Constructing measures of orthogonality with applications

František Štampach

Faculty of Nuclear Sciences and Physical Engineering
\& Faculty of Information Technology, CTU in Prague

Formal and Analytic Solutions of Differential, Difference and Discrete Equations

August 29, 2013
(1) Function \mathfrak{F} and its fundamental properties
2) Function \mathfrak{F} and orthogonal polynomials
(3) Constructing measure of orthogonality

4 Application: Generalized AI-Salam-Carlitz I polynomials

Function \mathfrak{F}

Definition

Let us define $\mathfrak{F}: \operatorname{Dom} \mathfrak{F} \rightarrow \mathbb{C}$ by relation

$$
\mathfrak{F}(x)=1+\sum_{m=1}^{\infty}(-1)^{m} \sum_{k_{1}=1}^{\infty} \sum_{k_{2}=k_{1}+2}^{\infty} \ldots \sum_{k_{m}=k_{m-1}+2}^{\infty} x_{k_{1}} x_{k_{1}+1} x_{k_{2}} x_{k_{2}+1} \ldots x_{k_{m}} x_{k_{m}+1}
$$

where

$$
\operatorname{Dom} \mathfrak{F}=\left\{\left\{x_{k}\right\}_{k=1}^{\infty} \subset \mathbb{C} ; \sum_{k=1}^{\infty}\left|x_{k} x_{k+1}\right|<\infty\right\} .
$$

For a finite number of complex variables let me identify $\mathfrak{F}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ with $\mathfrak{F}(x)$ where $x=\left(x_{1}, x_{2}, \ldots, x_{n}, 0,0,0, \ldots\right)$.

Function \mathfrak{F}

Definition

Let us define $\mathfrak{F}: \operatorname{Dom} \mathfrak{F} \rightarrow \mathbb{C}$ by relation

$$
\mathfrak{F}(x)=1+\sum_{m=1}^{\infty}(-1)^{m} \sum_{k_{1}=1}^{\infty} \sum_{k_{2}=k_{1}+2}^{\infty} \ldots \sum_{k_{m}=k_{m-1}+2}^{\infty} x_{k_{1}} x_{k_{1}+1} x_{k_{2}} x_{k_{2}+1} \ldots x_{k_{m}} x_{k_{m}+1}
$$

where

$$
\operatorname{Dom} \mathfrak{F}=\left\{\left\{x_{k}\right\}_{k=1}^{\infty} \subset \mathbb{C} ; \sum_{k=1}^{\infty}\left|x_{k} x_{k+1}\right|<\infty\right\} .
$$

For a finite number of complex variables let me identify $\mathfrak{F}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ with $\mathfrak{F}(x)$ where $x=\left(x_{1}, x_{2}, \ldots, x_{n}, 0,0,0, \ldots\right)$.

- Note Dom \mathfrak{F} is not a linear space. One has, however, $\ell^{2}(\mathbb{N}) \subset D$. Further, \mathfrak{F} restricted to $\ell^{2}(\mathbb{N})$ is a continuous functional (not linear).

Function \mathfrak{F}

Definition

Let us define $\mathfrak{F}: \operatorname{Dom} \mathfrak{F} \rightarrow \mathbb{C}$ by relation

$$
\mathfrak{F}(x)=1+\sum_{m=1}^{\infty}(-1)^{m} \sum_{k_{1}=1}^{\infty} \sum_{k_{2}=k_{1}+2}^{\infty} \ldots \sum_{k_{m}=k_{m-1}+2}^{\infty} x_{k_{1}} x_{k_{1}+1} x_{k_{2}} x_{k_{2}+1} \ldots x_{k_{m}} x_{k_{m}+1}
$$

where

$$
\operatorname{Dom} \mathfrak{F}=\left\{\left\{x_{k}\right\}_{k=1}^{\infty} \subset \mathbb{C} ; \sum_{k=1}^{\infty}\left|x_{k} x_{k+1}\right|<\infty\right\} .
$$

For a finite number of complex variables let me identify $\mathfrak{F}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ with $\mathfrak{F}(x)$ where $x=\left(x_{1}, x_{2}, \ldots, x_{n}, 0,0,0, \ldots\right)$.

- Note Dom \mathfrak{F} is not a linear space. One has, however, $\ell^{2}(\mathbb{N}) \subset D$. Further, \mathfrak{F} restricted to $\ell^{2}(\mathbb{N})$ is a continuous functional (not linear).
- Initially, function \mathfrak{F} have been developed as a tool for spectral analysis of Jacobi operators from certain class.

Function \mathfrak{F}

Definition

Let us define $\mathfrak{F}: \operatorname{Dom} \mathfrak{F} \rightarrow \mathbb{C}$ by relation

$$
\mathfrak{F}(x)=1+\sum_{m=1}^{\infty}(-1)^{m} \sum_{k_{1}=1}^{\infty} \sum_{k_{2}=k_{1}+2}^{\infty} \ldots \sum_{k_{m}=k_{m-1}+2}^{\infty} x_{k_{1}} x_{k_{1}+1} x_{k_{2}} x_{k_{2}+1} \ldots x_{k_{m}} x_{k_{m}+1}
$$

where

$$
\operatorname{Dom} \mathfrak{F}=\left\{\left\{x_{k}\right\}_{k=1}^{\infty} \subset \mathbb{C} ; \sum_{k=1}^{\infty}\left|x_{k} x_{k+1}\right|<\infty\right\} .
$$

For a finite number of complex variables let me identify $\mathfrak{F}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ with $\mathfrak{F}(x)$ where $x=\left(x_{1}, x_{2}, \ldots, x_{n}, 0,0,0, \ldots\right)$.

- Note $\operatorname{Dom} \mathfrak{F}$ is not a linear space. One has, however, $\ell^{2}(\mathbb{N}) \subset D$. Further, \mathfrak{F} restricted to $\ell^{2}(\mathbb{N})$ is a continuous functional (not linear).
- Initially, function \mathfrak{F} have been developed as a tool for spectral analysis of Jacobi operators from certain class.
- However, function \mathfrak{F} is also related with continued fractions, bilateral second order difference equations, as well as orthogonal polynomials.

Function \mathfrak{F}

Definition

Let us define $\mathfrak{F}: \operatorname{Dom} \mathfrak{F} \rightarrow \mathbb{C}$ by relation

$$
\mathfrak{F}(x)=1+\sum_{m=1}^{\infty}(-1)^{m} \sum_{k_{1}=1}^{\infty} \sum_{k_{2}=k_{1}+2}^{\infty} \ldots \sum_{k_{m}=k_{m-1}+2}^{\infty} x_{k_{1}} x_{k_{1}+1} x_{k_{2}} x_{k_{2}+1} \ldots x_{k_{m}} x_{k_{m}+1}
$$

where

$$
\operatorname{Dom} \mathfrak{F}=\left\{\left\{x_{k}\right\}_{k=1}^{\infty} \subset \mathbb{C} ; \sum_{k=1}^{\infty}\left|x_{k} x_{k+1}\right|<\infty\right\} .
$$

For a finite number of complex variables let me identify $\mathfrak{F}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ with $\mathfrak{F}(x)$ where $x=\left(x_{1}, x_{2}, \ldots, x_{n}, 0,0,0, \ldots\right)$.

