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General concept of the problem
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General concept of the problem

@ Assume a sequence of n x n matrices {An},>1 is given.

’ Qy : Where the eigenvalues of A, cluster as n — co? ‘

@ Limit points of eigenvalues: N(A) = {)\ eC| |Ln_1>inf dist (A, spec(An)) = 0},

i.e.,
AeNA) & Ik} Soo T, €spec(An) St A= A

Q> : At what asymptotic density the eigenvalues of A, cluster as n — oo?

@ The eigenvalue—counting measure: 1
Hn = n Z
Aé€spec(An)

i.e., Vo € Cy(C) : /<pd,un—>/Lpdu.
C C

Ox-

o AED u:
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Toeplitz matrices

@ Toeplitz matrix:

ap a_q a_p
a dap a_q

n—1

Tn(a) = (aj,k)l.,kzo = ao ai ap

where a, € C.

an—1 an_2 an—3
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Toeplitz matrices

@ Toeplitz matrix:
ap a_q a_p
; a dap a_q

n—

Tn(a) = (aj,k)l.,kzo = as a ao
an—1 an_2 an—3

where a, € C.

@ Symbol of T(a):

a_n41
a_p42
a_ny3 |

ao
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Toeplitz matrices

@ Toeplitz matrix:

ao a_1q az ... a.pp
- a dap a_1 c a_npi2
Th(a) = (ajfk)l-,kzo = ap a4 ao ceo a—pis |,
an—1 apn_2 apn—3 ... ap
where a, € C.
@ Symbol of T(a):
oo
a(z)= > az
k=—o
@ Assumptions:
o0
1) > lal <o (the Wiener class)
=—00
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Toeplitz matrices

@ Toeplitz matrix:

ao a_1q az ... a.pp
- a dap a_1 c a_npi2
Tn(a) = (aj,k)l.,kzo = as a ap . a_ni3 |,
an—1 apn_2 apn—3 ... ap
where a, € C.
@ Symbol of T(a):
oo
a(z)= > az
k=—o
@ Assumptions:
o0
1) Y lal <o (the Wiener class)
k=—o0

’2)a,k:a7, vkeZ‘ & aT)CR

& Ta(a) =(Ta(a))*, VneN.
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Limit points of eigenvalues

@ One has
Ta(a) S T(a) in 3(N),

where T(a) is the bounded operator given by the respective semi-infinite Toeplitz matrix and
Tn(a) is identified with P, T(a)Pn where P is the OG projection onto span{ey, ..., en}.
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Limit points of eigenvalues

@ One has
Ta(a) S T(a) in 3(N),
where T(a) is the bounded operator given by the respective semi-infinite Toeplitz matrix and
Tn(a) is identified with P, T(a)Pn where Pj, is the OG projection onto span{ey, ..., en}.

@ Consequently,
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Limit points of eigenvalues

@ One has
Ta(a) > T(a) in3(N),
where T(a) is the bounded operator given by the respective semi-infinite Toeplitz matrix and
Tn(a) is identified with P, T(a)Pn where P is the OG projection onto span{ey, ..., en}.
@ Consequently,
spec T(a) C A(T(a)).
@ In fact,
spec T(a)=A(T(a)).
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Limit points of eigenvalues

@ One has
Ta(a) S T(a) in 3(N),

where T(a) is the bounded operator given by the respective semi-infinite Toeplitz matrix and
Tn(a) is identified with P, T(a)Pn where P is the OG projection onto span{ey, ..., en}.

@ Consequently,
spec T(a) C A(T(a)).

@ In fact,
spec T(a)=A(T(a)).
@ O. Toeplitz (1911), N. Wiener (1932):

spec T(a) = {rznel% a(z), max a(z)|.

_ AED for generalized Toeplitz matrices September 28, 2018 5/33



Limit points of eigenvalues

@ One has
Ta(a) S T(a) in 3(N),

where T(a) is the bounded operator given by the respective semi-infinite Toeplitz matrix and
Tn(a) is identified with P, T(a)Pn where P is the OG projection onto span{ey, ..., en}.

@ Consequently,
spec T(a) C A(T(a)).

