Recent Progress on Spectral Analysis of Jacobi Matrices and Related Problems

František Štampach

Faculty of Nuclear Sciences and Physical Engineering, CTU in Prague

Operator Theory, Analysis and Mathematical Physics Conference

July 5, 2012
(1) Motivation
(2) Function \mathfrak{F}

3 Characteristic function of complex Jacobi matrix

4 Applications
(5) Functinon \mathfrak{F} and Orthogonal Polynomials

Motivation - introduction

- Consider Jacobi operator J acting on vectors from standard basis $\left\{e_{n}\right\}_{n=1}^{\infty}$ of $\ell^{2}(\mathbb{N})$ as

$$
J e_{n}=w_{n-1} e_{n-1}+\lambda_{n} e_{n}+w_{n} e_{n+1} \quad\left(w_{0}:=0\right)
$$

where $\lambda_{n} \in \mathbb{C}$, $w_{n} \in \mathbb{C} \backslash\{0\}$, and $n \in \mathbb{N}$.

Motivation - introduction

- Consider Jacobi operator J acting on vectors from standard basis $\left\{e_{n}\right\}_{n=1}^{\infty}$ of $\ell^{2}(\mathbb{N})$ as

$$
J e_{n}=w_{n-1} e_{n-1}+\lambda_{n} e_{n}+w_{n} e_{n+1} \quad\left(w_{0}:=0\right)
$$

where $\lambda_{n} \in \mathbb{C}$, $w_{n} \in \mathbb{C} \backslash\{0\}$, and $n \in \mathbb{N}$.

- Set

$$
\operatorname{Dom}(J)=\left\{x \in \ell^{2}(\mathbb{N}): J x \in \ell^{2}(\mathbb{N})\right\}
$$

Motivation - introduction

- Consider Jacobi operator J acting on vectors from standard basis $\left\{e_{n}\right\}_{n=1}^{\infty}$ of $\ell^{2}(\mathbb{N})$ as

$$
J e_{n}=w_{n-1} e_{n-1}+\lambda_{n} e_{n}+w_{n} e_{n+1} \quad\left(w_{0}:=0\right)
$$

where $\lambda_{n} \in \mathbb{C}$, $w_{n} \in \mathbb{C} \backslash\{0\}$, and $n \in \mathbb{N}$.

- Set

$$
\operatorname{Dom}(J)=\left\{x \in \ell^{2}(\mathbb{N}): J x \in \ell^{2}(\mathbb{N})\right\}
$$

- The matrix representation of J in the standard basis:

$$
J=\left(\begin{array}{lllll}
\lambda_{1} & w_{1} & & & \\
w_{1} & \lambda_{2} & w_{2} & & \\
& w_{2} & \lambda_{3} & w_{3} & \\
& & \ddots & \ddots & \ddots
\end{array}\right)
$$

Motivation - introduction

- Consider Jacobi operator J acting on vectors from standard basis $\left\{e_{n}\right\}_{n=1}^{\infty}$ of $\ell^{2}(\mathbb{N})$ as

$$
J e_{n}=w_{n-1} e_{n-1}+\lambda_{n} e_{n}+w_{n} e_{n+1} \quad\left(w_{0}:=0\right)
$$

where $\lambda_{n} \in \mathbb{C}$, $w_{n} \in \mathbb{C} \backslash\{0\}$, and $n \in \mathbb{N}$.

- Set

$$
\operatorname{Dom}(J)=\left\{x \in \ell^{2}(\mathbb{N}): J x \in \ell^{2}(\mathbb{N})\right\}
$$

- The matrix representation of J in the standard basis:

$$
J=\left(\begin{array}{lllll}
\lambda_{1} & w_{1} & & & \\
w_{1} & \lambda_{2} & w_{2} & & \\
& w_{2} & \lambda_{3} & w_{3} & \\
& & \ddots & \ddots & \ddots
\end{array}\right)
$$

- Objective: Investigation of the spectrum of J when the diagonal sequence dominates the off-diagonal in some sense.