- Note Dom \mathfrak{F} is not a linear space. One has, however, $\ell^{2}(\mathbb{N}) \subset D$. Further, \mathfrak{F} restricted to $\ell^{2}(\mathbb{N})$ is a continuous functional (not linear).
- Initially, function \mathfrak{F} have been developed as a tool for spectral analysis of Jacobi operators from certain class.
- However, function \mathfrak{F} is also related with continued fractions, bilateral second order difference equations, as well as orthogonal polynomials.
- In this talk we focus on usage of \mathfrak{F} for description of the measure of orthogonality of orthogonal polynomials.

Some examples

(1) Put $x_{k}=z /(\nu+k)$, then

$$
\mathfrak{F}(x)=\Gamma(\nu+1) z^{-\nu} J_{\nu}(2 z),
$$

for $z \in \mathbb{C}$ and $-\nu \notin \mathbb{N}$, where J_{ν} is the Bessel function of the first kind.

Some examples

(1) Put $x_{k}=z /(\nu+k)$, then

$$
\mathfrak{F}(x)=\Gamma(\nu+1) z^{-\nu} J_{\nu}(2 z),
$$

for $z \in \mathbb{C}$ and $-\nu \notin \mathbb{N}$, where J_{ν} is the Bessel function of the first kind.
(2) Put $x_{k}=z^{1 / 2} q^{(2 k-1) / 4}$, then

$$
\mathfrak{F}(x)=A_{q}(z):={ }_{0} \phi_{1}(; 0 ; q,-q z),
$$

for $z \in \mathbb{C}$ and $q \in(0,1)$, where A_{q} is Ramanujan function (or q-Airy function).

Some examples

(1) Put $x_{k}=z /(\nu+k)$, then

$$
\mathfrak{F}(x)=\Gamma(\nu+1) z^{-\nu} J_{\nu}(2 z),
$$

for $z \in \mathbb{C}$ and $-\nu \notin \mathbb{N}$, where J_{ν} is the Bessel function of the first kind.
(2) Put $x_{k}=z^{1 / 2} q^{(2 k-1) / 4}$, then

$$
\mathfrak{F}(x)=A_{q}(z):={ }_{0} \phi_{1}(; 0 ; q,-q z),
$$

for $z \in \mathbb{C}$ and $q \in(0,1)$, where A_{q} is Ramanujan function (or q-Airy function).
(3) Put

$$
x_{k}=\frac{q^{\frac{1}{2}(\alpha+\gamma+k)-\frac{3}{4}}\left(q^{\gamma-\alpha+k} ; q^{2}\right)_{\infty} z^{\frac{1}{2}}}{\left(q^{\gamma-\alpha+k+1} ; q^{2}\right)_{\infty}\left(1-(1-z) q^{\gamma+k-1}\right)}
$$

then

$$
\mathfrak{F}(x)=\frac{\left(q^{\gamma} ; q\right)_{\infty}}{\left((1-z) q^{\gamma} ; q\right)_{\infty}} 1 \phi_{1}\left(q^{\alpha} ; q^{\gamma} ; q,-q^{\gamma} z\right)
$$

for $z, \alpha, \gamma \in \mathbb{C},(1-z) q^{\gamma} \notin q^{-\mathbb{Z}_{+}}$and $q \in(0,1)$, where ${ }_{1} \phi_{1}$ is q-confluent hypergeometric function (proof in [F. Š., P. St'ovíček, LAA, 2013]).

Fundamental property of \mathfrak{F}

- For all $x \in \operatorname{Dom} \mathfrak{F}$ and $k=1,2, \ldots$ one has

Recursive relation

$$
\mathfrak{F}(x)=\mathfrak{F}\left(x_{1}, \ldots, x_{k}\right) \mathfrak{F}\left(T^{k} x\right)-\mathfrak{F}\left(x_{1}, \ldots, x_{k-1}\right) x_{k} x_{k+1} \mathfrak{F}\left(T^{k+1} x\right)
$$

where T denotes the left shift operator defined on the space of all sequences:

$$
T\left(\left\{x_{k}\right\}_{k=1}^{\infty}\right)=\left\{x_{k+1}\right\}_{k=1}^{\infty} .
$$

Fundamental property of \mathfrak{F}

- For all $x \in \operatorname{Dom} \mathfrak{F}$ and $k=1,2, \ldots$ one has

Recursive relation

$$
\mathfrak{F}(x)=\mathfrak{F}\left(x_{1}, \ldots, x_{k}\right) \mathfrak{F}\left(T^{k} x\right)-\mathfrak{F}\left(x_{1}, \ldots, x_{k-1}\right) x_{k} x_{k+1} \mathfrak{F}\left(T^{k+1} x\right)
$$

where T denotes the left shift operator defined on the space of all sequences:

$$
T\left(\left\{x_{k}\right\}_{k=1}^{\infty}\right)=\left\{x_{k+1}\right\}_{k=1}^{\infty} .
$$

- Especially for $k=1$, one gets the simple relation

$$
\mathfrak{F}(x)=\mathfrak{F}(T x)-x_{1} x_{2} \mathfrak{F}\left(T^{2} x\right)
$$

Fundamental property of \mathfrak{F}

- For all $x \in \operatorname{Dom} \mathfrak{F}$ and $k=1,2, \ldots$ one has

Recursive relation

$$
\mathfrak{F}(x)=\mathfrak{F}\left(x_{1}, \ldots, x_{k}\right) \mathfrak{F}\left(T^{k} x\right)-\mathfrak{F}\left(x_{1}, \ldots, x_{k-1}\right) x_{k} x_{k+1} \mathfrak{F}\left(T^{k+1} x\right)
$$

where T denotes the left shift operator defined on the space of all sequences:

$$
T\left(\left\{x_{k}\right\}_{k=1}^{\infty}\right)=\left\{x_{k+1}\right\}_{k=1}^{\infty} .
$$

- Especially for $k=1$, one gets the simple relation

$$
\mathfrak{F}(x)=\mathfrak{F}(T x)-x_{1} x_{2} \mathfrak{F}\left(T^{2} x\right)
$$

Typical example: For $x_{k}=z /(\nu+k-1)$, the simple recurrence relation for \mathfrak{F} yields the well known formula for Bessel functions:

$$
J_{\nu-1}(2 z)=\frac{\nu}{z} J_{\nu}(2 z)-J_{\nu+1}(2 z)
$$

Function \mathfrak{F} and orthogonal polynomials

- By the Favard's theorem, the couple of polynomial sequences $\left(\left\{F_{n}\right\}_{n=0}^{\infty},\left\{G_{n}\right\}_{n=0}^{\infty}\right)$ defined recursively by equation

$$
u_{n+1}=\left(x-\lambda_{n}\right) u_{n}-w_{n-1}^{2} u_{n-1}, \quad n=1,2, \ldots
$$

where $\lambda_{n} \in \mathbb{R}$ and $w_{n}>0$, and with initial conditions

$$
\begin{array}{ll}
F_{0}(x)=1, & F_{1}(x)=x-\lambda_{0} \\
G_{0}(x)=0, & G_{1}(x)=1
\end{array}
$$

forms (monic) orthogonal polynomials of the first and second kind respectively.

