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General concept of the problem

Assume a sequence of n × n matrices {An}n≥1 is given.

Q1 : Where the eigenvalues of An cluster as n→∞?

Limit points of eigenvalues: Λ(A) :=
{
λ ∈ C | lim inf

n→∞
dist (λ, spec(An)) = 0

}
,

i.e.,
λ ∈ Λ(A) ⇔ ∃{nk} ↗ ∞ ∃λk ∈ spec(Ank ) s.t. λk → λ.

Q2 : At what asymptotic density the eigenvalues of An cluster as n→∞?

The eigenvalue–counting measure:
µn :=

1
n

∑
λ∈spec(An)

δλ.

AED µ:

µn
w−→ µ, i.e., ∀ϕ ∈ C0(C) :

∫
C
ϕ dµn →

∫
C
ϕ dµ.
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Toeplitz matrices

Toeplitz matrix:

Tn(a) =
(
aj−k

)n−1
j,k=0 =


a0 a−1 a−2 . . . a−n+1
a1 a0 a−1 . . . a−n+2
a2 a1 a0 . . . a−n+3
. . . . . . . . . . . . . . .

an−1 an−2 an−3 . . . a0

,
where an ∈ C.

Symbol of T (a):

a(z) =
∞∑

k=−∞
ak zk .

Assumptions:

1)
∞∑

k=−∞
|ak | <∞ (the Wiener class)

2) a−k = ak , ∀k ∈ Z ⇔ a(T) ⊂ R

⇔ Tn(a) = (Tn(a))∗ , ∀n ∈ N.
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Limit points of eigenvalues

One has
Tn(a)

s−→ T (a) in `2(N),

where T (a) is the bounded operator given by the respective semi-infinite Toeplitz matrix and
Tn(a) is identified with PnT (a)Pn where Pn is the OG projection onto span{e1, . . . , en}.

Consequently,
spec T (a) ⊂ Λ(T (a)).

In fact,
spec T (a)=Λ(T (a)).

O. Toeplitz (1911), N. Wiener (1932):

spec T (a) =

[
min
z∈T

a(z),max
z∈T

a(z)

]
.

In total, for s.-a. Toeplitz from the Wiener class it holds that

Λ(T (a)) = spec T (a) =

[
min
z∈T

a(z),max
z∈T

a(z)

]
.
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AED for s.-a. Toeplitz matrices

The Szegő first limit theorem:

lim
n→∞

1
n

Tr (Tn(a))k =
1

2π

∫ 2π

0
ak (eit )dt , ∀k ∈ N.

Reformulation:
lim

n→∞

∫
R

xk dµn(x) =

∫
R

xk dµ(x), ∀k ∈ N,

where

µ((α, β)) = (2π)−1
∣∣∣{t ∈ [0, 2π] | α < a(eit ) < β}

∣∣∣.
Applying Stone–Weierstrass, we get the AED:

lim
n→∞

∫
R
ϕ(x)dµn(x) =

∫
R
ϕ(x)dµ(x), ∀ϕ ∈ C(R),

i.e., µn
w−→ µ.

Roughly speaking:

“For n large, the eigenvalues of Tn(a) are distributed as the values of t 7→ a(eit ).”
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A numerical illustration

Example:
a(z) = z−2 − 2z−1 − 2z + z2.

This means

T (a) =



0 −2 1
−2 0 −2 1
1 −2 0 −2 1

1 −2 0 −2 1
1 −2 0 −2 1

1 −2 0 −2 1
. . .

. . .
. . .

. . .
. . .


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Banded Toeplitz matrices

Next, we do not require self-adjointness.

But we have to pay for this by restricting to banded Toeplitz matrices only.

The symbol:

b(z) =
s∑

j=−r

aj z j , r , s ≥ 1,

where aj ∈ C and a−r as 6= 0.

The spectrum of T (b):

spec T (b) = b(T) ∪ {λ ∈ C | wind(b − λ) 6= 0}.

(This is true for symbols from the Wiener class.)

