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0 Function § and its fundamental properties
e Function § and orthogonal polynomials
e Constructing measure of orthogonality

0 Application: Generalized Al-Salam-Carlitz | polynomials
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Function §

Let us define § : Dom § — C by relation

(oo}

=1+ Z( n” Z Z Z Xy Xky +1 Xk Xie+1 -+ Xy Xk +15

k=1 ko=ky+2 km:km,1+2

where
oo
Dom § = {Xk}ii1 cG; Z |Xka+1| < o0
k=1

For a finite number of complex variables let me identify §(x1, X2, . . ., Xn) With F(x) where
X =(X,%,...,Xn,0,0,0,...).
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k=1
For a finite number of complex variables let me identify §(x1, X2, . . ., Xn) With F(x) where
X =(X,%,...,Xn,0,0,0,...).

@ Note Dom § is not a linear space. One has, however, 2(N) C D. Further, § restricted to £2(N)
is a continuous functional (not linear).
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v

@ Note Dom § is not a linear space. One has, however, 2(N) C D. Further, § restricted to £2(N)
is a continuous functional (not linear).

@ Initially, function § have been developed as a tool for spectral analysis of Jacobi operators
from certain class.
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Function §

Definition
Let us define § : Dom § — C by relation

(oo}

=1+ Z( n” Z Z Z Xy Xky +1 Xk Xie+1 -+ Xy Xk +15

k=1 ko=ky+2 km:km,1+2

where
o0
Dom§ = {{Xk}ﬁi1 c G Z |Xka+1| < OO} o
k=1
For a finite number of complex variables let me identify §(x1, X2, . . ., Xn) With F(x) where
X =(X,%,...,Xn,0,0,0,...).

v

@ Note Dom § is not a linear space. One has, however, 2(N) C D. Further, § restricted to £2(N)
is a continuous functional (not linear).

@ Initially, function § have been developed as a tool for spectral analysis of Jacobi operators
from certain class.

@ However, function § is also related with continued fractions, bilateral second order difference
equations, as well as orthogonal polynomials.
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Function §

Definition

Let us define § : Dom § — C by relation

(oo}

=1+ Z( n” Z Z Z Xy Xky +1 Xk Xie+1 -+ Xy Xk +15

k=1 ko=ky+2 km:km,1+2

where
o0
Dom§ = {{Xk}ﬁi1 c G Z |Xka+1| < OO} o
k=1
For a finite number of complex variables let me identify §(x1, X2, . . ., Xn) With F(x) where
X =(X,%,...,Xn,0,0,0,...).

v

@ Note Dom § is not a linear space. One has, however, 2(N) C D. Further, § restricted to £2(N)
is a continuous functional (not linear).

@ Initially, function § have been developed as a tool for spectral analysis of Jacobi operators
from certain class.

@ However, function § is also related with continued fractions, bilateral second order difference
equations, as well as orthogonal polynomials.

@ In this talk we focus on usage of § for description of the measure of orthogonality of
orthogonal polynomials.
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Some examples

@ Put xx = z/(v + k), then

F) =T(v+1)z7"d,(22), J

for z € Cand —v ¢ N, where J, is the Bessel function of the first kind.
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Some examples

@ Put xx = z/(v + k), then

F) =T(v+1)z7"d,(22), J

for z € Cand —v ¢ N, where J, is the Bessel function of the first kind.
Q Put x; = z1/2g(2k=1)/4 then

F(x) = Aq(2) == 091(; 0; 9, —92), J

forz € Cand g € (0,1), where Aq is Ramanujan function (or q-Airy function).
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Some examples

@ Put xx = z/(v + k), then

F) =T(v+1)z7"d,(22), J

for z € Cand —v ¢ N, where J, is the Bessel function of the first kind.
Q Put x; = 21/2q(k=1)/4 then
3(x) = Aq(2) == 0¢1(;0: G, —q2), )

forz € Cand g € (0,1), where Aq is Ramanujan function (or q-Airy function).
© Put

q%(a+7+k)—% (q'y—owrk; qZ)OO Z%
(@t ) (1= (1 = 2)q k)’