Motivation - reformulation of the problem

For $z \in \mathbb{C}$ and $\lambda_{n}>0$ define

$$
A(z):=L^{-1 / 2}\left(U W+W U^{*}-z\right) L^{-1 / 2}=\left(\begin{array}{ccccc}
-\frac{z}{\lambda_{1}} & \frac{w_{1}}{\sqrt{\lambda_{1} \lambda_{2}}} & & & \\
\frac{w_{1}}{\sqrt{\lambda_{1} \lambda_{2}}} & -\frac{z}{\lambda_{2}} & \frac{w_{2}}{\sqrt{\lambda_{2} \lambda_{3}}} & & \\
& \frac{w_{2}}{\sqrt{\lambda_{2} \lambda_{3}}} & -\frac{z}{\lambda_{3}} & \frac{w_{3}}{\sqrt{\lambda_{3} \lambda_{4}}} & \\
& & \ddots & \ddots & \ddots
\end{array}\right)
$$

where $L=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots\right), W=\operatorname{diag}\left(w_{1}, w_{2}, \ldots\right)$, and U is unilateral shift.

Motivation - reformulation of the problem

For $z \in \mathbb{C}$ and $\lambda_{n}>0$ define

$$
A(z):=L^{-1 / 2}\left(U W+W U^{*}-z\right) L^{-1 / 2}=\left(\begin{array}{ccccc}
-\frac{z}{\lambda_{1}} & \frac{w_{1}}{\sqrt{\lambda_{1} \lambda_{2}}} & & & \\
\frac{w_{1}}{\sqrt{\lambda_{1} \lambda_{2}}} & -\frac{z}{\lambda_{2}} & \frac{w_{2}}{\sqrt{\lambda_{2} \lambda_{3}}} & & \\
& \frac{w_{2}}{\sqrt{\lambda_{2} \lambda_{3}}} & -\frac{z}{\lambda_{3}} & \frac{w_{3}}{\sqrt{\lambda_{3} \lambda_{4}}} & \\
& & \ddots & \ddots & \ddots
\end{array}\right)
$$

where $L=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots\right), W=\operatorname{diag}\left(w_{1}, w_{2}, \ldots\right)$, and U is unilateral shift.

Assertion

Let $A(z)$ be Hilbert-Schmidt operator for some $0 \neq z \in \mathbb{C}$. Then

$$
z \in \rho(J) \quad \text { iff } \quad-1 \in \rho(A(z))
$$

and it holds

$$
(J-z)^{-1}=L^{-1 / 2}(1+A(z))^{-1} L^{-1 / 2} .
$$

Motivation - reformulation of the problem

For $z \in \mathbb{C}$ and $\lambda_{n}>0$ define

$$
A(z):=L^{-1 / 2}\left(U W+W U^{*}-z\right) L^{-1 / 2}=\left(\begin{array}{ccccc}
-\frac{z}{\lambda_{1}} & \frac{w_{1}}{\sqrt{\lambda_{1} \lambda_{2}}} & & & \\
\frac{w_{1}}{\sqrt{\lambda_{1} \lambda_{2}}} & -\frac{z}{\lambda_{2}} & \frac{w_{2}}{\sqrt{\lambda_{2} \lambda_{3}}} & & \\
& \frac{w_{2}}{\sqrt{\lambda_{2} \lambda_{3}}} & -\frac{z}{\lambda_{3}} & \frac{w_{3}}{\sqrt{\lambda_{3} \lambda_{4}}} & \\
& & \ddots & \ddots & \ddots
\end{array}\right)
$$

where $L=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots\right), W=\operatorname{diag}\left(w_{1}, w_{2}, \ldots\right)$, and U is unilateral shift.

Assertion

Let $A(z)$ be Hilbert-Schmidt operator for some $0 \neq z \in \mathbb{C}$. Then

$$
z \in \rho(J) \quad \text { iff } \quad-1 \in \rho(A(z))
$$

and it holds

$$
(J-z)^{-1}=L^{-1 / 2}(1+A(z))^{-1} L^{-1 / 2} .
$$

To investigate the spectrum of J one can consider operator $A(z)$ instead. Main advantages are:

Motivation - reformulation of the problem

For $z \in \mathbb{C}$ and $\lambda_{n}>0$ define

$$
A(z):=L^{-1 / 2}\left(U W+W U^{*}-z\right) L^{-1 / 2}=\left(\begin{array}{ccccc}
-\frac{z}{\lambda_{1}} & \frac{w_{1}}{\sqrt{\lambda_{1} \lambda_{2}}} & & & \\
\frac{w_{1}}{\sqrt{\lambda_{1} \lambda_{2}}} & -\frac{z}{\lambda_{2}} & \frac{w_{2}}{\sqrt{\lambda_{2} \lambda_{3}}} & & \\
& \frac{w_{2}}{\sqrt{\lambda_{2} \lambda_{3}}} & -\frac{z}{\lambda_{3}} & \frac{w_{3}}{\sqrt{\lambda_{3} \lambda_{4}}} & \\
& & \ddots & \ddots & \ddots
\end{array}\right)
$$

where $L=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots\right), W=\operatorname{diag}\left(w_{1}, w_{2}, \ldots\right)$, and U is unilateral shift.

Assertion

Let $A(z)$ be Hilbert-Schmidt operator for some $0 \neq z \in \mathbb{C}$. Then

$$
z \in \rho(J) \quad \text { iff } \quad-1 \in \rho(A(z))
$$

and it holds

$$
(J-z)^{-1}=L^{-1 / 2}(1+A(z))^{-1} L^{-1 / 2} .
$$

To investigate the spectrum of J one can consider operator $A(z)$ instead. Main advantages are:

- $A(z)$ is Hilbert-Schmidt, while J is unbounded

Motivation - reformulation of the problem

For $z \in \mathbb{C}$ and $\lambda_{n}>0$ define

$$
A(z):=L^{-1 / 2}\left(U W+W U^{*}-z\right) L^{-1 / 2}=\left(\begin{array}{ccccc}
-\frac{z}{\lambda_{1}} & \frac{w_{1}}{\sqrt{\lambda_{1} \lambda_{2}}} & & & \\
\frac{w_{1}}{\sqrt{\lambda_{1} \lambda_{2}}} & -\frac{z}{\lambda_{2}} & \frac{w_{2}}{\sqrt{\lambda_{2} \lambda_{3}}} & & \\
& \frac{w_{2}}{\sqrt{\lambda_{2} \lambda_{3}}} & -\frac{z}{\lambda_{3}} & \frac{w_{3}}{\sqrt{\lambda_{3} \lambda_{4}}} & \\
& & \ddots & \ddots & \ddots
\end{array}\right)
$$

where $L=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots\right), W=\operatorname{diag}\left(w_{1}, w_{2}, \ldots\right)$, and U is unilateral shift.

Assertion

Let $A(z)$ be Hilbert-Schmidt operator for some $0 \neq z \in \mathbb{C}$. Then

$$
z \in \rho(J) \quad \text { iff } \quad-1 \in \rho(A(z))
$$

and it holds

$$
(J-z)^{-1}=L^{-1 / 2}(1+A(z))^{-1} L^{-1 / 2} .
$$

To investigate the spectrum of J one can consider operator $A(z)$ instead. Main advantages are:

- $A(z)$ is Hilbert-Schmidt, while J is unbounded
- one can use function $z \mapsto \operatorname{det}_{2}(1+A(z))$ which is well defined as an entire function.

Function \mathfrak{F}

Definition

Let me define $\mathfrak{F}: D \rightarrow \mathbb{C}$ by relation

$$
\mathfrak{F}(x)=1+\sum_{m=1}^{\infty}(-1)^{m} \sum_{k_{1}=1}^{\infty} \sum_{k_{2}=k_{1}+2}^{\infty} \ldots \sum_{k_{m}=k_{m-1}+2}^{\infty} x_{k_{1}} x_{k_{1}+1} x_{k_{2}} x_{k_{2}+1} \ldots x_{k_{m}} x_{k_{m}+1}
$$

where

$$
D=\left\{\left\{x_{k}\right\}_{k=1}^{\infty} \subset \mathbb{C} ; \sum_{k=1}^{\infty}\left|x_{k} x_{k+1}\right|<\infty\right\}
$$

For a finite number of complex variables let me identify $\mathfrak{F}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ with $\mathfrak{F}(x)$ where $x=\left(x_{1}, x_{2}, \ldots, x_{n}, 0,0,0, \ldots\right)$.