The relation between spec T (b) and Λ(T (b)) . . . [ numerical illustration ].
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A numerical illustration

Example: b(z) = 3iz−1 − (1 + 2i)z2 + (1 + i)z3 − (1− i)z5
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Limit points and spectrum

One has
Λ(T (b)) ⊂ spec(T (b)).

(A consequence of Baxter, Gohberg, and Feldmann thm.)

The opposite inclusion does not hold.

But one has
Λ(T (b)) =

⋂
ρ>0

spec(T (bρ)),

where
bρ(z) := b(ρz).
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The set of limit points of eigenvalues of banded Toeplitz matrices

There is a much more useful description of Λ(T (b)).

Recall

b(z) =
s∑

j=−r

aj z j and define: Q(z;λ) := zr (b(z)− λ) .

Q(z;λ) is polynomial in z of degree r + s.

Denote z1(λ), . . . , zr+s(λ) the zeros of Q(·, λ), repeated according to their multiplicity,
labeled such that

|z1(λ)| ≤ |z2(λ)| ≤ . . . |zr+s(λ)|.

Theorem (Schmidt and Spitzer, 1960):
Λ(T (b)) = {λ ∈ C | |zr (λ)| = |zr+1(λ)|}.

Based on this description of Λ(T (b)), one can show that . . .

Theorem (Schmidt, Spitzer, Ullman, 1960-67):

Λ(T (b)) is a connected set that equals the union of a finite number of pairwise disjoint open
analytic arcs and a finite number of the so-called exceptional points (roughly speaking: branching
points and endpoints).
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The example once more
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AED for the banded Toeplitz matrices

The formula for AED for s.-a. Toeplitz matrices followed from the first Szegő limit formula:

lim
n→∞

1
n

Tr (Tn(b))k =
1

2π

∫ 2π

0
bk (eit )dt , ∀k ∈ N.

M. Kac (1954) proved that the above formula holds also when the self-adjointness is relaxed.

However, it cannot be extended from polynomials to continuous functions because C[z] is not
dense in C0(C).

The derivation of AED in the non-self-adjoint case is based on a more detailed asymptotic
analysis of the determinant of Toeplitz matrices (Szegő, Widom):

Proposition:

There is a smooth function g : C \ Λ(T (b)) such that lim
n→∞

∣∣ det(Tn(b)− λ)
∣∣1/n

= g(λ)

locally uniformly in C \ Λ(T (b)).

In addition, one has

g(λ) = exp

(
1

2π

∫ 2π

0
log
∣∣b(ρeit )− λ

∣∣dt

)
,

where |zr (λ)| < ρ < |zr+1(λ)|. (Recall λ ∈ Λ(T (b))⇔ |zr (λ)| = |zr+1(λ)|.)
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Proposition:

There is a smooth function g : C \ Λ(T (b)) such that lim
n→∞

∣∣ det(Tn(b)− λ)
∣∣1/n

= g(λ)

locally uniformly in C \ Λ(T (b)).

In addition, one has

g(λ) = exp

(
1

2π

∫ 2π

0
log
∣∣b(ρeit )− λ

∣∣dt

)
,

where |zr (λ)| < ρ < |zr+1(λ)|. (Recall λ ∈ Λ(T (b))⇔ |zr (λ)| = |zr+1(λ)|.)

AED for generalized Toeplitz matrices September 28, 2018 15 / 33



AED for the banded Toeplitz matrices

The formula for AED for s.-a. Toeplitz matrices followed from the first Szegő limit formula:
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Hirschman’s formula for AED

Theorem (Hirschman Jr., 1967):

For a banded Toeplitz matrices, the AED µ exists and is absolutely continuous. On each analytic
arc of Λ(T (b)), its density reads

dµ
ds

(λ) =
1

2π
1

g(λ)

∣∣∣∣∂g
∂~n

(λ+)−
∂g
∂~n

(λ−)

∣∣∣∣ ,
where ds stands for the arc-length measure on the respective arc and ∂g/∂~n (λ±) are one-sided
limits of the directional derivative ∂g/∂~n w.r.t. a unit normal vector to the arc at λ (depends on a
chosen orientation but the formula for the density does not).
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Final comments on Toeplitz matrices

All the essential results for the limiting set Λ(T (b)) (Schmidt & Spitzer) and the limiting
measure µ (Hirschman) concern banded Toeplitz matrices only.