Xk =

then

3(x) = % 191(9%:97:9,—q" 2), J

forz,a,v€C,(1-2)q7 ¢ g~ Z+ and g € (0, 1), where 1 ¢4 is g-confluent hypergeometric
function (proof in [F. S., P. StoviCek, LAA, 2013]).
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Fundamental property of §

@ Forallx € DomFand k =1,2,... one has

Recursive relation

S(X) = SZ(X‘I pooog Xk)%v(TkX) - 3()(1 neooy Xk—1)Xka+1§(Tk+1X)

where T denotes the left shift operator defined on the space of all sequences:

T({xk}ieZ1) = Xt Hiea-
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Fundamental property of §

@ Forallx € DomFand k =1,2,... one has

Recursive relation

S(X) = S(X1 pooog Xk)%v(TkX) - 3()(1 neooy Xk—1)Xka+1§(Tk+1X)

where T denotes the left shift operator defined on the space of all sequences:

T({xk}ieZ1) = Xt Hiea-

@ Especially for k = 1, one gets the simple relation

F(x) = §(Tx) — x1x2 §(T2x). )
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Fundamental property of §

@ Forallx € DomFand k =1,2,... one has

Recursive relation

S(X) = S(X1 pooog Xk)%v(TkX) - 3()(1 pooog Xk—1)Xka+1§(Tk+1X)

where T denotes the left shift operator defined on the space of all sequences:

T({xk}ieZ1) = Xt Hiea-

@ Especially for k = 1, one gets the simple relation

F(x) = §(Tx) — x1x2 §(T2x). )

Typical example: For x, = z/(v + k — 1), the simple recurrence relation for § yields the well
known formula for Bessel functions:

Jy-1(22) = 2 Jy(22) = Jy11(22).
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Function § and orthogonal polynomials

@ By the Favard's theorem, the couple of polynomial sequences ({Fn}2,, {Gn}2,) defined
recursively by equation

Unpt = (X = An)Un — W2_jUp_y, Nn=1,2,...,
where A\ € R and wp > 0, and with initial conditions

Fo(x) =1, Fi(x) = x = Xo,
Go(x) =0, Gi(x) =1,

forms (monic) orthogonal polynomials of the first and second kind respectively.
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Function § and orthogonal polynomials

@ By the Favard's theorem, the couple of polynomial sequences ({Fn}32,, {Gn}:° ) defined
recursively by equation

Unpt = (X = An)Un — W2_jUp_y, Nn=1,2,...,
where A\ € R and wp > 0, and with initial conditions

Fo(x) =1, Fi(x) = x = Xo,
Go(x) =0, Gi(x) =1,

forms (monic) orthogonal polynomials of the first and second kind respectively.
@ As one easily verifies by induction, polynomials F, and Gp can be expressed in terms of §,

n—1 2 n—1
FaX) =] (x=2)F { % } >, n=0,1...,
I£[0 ‘ ( M= |y
n—1 2 n—1
Gn(x) = H(X—Akm({)\,_x} ) n=0,1..., J
I=1

where the sequence {~x} 2, is defined recursively by 7o = 1, yk41 = Wk/7k-

and
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Asymptotic behavior of Fs(x) as n — oo

Proposition

|

It >0 | mxptmaey | < oo for some x € C, then the limit relation

n—1 2 (e}
im TT (x = x)~" F,,(x):g({ Tk } >
namg k )\k — X Q

k=|

holds forany x ¢ {A\n: n=0,1,2,...}.
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Asymptotic behavior of F,(x) as n — oo

Proposition

|

It >0 | mxptmaey | < oo for some x € C, then the limit relation

n—1 2 o0
. 3=t _ Tk
"I—I>m00 ‘:!;[0 (X )\k) Fn(X) & <{ Ak - X} >

k=0

holds forany x ¢ {A\n: n=0,1,2,...}.

