\alpha|=1, \alpha \neq \pm 1$.

Spectral analysis of $J(\alpha)$ for $|\alpha|=1$ - cont.

Essential for the verification of the "singular property" of the family $u(a)=a^{n} u_{n}$ are two main ingredients:
(1) Vector u is "almost formal eigenvector":

$$
J(\alpha) u=z u-2 \cos (K z) e_{1} .
$$

(2) Asymptotic behavior of the integrals

$$
\int_{0}^{2 K} e^{-\mathrm{i} z t}\left\{\begin{array}{l}
\operatorname{cn}(t, \alpha) \\
\operatorname{dn}(t, \alpha)
\end{array}\right\} \operatorname{sn}^{k}(t, \alpha) \mathrm{d} t, \quad \text { as } k \rightarrow \infty
$$

- The asymptotic formulas (ingredient 2.) can be obtain by applying the saddle point method.
- However, one has to know the location of global maxima of function

$$
u \rightarrow|\operatorname{sn}(u K(\alpha), \alpha)|
$$

in $(0,2)$ for $|\alpha|=1, \alpha \neq \pm 1$.

- It can be shown (not trivial!) that the function has unique global maximum at $u=1$ for every $|\alpha|=1, \alpha \neq \pm 1$.

Contents

(1) Introduction-Jacobi operator
(2) Intermezzo I-Jacobian elliptic functions

3 Spectral analysis - the self-adjoint case

4 Spectral analysis - the non-self-adjoint case
(5) Intermezzo II-values of $|\operatorname{sn}(u K(\alpha), \alpha)|$

A region in the α-plane where $|\operatorname{sn}(u K(\alpha), \alpha)|<1$ for $u \in(0,1)$ fixed.

Thank you!