@ In fact,
spec T(a)=NA(T(a)).

@ O. Toeplitz (1911), N. Wiener (1932):

spec T(a) = [rzneu% a(z), max a(z)} .

@ In total, for s.-a. Toeplitz from the Wiener class it holds that

A(T(a)) = spec T(a) = [22% a(z), max a(z)} .
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AED for s.-a. Toeplitz matrices
@ The Szegd first limit theorem:

2m .
lim 1Tr(Tn(a))k = l/ a“(elydt, vk eN.
0

n—oo n 2
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AED for s.-a. Toeplitz matrices

@ The Szegd first limit theorem:

lim L Tr (Th(a))¥ !

n—oo N _g

2m i
/ a(e')dt, vkeN.
0

@ Reformulation:
. k _ k
Jim [ X0 = [ Xau(o. vken,

where

w((e, B)) = (27)~" ‘{t € [0,27] | a < a(e') < B}|.
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AED for s.-a. Toeplitz matrices

@ The Szegd first limit theorem:

lim L Tr (Th(a))¥ !

n—oo N _g

2m i
/ a(e')dt, vkeN.
0

@ Reformulation:
. k _ k
nlggo/RX dun(X)—/RX du(x), VKEN,

where

w((a, B)) = (2r)~" ‘{t €[0,2n] | « < a(e) < B}|.

@ Applying Stone—Weierstrass, we get the AED:

im_ [ e(aun() = [ e00au(0, v € C®),
R R

n— oo

. w
.., pn — p.

_ AED for generalized Toeplitz matrices September 28, 2018

6/33



AED for s.-a. Toeplitz matrices

@ The Szegd first limit theorem:

lim L Tr (Th(a))¥ !

n—oo N _E

2m .
/ a(e')dt, vkeN.
0

@ Reformulation:
lim /xkdun(x):/xkdu(x), vk €N,
n—oo R R

where

u((@ 8)) = (2m) " [{t € [0,27] | a < a(e") < B}.

@ Applying Stone—Weierstrass, we get the AED:

im_ [ e(aun() = [ e00au(0, v € C®),
R R

n— oo

i.€., fin = K-
@ Roughly speaking:

“For n large, the eigenvalues of Tn(a) are distributed as the values of t — a(e'').”
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A numerical illustration

Example:
a(z)=z2-2z7"—2z4 22
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A numerical illustration

Example:
a(z)=z2-2z7"—2z4 22
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A numerical illustration

Example:
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e Non-self-adjoint banded Toeplitz matrices
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Banded Toeplitz matrices

@ Next, we do not require self-adjointness.
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Banded Toeplitz matrices

@ Next, we do not require self-adjointness.
@ But we have to pay for this by restricting to banded Toeplitz matrices only.
@ The symbol:
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b(z)= > az,| rs>1,
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Banded Toeplitz matrices

@ Next, we do not require self-adjointness.
@ But we have to pay for this by restricting to banded Toeplitz matrices only.
@ The symbol:

s
b(z)= > az,| rs>1,

j=—r

where g; € C and a_ras # 0.
@ The spectrum of T(b):

spec T(b) = b(T) U {X € C | wind(b— X) # 0}.

(This is true for symbols from the Wiener class.)
@ The relation between spec T(b) and A(T(b))... [ numerical illustration].
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A numerical illustration

Example: b(z)=3iz " —(1+2)2+(1+1)22 - (1 —1)2°

n=6
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Limit points and spectrum

@ One has

A(T(b)) C spec(T(b)).

(A consequence of Baxter, Gohberg, and Feldmann thm.)
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@ The opposite inclusion does not hold.
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Limit points and spectrum

@ One has

’/\(T(b)) C spec(T(b)). \

(A consequence of Baxter, Gohberg, and Feldmann thm.)
@ The opposite inclusion does not hold.
@ But one has

N(T(b)) = () spec(T(by)),

p>0

where
bp(2) := b(pz).
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The set of limit points of eigenvalues of banded Toeplitz matrices

@ There is a much more useful description of A(T(b)).
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The set of limit points of eigenvalues of banded Toeplitz matrices

@ There is a much more useful description of A(T(b)).
@ Recall

b(z) = i a7 and define: | Q(z; \) := z" (b(z) — \).

j=—r

@ Q(z; \) is polynomial in z of degree r + s.