Typical example: By setting A, = 0 and wy = [4(k + v)(k + v + 1)]~"/2, polynomials

i 1 n—1 B
Fn(x) = x g<{2X(VW}kO>’ n=0,1,2...,

are a “monic version” of Lommel polynomials.
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Asymptotic behavior of Fy(x) as n — oo

Proposition

|

It >0 | mxptmaey | < oo for some x € C, then the limit relation

n—1 2 o0
. 3=t _ Tk
I7I—I>m00 ‘:!;[0 (X )\k) Fn(X) g <{ Ak - X} >

k=0

holds forany x ¢ {A\n: n=0,1,2,...}.

Typical example: By setting A, = 0 and wy = [4(k + v)(k + v + 1)]~"/2, polynomials

i 1 n—1 B
Fn(x) = x g<{2X(VW}kO>’ n=0,1,2...,

are a “monic version” of Lommel polynomials. The standard Lommel polynomials Rp,. (x)
(symmetric polynomials in x—1), well-known from the theory of Bessel functions, are related with
Fn via identity:

AT(v+n)

Rnu(x)=2 10

F,,(x_1 ).
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Asymptotic behavior of Fy(x) as n — oo

Proposition

|

It >0 | mxptmaey | < oo for some x € C, then the limit relation

n—1 2 o0
. 3=t _ Tk
I7I—I>m00 ‘:!;[0 (X )\k) Fn(X) g <{ Ak - X} >

k=0

holds forany x ¢ {A\n: n=0,1,2,...}.

Typical example: By setting A, = 0 and wy = [4(k + v)(k + v + 1)]~"/2, polynomials

R 1 n—1 B
Fn(x) = x g<{2X(VW}kO>’ n=0,1,2...,

are a “monic version” of Lommel polynomials. The standard Lommel polynomials Rp,. (x)
(symmetric polynomials in x—1), well-known from the theory of Bessel functions, are related with
Fn via identity:

AT(v+n)

r(v)
The above limit relation yields the Hurwitz’s asymptotic formula for Lommel polynomials

>_U+1 Jy—1(x).

Rnu(x)=2 F,,(x_1).

xn X
Iim —Rp.(xX)= (=
n—oo 20T (v +n) (x) <2
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Regularization

@ The asymptotic behavior of Fp, as n — oo, is expressed in terms of function

2 [eo]
soma =5 ({5755 )
k=0

under the assumption that ensures the function to be well defined. This function is
meromorphic on C \ der(\) with poles at z = A\, such that A\x ¢ der()).
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Regularization

@ The asymptotic behavior of Fp, as n — oo, is expressed in terms of function

2 o0
¢(A,w;z)—g<{)\k7kz} >
k=0

under the assumption that ensures the function to be well defined. This function is
meromorphic on C \ der(\) with poles at z = A\, such that A\x ¢ der()).

@ Taking into account later application, we restrict sequences A and w such that A € £'(Z;.)
and w € ¢2(Z4). Then function

a(2) = [J(1 = 2x)
n=0

is well defined entire function and (™" ({0}) = {A; ' : An #£0, n€ Z1}.
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Regularization

@ The asymptotic behavior of Fp, as n — oo, is expressed in terms of function

2 o0
¢(A,w;z)—g<{)\k7kz} >
k=0

under the assumption that ensures the function to be well defined. This function is
meromorphic on C \ der(\) with poles at z = A\, such that A\x ¢ der()).

@ Taking into account later application, we restrict sequences A and w such that A € £'(Z;.)
and w € ¢2(Z4). Then function

a(2) = [J(1 = 2x)
n=0

is well defined entire function and (™" ({0}) = {A; ' : An #£0, n€ Z1}.
@ Let us define function

Co—1y
G(A,w;z):{:mz)w,w,z ) fz0 J

Assuming A € £1(Z+) and w € £2(Zy), function G(\, w; .) is entire.
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Markov theorem

@ For the limit of the ratio G»(z~1)/Fa(z~1), now we have

| Gn(z7") _ _G(TX Tw;z)
n—oo Fp(z=1) — 7 G\, w;z) ’

for all z # 0 not being zeros of function G(\, w; .).
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Markov theorem

@ For the limit of the ratio G»(z~1)/Fa(z~1), now we have

Gn(z7") _ _G(TX Tw;z)
n—oo Fp(z=1) — 7 G\, w;z) ’

for all z # 0 not being zeros of function G(\, w; .).

