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Function F

Definition

Let us define F : DomF→ C by relation

F(x) = 1 +
∞∑

m=1

(−1)m
∞∑

k1=1

∞∑
k2=k1+2

. . .
∞∑

km=km−1+2

xk1 xk1+1xk2 xk2+1 . . . xkm xkm+1,

where

DomF =

{
{xk}∞k=1 ⊂ C;

∞∑
k=1

|xk xk+1| <∞
}
.

For a finite number of complex variables let me identify F(x1, x2, . . . , xn) with F(x) where
x = (x1, x2, . . . , xn, 0, 0, 0, . . . ).

Note DomF is not a linear space. One has, however, `2(N) ⊂ D. Further, F restricted to `2(N)
is a continuous functional (not linear).
Initially, function F have been developed as a tool for spectral analysis of Jacobi operators
from certain class.
However, function F is also related with continued fractions, bilateral second order difference
equations, as well as orthogonal polynomials.
In this talk we focus on usage of F for description of the measure of orthogonality of
orthogonal polynomials.
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Some examples

1 Put xk = z/(ν + k), then

F(x) = Γ(ν + 1)z−νJν(2z),

for z ∈ C and −ν /∈ N, where Jν is the Bessel function of the first kind.

2 Put xk = z1/2q(2k−1)/4, then

F(x) = Aq(z) := 0φ1(; 0; q,−qz),

for z ∈ C and q ∈ (0, 1), where Aq is Ramanujan function (or q-Airy function).
3 Put

xk =
q

1
2 (α+γ+k)− 3

4 (qγ−α+k ; q2)∞ z
1
2

(qγ−α+k+1; q2)∞
(
1− (1− z)qγ+k−1

) ,
then

F(x) =
(qγ ; q)∞

((1− z)qγ ; q)∞
1φ1(qα; qγ ; q,−qγz),

for z, α, γ ∈ C, (1− z)qγ /∈ q−Z+ and q ∈ (0, 1), where 1φ1 is q-confluent hypergeometric
function (proof in [F. Š., P. Št’ovíček, LAA, 2013]).
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Fundamental property of F

For all x ∈ DomF and k = 1, 2, . . . one has

Recursive relation

F(x) = F(x1, . . . , xk )F(T k x)− F(x1, . . . , xk−1)xk xk+1F(T k+1x)

where T denotes the left shift operator defined on the space of all sequences:

T ({xk}∞k=1) = {xk+1}∞k=1.

Especially for k = 1, one gets the simple relation

F(x) = F(Tx)− x1x2 F(T 2x).

Typical example: For xk = z/(ν + k − 1), the simple recurrence relation for F yields the well
known formula for Bessel functions:

Jν−1(2z) =
ν

z
Jν(2z)− Jν+1(2z).
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Function F and orthogonal polynomials

By the Favard’s theorem, the couple of polynomial sequences ({Fn}∞n=0, {Gn}∞n=0) defined
recursively by equation

un+1 = (x − λn)un − w2
n−1un−1, n = 1, 2, . . . ,

where λn ∈ R and wn > 0, and with initial conditions

F0(x) = 1, F1(x) = x − λ0,

G0(x) = 0, G1(x) = 1,

forms (monic) orthogonal polynomials of the first and second kind respectively.

As one easily verifies by induction, polynomials Fn and Gn can be expressed in terms of F,

Fn(x) =

n−1∏
k=0

(x − λk )F

{ γ2
l

λl − x

}n−1

l=0

 , n = 0, 1 . . . ,

and

Gn(x) =

n−1∏
k=1

(x − λk )F

{ γ2
l

λl − x

}n−1

l=1

 , n = 0, 1 . . . ,

where the sequence {γk}∞k=0 is defined recursively by γ0 = 1, γk+1 = wk/γk .
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Asymptotic behavior of Fn(x) as n→∞

Proposition

If
∑

k≥0

∣∣ w2
k

(x−λk )(x−λk+1)

∣∣ <∞, for some x ∈ C, then the limit relation

lim
n→∞

n−1∏
k=0

(x − λk )−1 Fn(x) = F

({
γ2

k
λk − x

}∞
k=0

)

holds for any x /∈ {λn : n = 0, 1, 2, . . . }.