@ Denote z{(N),. .., zr+s() the zeros of Q(-, \), repeated according to their multiplicity,
labeled such that
[21(M)] < [22(M)] < -+ zres(A)]-
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@ There is a much more useful description of A(T(b)).
@ Recall

b(z) = i a7 and define: | Q(z; \) := z" (b(z) — \).

j=—r

@ Q(z; \) is polynomial in z of degree r + s.
@ Denote z{(N),. .., zr+s() the zeros of Q(-, \), repeated according to their multiplicity,
labeled such that
[21(M)] < [22(M)] < -+ zres(A)]-

[AT(B) = {2 € C | |zx(N)] = 121 (N1} |

Theorem (Schmidt and Spitzer, 1960): J

Based on this description of A(T (b)), one can show that . ..

_ AED for generalized Toeplitz matrices September 28, 2018 13/33



The set of limit points of eigenvalues of banded Toeplitz matrices

@ There is a much more useful description of A(T(b)).

@ Recall
s
b(z)= > a7 and define: | Q(z; \) := 2" (b(z) — A).
j=—r
@ Q(z; \) is polynomial in z of degree r + s.
@ Denote z{(N),. .., zr+s() the zeros of Q(-, \), repeated according to their multiplicity,

labeled such that
[z (M) < |22(N)] < ... [Zr4s(A)]-

Theorem (Schmidt and Spitzer, 1960):

’/\(T(b)) ={AeCllz(N)] = [z-1 (M)}

Based on this description of A(T (b)), one can show that . ..

Theorem (Schmidt, Spitzer, Ullman, 1960-67):

A(T(b)) is a connected set that equals the union of a finite number of pairwise disjoint open
analytic arcs and a finite number of the so-called exceptional points (roughly speaking: branching
points and endpoints).
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The example once more

-6
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AED for the banded Toeplitz matrices
@ The formula for AED for s.-a. Toeplitz matrices followed from the first Szeg®d limit formula:

lim 1Tr(T,,(b 7/ b¥(e")dt, vk eN.

n— oo
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AED for the banded Toeplitz matrices

@ The formula for AED for s.-a. Toeplitz matrices followed from the first Szeg®d limit formula:
1
lim fTr(Tn(b 7/ b¥(e")dt, vk eN.

n— oo

@ M. Kac (1954) proved that the above formula holds also when the self-adjointness is relaxed.
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@ M. Kac (1954) proved that the above formula holds also when the self-adjointness is relaxed.

@ However, it cannot be extended from polynomials to continuous functions because C[Zz] is not
dense in Cy(C).
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AED for the banded Toeplitz matrices

@ The formula for AED for s.-a. Toeplitz matrices followed from the first Szeg®d limit formula:

lim 1Tr(T,,(b 7/ b¥(e")dt, vk eN.

n— oo

@ M. Kac (1954) proved that the above formula holds also when the self-adjointness is relaxed.

@ However, it cannot be extended from polynomials to continuous functions because C[Zz] is not
dense in Cy(C).

@ The derivation of AED in the non-self-adjoint case is based on a more detailed asymptotic
analysis of the determinant of Toeplitz matrices (Szeg6, Widom):

Proposition:
There is a smooth function g : C\ A(T(b)) such that | lim_ | det(Tn(b) — /\)|1/n =9(\)

locally uniformly in C \ A(T(b)).
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AED for the banded Toeplitz matrices

@ The formula for AED for s.-a. Toeplitz matrices followed from the first Szeg®d limit formula:
1
lim fTr(Tn(b 7/ b¥(e")dt, vk eN.
n—oo

@ M. Kac (1954) proved that the above formula holds also when the self-adjointness is relaxed.

@ However, it cannot be extended from polynomials to continuous functions because C[Zz] is not
dense in Cy(C).

