On the asymptotic eigenvalue distribution of generalized Toeplitz matrices

## František Štampach

Czech Technical University, Faculty of Information Technology


Queen's University Belfast Colloquium
September 28, 2018

## General concept of the problem

- Assume a sequence of $n \times n$ matrices $\left\{A_{n}\right\}_{n \geq 1}$ is given.


## General concept of the problem

- Assume a sequence of $n \times n$ matrices $\left\{A_{n}\right\}_{n \geq 1}$ is given.
$Q_{1}:$ Where the eigenvalues of $A_{n}$ cluster as $n \rightarrow \infty$ ?


## General concept of the problem

- Assume a sequence of $n \times n$ matrices $\left\{A_{n}\right\}_{n \geq 1}$ is given.
$Q_{1}$ : Where the eigenvalues of $A_{n}$ cluster as $n \rightarrow \infty$ ?
- Limit points of eigenvalues:

$$
\Lambda(A):=\left\{\lambda \in \mathbb{C} \mid \liminf _{n \rightarrow \infty} \operatorname{dist}\left(\lambda, \operatorname{spec}\left(A_{n}\right)\right)=0\right\}
$$

## General concept of the problem

- Assume a sequence of $n \times n$ matrices $\left\{A_{n}\right\}_{n \geq 1}$ is given.

$$
Q_{1}: \text { Where the eigenvalues of } A_{n} \text { cluster as } n \rightarrow \infty \text { ? }
$$

- Limit points of eigenvalues:

$$
\Lambda(A):=\left\{\lambda \in \mathbb{C} \mid \liminf _{n \rightarrow \infty} \operatorname{dist}\left(\lambda, \operatorname{spec}\left(A_{n}\right)\right)=0\right\}
$$

i.e.,

$$
\lambda \in \Lambda(A) \quad \Leftrightarrow \quad \exists\left\{n_{k}\right\} \quad \nearrow \infty \quad \exists \lambda_{k} \in \operatorname{spec}\left(A_{n_{k}}\right) \quad \text { s.t. } \lambda_{k} \rightarrow \lambda .
$$

## General concept of the problem

- Assume a sequence of $n \times n$ matrices $\left\{A_{n}\right\}_{n \geq 1}$ is given.

$$
Q_{1}: \text { Where the eigenvalues of } A_{n} \text { cluster as } n \rightarrow \infty ?
$$

- Limit points of eigenvalues:

$$
\Lambda(A):=\left\{\lambda \in \mathbb{C} \mid \liminf _{n \rightarrow \infty} \operatorname{dist}\left(\lambda, \operatorname{spec}\left(A_{n}\right)\right)=0\right\}
$$

i.e.,

$$
\lambda \in \Lambda(A) \quad \Leftrightarrow \quad \exists\left\{n_{k}\right\} \nearrow \infty \quad \exists \lambda_{k} \in \operatorname{spec}\left(A_{n_{k}}\right) \quad \text { s.t. } \lambda_{k} \rightarrow \lambda .
$$

$Q_{2}$ : At what asymptotic density the eigenvalues of $A_{n}$ cluster as $n \rightarrow \infty$ ?

## General concept of the problem

- Assume a sequence of $n \times n$ matrices $\left\{A_{n}\right\}_{n \geq 1}$ is given.
$Q_{1}:$ Where the eigenvalues of $A_{n}$ cluster as $n \rightarrow \infty$ ?
- Limit points of eigenvalues:

$$
\Lambda(A):=\left\{\lambda \in \mathbb{C} \mid \liminf _{n \rightarrow \infty} \operatorname{dist}\left(\lambda, \operatorname{spec}\left(A_{n}\right)\right)=0\right\}
$$

i.e.,

$$
\lambda \in \Lambda(A) \quad \Leftrightarrow \quad \exists\left\{n_{k}\right\} \quad \nearrow \infty \quad \exists \lambda_{k} \in \operatorname{spec}\left(A_{n_{k}}\right) \quad \text { s.t. } \lambda_{k} \rightarrow \lambda .
$$

$Q_{2}$ : At what asymptotic density the eigenvalues of $A_{n}$ cluster as $n \rightarrow \infty$ ?

- The eigenvalue-counting measure:

$$
\mu_{n}:=\frac{1}{n} \sum_{\lambda \in \operatorname{spec}\left(A_{n}\right)} \delta_{\lambda} .
$$

## General concept of the problem

- Assume a sequence of $n \times n$ matrices $\left\{A_{n}\right\}_{n \geq 1}$ is given.
$Q_{1}:$ Where the eigenvalues of $A_{n}$ cluster as $n \rightarrow \infty$ ?
- Limit points of eigenvalues:

$$
\Lambda(A):=\left\{\lambda \in \mathbb{C} \mid \liminf _{n \rightarrow \infty} \operatorname{dist}\left(\lambda, \operatorname{spec}\left(A_{n}\right)\right)=0\right\}
$$

i.e.,

$$
\lambda \in \Lambda(A) \quad \Leftrightarrow \quad \exists\left\{n_{k}\right\} \quad \nearrow \infty \quad \exists \lambda_{k} \in \operatorname{spec}\left(A_{n_{k}}\right) \quad \text { s.t. } \lambda_{k} \rightarrow \lambda .
$$

$Q_{2}$ : At what asymptotic density the eigenvalues of $A_{n}$ cluster as $n \rightarrow \infty$ ?

- The eigenvalue-counting measure:

$$
\mu_{n}:=\frac{1}{n} \sum_{\lambda \in \operatorname{spec}\left(A_{n}\right)} \delta_{\lambda} .
$$

- AED $\mu$ :

$$
\mu_{n} \xrightarrow{w} \mu, \quad \text { i.e., } \forall \varphi \in C_{0}(\mathbb{C}): \int_{\mathbb{C}} \varphi \mathrm{d} \mu_{n} \rightarrow \int_{\mathbb{C}} \varphi \mathrm{d} \mu .
$$

## Contents

(1) Self-adjoint Toeplitz matrices

2 Non-self-adjoint banded Toeplitz matrices
(3) Self-adjoint KMS matrices
4. Non-Self-adjoint KMS matrices

## Toeplitz matrices

- Toeplitz matrix:

$$
T_{n}(a)=\left(a_{j-k}\right)_{j, k=0}^{n-1}=\left(\begin{array}{ccccc}
a_{0} & a_{-1} & a_{-2} & \ldots & a_{-n+1} \\
a_{1} & a_{0} & a_{-1} & \ldots & a_{-n+2} \\
a_{2} & a_{1} & a_{0} & \ldots & a_{-n+3} \\
\cdots & \ldots & \ldots & \ldots & \ldots \\
a_{n-1} & a_{n-2} & a_{n-3} & \cdots & a_{0}
\end{array}\right),
$$

where $a_{n} \in \mathbb{C}$.

## Toeplitz matrices

- Toeplitz matrix:

$$
T_{n}(a)=\left(a_{j-k}\right)_{j, k=0}^{n-1}=\left(\begin{array}{ccccc}
a_{0} & a_{-1} & a_{-2} & \ldots & a_{-n+1} \\
a_{1} & a_{0} & a_{-1} & \ldots & a_{-n+2} \\
a_{2} & a_{1} & a_{0} & \ldots & a_{-n+3} \\
\cdots & \ldots & \ldots & \cdots & \ldots \\
a_{n-1} & a_{n-2} & a_{n-3} & \cdots & a_{0}
\end{array}\right)
$$

where $a_{n} \in \mathbb{C}$.