Theorem (Markov)

Let A be real and w positive sequence and, moreover, both bounded. Then polynomials {Fn}2°
are orthogonal with respect to measure p, for which, it holds

[ Gy G
R

z—x n—oo Fp(z)

)

and the convergence is uniform on any compact subset of C \ R.
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Markov theorem

@ For the limit of the ratio G»(z~1)/Fa(z~1), now we have

Gn(z7") _ _G(TX Tw;z)
n—oo Fp(z=1) — 7 G\, w;z) ’

for all z # 0 not being zeros of function G(\, w; .).

Theorem (Markov)

Let A be real and w positive sequence and, moreover, both bounded. Then polynomials {Fn}2°
are orthogonal with respect to measure p, for which, it holds

[ Gy G
R

z—x n—oo Fp(z)

)

and the convergence is uniform on any compact subset of C \ R.

@ Thus, by the Markov theorem, one finds

du(x) _ G(TX, Tw; 2)
/R 1—-xz  GW\w;z)
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Zeros of function G(\, w; .)

Proposition

Let A € £'(Zy) be real and w € £2(Z.) be positive sequence. Then all zeros of functions
G(\, w;.) and G(TX, Tw; .) are real, simple, and there are infinitely many of them (for each
function). Moreover, these two functions have no zero in common.
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Zeros of function G(\, w; .)

Proposition

Let A € £'(Zy) be real and w € £2(Z.) be positive sequence. Then all zeros of functions
G(\, w;.) and G(TX, Tw; .) are real, simple, and there are infinitely many of them (for each
function). Moreover, these two functions have no zero in common.

Typical example: If we put A, = 0 and wy = [4(v + k)(v + k + 1)] /2, with v > 0, then the
statement is about zeros of Bessel functions z=*+1J, _{(z) and z=*J, (2).
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Zeros of function G(\, w; .)

Proposition

Let A € £'(Zy) be real and w € £2(Z.) be positive sequence. Then all zeros of functions
G(\, w;.) and G(TX, Tw; .) are real, simple, and there are infinitely many of them (for each
function). Moreover, these two functions have no zero in common.

Typical example: If we put A, = 0 and wy = [4(v + k)(v + k + 1)] /2, with v > 0, then the
statement is about zeros of Bessel functions z=*+1J, _{(z) and z=*J, (2).

@ Recall we know
du(x)  G(TX, Tw; 2)

g1—xz GO\ w;2)

where p is the measure of orthogonality for polynomials {Fn}5° .
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Zeros of function G(\, w; .)

Proposition

Let A € £'(Zy) be real and w € £2(Z.) be positive sequence. Then all zeros of functions
G(\, w;.) and G(TX, Tw; .) are real, simple, and there are infinitely many of them (for each
function). Moreover, these two functions have no zero in common.

Typical example: If we put A, = 0 and wy = [4(v + k)(v + k + 1)] /2, with v > 0, then the
statement is about zeros of Bessel functions z=*+1J, _{(z) and z=*J, (2).

@ Recall we know
du(x)  G(TX, Tw; 2)

g1—xz GO\ w;2)

where p is the measure of orthogonality for polynomials {Fn}5° .
@ It can be shown from this formula measure n is supported by reciprocal values of points,
where the RHS has poles, and the origin, i.e.,

supp(p) = {0} U {z~": G(\,w,z) = 0}.
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Zeros of function G(\, w; .)

Proposition

Let A € £'(Zy) be real and w € £2(Z.) be positive sequence. Then all zeros of functions
G(\, w;.) and G(TX, Tw; .) are real, simple, and there are infinitely many of them (for each
function). Moreover, these two functions have no zero in common.

Typical example: If we put A, = 0 and wy = [4(v + k)(v + k + 1)] /2, with v > 0, then the
statement is about zeros of Bessel functions z=*+1J, _{(z) and z=*J, (2).

@ Recall we know
du(x)  G(TX, Tw; 2)

g1—xz GO\ w;2)
where p is the measure of orthogonality for polynomials {Fn}5° .