Typical example: By setting λk = 0 and wk = [4(k + ν)(k + ν + 1)]−1/2, polynomials

Fn(x) = xn F

({
1

2x(ν + k)

}n−1

k=0

)
, n = 0, 1, 2 . . . ,

are a “monic version” of Lommel polynomials. The standard Lommel polynomials Rn,ν(x)
(symmetric polynomials in x−1), well-known from the theory of Bessel functions, are related with
Fn via identity:

Rn,ν(x) = 2n Γ(ν + n)

Γ(ν)
Fn(x−1).

The above limit relation yields the Hurwitz’s asymptotic formula for Lommel polynomials

lim
n→∞

xn

2nΓ(ν + n)
Rn,ν(x) =

(x
2

)−ν+1
Jν−1(x).
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Regularization

The asymptotic behavior of Fn, as n→∞, is expressed in terms of function

Φ(λ,w ; z) = F

({
γ2

k
λk − z

}∞
k=0

)

under the assumption that ensures the function to be well defined. This function is
meromorphic on C \ der(λ) with poles at z = λk such that λk /∈ der(λ).

Taking into account later application, we restrict sequences λ and w such that λ ∈ `1(Z+)
and w ∈ `2(Z+). Then function

ψλ(z) =
∞∏

n=0

(1− zλn)

is well defined entire function and ψ
(−1)
λ ({0}) = {λ−1

n : λn 6= 0, n ∈ Z+}.
Let us define function

G(λ,w ; z) =

{
ψλ(z)Φ(λ,w ; z−1) if z 6= 0,
1 if z = 0.

Assuming λ ∈ `1(Z+) and w ∈ `2(Z+), function G(λ,w ; .) is entire.
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Markov theorem

For the limit of the ratio Gn(z−1)/Fn(z−1), now we have

lim
n→∞

Gn(z−1)

Fn(z−1)
= z

G(Tλ,Tw ; z)

G(λ,w ; z)
,

for all z 6= 0 not being zeros of function G(λ,w ; .).

Theorem (Markov)

Let λ be real and w positive sequence and, moreover, both bounded. Then polynomials {Fn}∞n=0
are orthogonal with respect to measure µ, for which, it holds∫

R

dµ(x)

z − x
= lim

n→∞

Gn(z)

Fn(z)
,

and the convergence is uniform on any compact subset of C \ R.

Thus, by the Markov theorem, one finds∫
R

dµ(x)

1− xz
=

G(Tλ,Tw ; z)

G(λ,w ; z)
.
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Zeros of function G(λ,w ; .)

Proposition

Let λ ∈ `1(Z+) be real and w ∈ `2(Z+) be positive sequence. Then all zeros of functions
G(λ,w ; .) and G(Tλ,Tw ; .) are real, simple, and there are infinitely many of them (for each
function). Moreover, these two functions have no zero in common.

Typical example: If we put λk = 0 and wk = [4(ν + k)(ν + k + 1)]−1/2, with ν > 0, then the
statement is about zeros of Bessel functions z−ν+1Jν−1(z) and z−νJν(z).

Recall we know ∫
R

dµ(x)

1− xz
=

G(Tλ,Tw ; z)

G(λ,w ; z)

where µ is the measure of orthogonality for polynomials {Fn}∞n=0.
It can be shown from this formula measure µ is supported by reciprocal values of points,
where the RHS has poles, and the origin, i.e.,

supp(µ) = {0} ∪ {z−1 : G(λ,w , z) = 0}.

Furthermore, denoting by µk , k ∈ N, zeros of G(λ,w ; .), we have the Mittag-Leffler expansion

Λ0 +
∞∑

k=1

Λk

1− µ−1
k z

=
G(Tλ,Tw ; z)

G(λ,w ; z)

where the convergence of the sum is local uniform in z /∈ {µk : k ∈ N}.
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Towards orthogonality

Numbers Λk represents jumps of distribution function Fµ(x) := µ((−∞, x ]) at x = µ−1
k and

Λ0 jump at x = 0. We can express these jumps as

Λk = lim
z→µk

(1− µ−1
k z)

G(Tλ,Tw ; z)

G(λ,w ; z)
= −µ−1

k
G(Tλ,Tw ;µk )

(∂zG)(λ,w ;µk )
.