@ The derivation of AED in the non-self-adjoint case is based on a more detailed asymptotic
analysis of the determinant of Toeplitz matrices (Szeg6, Widom):

Proposition:
There is a smooth function g : C\ A(T(b)) such that | lim_ | det(Tn(b) — /\)|1/n =9(\)

2m .
g(A\) = exp <1 / log |b(pe‘t) — /\|dt)7
27 Jo

where |2:(A)| < p < z1(N)|. (Recall A € A(T(b)) & |zr(N)] = |zr+1(N)].)

locally uniformly in C \ A(T(b)). In addition, one has
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Hirschman’s formula for AED

Theorem (Hirschman Jr., 1967):

For a banded Toeplitz matrices, the AED p exists and is absolutely continuous. On each analytic
arc of A(T(b)), its density reads

%00 = 5o | 2ok -

s = 27900 @3],

on

where ds stands for the arc-length measure on the respective arc and 8g/d1 (A\+) are one-sided
limits of the directional derivative 8g/0r w.r.t. a unit normal vector to the arc at A (depends on a
chosen orientation but the formula for the density does not).
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Final comments on Toeplitz matrices

@ All the essential results for the limiting set A(T(b)) (Schmidt & Spitzer) and the limiting
measure p (Hirschman) concern banded Toeplitz matrices only.
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Final comments on Toeplitz matrices

@ All the essential results for the limiting set A(T(b)) (Schmidt & Spitzer) and the limiting
measure p (Hirschman) concern banded Toeplitz matrices only.

@ K. Michael Day (1975) generalized these two results for Toeplitz matrices with rational symbol.
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Final comments on Toeplitz matrices

@ All the essential results for the limiting set A(T(b)) (Schmidt & Spitzer) and the limiting
measure p (Hirschman) concern banded Toeplitz matrices only.

@ K. Michael Day (1975) generalized these two results for Toeplitz matrices with rational symbol.

@ But there are still a lot of matrices in the Wienner class but not with a rational symbol and
basically nothing is known for them...
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Final comments on Toeplitz matrices

@ All the essential results for the limiting set A(T(b)) (Schmidt & Spitzer) and the limiting
measure p (Hirschman) concern banded Toeplitz matrices only.

@ K. Michael Day (1975) generalized these two results for Toeplitz matrices with rational symbol.

@ But there are still a lot of matrices in the Wienner class but not with a rational symbol and
basically nothing is known for them...

Open problem:

Can one deduce a description of
@ the set A(T(a)) / generalize Schmidt and Spitzer’s result
@ the AED 1 / generalize Hirschman’s result

for some non-rational symbols?
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KMS matrix

@ Let ax € C([0, 1]) are given for all k € Z.
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KMS matrix

@ Let ax € C([0, 1]) are given for all k € Z.
@ The KMS matrix:

i.e.,
1 1 1 1
a |5 a_1 (5) asz\y, coodonpi (g
1 2 2 2
a\, a |\, a_1\4, R A
Th(a) = 1 2 3 3
n( ) ao n a n ap n e a_np43 n

D
3
|
/
Si=
~—
D
7
N
~~
AL
~—
D
T
w
/N
Slw
N~——
D
S
—_
SIS
~
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KMS matrix

@ Let ax € C([0, 1]) are given for all k € Z.

@ The KMS matrix:
1+ mi ',k n—1
Ta(a) = (aj—k (M)) ,
n j k=0

ie.,
ao 15 a_1 (15) a_p 1; cee @ont 1;
ay 15 aop % a_1 % cee@opy2 %
(@)= | & 15 a % a (%) a_ny3 %

an—1 (%) an—2 (%) an—3 (%) aop (%)
@ Introduced and studied by M. Kac, W. L, Murdock, and G. Szegb in 1953 (called generalized
Toeplitz). For ax(x) = ak, Tn(a) is a Toeplitz matrix.
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KMS matrix

@ Let ax € C([0, 1]) are given for all k € Z.