Function \mathfrak{F} and orthogonal polynomials

- By the Favard's theorem, the couple of polynomial sequences $\left(\left\{F_{n}\right\}_{n=0}^{\infty},\left\{G_{n}\right\}_{n=0}^{\infty}\right)$ defined recursively by equation

$$
u_{n+1}=\left(x-\lambda_{n}\right) u_{n}-w_{n-1}^{2} u_{n-1}, \quad n=1,2, \ldots
$$

where $\lambda_{n} \in \mathbb{R}$ and $w_{n}>0$, and with initial conditions

$$
\begin{array}{ll}
F_{0}(x)=1, & F_{1}(x)=x-\lambda_{0} \\
G_{0}(x)=0, & G_{1}(x)=1
\end{array}
$$

forms (monic) orthogonal polynomials of the first and second kind respectively.

- As one easily verifies by induction, polynomials F_{n} and G_{n} can be expressed in terms of \mathfrak{F},

$$
F_{n}(x)=\prod_{k=0}^{n-1}\left(x-\lambda_{k}\right) \mathfrak{F}\left(\left\{\frac{\gamma_{I}^{2}}{\lambda_{I}-x}\right\}_{I=0}^{n-1}\right), \quad n=0,1 \ldots
$$

and

$$
G_{n}(x)=\prod_{k=1}^{n-1}\left(x-\lambda_{k}\right) \mathfrak{F}\left(\left\{\frac{\gamma_{l}^{2}}{\lambda_{I}-x}\right\}_{l=1}^{n-1}\right), \quad n=0,1 \ldots
$$

where the sequence $\left\{\gamma_{k}\right\}_{k=0}^{\infty}$ is defined recursively by $\gamma_{0}=1, \gamma_{k+1}=w_{k} / \gamma_{k}$.

Asymptotic behavior of $F_{n}(x)$ as $n \rightarrow \infty$

Proposition

If $\sum_{k \geq 0}\left|\frac{w_{k}^{2}}{\left(x-\lambda_{k}\right)\left(x-\lambda_{k+1}\right)}\right|<\infty$, for some $x \in \mathbb{C}$, then the limit relation

$$
\lim _{n \rightarrow \infty} \prod_{k=0}^{n-1}\left(x-\lambda_{k}\right)^{-1} F_{n}(x)=\mathfrak{F}\left(\left\{\frac{\gamma_{k}^{2}}{\lambda_{k}-x}\right\}_{k=0}^{\infty}\right)
$$

holds for any $x \notin\left\{\lambda_{n}: n=0,1,2, \ldots\right\}$.

Asymptotic behavior of $F_{n}(x)$ as $n \rightarrow \infty$

Proposition

If $\sum_{k \geq 0}\left|\frac{w_{k}^{2}}{\left(x-\lambda_{k}\right)\left(x-\lambda_{k+1}\right)}\right|<\infty$, for some $x \in \mathbb{C}$, then the limit relation

$$
\lim _{n \rightarrow \infty} \prod_{k=0}^{n-1}\left(x-\lambda_{k}\right)^{-1} F_{n}(x)=\mathfrak{F}\left(\left\{\frac{\gamma_{k}^{2}}{\lambda_{k}-x}\right\}_{k=0}^{\infty}\right)
$$

holds for any $x \notin\left\{\lambda_{n}: n=0,1,2, \ldots\right\}$.
Typical example: By setting $\lambda_{k}=0$ and $w_{k}=[4(k+\nu)(k+\nu+1)]^{-1 / 2}$, polynomials

$$
F_{n}(x)=x^{n} \mathfrak{F}\left(\left\{\frac{1}{2 x(\nu+k)}\right\}_{k=0}^{n-1}\right), \quad n=0,1,2 \ldots
$$

are a "monic version" of Lommel polynomials.

Asymptotic behavior of $F_{n}(x)$ as $n \rightarrow \infty$

Proposition

If $\sum_{k \geq 0}\left|\frac{w_{k}^{2}}{\left(x-\lambda_{k}\right)\left(x-\lambda_{k+1}\right)}\right|<\infty$, for some $x \in \mathbb{C}$, then the limit relation

$$
\lim _{n \rightarrow \infty} \prod_{k=0}^{n-1}\left(x-\lambda_{k}\right)^{-1} F_{n}(x)=\mathfrak{F}\left(\left\{\frac{\gamma_{k}^{2}}{\lambda_{k}-x}\right\}_{k=0}^{\infty}\right)
$$

holds for any $x \notin\left\{\lambda_{n}: n=0,1,2, \ldots\right\}$.
Typical example: By setting $\lambda_{k}=0$ and $w_{k}=[4(k+\nu)(k+\nu+1)]^{-1 / 2}$, polynomials

$$
F_{n}(x)=x^{n} \mathfrak{F}\left(\left\{\frac{1}{2 x(\nu+k)}\right\}_{k=0}^{n-1}\right), \quad n=0,1,2 \ldots
$$

are a "monic version" of Lommel polynomials. The standard Lommel polynomials $R_{n, \nu}(x)$ (symmetric polynomials in x^{-1}), well-known from the theory of Bessel functions, are related with F_{n} via identity:

$$
R_{n, \nu}(x)=2^{n} \frac{\Gamma(\nu+n)}{\Gamma(\nu)} F_{n}\left(x^{-1}\right)
$$

Proposition

If $\sum_{k \geq 0}\left|\frac{w_{k}^{2}}{\left(x-\lambda_{k}\right)\left(x-\lambda_{k+1}\right)}\right|<\infty$, for some $x \in \mathbb{C}$, then the limit relation

$$
\lim _{n \rightarrow \infty} \prod_{k=0}^{n-1}\left(x-\lambda_{k}\right)^{-1} F_{n}(x)=\mathfrak{F}\left(\left\{\frac{\gamma_{k}^{2}}{\lambda_{k}-x}\right\}_{k=0}^{\infty}\right)
$$

holds for any $x \notin\left\{\lambda_{n}: n=0,1,2, \ldots\right\}$.
Typical example: By setting $\lambda_{k}=0$ and $w_{k}=[4(k+\nu)(k+\nu+1)]^{-1 / 2}$, polynomials

$$
F_{n}(x)=x^{n} \mathfrak{F}\left(\left\{\frac{1}{2 x(\nu+k)}\right\}_{k=0}^{n-1}\right), \quad n=0,1,2 \ldots
$$

are a "monic version" of Lommel polynomials. The standard Lommel polynomials $R_{n, \nu}(x)$ (symmetric polynomials in x^{-1}), well-known from the theory of Bessel functions, are related with F_{n} via identity:

$$
R_{n, \nu}(x)=2^{n} \frac{\Gamma(\nu+n)}{\Gamma(\nu)} F_{n}\left(x^{-1}\right)
$$