@ It can be shown from this formula measure n is supported by reciprocal values of points,
where the RHS has poles, and the origin, i.e.,

supp(p) = {0} U {z~": G(\,w,z) = 0}.

@ Furthermore, denoting by w, k € N, zeros of G(X, w; .), we have the Mittag-Leffler expansion

G(TX, Tw; 2)
Y =
0+Z1—ukz GO\ w: 2)

where the convergence of the sum is local uniform in z ¢ {u : k € N}.

Franti$ek Stampach (FNSPE & FIT, CTU) Constr. OG measur. with appl. August 29, 2013 10/17



Towards orthogonality

@ Numbers A, represents jumps of distribution function F,(x) := p((—o0c, X]) at x = ;1,;1 and
Ag jump at x = 0. We can express these jumps as
1 \G(TA, Tw; 2) 4 G(TX, Tw; k)

A = i 1-— oy owe ’
k= lim (1 =mc2) G(\, w; 2) M 02600 wi k)
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Towards orthogonality

@ Numbers A, represents jumps of distribution function F,(x) := p((—o0c, X]) at x = ;1,;1 and
Ag jump at x = 0. We can express these jumps as

. _1 . G(TX, Tw; 2) _1 G(TX, Tw; ug)
A= Iim (1—plzny=2 2 22— -t 22 T Pk
k= m (= mCD=e ) Bk 102G) (N, w; k)

@ Finally, the orthogonality relation for polynomials {Fp}2°, reads
n—1

/ Fon(X) F(X)dpa(xX) = (H wf) Somy M, E L.
R

k=0
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Summary - Main theorem

For \ € £'(Z) be real and w € £2(Z ) positive sequence we introduce function

zv2 7
oleo- ool

Then the measure of orthogonality n. of corresponding orthogonal polynomials {Fn}52 is
supported by a real sequence with 0, the only cluster point. Moreover, we have

supp(p) = {0} U {Z’1 : G(\, w;z) = 0}.

The orthogonality relation reads

n—1

/ Fm(X)Fn(x)du(x) = (H Wk) dmn, M,N € Z4,

k=0
and, for x € supp(u) \ {0}, distribution function F,(x) := p((—o0, X]) has jumps

G(TX, Tw; x— 1)

Fu(x) — Fu(x—0) = —(626)()\, =
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Application: Orthogonal polynomial arising from example with {4

@ The example with g-confluent hypergeometric function introduced at the beginning, slightly
reparametrized, yields

q%(wk)f% (% ?)o vV—a = _ (’(_1—‘7)00
(@205 (@t DG —x) [, ) ("N (a+1)i9)eo

101 (qug;xq;%axq)

where x ¢ (a+ 1)g%+ U {0}.
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Application: Orthogonal polynomial arising from example with {4

@ The example with g-confluent hypergeometric function introduced at the beginning, slightly
reparametrized, yields

L(6+k)—1 [ kt1—5. 2 e —1.
g2 (@ P V2 R ) O 1. x—1. g ax—1
S({ (qk+276;q2)oo ((a+1)qk_x) }k_0> - (X71(a+1);q)oo 1¢1 (X g, x ;q,ax )

where x ¢ (a+ 1)g%+ U {0}.
@ This identity correspond with the polynomial sequence Un(a, é; g, x), n € Z, which is
generated by recursion

Vos1 = (x—(a+1)q") vo+aq" ' (1 = " °)vo_y, nEN,

with initial setting Up(a, d; g,x) =1 and Ui(a,d;9,x) =x —a— 1.
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Application: Orthogonal polynomial arising from example with {4

@ The example with g-confluent hypergeometric function introduced at the beginning, slightly
reparametrized, yields

L(6+k)—1 [ kt1—5. 2 e —1.
g2 (@ P V2 R ) O 1. x—1. g ax—1
S({ (qk+276;q2)oo ((a+1)qk_x) }k_0> - (X71(a+1);q)oo 1¢1 (X g, x ;q,ax )

where x ¢ (a+ 1)g%+ U {0}.
@ This identity correspond with the polynomial sequence Un(a, é; g, x), n € Z, which is
generated by recursion