@ The KMS matrix:
1 . '7 k n—1
Ta(a) = (a,;k (M)) ,
n j k=0

i.e.,
1 1 1 1
a |5 a_1 (5) asz\y, coodonpi (g
1 2 2 2
a\, a |\, a_1\4, R A
Th(a) = 1 2 3 3
n(a) a (4 a5 ao (5 a_n3lp

an—1 (%) an—2 (%) an—3 (%) aop (%)
@ Introduced and studied by M. Kac, W. L, Murdock, and G. Szegb in 1953 (called generalized
Toeplitz). For ax(x) = ak, Tn(a) is a Toeplitz matrix.

@ Later appeared several times again and some results from Kac, Murdock, and Szeg6 were
rediscovered:
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KMS matrix

@ Let ax € C([0, 1]) are given for all k € Z.

@ The KMS matrix:
1+ mi ',k n—1
Ta(a) = (a,;k (M)) ,
n j k=0

i.e.,
ao 15 a_1 (%) a_p 1; a_ni 1;
ay 15 aop % a_1 % a_n42 %
Tn(@)= | g (1 ar (2 ap (%) o a_ps(3

an—1 (%) an—2 (%) an—3 (%) aop (%)
@ Introduced and studied by M. Kac, W. L, Murdock, and G. Szegb in 1953 (called generalized

Toeplitz). For ax(x) = ak, Tn(a) is a Toeplitz matrix.

@ Later appeared several times again and some results from Kac, Murdock, and Szegé were
rediscovered:

@ P Tilli, 1998: motivation: discretization of 1D S.-L. operator ~» theory of locally Toeplitz sequences,
applications in PDEs (Garoni, Serra—Capizzano, 2017).
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KMS matrix

@ Let ax € C([0, 1]) are given for all k € Z.

@ The KMS matrix:
1+ mi ',k n—1
Ta(a) = (a,;k (M)) ,
n j k=0

ie.,
ao 15 a_1 (%) a_p 1; a_ni 1;
ay 15 aop % a_1 % a_n42 %
(@)= | a 1 ar (2 ao (%) o a_ps(3

an—1 (%) an—2 (%) an—3 (%) aop (%)
@ Introduced and studied by M. Kac, W. L, Murdock, and G. Szegb in 1953 (called generalized

Toeplitz). For ax(x) = ak, Tn(a) is a Toeplitz matrix.

@ Later appeared several times again and some results from Kac, Murdock, and Szegé were
rediscovered:

@ P Tilli, 1998: motivation: discretization of 1D S.-L. operator ~» theory of locally Toeplitz sequences,
applications in PDEs (Garoni, Serra—Capizzano, 2017).

@ A. Kuijlaars, W. Van Assche, 1999: orthogonal polynomials with variable coefficients.
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Generalized First Szeg6 Limit Theorem

@ The symbol:

o o]

a(x,ty= > ax(x)e"

k=—o0
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Generalized First Szeg6 Limit Theorem

@ The symbol:
O .
ax =3 a(x)e"
k=—o0
@ Assumptions:
1) > laklleo < o0 (~ the Wiener class)
k=—c
’ 2) ais real-valued ‘ <  Tph(a)=(Ta(a))", VneN.
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Generalized First Szeg6 Limit Theorem

@ The symbol:
O .
ax =3 a(x)e"
k=—o0
@ Assumptions:
1) > laklleo < o0 (~ the Wiener class)
k=—c
’ 2) ais real-valued ‘ <  Tph(a)=(Ta(a))", VneN.

Theorem (Kac, Murdock, Szegd, 1953)

27 1
n|i>moo % Tr(p(Th(a))) = 21—#/0 /0 p(a(x, t))dxdt, | Ve € C(R).
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A numerical illustration

Example: a(x, 1) = 2x3e 2 4 xe7 ! + (1 — x®) + xe'! + 2x3e~ 2!

n=s
01

012

The AED u:

1((e, B)) = 21 {( ) €0,1]x[0,27] | o < a&(x, 1) < B}

|
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Contents

@ Non-Self-adjoint KMS matrices
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Non-Self-adjoint KMS matrices

@ Similarly as in the case of Toeplitz matrices, we drop the self-adjointness assumption and
consider banded KMS matrices.
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Non-Self-adjoint KMS matrices

@ Similarly as in the case of Toeplitz matrices, we drop the self-adjointness assumption and
consider banded KMS matrices.