The above limit relation yields the Hurwitz's asymptotic formula for Lommel polynomials

$$
\lim _{n \rightarrow \infty} \frac{x^{n}}{2^{n} \Gamma(\nu+n)} R_{n, \nu}(x)=\left(\frac{x}{2}\right)^{-\nu+1} J_{\nu-1}(x)
$$

Regularization

- The asymptotic behavior of F_{n}, as $n \rightarrow \infty$, is expressed in terms of function

$$
\Phi(\lambda, w ; z)=\mathfrak{F}\left(\left\{\frac{\gamma_{k}^{2}}{\lambda_{k}-z}\right\}_{k=0}^{\infty}\right)
$$

under the assumption that ensures the function to be well defined. This function is meromorphic on $\mathbb{C} \backslash \operatorname{der}(\lambda)$ with poles at $z=\lambda_{k}$ such that $\lambda_{k} \notin \operatorname{der}(\lambda)$.

Regularization

- The asymptotic behavior of F_{n}, as $n \rightarrow \infty$, is expressed in terms of function

$$
\Phi(\lambda, w ; z)=\mathfrak{F}\left(\left\{\frac{\gamma_{k}^{2}}{\lambda_{k}-z}\right\}_{k=0}^{\infty}\right)
$$

under the assumption that ensures the function to be well defined. This function is meromorphic on $\mathbb{C} \backslash \operatorname{der}(\lambda)$ with poles at $z=\lambda_{k}$ such that $\lambda_{k} \notin \operatorname{der}(\lambda)$.

- Taking into account later application, we restrict sequences λ and w such that $\lambda \in \ell^{1}\left(\mathbb{Z}_{+}\right)$ and $w \in \ell^{2}\left(\mathbb{Z}_{+}\right)$. Then function

$$
\psi_{\lambda}(z)=\prod_{n=0}^{\infty}\left(1-z \lambda_{n}\right)
$$

is well defined entire function and $\psi_{\lambda}^{(-1)}(\{0\})=\left\{\lambda_{n}^{-1}: \lambda_{n} \neq 0, n \in \mathbb{Z}_{+}\right\}$.

Regularization

- The asymptotic behavior of F_{n}, as $n \rightarrow \infty$, is expressed in terms of function

$$
\Phi(\lambda, w ; z)=\mathfrak{F}\left(\left\{\frac{\gamma_{k}^{2}}{\lambda_{k}-z}\right\}_{k=0}^{\infty}\right)
$$

under the assumption that ensures the function to be well defined. This function is meromorphic on $\mathbb{C} \backslash \operatorname{der}(\lambda)$ with poles at $z=\lambda_{k}$ such that $\lambda_{k} \notin \operatorname{der}(\lambda)$.

- Taking into account later application, we restrict sequences λ and w such that $\lambda \in \ell^{1}\left(\mathbb{Z}_{+}\right)$ and $w \in \ell^{2}\left(\mathbb{Z}_{+}\right)$. Then function

$$
\psi_{\lambda}(z)=\prod_{n=0}^{\infty}\left(1-z \lambda_{n}\right)
$$

is well defined entire function and $\psi_{\lambda}^{(-1)}(\{0\})=\left\{\lambda_{n}^{-1}: \lambda_{n} \neq 0, n \in \mathbb{Z}_{+}\right\}$.

- Let us define function

$$
G(\lambda, w ; z)= \begin{cases}\psi_{\lambda}(z) \Phi\left(\lambda, w ; z^{-1}\right) & \text { if } z \neq 0 \\ 1 & \text { if } z=0\end{cases}
$$

Assuming $\lambda \in \ell^{1}\left(\mathbb{Z}_{+}\right)$and $w \in \ell^{2}\left(\mathbb{Z}_{+}\right)$, function $G(\lambda, w ;$.$) is entire.$

Markov theorem

- For the limit of the ratio $G_{n}\left(z^{-1}\right) / F_{n}\left(z^{-1}\right)$, now we have

$$
\lim _{n \rightarrow \infty} \frac{G_{n}\left(z^{-1}\right)}{F_{n}\left(z^{-1}\right)}=z \frac{G(T \lambda, T w ; z)}{G(\lambda, w ; z)}
$$

for all $z \neq 0$ not being zeros of function $G(\lambda, w ;$.$) .$

Markov theorem

- For the limit of the ratio $G_{n}\left(z^{-1}\right) / F_{n}\left(z^{-1}\right)$, now we have

$$
\lim _{n \rightarrow \infty} \frac{G_{n}\left(z^{-1}\right)}{F_{n}\left(z^{-1}\right)}=z \frac{G(T \lambda, T w ; z)}{G(\lambda, w ; z)}
$$

for all $z \neq 0$ not being zeros of function $G(\lambda, w ;$.$) .$

Theorem (Markov)

Let λ be real and w positive sequence and, moreover, both bounded. Then polynomials $\left\{F_{n}\right\}_{n=0}^{\infty}$ are orthogonal with respect to measure μ, for which, it holds

$$
\int_{\mathbb{R}} \frac{d \mu(x)}{z-x}=\lim _{n \rightarrow \infty} \frac{G_{n}(z)}{F_{n}(z)}
$$

and the convergence is uniform on any compact subset of $\mathbb{C} \backslash \mathbb{R}$.

Markov theorem

- For the limit of the ratio $G_{n}\left(z^{-1}\right) / F_{n}\left(z^{-1}\right)$, now we have

$$
\lim _{n \rightarrow \infty} \frac{G_{n}\left(z^{-1}\right)}{F_{n}\left(z^{-1}\right)}=z \frac{G(T \lambda, T w ; z)}{G(\lambda, w ; z)}
$$

for all $z \neq 0$ not being zeros of function $G(\lambda, w ;$.$) .$

Theorem (Markov)

Let λ be real and w positive sequence and, moreover, both bounded. Then polynomials $\left\{F_{n}\right\}_{n=0}^{\infty}$ are orthogonal with respect to measure μ, for which, it holds

$$
\int_{\mathbb{R}} \frac{d \mu(x)}{z-x}=\lim _{n \rightarrow \infty} \frac{G_{n}(z)}{F_{n}(z)}
$$

and the convergence is uniform on any compact subset of $\mathbb{C} \backslash \mathbb{R}$.