- Symbol of $T(a)$ :

$$
a(z)=\sum_{k=-\infty}^{\infty} a_{k} z^{k}
$$

## Toeplitz matrices

- Toeplitz matrix:

$$
T_{n}(a)=\left(a_{j-k}\right)_{j, k=0}^{n-1}=\left(\begin{array}{ccccc}
a_{0} & a_{-1} & a_{-2} & \ldots & a_{-n+1} \\
a_{1} & a_{0} & a_{-1} & \ldots & a_{-n+2} \\
a_{2} & a_{1} & a_{0} & \ldots & a_{-n+3} \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
a_{n-1} & a_{n-2} & a_{n-3} & \ldots & a_{0}
\end{array}\right)
$$

where $a_{n} \in \mathbb{C}$.

- Symbol of $T(a)$ :

$$
a(z)=\sum_{k=-\infty}^{\infty} a_{k} z^{k}
$$

- Assumptions:

$$
\text { 1) } \sum_{k=-\infty}^{\infty}\left|a_{k}\right|<\infty
$$

## Toeplitz matrices

- Toeplitz matrix:

$$
T_{n}(a)=\left(a_{j-k}\right)_{j, k=0}^{n-1}=\left(\begin{array}{ccccc}
a_{0} & a_{-1} & a_{-2} & \ldots & a_{-n+1} \\
a_{1} & a_{0} & a_{-1} & \ldots & a_{-n+2} \\
a_{2} & a_{1} & a_{0} & \ldots & a_{-n+3} \\
\cdots & \ldots & \ldots & \ldots & \ldots \\
a_{n-1} & a_{n-2} & a_{n-3} & \cdots & a_{0}
\end{array}\right)
$$

where $a_{n} \in \mathbb{C}$.

- Symbol of $T(a)$ :

$$
a(z)=\sum_{k=-\infty}^{\infty} a_{k} z^{k}
$$

- Assumptions:

$$
\begin{array}{ll}
\text { 1) } \sum_{k=-\infty}^{\infty}\left|a_{k}\right|<\infty \\
& \\
\text { 2) } a_{-k}=\overline{a_{k}}, \quad \forall k \in \mathbb{Z} & \Leftrightarrow \quad a(\mathbb{T}) \subset \mathbb{R} \\
& \Leftrightarrow \quad T_{n}(a)=\left(T_{n}(a)\right)^{*}, \quad \forall n \in \mathbb{N} .
\end{array}
$$

## Limit points of eigenvalues

- One has

$$
T_{n}(a) \xrightarrow{s} T(a) \quad \text { in } \ell^{2}(\mathbb{N})
$$

where $T(a)$ is the bounded operator given by the respective semi-infinite Toeplitz matrix and $T_{n}(a)$ is identified with $P_{n} T(a) P_{n}$ where $P_{n}$ is the $O G$ projection onto $\operatorname{span}\left\{e_{1}, \ldots, e_{n}\right\}$.

## Limit points of eigenvalues

- One has

$$
T_{n}(a) \xrightarrow{s} T(a) \quad \text { in } \ell^{2}(\mathbb{N})
$$

where $T(a)$ is the bounded operator given by the respective semi-infinite Toeplitz matrix and $T_{n}(a)$ is identified with $P_{n} T(a) P_{n}$ where $P_{n}$ is the OG projection onto $\operatorname{span}\left\{e_{1}, \ldots, e_{n}\right\}$.

- Consequently,

$$
\operatorname{spec} T(a) \subset \Lambda(T(a))
$$

## Limit points of eigenvalues

- One has

$$
T_{n}(a) \xrightarrow{s} T(a) \quad \text { in } \ell^{2}(\mathbb{N})
$$

where $T(a)$ is the bounded operator given by the respective semi-infinite Toeplitz matrix and $T_{n}(a)$ is identified with $P_{n} T(a) P_{n}$ where $P_{n}$ is the OG projection onto $\operatorname{span}\left\{e_{1}, \ldots, e_{n}\right\}$.

- Consequently,

$$
\operatorname{spec} T(a) \subset \Lambda(T(a))
$$

- In fact,

$$
\operatorname{spec} T(a)=\Lambda(T(a))
$$

## Limit points of eigenvalues

- One has

$$
T_{n}(a) \xrightarrow{s} T(a) \quad \text { in } \ell^{2}(\mathbb{N})
$$

where $T(a)$ is the bounded operator given by the respective semi-infinite Toeplitz matrix and $T_{n}(a)$ is identified with $P_{n} T(a) P_{n}$ where $P_{n}$ is the OG projection onto $\operatorname{span}\left\{e_{1}, \ldots, e_{n}\right\}$.

- Consequently,

$$
\operatorname{spec} T(a) \subset \Lambda(T(a))
$$

- In fact,

$$
\text { spec } T(a)=\Lambda(T(a))
$$

- O. Toeplitz (1911), N. Wiener (1932):

$$
\operatorname{spec} T(a)=\left[\min _{z \in \mathbb{T}} a(z), \max _{z \in \mathbb{T}} a(z)\right]
$$

## Limit points of eigenvalues

- One has

$$
T_{n}(a) \xrightarrow{s} T(a) \quad \text { in } \ell^{2}(\mathbb{N})
$$

where $T(a)$ is the bounded operator given by the respective semi-infinite Toeplitz matrix and $T_{n}(a)$ is identified with $P_{n} T(a) P_{n}$ where $P_{n}$ is the OG projection onto $\operatorname{span}\left\{e_{1}, \ldots, e_{n}\right\}$.

- Consequently,

$$
\operatorname{spec} T(a) \subset \Lambda(T(a))
$$

- In fact,

$$
\operatorname{spec} T(a)=\Lambda(T(a))
$$

- O. Toeplitz (1911), N. Wiener (1932):

$$
\operatorname{spec} T(a)=\left[\min _{z \in \mathbb{T}} a(z), \max _{z \in \mathbb{T}} a(z)\right]
$$

- In total, for s.-a. Toeplitz from the Wiener class it holds that

$$
\Lambda(T(a))=\operatorname{spec} T(a)=\left[\min _{z \in \mathbb{T}} a(z), \max _{z \in \mathbb{T}} a(z)\right]
$$

## AED for s.-a. Toeplitz matrices

- The Szegő first limit theorem:

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \operatorname{Tr}\left(T_{n}(a)\right)^{k}=\frac{1}{2 \pi} \int_{0}^{2 \pi} a^{k}\left(e^{\mathrm{i} t}\right) \mathrm{d} t, \quad \forall k \in \mathbb{N} .
$$

## AED for s.-a. Toeplitz matrices

- The Szegő first limit theorem:

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \operatorname{Tr}\left(T_{n}(a)\right)^{k}=\frac{1}{2 \pi} \int_{0}^{2 \pi} a^{k}\left(e^{\mathrm{it}}\right) \mathrm{d} t, \quad \forall k \in \mathbb{N} .
$$