@ Let us look at the numerics first...
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Example

a(x, t) = ixe " +3(1 — x?) + ixe't

3-3 i
n
i T2 oz
n n2 n
2 _ 27 3i
Tn(a) = n n? n )
n—1.
=i 3
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Example

a(x, 1) = ixe " 4+ 3(1 — x%) + ixe'!

[

=
i
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Nothing is known :(

@ Basically nothing is known about the AED of non-self-adjoint KMS matrices.
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Nothing is known :(

@ Basically nothing is known about the AED of non-self-adjoint KMS matrices.

@ Based on numerical experiments and the known AED for banded Toeplitz matrices, one can
formulate the following conjecture.
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Nothing is known :(

@ Basically nothing is known about the AED of non-self-adjoint KMS matrices.

@ Based on numerical experiments and the known AED for banded Toeplitz matrices, one can
formulate the following conjecture.

Conjecture

For a banded KMS matrix, A(T(a)) is a connected set that equals a finite union of open analytic
arcs and finite number of points. In addition, the AED exists and is supported on A(T(a)).
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Nothing is known :(

@ Basically nothing is known about the AED of non-self-adjoint KMS matrices.

@ Based on numerical experiments and the known AED for banded Toeplitz matrices, one can
formulate the following conjecture.

Conjecture

For a banded KMS matrix, A(T(a)) is a connected set that equals a finite union of open analytic
arcs and finite number of points. In addition, the AED exists and is supported on A(T(a)).

@ Our inability to solve this problem in general motivates us to investigate some special cases -
A research project in collaboration with O. Turek and P. Blaschke, work in progress.
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Nothing is known :(

@ Basically nothing is known about the AED of non-self-adjoint KMS matrices.

@ Based on numerical experiments and the known AED for banded Toeplitz matrices, one can
formulate the following conjecture.

Conjecture

For a banded KMS matrix, A(T(a)) is a connected set that equals a finite union of open analytic
arcs and finite number of points. In addition, the AED exists and is supported on A(T(a)).

@ Our inability to solve this problem in general motivates us to investigate some special cases -
A research project in collaboration with O. Turek and P. Blaschke, work in progress.

The special KMS matrices (Sampling Jacobi matrices):

a(x, t) = a(x)e™ + B(x) + a(x)éel,

where o?, 8 € C[x] of low degree.
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Nothing is known :(

@ Basically nothing is known about the AED of non-self-adjoint KMS matrices.

@ Based on numerical experiments and the known AED for banded Toeplitz matrices, one can
formulate the following conjecture.

Conjecture

For a banded KMS matrix, A(T(a)) is a connected set that equals a finite union of open analytic
arcs and finite number of points. In addition, the AED exists and is supported on A(T(a)).

@ Our inability to solve this problem in general motivates us to investigate some special cases -
A research project in collaboration with O. Turek and P. Blaschke, work in progress.

The special KMS matrices (Sampling Jacobi matrices):

a(x, t) = a(x)e™ + B(x) + a(x)éel,

where o?, 8 € C[x] of low degree.

@ In this setting, there is a close connection between det(z — Tp(a)) and the hypergeometric
orthogonal polynomials. We make use of some special properties of these polynomials.
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The strategy for the derivation of the limiting measure

Definition:
The Cauchy transform of a Borel measure p is a function defined by

dp(x
C”(Z)::/Czu—()z’ z € C\ supp p.
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The strategy for the derivation of the limiting measure

Definition:

The Cauchy transform of a Borel measure p is a function defined by

dp(x
C”(Z)::/Czu—()z’ z € C\ supp p.

If un is the eigenvalue-counting measure and pp(z) = det(z — Tp(a)), then

_ Pn(2)
Mn( )_ npn(z).

_ AED for generalized Toeplitz matrices September 28, 2018 27/33



The strategy for the derivation of the limiting measure

Definition:
The Cauchy transform of a Borel measure p is a function defined by

dp(x
Cu(2) ::/CZ%()E, z € C\ supp p.