Vos1 = (x—(a+1)q") vo+aq" ' (1 = " °)vo_y, nEN,

with initial setting Up(a, d; g,x) =1 and Ui(a,d;9,x) =x —a— 1.
@ Thus, in this case, sequences {\;}7°, and {wp}$2  are as follows:

A= (a+1)g" and w2 = _aq"+5(1 _ qn+1—5)‘
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Application: Orthogonal polynomial arising from example with {4

@ The example with g-confluent hypergeometric function introduced at the beginning, slightly
reparametrized, yields

q%(wk)f% (% ?)o vV—a = _ ()(_1—‘7)00
(@205 (@t DG —x) [, ) ("N (a+1)i9)eo

101 (qué;xq;q,axq)

where x ¢ (a+ 1)g%+ U {0}.

@ This identity correspond with the polynomial sequence Un(a, é; g, x), n € Z, which is
generated by recursion

Vos1 = (x—(a+1)q") vo+aq" ' (1 = " °)vo_y, nEN,

with initial setting Up(a, d; g,x) =1 and Ui(a,d;9,x) =x —a— 1.
@ Thus, in this case, sequences {\;}7°, and {wp}$2  are as follows:

A= (a+1)g" and w2 = _aq"+5(1 _ qn+1—5)‘

@ For 6 = 0, polynomials Un(a, 0; q, x) are known as Al-Salam-Carlitz | and are listed in the
g-Askey scheme. They can be expressed as

Un(a,0:4.%) = (~)"a(?) 204 (" x"0q.a "ax).
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The orthogonality of generalized Al-Salam-Carlitz | polynomials

@ In this case, one deduces
G(TKX, TFw; x) = 161(xq%; " x; g, a9¥x), fork=0,1,2,...,
where ;¢4 denoted regularized g-confluent hypergeometric function defined by
161(a b; g, 2) = (b; )sc1¢1(2; b; G, 2).

Consequently, assuming a < 0 and § < 1, we can use the general theorem to find:
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The orthogonality of generalized Al-Salam-Carlitz | polynomials

@ In this case, one deduces
G(T*X, Thw; x) = 161(xq%; 9F x; g, a9 x), fork=0,1,2,...,
where ;¢4 denoted regularized g-confluent hypergeometric function defined by
161(a b; g, 2) = (b; )sc1¢1(2; b; G, 2).
Consequently, assuming a < 0 and § < 1, we can use the general theorem to find:
i) Polynomials {Un(a, d; q, x) : n € Z} satisfy the orthogonality relation

/ Unm(a,8; g, X)Un(a, 8; g, X)du(x) = (—a)"q™""=1/2(q'=%; q)ndmn
R

where p is a probability measure.
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161(a b; g, 2) = (b; )sc1¢1(2; b; G, 2).
Consequently, assuming a < 0 and § < 1, we can use the general theorem to find:
i) Polynomials {Un(a, d; q, x) : n € Z} satisfy the orthogonality relation

/ Unm(a,8; g, X)Un(a, 8; g, X)du(x) = (—a)"q™""=1/2(q'=%; q)ndmn
R

where p is a probability measure.
ii) Measure p is supported by the set

supp(i) = {x "€ C: 161 (xq%; x;9,ax) = 0} U {0},
and the step function F,(x) = p((—oo, x]) has jumps at x € supp(x) \ {0} of magnitude

161 (x~ 1% ax~'; q,aqx ")

Fu(x) — Fu(x—0) = = .
w0 = Fulx =) XBx 161 (x~1q% x~1; q,ax )
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@ In this case, one deduces
G(T*X, Thw; x) = 161(xq%; 9F x; g, a9 x), fork=0,1,2,...,
where ;¢4 denoted regularized g-confluent hypergeometric function defined by
161(a b; g, 2) = (b; )sc1¢1(2; b; G, 2).