- Reformulation:

$$
\lim _{n \rightarrow \infty} \int_{\mathbb{R}} x^{k} \mathrm{~d} \mu_{n}(x)=\int_{\mathbb{R}} x^{k} \mathrm{~d} \mu(x), \quad \forall k \in \mathbb{N}
$$

where

$$
\mu((\alpha, \beta))=(2 \pi)^{-1}\left|\left\{t \in[0,2 \pi] \mid \alpha<a\left(e^{\mathrm{it}}\right)<\beta\right\}\right| .
$$

## AED for s.-a. Toeplitz matrices

- The Szegő first limit theorem:

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \operatorname{Tr}\left(T_{n}(a)\right)^{k}=\frac{1}{2 \pi} \int_{0}^{2 \pi} a^{k}\left(e^{\mathrm{it}}\right) \mathrm{d} t, \quad \forall k \in \mathbb{N}
$$

- Reformulation:

$$
\lim _{n \rightarrow \infty} \int_{\mathbb{R}} x^{k} \mathrm{~d} \mu_{n}(x)=\int_{\mathbb{R}} x^{k} \mathrm{~d} \mu(x), \quad \forall k \in \mathbb{N}
$$

where

$$
\mu((\alpha, \beta))=(2 \pi)^{-1}\left|\left\{t \in[0,2 \pi] \mid \alpha<a\left(e^{\mathrm{i} t}\right)<\beta\right\}\right| .
$$

- Applying Stone-Weierstrass, we get the AED:

$$
\lim _{n \rightarrow \infty} \int_{\mathbb{R}} \varphi(x) \mathrm{d} \mu_{n}(x)=\int_{\mathbb{R}} \varphi(x) \mathrm{d} \mu(x), \quad \forall \varphi \in C(\mathbb{R})
$$

i.e., $\mu_{n} \xrightarrow{w} \mu$.

## AED for s.-a. Toeplitz matrices

- The Szegő first limit theorem:

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \operatorname{Tr}\left(T_{n}(a)\right)^{k}=\frac{1}{2 \pi} \int_{0}^{2 \pi} a^{k}\left(e^{\mathrm{it}}\right) \mathrm{d} t, \quad \forall k \in \mathbb{N} .
$$

- Reformulation:

$$
\lim _{n \rightarrow \infty} \int_{\mathbb{R}} x^{k} \mathrm{~d} \mu_{n}(x)=\int_{\mathbb{R}} x^{k} \mathrm{~d} \mu(x), \quad \forall k \in \mathbb{N}
$$

where

$$
\mu((\alpha, \beta))=(2 \pi)^{-1}\left|\left\{t \in[0,2 \pi] \mid \alpha<a\left(e^{\mathrm{i} t}\right)<\beta\right\}\right| .
$$

- Applying Stone-Weierstrass, we get the AED:

$$
\lim _{n \rightarrow \infty} \int_{\mathbb{R}} \varphi(x) \mathrm{d} \mu_{n}(x)=\int_{\mathbb{R}} \varphi(x) \mathrm{d} \mu(x), \quad \forall \varphi \in C(\mathbb{R})
$$

i.e., $\mu_{n} \xrightarrow{w} \mu$.

- Roughly speaking:
"For $n$ large, the eigenvalues of $T_{n}(a)$ are distributed as the values of $t \mapsto a\left(e^{\mathrm{it}}\right)$."


## A numerical illustration

Example:

$$
a(z)=z^{-2}-2 z^{-1}-2 z+z^{2}
$$

## A numerical illustration

## Example:

$$
a(z)=z^{-2}-2 z^{-1}-2 z+z^{2}
$$

This means

$$
T(a)=\left(\begin{array}{ccccccccc}
0 & -2 & 1 & & & & & & \\
-2 & 0 & -2 & 1 & & & & & \\
1 & -2 & 0 & -2 & 1 & & & & \\
& 1 & -2 & 0 & -2 & 1 & & & \\
& & 1 & -2 & 0 & -2 & 1 & & \\
& & & 1 & -2 & 0 & -2 & 1 & \\
& & & & \ddots & \ddots & \ddots & \ddots & \ddots
\end{array}\right)
$$

## A numerical illustration

Example:

$$
a(z)=z^{-2}-2 z^{-1}-2 z+z^{2} .
$$



## Contents

## (1) Self-adjoint Toeplitz matrices

(2) Non-self-adjoint banded Toeplitz matrices
(3) Self-adjoint KMS matrices
4. Non-Self-adjoint KMS matrices

## Banded Toeplitz matrices

- Next, we do not require self-adjointness.


## Banded Toeplitz matrices

- Next, we do not require self-adjointness.
- But we have to pay for this by restricting to banded Toeplitz matrices only.


## Banded Toeplitz matrices

- Next, we do not require self-adjointness.
- But we have to pay for this by restricting to banded Toeplitz matrices only.
- The symbol:

$$
b(z)=\sum_{j=-r}^{s} a_{j} z^{j}, \quad r, s \geq 1
$$

where $a_{j} \in \mathbb{C}$ and $a_{-r} a_{s} \neq 0$.

## Banded Toeplitz matrices

- Next, we do not require self-adjointness.
- But we have to pay for this by restricting to banded Toeplitz matrices only.
- The symbol:

$$
b(z)=\sum_{j=-r}^{s} a_{j} z^{j}, \quad r, s \geq 1
$$

where $a_{j} \in \mathbb{C}$ and $a_{-r} a_{s} \neq 0$.

- The spectrum of $T(b)$ :

$$
\operatorname{spec} T(b)=b(\mathbb{T}) \cup\{\lambda \in \mathbb{C} \mid \operatorname{wind}(b-\lambda) \neq 0\}
$$

(This is true for symbols from the Wiener class.)

## Banded Toeplitz matrices

- Next, we do not require self-adjointness.
- But we have to pay for this by restricting to banded Toeplitz matrices only.
- The symbol:

$$
b(z)=\sum_{j=-r}^{s} a_{j} z^{j}, \quad r, s \geq 1
$$

where $a_{j} \in \mathbb{C}$ and $a_{-r} a_{s} \neq 0$.

- The spectrum of $T(b)$ :

$$
\operatorname{spec} T(b)=b(\mathbb{T}) \cup\{\lambda \in \mathbb{C} \mid \text { wind }(b-\lambda) \neq 0\}
$$

(This is true for symbols from the Wiener class.)

- The relation between spec $T(b)$ and $\Lambda(T(b)) \ldots$ [ numerical illustration ].


## A numerical illustration

Example:

$$
b(z)=3 \mathrm{i} z^{-1}-(1+2 \mathrm{i}) z^{2}+(1+\mathrm{i}) z^{3}-(1-\mathrm{i}) z^{5}
$$



## Limit points and spectrum

- One has

$$
\Lambda(T(b)) \subset \operatorname{spec}(T(b))
$$

(A consequence of Baxter, Gohberg, and Feldmann thm.)

## Limit points and spectrum

- One has

$$
\Lambda(T(b)) \subset \operatorname{spec}(T(b))
$$

(A consequence of Baxter, Gohberg, and Feldmann thm.)

- The opposite inclusion does not hold.


## Limit points and spectrum

- One has

$$
\Lambda(T(b)) \subset \operatorname{spec}(T(b))
$$

(A consequence of Baxter, Gohberg, and Feldmann thm.)