If un is the eigenvalue-counting measure and pp(z) = det(z — Tp(a)), then

_ Pn(2)
Mn( )_ npn(z).

Theorem

Let up is @ sequence of probability measures supported uniformly in a compact set K C C.
Assume that
nim Cun(z)=C(z), ae.zeC.

Then C is the Cauchy transform of a probability measure p which is a weak limit of up for n — occ.
Moreover, one has

1 . .
uw= —05C inthe generalized sense.
s
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The strategy for the derivation of the limiting measure

@ The main difficultly of the strategy: for n — oco.
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The strategy for the derivation of the limiting measure

@ The main difficultly of the strategy: m for n — oo.

@ There are many powerful methods for the asymptotic analysis but it usually requires a more
detailed knowledge about p, (generating functions, integral representations, recurrences,...).
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An appetizer - one simple example

B(5) o3
a(x) =+vax, (a>0), @ é;; Jé; éi; o (%)
Tn . -
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An appetizer - one simple example

B
a(x) =+Vax, (a>0), a é
a(%) 8
@ The characteristic polynomial of T, can be identified with the Charlier polynomials:
pn(z) = €3 (—an —izn — 1),

where C,(f‘)(x) are the Charlier polynomials.
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An appetizer - one simple example

B(5) a(a
a(x) =+Vax, (a>0), a 1,7 Jé; % o (%)
Th =
a(%5) B()
@ The characteristic polynomial of T, can be identified with the Charlier polynomials:

pn(z) = €3 (—an —izn — 1),

where C,({’)(x) are the Charlier polynomials.

@ Certain nice properties of the Charlier polynomials (representation by contour integrals) allow
us to analyze the asymptotic behaviour of pn(z) for n — oo.
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An appetizer - one simple example

B(5) a(a
a(x) =+Vax, (a>0), a 1,7 Jé; % o (%)
Th =
a(%5) B()
@ The characteristic polynomial of T, can be identified with the Charlier polynomials:

pn(z) = €3 (—an —izn — 1),

where C,({’)(x) are the Charlier polynomials.

@ Certain nice properties of the Charlier polynomials (representation by contour integrals) allow
us to analyze the asymptotic behaviour of pn(z) for n — oo.

@ The analysis is very technical (steepest descent, Stokes phenomenon).
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An appetizer - final results

x € (—2Va,2va),

@ Define the curve: ’ v(x) = x +iy(x),

where y is the solution of
~ Slog (1 +&+)/(1 +£-))
Rlog (14 &+)/(1+&-))

£+ = £4(z, a) are the two solutions of ac®> — (1 +iz)¢ —1 =0, and z = x + iy(x).

y'(x)= y(2va) =1,
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An appetizer - final results

@ Define the curve: ’ v(x) = x +iy(x),

x € (—2Va,2va),

where y is the solution of
~ Slog (1 +&+)/(1 +£-))
Rlog (14 &+)/(1+&-))

£+ = £4(z, a) are the two solutions of ac®> — (1 +iz)¢ —1 =0, and z = x + iy(x).

y(2va) =1,

y'(x)=

10

Yo(a)
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An appetizer - final results

x € (—2Va,2va),

@ Define the curve: ’ v(x) = x +iy(x),

where y is the solution of
~ Slog (1 +&+)/(1 +£-))
Rlog (14 &+)/(1+&-))

£+ = £4(z, a) are the two solutions of ac®> — (1 +iz)¢ —1 =0, and z = x + iy(x).

y'(x)= y(2va) =1,

10

. Yo(a)

@ Jyp(a) is the imaginary coordinate of the intersection of the curve and the imaginary line.
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Regime 1: a > yy(a)

a=1.0

02

dp X):;|Iog((1+£+)/(1+sf))\2
dx 2m Rlog ((1+&+)/(1+¢-))
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Regime 2: a < yp(a)

a=0.083
1.0,

L 1 L L
-0.4 -0.2 0.0 0.2 0.4

du, 1 Jlog((1+£)/(1 +E )P an
M= 2 wiog (1 en/are )| ™ |V
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More to see at: http://users.fit.cvut.cz/~stampfra

Thank you!
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