K. Michael Day (1975) generalized these two results for Toeplitz matrices with rational symbol.

But there are still a lot of matrices in the Wienner class but not with a rational symbol and
basically nothing is known for them...

Open problem:

Can one deduce a description of
1 the set Λ(T (a))

/
generalize Schmidt and Spitzer’s result

2 the AED µ
/

generalize Hirschman’s result

for some non-rational symbols?
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KMS matrix

Let ak ∈ C([0, 1]) are given for all k ∈ Z.

The KMS matrix:

Tn(a) =

(
aj−k

(
1 + min(j, k)

n

))n−1

j,k=0
,

i.e.,

Tn(a) =



a0

(
1
n

)
a−1

(
1
n

)
a−2

(
1
n

)
. . . a−n+1

(
1
n

)
a1

(
1
n

)
a0

(
2
n

)
a−1

(
2
n

)
. . . a−n+2

(
2
n

)
a2

(
1
n

)
a1

(
2
n

)
a0

(
3
n

)
. . . a−n+3

(
3
n

)
. . . . . . . . . . . . . . .

an−1

(
1
n

)
an−2

(
2
n

)
an−3

(
3
n

)
. . . a0

( n
n

)


.

Introduced and studied by M. Kac, W. L, Murdock, and G. Szegő in 1953 (called generalized
Toeplitz). For ak (x) = ak , Tn(a) is a Toeplitz matrix.
Later appeared several times again and some results from Kac, Murdock, and Szegő were
rediscovered:

1 P. Tilli, 1998: motivation: discretization of 1D S.-L. operator theory of locally Toeplitz sequences,
applications in PDEs (Garoni, Serra–Capizzano, 2017).

2 A. Kuijlaars, W. Van Assche, 1999: orthogonal polynomials with variable coefficients.
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
.

Introduced and studied by M. Kac, W. L, Murdock, and G. Szegő in 1953 (called generalized
Toeplitz). For ak (x) = ak , Tn(a) is a Toeplitz matrix.
Later appeared several times again and some results from Kac, Murdock, and Szegő were
rediscovered:

1 P. Tilli, 1998: motivation: discretization of 1D S.-L. operator theory of locally Toeplitz sequences,
applications in PDEs (Garoni, Serra–Capizzano, 2017).

2 A. Kuijlaars, W. Van Assche, 1999: orthogonal polynomials with variable coefficients.
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Generalized First Szegő Limit Theorem

The symbol:

a(x , t) =
∞∑

k=−∞
ak (x)eikt

Assumptions:

1)
∞∑

k=−∞
‖ak‖∞ <∞ (∼ the Wiener class)

2) a is real-valued ⇔ Tn(a) = (Tn(a))∗ , ∀n ∈ N.

Theorem (Kac, Murdock, Szegő, 1953)

lim
n→∞

1
n

Tr(ϕ(Tn(a))) =
1

2π

∫ 2π

0

∫ 1

0
ϕ(a(x , t))dxdt , ∀ϕ ∈ C(R).
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The symbol:

a(x , t) =
∞∑

k=−∞
ak (x)eikt

Assumptions:

1)
∞∑

k=−∞
‖ak‖∞ <∞ (∼ the Wiener class)

2) a is real-valued ⇔ Tn(a) = (Tn(a))∗ , ∀n ∈ N.

Theorem (Kac, Murdock, Szegő, 1953)
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A numerical illustration

Example: a(x , t) = 2x3e−2it + xe−it + (1− x2) + xeit + 2x3e−2it

The AED µ:

µ((α, β)) =
1

2π

∣∣ {(x , t) ∈ [0, 1]× [0, 2π] | α < a(x , t) < β}
∣∣
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Non-Self-adjoint KMS matrices

Similarly as in the case of Toeplitz matrices, we drop the self-adjointness assumption and
consider banded KMS matrices.