- The opposite inclusion does not hold.
- But one has

$$
\Lambda(T(b))=\bigcap_{\rho>0} \operatorname{spec}\left(T\left(b_{\rho}\right)\right)
$$

where

$$
b_{\rho}(z):=b(\rho z)
$$

## The set of limit points of eigenvalues of banded Toeplitz matrices

- There is a much more useful description of $\Lambda(T(b))$.


## The set of limit points of eigenvalues of banded Toeplitz matrices

- There is a much more useful description of $\Lambda(T(b))$.
- Recall

$$
b(z)=\sum_{j=-r}^{s} a_{j} z^{j} \quad \text { and define: } \quad Q(z ; \lambda):=z^{r}(b(z)-\lambda) .
$$

## The set of limit points of eigenvalues of banded Toeplitz matrices

- There is a much more useful description of $\Lambda(T(b))$.
- Recall

$$
b(z)=\sum_{j=-r}^{s} a_{j} z^{j} \quad \text { and define: } \quad Q(z ; \lambda):=z^{r}(b(z)-\lambda) .
$$

- $Q(z ; \lambda)$ is polynomial in $z$ of degree $r+s$.


## The set of limit points of eigenvalues of banded Toeplitz matrices

- There is a much more useful description of $\Lambda(T(b))$.
- Recall

$$
b(z)=\sum_{j=-r}^{s} a_{j} z^{j} \quad \text { and define: } \quad Q(z ; \lambda):=z^{r}(b(z)-\lambda) .
$$

- $Q(z ; \lambda)$ is polynomial in $z$ of degree $r+s$.
- Denote $z_{1}(\lambda), \ldots, z_{r+s}(\lambda)$ the zeros of $Q(\cdot, \lambda)$, repeated according to their multiplicity, labeled such that

$$
\left|z_{1}(\lambda)\right| \leq\left|z_{2}(\lambda)\right| \leq \ldots\left|z_{r+s}(\lambda)\right| .
$$

## The set of limit points of eigenvalues of banded Toeplitz matrices

- There is a much more useful description of $\Lambda(T(b))$.
- Recall

$$
b(z)=\sum_{j=-r}^{s} a_{j} z^{j} \quad \text { and define: } \quad Q(z ; \lambda):=z^{r}(b(z)-\lambda) .
$$

- $Q(z ; \lambda)$ is polynomial in $z$ of degree $r+s$.
- Denote $z_{1}(\lambda), \ldots, z_{r+s}(\lambda)$ the zeros of $Q(\cdot, \lambda)$, repeated according to their multiplicity, labeled such that

$$
\left|z_{1}(\lambda)\right| \leq\left|z_{2}(\lambda)\right| \leq \ldots\left|z_{r+s}(\lambda)\right| .
$$

Theorem (Schmidt and Spitzer, 1960):

$$
\Lambda(T(b))=\left\{\lambda \in \mathbb{C}| | z_{r}(\lambda)\left|=\left|z_{r+1}(\lambda)\right|\right\} .\right.
$$

## The set of limit points of eigenvalues of banded Toeplitz matrices

- There is a much more useful description of $\Lambda(T(b))$.
- Recall

$$
b(z)=\sum_{j=-r}^{s} a_{j} z^{j} \quad \text { and define: } \quad Q(z ; \lambda):=z^{r}(b(z)-\lambda) .
$$

- $Q(z ; \lambda)$ is polynomial in $z$ of degree $r+s$.
- Denote $z_{1}(\lambda), \ldots, z_{r+s}(\lambda)$ the zeros of $Q(\cdot, \lambda)$, repeated according to their multiplicity, labeled such that

$$
\left|z_{1}(\lambda)\right| \leq\left|z_{2}(\lambda)\right| \leq \ldots\left|z_{r+s}(\lambda)\right| .
$$

Theorem (Schmidt and Spitzer, 1960):

$$
\Lambda(T(b))=\left\{\lambda \in \mathbb{C}| | z_{r}(\lambda)\left|=\left|z_{r+1}(\lambda)\right|\right\}\right.
$$

Based on this description of $\Lambda(T(b))$, one can show that $\ldots$

## The set of limit points of eigenvalues of banded Toeplitz matrices

- There is a much more useful description of $\Lambda(T(b))$.
- Recall

$$
b(z)=\sum_{j=-r}^{s} a_{j} z^{j} \quad \text { and define: } \quad Q(z ; \lambda):=z^{r}(b(z)-\lambda) .
$$

- $Q(z ; \lambda)$ is polynomial in $z$ of degree $r+s$.
- Denote $z_{1}(\lambda), \ldots, z_{r+s}(\lambda)$ the zeros of $Q(\cdot, \lambda)$, repeated according to their multiplicity, labeled such that

$$
\left|z_{1}(\lambda)\right| \leq\left|z_{2}(\lambda)\right| \leq \ldots\left|z_{r+s}(\lambda)\right| .
$$

Theorem (Schmidt and Spitzer, 1960):

$$
\Lambda(T(b))=\left\{\lambda \in \mathbb{C}| | z_{r}(\lambda)\left|=\left|z_{r+1}(\lambda)\right|\right\} .\right.
$$

Based on this description of $\Lambda(T(b))$, one can show that $\ldots$
Theorem (Schmidt, Spitzer, Ullman, 1960-67):
$\Lambda(T(b))$ is a connected set that equals the union of a finite number of pairwise disjoint open analytic arcs and a finite number of the so-called exceptional points (roughly speaking: branching points and endpoints).

## The example once more



## AED for the banded Toeplitz matrices

- The formula for AED for s.-a. Toeplitz matrices followed from the first Szegő limit formula:

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \operatorname{Tr}\left(T_{n}(b)\right)^{k}=\frac{1}{2 \pi} \int_{0}^{2 \pi} b^{k}\left(e^{i t}\right) \mathrm{d} t, \quad \forall k \in \mathbb{N} .
$$

## AED for the banded Toeplitz matrices

- The formula for AED for s.-a. Toeplitz matrices followed from the first Szegő limit formula:

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \operatorname{Tr}\left(T_{n}(b)\right)^{k}=\frac{1}{2 \pi} \int_{0}^{2 \pi} b^{k}\left(e^{\mathrm{it}}\right) \mathrm{d} t, \quad \forall k \in \mathbb{N}
$$

- M. Kac (1954) proved that the above formula holds also when the self-adjointness is relaxed.


## AED for the banded Toeplitz matrices

- The formula for AED for s.-a. Toeplitz matrices followed from the first Szegő limit formula:

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \operatorname{Tr}\left(T_{n}(b)\right)^{k}=\frac{1}{2 \pi} \int_{0}^{2 \pi} b^{k}\left(e^{i t}\right) \mathrm{d} t, \quad \forall k \in \mathbb{N} .
$$

- M. Kac (1954) proved that the above formula holds also when the self-adjointness is relaxed.
- However, it cannot be extended from polynomials to continuous functions because $\mathbb{C}[z]$ is not dense in $C_{0}(\mathbb{C})$.