Finally, the orthogonality relation for polynomials {Fn}∞n=0 reads

∫
R

Fm(x)Fn(x)dµ(x) =

n−1∏
k=0

w2
k

 δmn, m, n ∈ Z+.
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Summary - Main theorem

Theorem

For λ ∈ `1(Z+) be real and w ∈ `2(Z+) positive sequence we introduce function

G(λ,w ; z) =
∞∏

n=0

(1− zλn)F

({
zγ2

k
1− zλk

}∞
k=0

)
,

Then the measure of orthogonality µ of corresponding orthogonal polynomials {Fn}∞n=0 is
supported by a real sequence with 0, the only cluster point. Moreover, we have

supp(µ) = {0} ∪ {z−1 : G(λ,w ; z) = 0}.

The orthogonality relation reads

∫
R

Fm(x)Fn(x)dµ(x) =

n−1∏
k=0

w2
k

 δmn, m, n ∈ Z+,

and, for x ∈ supp(µ) \ {0}, distribution function Fµ(x) := µ((−∞, x ]) has jumps

Fµ(x)− Fµ(x − 0) = −x
G(Tλ,Tw ; x−1)

(∂zG)(λ,w ; x−1)
.
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Application: Orthogonal polynomial arising from example with 1φ1

The example with q-confluent hypergeometric function introduced at the beginning, slightly
reparametrized, yields

F

({
q

1
2 (δ+k)− 1

4 (qk+1−δ; q2)∞
√
−a

(qk+2−δ; q2)∞
(
(a + 1)qk − x

)}∞
k=0

)
=

(x−1; q)∞

(x−1(a + 1); q)∞
1φ1

(
x−1qδ; x−1; q, ax−1

)
where x /∈ (a + 1)qZ+ ∪ {0}.

This identity correspond with the polynomial sequence Un(a, δ; q, x), n ∈ Z+, which is
generated by recursion

vn+1 =
(
x − (a + 1)qn) vn + aqn+δ−1(1− qn−δ)vn−1, n ∈ N,

with initial setting U0(a, δ; q, x) = 1 and U1(a, δ; q, x) = x − a− 1.

Thus, in this case, sequences {λn}∞n=0 and {wn}∞n=0 are as follows:

λn = (a + 1)qn and w2
n = −aqn+δ(1− qn+1−δ).

For δ = 0, polynomials Un(a, 0; q, x) are known as Al-Salam-Carlitz I and are listed in the
q-Askey scheme. They can be expressed as

Un(a, 0; q, x) = (−a)nq
(

n
2

)
2φ1

(
q−n, x−1; 0; q, a−1qx

)
.
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The orthogonality of generalized Al-Salam-Carlitz I polynomials

In this case, one deduces

G(T kλ,T k w ; x) = 1φ̃1(xqδ; qk x ; q, aqk x), for k = 0, 1, 2, . . . ,

where 1φ̃1 denoted regularized q-confluent hypergeometric function defined by

1φ̃1(a; b; q, z) := (b; q)∞1φ1(a; b; q, z).

Consequently, assuming a < 0 and δ < 1, we can use the general theorem to find:

i) Polynomials {Un(a, δ; q, x) : n ∈ Z+} satisfy the orthogonality relation∫
R

Um(a, δ; q, x)Un(a, δ; q, x)dµ(x) = (−a)nqnδ+n(n−1)/2(q1−δ; q)nδmn

where µ is a probability measure.
ii) Measure µ is supported by the set

supp(µ) = {x−1∈ C : 1φ̃1

(
xqδ; x ; q, ax

)
= 0} ∪ {0},

and the step function Fµ(x) = µ((−∞, x ]) has jumps at x ∈ supp(µ) \ {0} of magnitude

Fµ(x)− Fµ(x − 0) =
1φ̃1
(
x−1qδ; qx−1; q, aqx−1)

x∂x 1φ̃1
(
x−1qδ; x−1; q, ax−1

) .
If δ = 0 these results yields orthogonality for Al-Salam-Carlitz I polynomials, which can be
described fully explicitly.