- Thus, by the Markov theorem, one finds

$$
\int_{\mathbb{R}} \frac{d \mu(x)}{1-x z}=\frac{G(T \lambda, T w ; z)}{G(\lambda, w ; z)}
$$

Zeros of function $G(\lambda, w ; ~$.

Proposition

Let $\lambda \in \ell^{1}\left(\mathbb{Z}_{+}\right)$be real and $w \in \ell^{2}\left(\mathbb{Z}_{+}\right)$be positive sequence. Then all zeros of functions $G(\lambda, w ;$.$) and G(T \lambda, T w ;$.) are real, simple, and there are infinitely many of them (for each function). Moreover, these two functions have no zero in common.

Zeros of function $G(\lambda, w ; ~$.

Proposition

Let $\lambda \in \ell^{1}\left(\mathbb{Z}_{+}\right)$be real and $w \in \ell^{2}\left(\mathbb{Z}_{+}\right)$be positive sequence. Then all zeros of functions $G(\lambda, w ;$.$) and G(T \lambda, T w ;$.) are real, simple, and there are infinitely many of them (for each function). Moreover, these two functions have no zero in common.

Typical example: If we put $\lambda_{k}=0$ and $w_{k}=[4(\nu+k)(\nu+k+1)]^{-1 / 2}$, with $\nu>0$, then the statement is about zeros of Bessel functions $z^{-\nu+1} J_{\nu-1}(z)$ and $z^{-\nu} J_{\nu}(z)$.

Zeros of function $G(\lambda, w ; ~$.

Proposition

Let $\lambda \in \ell^{1}\left(\mathbb{Z}_{+}\right)$be real and $w \in \ell^{2}\left(\mathbb{Z}_{+}\right)$be positive sequence. Then all zeros of functions $G(\lambda, w ;$.$) and G(T \lambda, T w ;$.) are real, simple, and there are infinitely many of them (for each function). Moreover, these two functions have no zero in common.

Typical example: If we put $\lambda_{k}=0$ and $w_{k}=[4(\nu+k)(\nu+k+1)]^{-1 / 2}$, with $\nu>0$, then the statement is about zeros of Bessel functions $z^{-\nu+1} J_{\nu-1}(z)$ and $z^{-\nu} J_{\nu}(z)$.

- Recall we know

$$
\int_{\mathbb{R}} \frac{d \mu(x)}{1-x z}=\frac{G(T \lambda, T w ; z)}{G(\lambda, w ; z)}
$$

where μ is the measure of orthogonality for polynomials $\left\{F_{n}\right\}_{n=0}^{\infty}$.

Proposition

Let $\lambda \in \ell^{1}\left(\mathbb{Z}_{+}\right)$be real and $w \in \ell^{2}\left(\mathbb{Z}_{+}\right)$be positive sequence. Then all zeros of functions $G(\lambda, w ;$.$) and G(T \lambda, T w ;$.) are real, simple, and there are infinitely many of them (for each function). Moreover, these two functions have no zero in common.

Typical example: If we put $\lambda_{k}=0$ and $w_{k}=[4(\nu+k)(\nu+k+1)]^{-1 / 2}$, with $\nu>0$, then the statement is about zeros of Bessel functions $z^{-\nu+1} J_{\nu-1}(z)$ and $z^{-\nu} J_{\nu}(z)$.

- Recall we know

$$
\int_{\mathbb{R}} \frac{d \mu(x)}{1-x z}=\frac{G(T \lambda, T w ; z)}{G(\lambda, w ; z)}
$$

where μ is the measure of orthogonality for polynomials $\left\{F_{n}\right\}_{n=0}^{\infty}$.

- It can be shown from this formula measure μ is supported by reciprocal values of points, where the RHS has poles, and the origin, i.e.,

$$
\operatorname{supp}(\mu)=\{0\} \cup\left\{z^{-1}: G(\lambda, w, z)=0\right\}
$$

Proposition

Let $\lambda \in \ell^{1}\left(\mathbb{Z}_{+}\right)$be real and $w \in \ell^{2}\left(\mathbb{Z}_{+}\right)$be positive sequence. Then all zeros of functions $G(\lambda, w ;$.$) and G(T \lambda, T w ;$.) are real, simple, and there are infinitely many of them (for each function). Moreover, these two functions have no zero in common.

Typical example: If we put $\lambda_{k}=0$ and $w_{k}=[4(\nu+k)(\nu+k+1)]^{-1 / 2}$, with $\nu>0$, then the statement is about zeros of Bessel functions $z^{-\nu+1} J_{\nu-1}(z)$ and $z^{-\nu} J_{\nu}(z)$.

- Recall we know

$$
\int_{\mathbb{R}} \frac{d \mu(x)}{1-x z}=\frac{G(T \lambda, T w ; z)}{G(\lambda, w ; z)}
$$

where μ is the measure of orthogonality for polynomials $\left\{F_{n}\right\}_{n=0}^{\infty}$.

- It can be shown from this formula measure μ is supported by reciprocal values of points, where the RHS has poles, and the origin, i.e.,

$$
\operatorname{supp}(\mu)=\{0\} \cup\left\{z^{-1}: G(\lambda, w, z)=0\right\}
$$

- Furthermore, denoting by $\mu_{k}, k \in \mathbb{N}$, zeros of $G(\lambda, w ;$.$) , we have the Mittag-Leffler expansion$

$$
\Lambda_{0}+\sum_{k=1}^{\infty} \frac{\Lambda_{k}}{1-\mu_{k}^{-1} z}=\frac{G(T \lambda, T w ; z)}{G(\lambda, w ; z)}
$$

where the convergence of the sum is local uniform in $z \notin\left\{\mu_{k}: k \in \mathbb{N}\right\}$.

Towards orthogonality

- Numbers Λ_{k} represents jumps of distribution function $F_{\mu}(x):=\mu((-\infty, x])$ at $x=\mu_{k}^{-1}$ and Λ_{0} jump at $x=0$. We can express these jumps as

$$
\Lambda_{k}=\lim _{z \rightarrow \mu_{k}}\left(1-\mu_{k}^{-1} z\right) \frac{G(T \lambda, T w ; z)}{G(\lambda, w ; z)}=-\mu_{k}^{-1} \frac{G\left(T \lambda, T w ; \mu_{k}\right)}{\left(\partial_{z} G\right)\left(\lambda, w ; \mu_{k}\right)}
$$

Towards orthogonality

- Numbers Λ_{k} represents jumps of distribution function $F_{\mu}(x):=\mu((-\infty, x])$ at $x=\mu_{k}^{-1}$ and Λ_{0} jump at $x=0$. We can express these jumps as

$$
\Lambda_{k}=\lim _{z \rightarrow \mu_{k}}\left(1-\mu_{k}^{-1} z\right) \frac{G(T \lambda, T w ; z)}{G(\lambda, w ; z)}=-\mu_{k}^{-1} \frac{G\left(T \lambda, T w ; \mu_{k}\right)}{\left(\partial_{z} G\right)\left(\lambda, w ; \mu_{k}\right)}
$$