## AED for the banded Toeplitz matrices

- The formula for AED for s.-a. Toeplitz matrices followed from the first Szegő limit formula:

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \operatorname{Tr}\left(T_{n}(b)\right)^{k}=\frac{1}{2 \pi} \int_{0}^{2 \pi} b^{k}\left(e^{\mathrm{it}}\right) \mathrm{d} t, \quad \forall k \in \mathbb{N}
$$

- M. Kac (1954) proved that the above formula holds also when the self-adjointness is relaxed.
- However, it cannot be extended from polynomials to continuous functions because $\mathbb{C}[z]$ is not dense in $C_{0}(\mathbb{C})$.
- The derivation of AED in the non-self-adjoint case is based on a more detailed asymptotic analysis of the determinant of Toeplitz matrices (Szegő, Widom):


## AED for the banded Toeplitz matrices

- The formula for AED for s.-a. Toeplitz matrices followed from the first Szegő limit formula:

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \operatorname{Tr}\left(T_{n}(b)\right)^{k}=\frac{1}{2 \pi} \int_{0}^{2 \pi} b^{k}\left(e^{\mathrm{it}}\right) \mathrm{d} t, \quad \forall k \in \mathbb{N}
$$

- M. Kac (1954) proved that the above formula holds also when the self-adjointness is relaxed.
- However, it cannot be extended from polynomials to continuous functions because $\mathbb{C}[z]$ is not dense in $C_{0}(\mathbb{C})$.
- The derivation of AED in the non-self-adjoint case is based on a more detailed asymptotic analysis of the determinant of Toeplitz matrices (Szegő, Widom):


## Proposition:

There is a smooth function $g: \mathbb{C} \backslash \Lambda(T(b))$ such that

$$
\lim _{n \rightarrow \infty}\left|\operatorname{det}\left(T_{n}(b)-\lambda\right)\right|^{1 / n}=g(\lambda)
$$ locally uniformly in $\mathbb{C} \backslash \Lambda(T(b))$.

## AED for the banded Toeplitz matrices

- The formula for AED for s.-a. Toeplitz matrices followed from the first Szegő limit formula:

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \operatorname{Tr}\left(T_{n}(b)\right)^{k}=\frac{1}{2 \pi} \int_{0}^{2 \pi} b^{k}\left(e^{\mathrm{it}}\right) \mathrm{d} t, \quad \forall k \in \mathbb{N}
$$

- M. Kac (1954) proved that the above formula holds also when the self-adjointness is relaxed.
- However, it cannot be extended from polynomials to continuous functions because $\mathbb{C}[z]$ is not dense in $C_{0}(\mathbb{C})$.
- The derivation of AED in the non-self-adjoint case is based on a more detailed asymptotic analysis of the determinant of Toeplitz matrices (Szegő, Widom):


## Proposition:

There is a smooth function $g: \mathbb{C} \backslash \Lambda(T(b))$ such that

$$
\lim _{n \rightarrow \infty}\left|\operatorname{det}\left(T_{n}(b)-\lambda\right)\right|^{1 / n}=g(\lambda)
$$

locally uniformly in $\mathbb{C} \backslash \Lambda(T(b))$. In addition, one has

$$
g(\lambda)=\exp \left(\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|b\left(\rho \mathrm{e}^{\mathrm{i} t}\right)-\lambda\right| \mathrm{d} t\right)
$$

where $\left|z_{r}(\lambda)\right|<\rho<\left|z_{r+1}(\lambda)\right| . \quad$ (Recall $\left.\lambda \in \Lambda(T(b)) \Leftrightarrow\left|z_{r}(\lambda)\right|=\left|z_{r+1}(\lambda)\right|.\right)$

## Hirschman's formula for AED

Theorem (Hirschman Jr., 1967):
For a banded Toeplitz matrices, the AED $\mu$ exists and is absolutely continuous. On each analytic arc of $\Lambda(T(b))$, its density reads

$$
\frac{\mathrm{d} \mu}{\mathrm{~d} s}(\lambda)=\frac{1}{2 \pi} \frac{1}{g(\lambda)}\left|\frac{\partial g}{\partial \vec{n}}(\lambda+)-\frac{\partial g}{\partial \vec{n}}(\lambda-)\right|
$$

where ds stands for the arc-length measure on the respective arc and $\partial g / \partial \vec{n}(\lambda \pm)$ are one-sided limits of the directional derivative $\partial g / \partial \vec{n}$ w.r.t. a unit normal vector to the arc at $\lambda$ (depends on a chosen orientation but the formula for the density does not).

## Final comments on Toeplitz matrices

- All the essential results for the limiting set $\Lambda(T(b))$ (Schmidt \& Spitzer) and the limiting measure $\mu$ (Hirschman) concern banded Toeplitz matrices only.


## Final comments on Toeplitz matrices

- All the essential results for the limiting set $\Lambda(T(b))$ (Schmidt \& Spitzer) and the limiting measure $\mu$ (Hirschman) concern banded Toeplitz matrices only.
- K. Michael Day (1975) generalized these two results for Toeplitz matrices with rational symbol.


## Final comments on Toeplitz matrices

- All the essential results for the limiting set $\Lambda(T(b))$ (Schmidt \& Spitzer) and the limiting measure $\mu$ (Hirschman) concern banded Toeplitz matrices only.
- K. Michael Day (1975) generalized these two results for Toeplitz matrices with rational symbol.
- But there are still a lot of matrices in the Wienner class but not with a rational symbol and basically nothing is known for them...


## Final comments on Toeplitz matrices

- All the essential results for the limiting set $\Lambda(T(b))$ (Schmidt \& Spitzer) and the limiting measure $\mu$ (Hirschman) concern banded Toeplitz matrices only.
- K. Michael Day (1975) generalized these two results for Toeplitz matrices with rational symbol.
- But there are still a lot of matrices in the Wienner class but not with a rational symbol and basically nothing is known for them...


## Open problem:

Can one deduce a description of
(1) the set $\Lambda(T(a)) /$ generalize Schmidt and Spitzer's result
(2) the AED $\mu /$ generalize Hirschman's result for some non-rational symbols?

## Contents

## (4) Self-adjoint Toeplitz matrices

2 Non-self-adjoint banded Toeplitz matrices
(3) Self-adjoint KMS matrices
4. Non-Self-adjoint KMS matrices

## KMS matrix

- Let $a_{k} \in C([0,1])$ are given for all $k \in \mathbb{Z}$.