František Štampach (FNSPE & FIT, CTU) Constr. OG measur. with appl. August 29, 2013 14 / 17



The orthogonality of generalized Al-Salam-Carlitz I polynomials

In this case, one deduces

G(T kλ,T k w ; x) = 1φ̃1(xqδ; qk x ; q, aqk x), for k = 0, 1, 2, . . . ,

where 1φ̃1 denoted regularized q-confluent hypergeometric function defined by

1φ̃1(a; b; q, z) := (b; q)∞1φ1(a; b; q, z).

Consequently, assuming a < 0 and δ < 1, we can use the general theorem to find:
i) Polynomials {Un(a, δ; q, x) : n ∈ Z+} satisfy the orthogonality relation∫

R
Um(a, δ; q, x)Un(a, δ; q, x)dµ(x) = (−a)nqnδ+n(n−1)/2(q1−δ; q)nδmn

where µ is a probability measure.

ii) Measure µ is supported by the set

supp(µ) = {x−1∈ C : 1φ̃1

(
xqδ; x ; q, ax

)
= 0} ∪ {0},

and the step function Fµ(x) = µ((−∞, x ]) has jumps at x ∈ supp(µ) \ {0} of magnitude

Fµ(x)− Fµ(x − 0) =
1φ̃1
(
x−1qδ; qx−1; q, aqx−1)

x∂x 1φ̃1
(
x−1qδ; x−1; q, ax−1

) .
If δ = 0 these results yields orthogonality for Al-Salam-Carlitz I polynomials, which can be
described fully explicitly.

František Štampach (FNSPE & FIT, CTU) Constr. OG measur. with appl. August 29, 2013 14 / 17



The orthogonality of generalized Al-Salam-Carlitz I polynomials

In this case, one deduces

G(T kλ,T k w ; x) = 1φ̃1(xqδ; qk x ; q, aqk x), for k = 0, 1, 2, . . . ,

where 1φ̃1 denoted regularized q-confluent hypergeometric function defined by

1φ̃1(a; b; q, z) := (b; q)∞1φ1(a; b; q, z).

Consequently, assuming a < 0 and δ < 1, we can use the general theorem to find:
i) Polynomials {Un(a, δ; q, x) : n ∈ Z+} satisfy the orthogonality relation∫

R
Um(a, δ; q, x)Un(a, δ; q, x)dµ(x) = (−a)nqnδ+n(n−1)/2(q1−δ; q)nδmn

where µ is a probability measure.
ii) Measure µ is supported by the set

supp(µ) = {x−1∈ C : 1φ̃1

(
xqδ; x ; q, ax

)
= 0} ∪ {0},

and the step function Fµ(x) = µ((−∞, x ]) has jumps at x ∈ supp(µ) \ {0} of magnitude

Fµ(x)− Fµ(x − 0) =
1φ̃1
(
x−1qδ; qx−1; q, aqx−1)

x∂x 1φ̃1
(
x−1qδ; x−1; q, ax−1

) .

If δ = 0 these results yields orthogonality for Al-Salam-Carlitz I polynomials, which can be
described fully explicitly.

František Štampach (FNSPE & FIT, CTU) Constr. OG measur. with appl. August 29, 2013 14 / 17



The orthogonality of generalized Al-Salam-Carlitz I polynomials

In this case, one deduces

G(T kλ,T k w ; x) = 1φ̃1(xqδ; qk x ; q, aqk x), for k = 0, 1, 2, . . . ,

where 1φ̃1 denoted regularized q-confluent hypergeometric function defined by

1φ̃1(a; b; q, z) := (b; q)∞1φ1(a; b; q, z).