- Finally, the orthogonality relation for polynomials $\left\{F_{n}\right\}_{n=0}^{\infty}$ reads

$$
\int_{\mathbb{R}} F_{m}(x) F_{n}(x) d \mu(x)=\left(\prod_{k=0}^{n-1} w_{k}^{2}\right) \delta_{m n}, \quad m, n \in \mathbb{Z}_{+}
$$

Summary - Main theorem

Theorem

For $\lambda \in \ell^{1}\left(\mathbb{Z}_{+}\right)$be real and $w \in \ell^{2}\left(\mathbb{Z}_{+}\right)$positive sequence we introduce function

$$
G(\lambda, w ; z)=\prod_{n=0}^{\infty}\left(1-z \lambda_{n}\right) \mathfrak{F}\left(\left\{\frac{z \gamma_{k}^{2}}{1-z \lambda_{k}}\right\}_{k=0}^{\infty}\right)
$$

Then the measure of orthogonality μ of corresponding orthogonal polynomials $\left\{F_{n}\right\}_{n=0}^{\infty}$ is supported by a real sequence with 0 , the only cluster point. Moreover, we have

$$
\operatorname{supp}(\mu)=\{0\} \cup\left\{z^{-1}: G(\lambda, w ; z)=0\right\} .
$$

The orthogonality relation reads

$$
\int_{\mathbb{R}} F_{m}(x) F_{n}(x) d \mu(x)=\left(\prod_{k=0}^{n-1} w_{k}^{2}\right) \delta_{m n}, \quad m, n \in \mathbb{Z}_{+}
$$

and, for $x \in \operatorname{supp}(\mu) \backslash\{0\}$, distribution function $F_{\mu}(x):=\mu((-\infty, x])$ has jumps

$$
F_{\mu}(x)-F_{\mu}(x-0)=-x \frac{G\left(T \lambda, T w ; x^{-1}\right)}{\left(\partial_{z} G\right)\left(\lambda, w ; x^{-1}\right)}
$$

Application: Orthogonal polynomial arising from example with ${ }_{1} \phi_{1}$

- The example with q-confluent hypergeometric function introduced at the beginning, slightly reparametrized, yields
$\mathfrak{F}\left(\left\{\frac{q^{\frac{1}{2}(\delta+k)-\frac{1}{4}}\left(q^{k+1-\delta} ; q^{2}\right)_{\infty} \sqrt{-a}}{\left(q^{k+2-\delta} ; q^{2}\right)_{\infty}\left((a+1) q^{k}-x\right)}\right\}_{k=0}^{\infty}\right)=\frac{\left(x^{-1} ; q\right)_{\infty}}{\left(x^{-1}(a+1) ; q\right)_{\infty}}{ }_{1} \phi_{1}\left(x^{-1} q^{\delta} ; x^{-1} ; q, a x^{-1}\right)$
where $x \notin(a+1) q^{\mathbb{Z}_{+}} \cup\{0\}$.

Application: Orthogonal polynomial arising from example with ${ }_{1} \phi_{1}$

- The example with q-confluent hypergeometric function introduced at the beginning, slightly reparametrized, yields
$\mathfrak{F}\left(\left\{\frac{q^{\frac{1}{2}(\delta+k)-\frac{1}{4}}\left(q^{k+1-\delta} ; q^{2}\right)_{\infty} \sqrt{-a}}{\left(q^{k+2-\delta} ; q^{2}\right)_{\infty}\left((a+1) q^{k}-x\right)}\right\}_{k=0}^{\infty}\right)=\frac{\left(x^{-1} ; q\right)_{\infty}}{\left(x^{-1}(a+1) ; q\right)_{\infty}}{ }^{1} \phi_{1}\left(x^{-1} q^{\delta} ; x^{-1} ; q, a x^{-1}\right)$
where $x \notin(a+1) q^{\mathbb{Z}_{+}} \cup\{0\}$.
- This identity correspond with the polynomial sequence $U_{n}(a, \delta ; q, x), n \in \mathbb{Z}_{+}$, which is generated by recursion

$$
v_{n+1}=\left(x-(a+1) q^{n}\right) v_{n}+a q^{n+\delta-1}\left(1-q^{n-\delta}\right) v_{n-1}, \quad n \in \mathbb{N}
$$

with initial setting $U_{0}(a, \delta ; q, x)=1$ and $U_{1}(a, \delta ; q, x)=x-a-1$.

Application: Orthogonal polynomial arising from example with ${ }_{1} \phi_{1}$

- The example with q-confluent hypergeometric function introduced at the beginning, slightly reparametrized, yields
$\mathfrak{F}\left(\left\{\frac{q^{\frac{1}{2}(\delta+k)-\frac{1}{4}}\left(q^{k+1-\delta} ; q^{2}\right)_{\infty} \sqrt{-a}}{\left(q^{k+2-\delta} ; q^{2}\right)_{\infty}\left((a+1) q^{k}-x\right)}\right\}_{k=0}^{\infty}\right)=\frac{\left(x^{-1} ; q\right)_{\infty}}{\left(x^{-1}(a+1) ; q\right)_{\infty}}{ }^{1} \phi_{1}\left(x^{-1} q^{\delta} ; x^{-1} ; q, a x^{-1}\right)$
where $x \notin(a+1) q^{\mathbb{Z}_{+}} \cup\{0\}$.
- This identity correspond with the polynomial sequence $U_{n}(a, \delta ; q, x), n \in \mathbb{Z}_{+}$, which is generated by recursion

$$
v_{n+1}=\left(x-(a+1) q^{n}\right) v_{n}+a q^{n+\delta-1}\left(1-q^{n-\delta}\right) v_{n-1}, \quad n \in \mathbb{N}
$$

with initial setting $U_{0}(a, \delta ; q, x)=1$ and $U_{1}(a, \delta ; q, x)=x-a-1$.

- Thus, in this case, sequences $\left\{\lambda_{n}\right\}_{n=0}^{\infty}$ and $\left\{w_{n}\right\}_{n=0}^{\infty}$ are as follows:

$$
\lambda_{n}=(a+1) q^{n} \quad \text { and } \quad w_{n}^{2}=-a q^{n+\delta}\left(1-q^{n+1-\delta}\right)
$$

Application: Orthogonal polynomial arising from example with ${ }_{1} \phi_{1}$

- The example with q-confluent hypergeometric function introduced at the beginning, slightly reparametrized, yields
$\mathfrak{F}\left(\left\{\frac{q^{\frac{1}{2}(\delta+k)-\frac{1}{4}}\left(q^{k+1-\delta} ; q^{2}\right)_{\infty} \sqrt{-a}}{\left(q^{k+2-\delta} ; q^{2}\right)_{\infty}\left((a+1) q^{k}-x\right)}\right\}_{k=0}^{\infty}\right)=\frac{\left(x^{-1} ; q\right)_{\infty}}{\left(x^{-1}(a+1) ; q\right)_{\infty}} 1 \phi_{1}\left(x^{-1} q^{\delta} ; x^{-1} ; q, a x^{-1}\right)$
where $x \notin(a+1) q^{\mathbb{Z}_{+}} \cup\{0\}$.
- This identity correspond with the polynomial sequence $U_{n}(a, \delta ; q, x), n \in \mathbb{Z}_{+}$, which is generated by recursion

$$
v_{n+1}=\left(x-(a+1) q^{n}\right) v_{n}+a q^{n+\delta-1}\left(1-q^{n-\delta}\right) v_{n-1}, \quad n \in \mathbb{N}
$$

with initial setting $U_{0}(a, \delta ; q, x)=1$ and $U_{1}(a, \delta ; q, x)=x-a-1$.