## KMS matrix

- Let $a_{k} \in C([0,1])$ are given for all $k \in \mathbb{Z}$.
- The KMS matrix:

$$
T_{n}(a)=\left(a_{j-k}\left(\frac{1+\min (j, k)}{n}\right)\right)_{j, k=0}^{n-1}
$$

i.e.,

$$
T_{n}(a)=\left(\begin{array}{ccccc}
a_{0}\left(\frac{1}{n}\right) & a_{-1}\left(\frac{1}{n}\right) & a_{-2}\left(\frac{1}{n}\right) & \ldots & a_{-n+1}\left(\frac{1}{n}\right) \\
a_{1}\left(\frac{1}{n}\right) & a_{0}\left(\frac{2}{n}\right) & a_{-1}\left(\frac{2}{n}\right) & \ldots & a_{-n+2}\left(\frac{2}{n}\right) \\
a_{2}\left(\frac{1}{n}\right) & a_{1}\left(\frac{2}{n}\right) & a_{0}\left(\frac{3}{n}\right) & \ldots & a_{-n+3}\left(\frac{3}{n}\right) \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
a_{n-1}\left(\frac{1}{n}\right) & a_{n-2}\left(\frac{2}{n}\right) & a_{n-3}\left(\frac{3}{n}\right) & \ldots & a_{0}\left(\frac{n}{n}\right)
\end{array}\right) .
$$

## KMS matrix

- Let $a_{k} \in C([0,1])$ are given for all $k \in \mathbb{Z}$.
- The KMS matrix:

$$
T_{n}(a)=\left(a_{j-k}\left(\frac{1+\min (j, k)}{n}\right)\right)_{j, k=0}^{n-1}
$$

i.e.,

$$
T_{n}(a)=\left(\begin{array}{ccccc}
a_{0}\left(\frac{1}{n}\right) & a_{-1}\left(\frac{1}{n}\right) & a_{-2}\left(\frac{1}{n}\right) & \ldots & a_{-n+1}\left(\frac{1}{n}\right) \\
a_{1}\left(\frac{1}{n}\right) & a_{0}\left(\frac{2}{n}\right) & a_{-1}\left(\frac{2}{n}\right) & \ldots & a_{-n+2}\left(\frac{2}{n}\right) \\
a_{2}\left(\frac{1}{n}\right) & a_{1}\left(\frac{2}{n}\right) & a_{0}\left(\frac{3}{n}\right) & \ldots & a_{-n+3}\left(\frac{3}{n}\right) \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
a_{n-1}\left(\frac{1}{n}\right) & a_{n-2}\left(\frac{2}{n}\right) & a_{n-3}\left(\frac{3}{n}\right) & \ldots & a_{0}\left(\frac{n}{n}\right)
\end{array}\right) .
$$

- Introduced and studied by M. Kac, W. L, Murdock, and G. Szegő in 1953 (called generalized Toeplitz). For $a_{k}(x)=a_{k}, T_{n}(a)$ is a Toeplitz matrix.


## KMS matrix

- Let $a_{k} \in C([0,1])$ are given for all $k \in \mathbb{Z}$.
- The KMS matrix:

$$
T_{n}(a)=\left(a_{j-k}\left(\frac{1+\min (j, k)}{n}\right)\right)_{j, k=0}^{n-1}
$$

i.e.,

$$
T_{n}(a)=\left(\begin{array}{ccccc}
a_{0}\left(\frac{1}{n}\right) & a_{-1}\left(\frac{1}{n}\right) & a_{-2}\left(\frac{1}{n}\right) & \ldots & a_{-n+1}\left(\frac{1}{n}\right) \\
a_{1}\left(\frac{1}{n}\right) & a_{0}\left(\frac{2}{n}\right) & a_{-1}\left(\frac{2}{n}\right) & \ldots & a_{-n+2}\left(\frac{2}{n}\right) \\
a_{2}\left(\frac{1}{n}\right) & a_{1}\left(\frac{2}{n}\right) & a_{0}\left(\frac{3}{n}\right) & \ldots & a_{-n+3}\left(\frac{3}{n}\right) \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
a_{n-1}\left(\frac{1}{n}\right) & a_{n-2}\left(\frac{2}{n}\right) & a_{n-3}\left(\frac{3}{n}\right) & \ldots & a_{0}\left(\frac{n}{n}\right)
\end{array}\right)
$$

- Introduced and studied by M. Kac, W. L, Murdock, and G. Szegő in 1953 (called generalized Toeplitz). For $a_{k}(x)=a_{k}, T_{n}(a)$ is a Toeplitz matrix.
- Later appeared several times again and some results from Kac, Murdock, and Szegő were rediscovered:


## KMS matrix

- Let $a_{k} \in C([0,1])$ are given for all $k \in \mathbb{Z}$.
- The KMS matrix:

$$
T_{n}(a)=\left(a_{j-k}\left(\frac{1+\min (j, k)}{n}\right)\right)_{j, k=0}^{n-1}
$$

i.e.,

$$
T_{n}(a)=\left(\begin{array}{ccccc}
a_{0}\left(\frac{1}{n}\right) & a_{-1}\left(\frac{1}{n}\right) & a_{-2}\left(\frac{1}{n}\right) & \ldots & a_{-n+1}\left(\frac{1}{n}\right) \\
a_{1}\left(\frac{1}{n}\right) & a_{0}\left(\frac{2}{n}\right) & a_{-1}\left(\frac{2}{n}\right) & \ldots & a_{-n+2}\left(\frac{2}{n}\right) \\
a_{2}\left(\frac{1}{n}\right) & a_{1}\left(\frac{2}{n}\right) & a_{0}\left(\frac{3}{n}\right) & \ldots & a_{-n+3}\left(\frac{3}{n}\right) \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
a_{n-1}\left(\frac{1}{n}\right) & a_{n-2}\left(\frac{2}{n}\right) & a_{n-3}\left(\frac{3}{n}\right) & \ldots & a_{0}\left(\frac{n}{n}\right)
\end{array}\right)
$$

- Introduced and studied by M. Kac, W. L, Murdock, and G. Szegő in 1953 (called generalized Toeplitz). For $a_{k}(x)=a_{k}, T_{n}(a)$ is a Toeplitz matrix.
- Later appeared several times again and some results from Kac, Murdock, and Szegő were rediscovered:
(1) P. Tilli, 1998: motivation: discretization of 1D S.-L. operator $\rightsquigarrow$ theory of locally Toeplitz sequences, applications in PDEs (Garoni, Serra-Capizzano, 2017).


## KMS matrix

- Let $a_{k} \in C([0,1])$ are given for all $k \in \mathbb{Z}$.
- The KMS matrix:

$$
T_{n}(a)=\left(a_{j-k}\left(\frac{1+\min (j, k)}{n}\right)\right)_{j, k=0}^{n-1}
$$

i.e.,

$$
T_{n}(a)=\left(\begin{array}{ccccc}
a_{0}\left(\frac{1}{n}\right) & a_{-1}\left(\frac{1}{n}\right) & a_{-2}\left(\frac{1}{n}\right) & \ldots & a_{-n+1}\left(\frac{1}{n}\right) \\
a_{1}\left(\frac{1}{n}\right) & a_{0}\left(\frac{2}{n}\right) & a_{-1}\left(\frac{2}{n}\right) & \ldots & a_{-n+2}\left(\frac{2}{n}\right) \\
a_{2}\left(\frac{1}{n}\right) & a_{1}\left(\frac{2}{n}\right) & a_{0}\left(\frac{3}{n}\right) & \ldots & a_{-n+3}\left(\frac{3}{n}\right) \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
a_{n-1}\left(\frac{1}{n}\right) & a_{n-2}\left(\frac{2}{n}\right) & a_{n-3}\left(\frac{3}{n}\right) & \ldots & a_{0}\left(\frac{n}{n}\right)
\end{array}\right) .
$$

- Introduced and studied by M. Kac, W. L, Murdock, and G. Szegő in 1953 (called generalized Toeplitz). For $a_{k}(x)=a_{k}, T_{n}(a)$ is a Toeplitz matrix.
- Later appeared several times again and some results from Kac, Murdock, and Szegő were rediscovered:
(1) P. Tilli, 1998: motivation: discretization of 1D S.-L. operator $\rightsquigarrow$ theory of locally Toeplitz sequences, applications in PDEs (Garoni, Serra-Capizzano, 2017).
(2) A. Kuijlaars, W. Van Assche, 1999: orthogonal polynomials with variable coefficients.