Let us look at the numerics first...
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Example

a(x , t) = ixe−it + 3(1− x2) + ixeit

Tn(a) =



3− 3
n2

i
n

i
n 3− 12

n2
2i
n

2i
n 3− 27

n2
3i
n

. . .
. . .

. . .
. . .

n−1
n i 3

,
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a(x , t) = ixe−it + 3(1− x2) + ixeit
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Nothing is known :(

Basically nothing is known about the AED of non-self-adjoint KMS matrices.

Based on numerical experiments and the known AED for banded Toeplitz matrices, one can
formulate the following conjecture.

Conjecture

For a banded KMS matrix, Λ(T (a)) is a connected set that equals a finite union of open analytic
arcs and finite number of points. In addition, the AED exists and is supported on Λ(T (a)).

Our inability to solve this problem in general motivates us to investigate some special cases -
A research project in collaboration with O. Turek and P. Blaschke, work in progress.

The special KMS matrices (Sampling Jacobi matrices):

a(x , t) = α(x)e−it + β(x) + α(x)eit ,

where α2, β ∈ C[x ] of low degree.

In this setting, there is a close connection between det(z − Tn(a)) and the hypergeometric
orthogonal polynomials. We make use of some special properties of these polynomials.
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The strategy for the derivation of the limiting measure

Definition:

The Cauchy transform of a Borel measure µ is a function defined by

Cµ(z) :=

∫
C

dµ(x)

z − x
, z ∈ C \ suppµ.

If µn is the eigenvalue-counting measure and pn(z) = det(z − Tn(a)), then

Cµn (z) =
p′n(z)

npn(z)
.

Theorem

Let µn is a sequence of probability measures supported uniformly in a compact set K ⊂ C.
Assume that

lim
n→∞

Cµn (z) = C(z), a.e. z ∈ C.

Then C is the Cauchy transform of a probability measure µ which is a weak limit of µn for n→∞.
Moreover, one has

µ =
1
π
∂zC in the generalized sense.
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The strategy for the derivation of the limiting measure

The main difficultly of the strategy: pn(z) ∼ ? for n→∞.

There are many powerful methods for the asymptotic analysis but it usually requires a more
detailed knowledge about pn (generating functions, integral representations, recurrences,...).
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An appetizer - one simple example

α(x) =
√

ax , (a > 0),

β(x) = ix ,
Tn =


β
(

1
n

)
α
(

1
n

)
α
(

1
n

)
β
(

2
n

)
α
(

2
n

)
. . .

. . .
. . .

α
(

n−1
n

)
β (1)

,

The characteristic polynomial of Tn can be identified with the Charlier polynomials:

pn(z) = C(−an)
n (−an − izn − 1) ,

where C(α)
n (x) are the Charlier polynomials.

Certain nice properties of the Charlier polynomials (representation by contour integrals) allow
us to analyze the asymptotic behaviour of pn(z) for n→∞.

The analysis is very technical (steepest descent, Stokes phenomenon).
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An appetizer - final results

Define the curve: γ(x) := x + iy(x), x ∈ (−2
√

a, 2
√

a),

where y is the solution of

y ′(x) = −
= log ((1 + ξ+)/(1 + ξ−))

< log ((1 + ξ+)/(1 + ξ−))
, y(2

√
a) = 1,

ξ± = ξ±(z, a) are the two solutions of aξ2 − (1 + iz)ξ − 1 = 0, and z = x + iy(x).

y0(a) is the imaginary coordinate of the intersection of the curve and the imaginary line.
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Regime 1: a > y0(a)

dµ
dx

(x) =
1

2π
|log ((1 + ξ+)/(1 + ξ−))|2

< log ((1 + ξ+)/(1 + ξ−))
, |x | < 2

√
a.
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Regime 2: a < y0(a)

dµ
dx

(x) =
1

2π
|log ((1 + ξ+)/(1 + ξ−))|2

< log ((1 + ξ+)/(1 + ξ−))
, and

dµ
dy

(y) = 1.
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More to see at: http://users.fit.cvut.cz/∼stampfra

Thank you!
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