- Thus, in this case, sequences $\left\{\lambda_{n}\right\}_{n=0}^{\infty}$ and $\left\{w_{n}\right\}_{n=0}^{\infty}$ are as follows:

$$
\lambda_{n}=(a+1) q^{n} \quad \text { and } \quad w_{n}^{2}=-a q^{n+\delta}\left(1-q^{n+1-\delta}\right)
$$

- For $\delta=0$, polynomials $U_{n}(a, 0 ; q, x)$ are known as AI-Salam-Carlitz I and are listed in the q-Askey scheme. They can be expressed as

$$
U_{n}(a, 0 ; q, x)=(-a)^{n} q^{\binom{n}{2}}{ }_{2} \phi_{1}\left(q^{-n}, x^{-1} ; 0 ; q, a^{-1} q x\right)
$$

- In this case, one deduces

$$
G\left(T^{k} \lambda, T^{k} w ; x\right)={ }_{1} \tilde{\phi}_{1}\left(x q^{\delta} ; q^{k} x ; q, a q^{k} x\right), \quad \text { for } k=0,1,2, \ldots,
$$

where ${ }_{1} \tilde{\phi}_{1}$ denoted regularized q-confluent hypergeometric function defined by

$$
\tilde{\phi}_{1}(a ; b ; q, z):=(b ; q)_{\infty 1} \phi_{1}(a ; b ; q, z)
$$

Consequently, assuming $a<0$ and $\delta<1$, we can use the general theorem to find:

- In this case, one deduces

$$
G\left(T^{k} \lambda, T^{k} w ; x\right)={ }_{1} \tilde{\phi}_{1}\left(x q^{\delta} ; q^{k} x ; q, a q^{k} x\right), \quad \text { for } k=0,1,2, \ldots,
$$

where ${ }_{1} \tilde{\phi}_{1}$ denoted regularized q-confluent hypergeometric function defined by

$$
\tilde{\phi}_{1}(a ; b ; q, z):=(b ; q)_{\infty 1} \phi_{1}(a ; b ; q, z)
$$

Consequently, assuming $a<0$ and $\delta<1$, we can use the general theorem to find:
i) Polynomials $\left\{U_{n}(a, \delta ; q, x): n \in \mathbb{Z}_{+}\right\}$satisfy the orthogonality relation

$$
\int_{\mathbb{R}} U_{m}(a, \delta ; q, x) U_{n}(a, \delta ; q, x) d \mu(x)=(-a)^{n} q^{n \delta+n(n-1) / 2}\left(q^{1-\delta} ; q\right)_{n} \delta_{m n}
$$

where μ is a probability measure.

The orthogonality of generalized Al-Salam-Carlitz I polynomials

- In this case, one deduces

$$
G\left(T^{k} \lambda, T^{k} w ; x\right)={ }_{1} \tilde{\phi}_{1}\left(x q^{\delta} ; q^{k} x ; q, a q^{k} x\right), \quad \text { for } k=0,1,2, \ldots,
$$

where ${ }_{1} \tilde{\phi}_{1}$ denoted regularized q-confluent hypergeometric function defined by

$$
\tilde{\phi}_{1}(a ; b ; q, z):=(b ; q)_{\infty 1} \phi_{1}(a ; b ; q, z)
$$

Consequently, assuming $a<0$ and $\delta<1$, we can use the general theorem to find:
i) Polynomials $\left\{U_{n}(a, \delta ; q, x): n \in \mathbb{Z}_{+}\right\}$satisfy the orthogonality relation

$$
\int_{\mathbb{R}} U_{m}(a, \delta ; q, x) U_{n}(a, \delta ; q, x) d \mu(x)=(-a)^{n} q^{n \delta+n(n-1) / 2}\left(q^{1-\delta} ; q\right)_{n} \delta_{m n}
$$

where μ is a probability measure.
ii) Measure μ is supported by the set

$$
\operatorname{supp}(\mu)=\left\{x^{-1} \in \mathbb{C}:{ }_{1} \tilde{\phi}_{1}\left(x q^{\delta} ; x ; q, a x\right)=0\right\} \cup\{0\}
$$

and the step function $F_{\mu}(x)=\mu((-\infty, x])$ has jumps at $x \in \operatorname{supp}(\mu) \backslash\{0\}$ of magnitude

$$
F_{\mu}(x)-F_{\mu}(x-0)=\frac{{ }_{1} \tilde{\phi}_{1}\left(x^{-1} q^{\delta} ; q x^{-1} ; q, a q x^{-1}\right)}{x \partial_{x} \tilde{\phi}_{1}\left(x^{-1} q^{\delta} ; x^{-1} ; q, a x^{-1}\right)}
$$

The orthogonality of generalized Al-Salam-Carlitz I polynomials

- In this case, one deduces

$$
G\left(T^{k} \lambda, T^{k} w ; x\right)={ }_{1} \tilde{\phi}_{1}\left(x q^{\delta} ; q^{k} x ; q, a q^{k} x\right), \quad \text { for } k=0,1,2, \ldots,
$$

where ${ }_{1} \tilde{\phi}_{1}$ denoted regularized q-confluent hypergeometric function defined by

$$
{ }_{1} \tilde{\phi}_{1}(a ; b ; q, z):=(b ; q)_{\infty 1} \phi_{1}(a ; b ; q, z)
$$

Consequently, assuming $a<0$ and $\delta<1$, we can use the general theorem to find:
i) Polynomials $\left\{U_{n}(a, \delta ; q, x): n \in \mathbb{Z}_{+}\right\}$satisfy the orthogonality relation

$$
\int_{\mathbb{R}} U_{m}(a, \delta ; q, x) U_{n}(a, \delta ; q, x) d \mu(x)=(-a)^{n} q^{n \delta+n(n-1) / 2}\left(q^{1-\delta} ; q\right)_{n} \delta_{m n}
$$

where μ is a probability measure.
ii) Measure μ is supported by the set

$$
\operatorname{supp}(\mu)=\left\{x^{-1} \in \mathbb{C}:{ }_{1} \tilde{\phi}_{1}\left(x q^{\delta} ; x ; q, a x\right)=0\right\} \cup\{0\}
$$

and the step function $F_{\mu}(x)=\mu((-\infty, x])$ has jumps at $x \in \operatorname{supp}(\mu) \backslash\{0\}$ of magnitude

$$
F_{\mu}(x)-F_{\mu}(x-0)=\frac{\tilde{\phi}_{1}\left(x^{-1} q^{\delta} ; q x^{-1} ; q, a q x^{-1}\right)}{x \partial_{x} \tilde{\phi}_{1}\left(x^{-1} q^{\delta} ; x^{-1} ; q, a x^{-1}\right)}
$$

- If $\delta=0$ these results yields orthogonality for Al-Salam-Carlitz I polynomials, which can be described fully explicitly.