## Generalized First Szegő Limit Theorem

- The symbol:

$$
a(x, t)=\sum_{k=-\infty}^{\infty} a_{k}(x) e^{\mathrm{i} k t}
$$

## Generalized First Szegő Limit Theorem

- The symbol:

$$
a(x, t)=\sum_{k=-\infty}^{\infty} a_{k}(x) e^{\mathrm{i} k t}
$$

- Assumptions:

$$
\text { 1) } \sum_{k=-\infty}^{\infty}\left\|a_{k}\right\|_{\infty}<\infty
$$

2) $a$ is real-valued
( $\sim$ the Wiener class)

$$
\Leftrightarrow \quad T_{n}(a)=\left(T_{n}(a)\right)^{*}, \quad \forall n \in \mathbb{N} .
$$

## Generalized First Szegő Limit Theorem

- The symbol:

$$
a(x, t)=\sum_{k=-\infty}^{\infty} a_{k}(x) e^{\mathrm{i} k t}
$$

- Assumptions:

$$
\text { 1) } \sum_{k=-\infty}^{\infty}\left\|a_{k}\right\|_{\infty}<\infty
$$

( $\sim$ the Wiener class)
2) $a$ is real-valued

$$
\Leftrightarrow \quad T_{n}(a)=\left(T_{n}(a)\right)^{*}, \quad \forall n \in \mathbb{N} .
$$

Theorem (Kac, Murdock, Szegő, 1953)

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \operatorname{Tr}\left(\varphi\left(T_{n}(a)\right)\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \int_{0}^{1} \varphi(a(x, t)) \mathrm{d} x \mathrm{~d} t, \quad \forall \varphi \in C(\mathbb{R})
$$

## A numerical illustration

Example:

$$
a(x, t)=2 x^{3} e^{-2 i t}+x e^{-\mathrm{i} t}+\left(1-x^{2}\right)+x e^{\mathrm{i} t}+2 x^{3} e^{-2 \mathrm{i} t}
$$



The AED $\mu$ :

$$
\mu((\alpha, \beta))=\frac{1}{2 \pi}|\{(x, t) \in[0,1] \times[0,2 \pi] \mid \alpha<a(x, t)<\beta\}|
$$

## Contents

## (4) Self-adjoint Toeplitz matrices

2 Non-self-adjoint banded Toeplitz matrices
(3) Self-adjoint KMS matrices

4 Non-Self-adjoint KMS matrices

## Non-Self-adjoint KMS matrices

- Similarly as in the case of Toeplitz matrices, we drop the self-adjointness assumption and consider banded KMS matrices.


## Non-Self-adjoint KMS matrices

- Similarly as in the case of Toeplitz matrices, we drop the self-adjointness assumption and consider banded KMS matrices.
- Let us look at the numerics first...


## Example

$$
\begin{gathered}
a(x, t)=\mathrm{ix} e^{-\mathrm{i} t}+3\left(1-x^{2}\right)+\mathrm{i} x e^{\mathrm{i} t} \\
T_{n}(a)=\left(\begin{array}{ccccc}
3-\frac{3}{n^{2}} & \frac{\mathrm{i}}{n} & \\
\frac{\mathrm{i}}{n} & 3-\frac{12}{n^{2}} & \frac{2 \mathrm{i}}{n} & & \\
& \frac{2 \mathrm{i}}{n} & 3-\frac{27}{n^{2}} & \frac{3 \mathrm{i}}{n} & \\
& \ddots & \ddots & \ddots & \ddots \\
& & & \frac{n-1}{n} \mathrm{i} & 3
\end{array}\right),
\end{gathered}
$$

## Example

$$
a(x, t)=\mathrm{i} x e^{-\mathrm{i} t}+3\left(1-x^{2}\right)+\mathrm{i} x e^{\mathrm{i} t}
$$



## Nothing is known :(

- Basically nothing is known about the AED of non-self-adjoint KMS matrices.


## Nothing is known :(

- Basically nothing is known about the AED of non-self-adjoint KMS matrices.
- Based on numerical experiments and the known AED for banded Toeplitz matrices, one can formulate the following conjecture.


## Nothing is known :(

- Basically nothing is known about the AED of non-self-adjoint KMS matrices.
- Based on numerical experiments and the known AED for banded Toeplitz matrices, one can formulate the following conjecture.


## Conjecture

For a banded KMS matrix, $\Lambda(T(a))$ is a connected set that equals a finite union of open analytic arcs and finite number of points. In addition, the AED exists and is supported on $\Lambda(T(a))$.

## Nothing is known :(

- Basically nothing is known about the AED of non-self-adjoint KMS matrices.
- Based on numerical experiments and the known AED for banded Toeplitz matrices, one can formulate the following conjecture.


## Conjecture

For a banded KMS matrix, $\Lambda(T(a))$ is a connected set that equals a finite union of open analytic arcs and finite number of points. In addition, the AED exists and is supported on $\Lambda(T(a))$.

- Our inability to solve this problem in general motivates us to investigate some special cases A research project in collaboration with O. Turek and P. Blaschke, work in progress.


## Nothing is known :(

- Basically nothing is known about the AED of non-self-adjoint KMS matrices.
- Based on numerical experiments and the known AED for banded Toeplitz matrices, one can formulate the following conjecture.


## Conjecture

For a banded KMS matrix, $\Lambda(T(a))$ is a connected set that equals a finite union of open analytic arcs and finite number of points. In addition, the AED exists and is supported on $\Lambda(T(a))$.

- Our inability to solve this problem in general motivates us to investigate some special cases A research project in collaboration with O. Turek and P. Blaschke, work in progress.
The special KMS matrices (Sampling Jacobi matrices):

$$
a(x, t)=\alpha(x) e^{-\mathrm{i} t}+\beta(x)+\alpha(x) e^{\mathrm{i} t}
$$

where $\alpha^{2}, \beta \in \mathbb{C}[x]$ of low degree.

## Nothing is known :(

- Basically nothing is known about the AED of non-self-adjoint KMS matrices.
- Based on numerical experiments and the known AED for banded Toeplitz matrices, one can formulate the following conjecture.


## Conjecture

For a banded KMS matrix, $\Lambda(T(a))$ is a connected set that equals a finite union of open analytic arcs and finite number of points. In addition, the AED exists and is supported on $\Lambda(T(a))$.

- Our inability to solve this problem in general motivates us to investigate some special cases A research project in collaboration with O. Turek and P. Blaschke, work in progress.
The special KMS matrices (Sampling Jacobi matrices):

$$
a(x, t)=\alpha(x) e^{-\mathrm{i} t}+\beta(x)+\alpha(x) e^{\mathrm{i} t}
$$

where $\alpha^{2}, \beta \in \mathbb{C}[x]$ of low degree.

- In this setting, there is a close connection between $\operatorname{det}\left(z-T_{n}(a)\right)$ and the hypergeometric orthogonal polynomials. We make use of some special properties of these polynomials.