Consequently, assuming a < 0 and δ < 1, we can use the general theorem to find:
i) Polynomials {Un(a, δ; q, x) : n ∈ Z+} satisfy the orthogonality relation∫

R
Um(a, δ; q, x)Un(a, δ; q, x)dµ(x) = (−a)nqnδ+n(n−1)/2(q1−δ; q)nδmn

where µ is a probability measure.
ii) Measure µ is supported by the set

supp(µ) = {x−1∈ C : 1φ̃1

(
xqδ; x ; q, ax

)
= 0} ∪ {0},

and the step function Fµ(x) = µ((−∞, x ]) has jumps at x ∈ supp(µ) \ {0} of magnitude

Fµ(x)− Fµ(x − 0) =
1φ̃1
(
x−1qδ; qx−1; q, aqx−1)

x∂x 1φ̃1
(
x−1qδ; x−1; q, ax−1

) .
If δ = 0 these results yields orthogonality for Al-Salam-Carlitz I polynomials, which can be
described fully explicitly.

František Štampach (FNSPE & FIT, CTU) Constr. OG measur. with appl. August 29, 2013 14 / 17



Other properties - Generating function

Suppose x 6= 0 then the generating function for Un(a, δ; q, x) reads:

i) if δ < 0,
∞∑

n=0

Un(a, δ; q, x)

(q−δ; q)n+1
tn =

∞∑
k=0

(aqδ t ; q)k (qδ t ; q)k

(xt ; q)k+1
q−kδ, |xt | < 1,

ii) if δ = 0,
∞∑

n=0

Un(a, 0; q, x)

(q; q)n
tn =

(at ; q)∞(t ; q)∞

(xt ; q)∞
, |xt | < 1,

iii) if δ > 0,
-unknown-

František Štampach (FNSPE & FIT, CTU) Constr. OG measur. with appl. August 29, 2013 15 / 17



Other properties - Generating function

Suppose x 6= 0 then the generating function for Un(a, δ; q, x) reads:

i) if δ < 0,
∞∑

n=0

Un(a, δ; q, x)

(q−δ; q)n+1
tn =

∞∑
k=0

(aqδ t ; q)k (qδ t ; q)k

(xt ; q)k+1
q−kδ, |xt | < 1,

ii) if δ = 0,
∞∑

n=0

Un(a, 0; q, x)

(q; q)n
tn =

(at ; q)∞(t ; q)∞

(xt ; q)∞
, |xt | < 1,

iii) if δ > 0,
-unknown-

František Štampach (FNSPE & FIT, CTU) Constr. OG measur. with appl. August 29, 2013 15 / 17



Other properties - Generating function

Suppose x 6= 0 then the generating function for Un(a, δ; q, x) reads:

i) if δ < 0,
∞∑

n=0

Un(a, δ; q, x)

(q−δ; q)n+1
tn =

∞∑
k=0

(aqδ t ; q)k (qδ t ; q)k

(xt ; q)k+1
q−kδ, |xt | < 1,

ii) if δ = 0,
∞∑

n=0

Un(a, 0; q, x)

(q; q)n
tn =

(at ; q)∞(t ; q)∞

(xt ; q)∞
, |xt | < 1,

iii) if δ > 0,
-unknown-

František Štampach (FNSPE & FIT, CTU) Constr. OG measur. with appl. August 29, 2013 15 / 17



Other properties - Structure relations

For n ∈ Z+, it holds

DqUn(a, δ; q, x) =
1− qn−δ

1− q
Un−1(a, δ; q, x)− qn 1− q−δ

1− q
Un−1(a, δ − 1; q, x).

This formula is a generalization of the forward shift formula for Al-Salam-Carlitz I polynomials,

DqUn(a, 0; q, x) =
1− qn

1− q
Un−1(a, 0; q, x).

On the other hand, it seems there is no simple formula which would generalize the backward
shift for Al-Salam-Carlitz I polynomials, which reads

(a− x)(1− x)Un(a, 0; q, q−1x)− aUn(a, 0; q, x) = xq−nUn+1(a, 0; q, x).

Consequently, we do not know if there is a second order q-difference equation for
polynomials Un(a, δ; q, x).
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