Other properties - Generating function

Suppose $x \neq 0$ then the generating function for $U_{n}(a, \delta ; q, x)$ reads:
i) if $\delta<0$,

$$
\sum_{n=0}^{\infty} \frac{U_{n}(a, \delta ; q, x)}{\left(q^{-\delta} ; q\right)_{n+1}} t^{n}=\sum_{k=0}^{\infty} \frac{\left(a q^{\delta} t ; q\right)_{k}\left(q^{\delta} t ; q\right)_{k}}{(x t ; q)_{k+1}} q^{-k \delta}, \quad|x t|<1
$$

Other properties - Generating function

Suppose $x \neq 0$ then the generating function for $U_{n}(a, \delta ; q, x)$ reads:
i) if $\delta<0$,

$$
\sum_{n=0}^{\infty} \frac{U_{n}(a, \delta ; q, x)}{\left(q^{-\delta} ; q\right)_{n+1}} t^{n}=\sum_{k=0}^{\infty} \frac{\left(a q^{\delta} t ; q\right)_{k}\left(q^{\delta} t ; q\right)_{k}}{(x t ; q)_{k+1}} q^{-k \delta}, \quad|x t|<1
$$

ii) if $\delta=0$,

$$
\sum_{n=0}^{\infty} \frac{U_{n}(a, 0 ; q, x)}{(q ; q)_{n}} t^{n}=\frac{(a t ; q)_{\infty}(t ; q)_{\infty}}{(x t ; q)_{\infty}}, \quad|x t|<1
$$

Other properties - Generating function

Suppose $x \neq 0$ then the generating function for $U_{n}(a, \delta ; q, x)$ reads:
i) if $\delta<0$,

$$
\sum_{n=0}^{\infty} \frac{U_{n}(a, \delta ; q, x)}{\left(q^{-\delta} ; q\right)_{n+1}} t^{n}=\sum_{k=0}^{\infty} \frac{\left(a q^{\delta} t ; q\right)_{k}\left(q^{\delta} t ; q\right)_{k}}{(x t ; q)_{k+1}} q^{-k \delta}, \quad|x t|<1
$$

ii) if $\delta=0$,

$$
\sum_{n=0}^{\infty} \frac{U_{n}(a, 0 ; q, x)}{(q ; q)_{n}} t^{n}=\frac{(a t ; q)_{\infty}(t ; q)_{\infty}}{(x t ; q)_{\infty}}, \quad|x t|<1
$$

iii) if $\delta>0$,
-unknown-

Other properties - Structure relations

- For $n \in \mathbb{Z}_{+}$, it holds

$$
\mathcal{D}_{q} U_{n}(a, \delta ; q, x)=\frac{1-q^{n-\delta}}{1-q} U_{n-1}(a, \delta ; q, x)-q^{n} \frac{1-q^{-\delta}}{1-q} U_{n-1}(a, \delta-1 ; q, x)
$$

Other properties - Structure relations

- For $n \in \mathbb{Z}_{+}$, it holds

$$
\mathcal{D}_{q} U_{n}(a, \delta ; q, x)=\frac{1-q^{n-\delta}}{1-q} U_{n-1}(a, \delta ; q, x)-q^{n} \frac{1-q^{-\delta}}{1-q} U_{n-1}(a, \delta-1 ; q, x)
$$

- This formula is a generalization of the forward shift formula for Al-Salam-Carlitz I polynomials,

$$
\mathcal{D}_{q} U_{n}(a, 0 ; q, x)=\frac{1-q^{n}}{1-q} U_{n-1}(a, 0 ; q, x) .
$$

Other properties - Structure relations

- For $n \in \mathbb{Z}_{+}$, it holds

$$
\mathcal{D}_{q} U_{n}(a, \delta ; q, x)=\frac{1-q^{n-\delta}}{1-q} U_{n-1}(a, \delta ; q, x)-q^{n} \frac{1-q^{-\delta}}{1-q} U_{n-1}(a, \delta-1 ; q, x) .
$$

- This formula is a generalization of the forward shift formula for Al-Salam-Carlitz I polynomials,

$$
\mathcal{D}_{q} U_{n}(a, 0 ; q, x)=\frac{1-q^{n}}{1-q} U_{n-1}(a, 0 ; q, x) .
$$

- On the other hand, it seems there is no simple formula which would generalize the backward shift for AI-Salam-Carlitz I polynomials, which reads

$$
(a-x)(1-x) U_{n}\left(a, 0 ; q, q^{-1} x\right)-a U_{n}(a, 0 ; q, x)=x q^{-n} U_{n+1}(a, 0 ; q, x)
$$

Other properties - Structure relations

- For $n \in \mathbb{Z}_{+}$, it holds

$$
\mathcal{D}_{q} U_{n}(a, \delta ; q, x)=\frac{1-q^{n-\delta}}{1-q} U_{n-1}(a, \delta ; q, x)-q^{n} \frac{1-q^{-\delta}}{1-q} U_{n-1}(a, \delta-1 ; q, x) .
$$

- This formula is a generalization of the forward shift formula for Al-Salam-Carlitz I polynomials,

$$
\mathcal{D}_{q} U_{n}(a, 0 ; q, x)=\frac{1-q^{n}}{1-q} U_{n-1}(a, 0 ; q, x) .
$$

- On the other hand, it seems there is no simple formula which would generalize the backward shift for AI-Salam-Carlitz I polynomials, which reads

$$
(a-x)(1-x) U_{n}\left(a, 0 ; q, q^{-1} x\right)-a U_{n}(a, 0 ; q, x)=x q^{-n} U_{n+1}(a, 0 ; q, x)
$$

- Consequently, we do not know if there is a second order q-difference equation for polynomials $U_{n}(a, \delta ; q, x)$.

References:

- F. Š., P. Št'ovíček, On the Eigenvalue Problem for a Particular Class of Finite Jacobi Matrices, Linear Alg. Appl. 434 (2011) 1336-1353.
- F. Š., P. Šťovíček, The characteristic function for Jacobi matrices with applications, Linear Alg. Appl. 438 (2013) 4130-4155.
- F. Š., P. Št'ovíček, Special functions and spectrum of Jacobi matrices, Linear Alg. Appl. (2013), in press.

Thank you!