Consequently, assuming a < 0 and § < 1, we can use the general theorem to find:
i) Polynomials {Un(a, d; q, x) : n € Z} satisfy the orthogonality relation

/ Unm(a,8; g, X)Un(a, 8; g, X)du(x) = (—a)"q™""=1/2(q'=%; q)ndmn
R

where p is a probability measure.
ii) Measure p is supported by the set

supp(i) = {x "€ C: 161 (xq%; x;9,ax) = 0} U {0},
and the step function F,(x) = p((—oo, x]) has jumps at x € supp(x) \ {0} of magnitude

161 (x~ 1% ax~'; q,aqx ")

Fu(x) — Fu(x—0) = = .
w0 = Fulx =) XBx 161 (x~1q% x~1; q,ax )

@ If 6 = 0 these results yields orthogonality for Al-Salam-Carlitz | polynomials, which can be
described fully explicitly.
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Other properties - Generating function

Suppose x # 0 then the generating function for Up(a, §; g, x) reads:
i) iféd <O,
5t 5t
Z Un(afsé 9:X) n Z (aq°t; 9)k(9°t; 9)« Tk, x <1,
(@72 Q) n+1 pard (Xt; Q)k+1
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Other properties - Generating function

Suppose x # 0 then the generating function for Up(a, §; g, x) reads:
i) iféd <O,
5t 5t
Z Un(éfsé 9:X) n Z (aq°t; 9)k(9°t; 9)« Tk, x <1,
(@72 Q) n+1 pard (Xt; Q)k+1

ii)if6=0

3 Un(a,0; g, x) o (at; @)oo (1 q)oo7 x| < 1,
n=0

(9: 9)n T (% Q)
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Other properties - Generating function

Suppose x # 0 then the generating function for Up(a, §; g, x) reads:

i) if6 <0,
S 4. S f.
Z un(ia 9X) n _ 5~ EOEDATEDr ks 1y 1,
(q 'q N+ k=0 (Xt, q)k+1
ii) if6=0
i Un(a,0:9,%) .n _ (ati )oo(ti 9)oo |xt| <1
= (@an (i qoc ’
iii) if 6 >0,

-unknown-
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Other properties - Structure relations

@ Forne Z4,itholds

_ qnfé
ﬁUnA (a,6:9,x)—q"

_ A9
19y, (as—1iq.x).

DqUn(a.5:0,%) = -
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Other properties - Structure relations

@ Forn e Zy, it holds

n

s
ﬁUnA (a,6:9,x)—q"

_ A9
19y, (as—1iq.x).

DqUn(a,6;q,x) = 1-q

@ This formula is a generalization of the forward shift formula for Al-Salam-Carlitz | polynomials,
_ AN

1
Daln(a,0:4,x) = —-Un1(2:0:0,).
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@ Forn e Zy, it holds

_ qnfé
ﬁUnA (a,6:9,x)—q"

_ A9
19y, (as—1iq.x).

DqUn(a,6;q,x) = 1-q

@ This formula is a generalization of the forward shift formula for Al-Salam-Carlitz | polynomials,
_ AN

1
Daln(a,0:4,x) = —-Un1(2:0:0,).

@ On the other hand, it seems there is no simple formula which would generalize the backward
shift for Al-Salam-Carlitz | polynomials, which reads

(@a—x)(1 = x)Un(a,0;q,G~"'x) — aln(a, 0; g, x) = xq~"Up,1(a,0; g, x).
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Other properties - Structure relations

@ Forne Z4,itholds

el

g3
ﬁUnA (a,6:9,x)—q"

_ A9
129y, (a6 1ig%).

DqUn(a,9; g, x) = 1-q

@ This formula is a generalization of the forward shift formula for Al-Salam-Carlitz | polynomials,
_ AN

1
Daln(a,0:4,x) = —-Un1(2:0:0,).

@ On the other hand, it seems there is no simple formula which would generalize the backward
shift for Al-Salam-Carlitz | polynomials, which reads

(@a—x)(1 = x)Un(a,0;q,G~"'x) — aln(a, 0; g, x) = xq~"Up,1(a,0; g, x).

@ Consequently, we do not know if there is a second order g-difference equation for
polynomials Un(a, d; q, x).
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Thank you!
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