## The strategy for the derivation of the limiting measure

## Definition:

The Cauchy transform of a Borel measure $\mu$ is a function defined by

$$
C_{\mu}(z):=\int_{\mathbb{C}} \frac{\mathrm{d} \mu(x)}{z-x}, \quad z \in \mathbb{C} \backslash \operatorname{supp} \mu
$$

## The strategy for the derivation of the limiting measure

## Definition:

The Cauchy transform of a Borel measure $\mu$ is a function defined by

$$
C_{\mu}(z):=\int_{\mathbb{C}} \frac{\mathrm{d} \mu(x)}{z-x}, \quad z \in \mathbb{C} \backslash \operatorname{supp} \mu
$$

If $\mu_{n}$ is the eigenvalue-counting measure and $p_{n}(z)=\operatorname{det}\left(z-T_{n}(a)\right)$, then

$$
C_{\mu_{n}}(z)=\frac{p_{n}^{\prime}(z)}{n p_{n}(z)}
$$

## The strategy for the derivation of the limiting measure

## Definition:

The Cauchy transform of a Borel measure $\mu$ is a function defined by

$$
C_{\mu}(z):=\int_{\mathbb{C}} \frac{\mathrm{d} \mu(x)}{z-x}, \quad z \in \mathbb{C} \backslash \operatorname{supp} \mu
$$

If $\mu_{n}$ is the eigenvalue-counting measure and $p_{n}(z)=\operatorname{det}\left(z-T_{n}(a)\right)$, then

$$
C_{\mu_{n}}(z)=\frac{p_{n}^{\prime}(z)}{n p_{n}(z)}
$$

## Theorem

Let $\mu_{n}$ is a sequence of probability measures supported uniformly in a compact set $K \subset \mathbb{C}$. Assume that

$$
\lim _{n \rightarrow \infty} C_{\mu_{n}}(z)=C(z), \quad \text { a.e. } z \in \mathbb{C} .
$$

Then $C$ is the Cauchy transform of a probability measure $\mu$ which is a weak limit of $\mu_{n}$ for $n \rightarrow \infty$. Moreover, one has

$$
\mu=\frac{1}{\pi} \partial_{\bar{z}} C \quad \text { in the generalized sense. }
$$

## The strategy for the derivation of the limiting measure

- The main difficultly of the strategy: $p_{n}(z) \sim$ ? for $n \rightarrow \infty$.


## The strategy for the derivation of the limiting measure

- The main difficultly of the strategy: $p_{n}(z) \sim$ ? for $n \rightarrow \infty$.
- There are many powerful methods for the asymptotic analysis but it usually requires a more detailed knowledge about $p_{n}$ (generating functions, integral representations, recurrences,...).

An appetizer - one simple example

$$
\left.\begin{array}{lll}
\alpha(x)=\sqrt{a x}, & (a>0), & T_{n}=\left(\begin{array}{ccc}
\beta\left(\frac{1}{n}\right) & \alpha\left(\frac{1}{n}\right) & \\
\\
\alpha\left(\frac{1}{n}\right) & \beta\left(\frac{2}{n}\right) & \alpha\left(\frac{2}{n}\right) \\
& \ddots & \ddots \\
& \ddots(x)=\mathrm{i} x, & \\
& & \alpha\left(\frac{n-1}{n}\right)
\end{array}\right. \\
\beta(1)
\end{array}\right)
$$

## An appetizer - one simple example

- The characteristic polynomial of $T_{n}$ can be identified with the Charlier polynomials:

$$
p_{n}(z)=C_{n}^{(-a n)}(-a n-\mathrm{i} z n-1),
$$

where $C_{n}^{(\alpha)}(x)$ are the Charlier polynomials.

## An appetizer - one simple example

- The characteristic polynomial of $T_{n}$ can be identified with the Charlier polynomials:

$$
p_{n}(z)=C_{n}^{(-a n)}(-a n-\mathrm{i} z n-1),
$$

where $C_{n}^{(\alpha)}(x)$ are the Charlier polynomials.

- Certain nice properties of the Charlier polynomials (representation by contour integrals) allow us to analyze the asymptotic behaviour of $p_{n}(z)$ for $n \rightarrow \infty$.


## An appetizer - one simple example

- The characteristic polynomial of $T_{n}$ can be identified with the Charlier polynomials:

$$
p_{n}(z)=C_{n}^{(-a n)}(-a n-\mathrm{i} z n-1),
$$

where $C_{n}^{(\alpha)}(x)$ are the Charlier polynomials.

- Certain nice properties of the Charlier polynomials (representation by contour integrals) allow us to analyze the asymptotic behaviour of $p_{n}(z)$ for $n \rightarrow \infty$.
- The analysis is very technical (steepest descent, Stokes phenomenon).


## An appetizer - final results

- Define the curve: $\quad \gamma(x):=x+\mathrm{i} y(x), \quad x \in(-2 \sqrt{a}, 2 \sqrt{a})$,
where $y$ is the solution of

$$
y^{\prime}(x)=-\frac{\Im \log \left(\left(1+\xi_{+}\right) /\left(1+\xi_{-}\right)\right)}{\Re \log \left(\left(1+\xi_{+}\right) /\left(1+\xi_{-}\right)\right)}, \quad y(2 \sqrt{a})=1
$$

$\xi_{ \pm}=\xi_{ \pm}(z, a)$ are the two solutions of $a \xi^{2}-(1+\mathrm{i} z) \xi-1=0$, and $z=x+\mathrm{i} y(x)$.

## An appetizer - final results

- Define the curve: $\quad \gamma(x):=x+\mathrm{i} y(x), \quad x \in(-2 \sqrt{a}, 2 \sqrt{a})$,
where $y$ is the solution of

$$
y^{\prime}(x)=-\frac{\Im \log \left(\left(1+\xi_{+}\right) /\left(1+\xi_{-}\right)\right)}{\Re \log \left(\left(1+\xi_{+}\right) /\left(1+\xi_{-}\right)\right)}, \quad y(2 \sqrt{a})=1
$$

$\xi_{ \pm}=\xi_{ \pm}(z, a)$ are the two solutions of $a \xi^{2}-(1+\mathrm{i} z) \xi-1=0$, and $z=x+\mathrm{i} y(x)$.


## An appetizer - final results

- Define the curve: $\quad \gamma(x):=x+\mathrm{i} y(x), \quad x \in(-2 \sqrt{a}, 2 \sqrt{a})$,
where $y$ is the solution of

$$
y^{\prime}(x)=-\frac{\Im \log \left(\left(1+\xi_{+}\right) /\left(1+\xi_{-}\right)\right)}{\Re \log \left(\left(1+\xi_{+}\right) /\left(1+\xi_{-}\right)\right)}, \quad y(2 \sqrt{a})=1
$$

$\xi_{ \pm}=\xi_{ \pm}(z, a)$ are the two solutions of $a \xi^{2}-(1+\mathrm{i} z) \xi-1=0$, and $z=x+\mathrm{i} y(x)$.


- $y_{0}(a)$ is the imaginary coordinate of the intersection of the curve and the imaginary line.

Regime 1: $a>y_{0}(a)$


Regime 2: $a<y_{0}(a)$


## Thank you!