Function \mathfrak{F}

Definition

Let me define $\mathfrak{F}: D \rightarrow \mathbb{C}$ by relation

$$
\mathfrak{F}(x)=1+\sum_{m=1}^{\infty}(-1)^{m} \sum_{k_{1}=1}^{\infty} \sum_{k_{2}=k_{1}+2}^{\infty} \ldots \sum_{k_{m}=k_{m-1}+2}^{\infty} x_{k_{1}} x_{k_{1}+1} x_{k_{2}} x_{k_{2}+1} \ldots x_{k_{m}} x_{k_{m}+1}
$$

where

$$
D=\left\{\left\{x_{k}\right\}_{k=1}^{\infty} \subset \mathbb{C} ; \sum_{k=1}^{\infty}\left|x_{k} x_{k+1}\right|<\infty\right\}
$$

For a finite number of complex variables let me identify $\mathfrak{F}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ with $\mathfrak{F}(x)$ where $x=\left(x_{1}, x_{2}, \ldots, x_{n}, 0,0,0, \ldots\right)$.

- \mathfrak{F} is well defined on D due to estimation

$$
|\mathfrak{F}(x)| \leq \exp \left(\sum_{k=1}^{\infty}\left|x_{k} x_{k+1}\right|\right) .
$$

Function \mathfrak{F}

Definition

Let me define $\mathfrak{F}: D \rightarrow \mathbb{C}$ by relation

$$
\mathfrak{F}(x)=1+\sum_{m=1}^{\infty}(-1)^{m} \sum_{k_{1}=1}^{\infty} \sum_{k_{2}=k_{1}+2}^{\infty} \ldots \sum_{k_{m}=k_{m-1}+2}^{\infty} x_{k_{1}} x_{k_{1}+1} x_{k_{2}} x_{k_{2}+1} \ldots x_{k_{m}} x_{k_{m}+1}
$$

where

$$
D=\left\{\left\{x_{k}\right\}_{k=1}^{\infty} \subset \mathbb{C} ; \sum_{k=1}^{\infty}\left|x_{k} x_{k+1}\right|<\infty\right\}
$$

For a finite number of complex variables let me identify $\mathfrak{F}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ with $\mathfrak{F}(x)$ where $x=\left(x_{1}, x_{2}, \ldots, x_{n}, 0,0,0, \ldots\right)$.

- \mathfrak{F} is well defined on D due to estimation

$$
|\mathfrak{F}(x)| \leq \exp \left(\sum_{k=1}^{\infty}\left|x_{k} x_{k+1}\right|\right) .
$$

- Note that the domain D is not a linear space. One has, however, $\ell^{2}(\mathbb{N}) \subset D$.

Properties of \mathfrak{F}

- For all $x \in D$ and $k=1,2, \ldots$ one has

Recursive relation

$$
\mathfrak{F}(x)=\mathfrak{F}\left(x_{1}, \ldots, x_{k}\right) \mathfrak{F}\left(T^{k} x\right)-\mathfrak{F}\left(x_{1}, \ldots, x_{k-1}\right) x_{k} x_{k+1} \mathfrak{F}\left(T^{k+1} x\right)
$$

where T denotes the truncation operator from the left defined on the space of all sequences:

$$
T\left(\left\{x_{k}\right\}_{k=1}^{\infty}\right)=\left\{x_{k+1}\right\}_{k=1}^{\infty} .
$$

Properties of \mathfrak{F}

- For all $x \in D$ and $k=1,2, \ldots$ one has

Recursive relation

$$
\mathfrak{F}(x)=\mathfrak{F}\left(x_{1}, \ldots, x_{k}\right) \mathfrak{F}\left(T^{k} x\right)-\mathfrak{F}\left(x_{1}, \ldots, x_{k-1}\right) x_{k} x_{k+1} \mathfrak{F}\left(T^{k+1} x\right)
$$

where T denotes the truncation operator from the left defined on the space of all sequences:

$$
T\left(\left\{x_{k}\right\}_{k=1}^{\infty}\right)=\left\{x_{k+1}\right\}_{k=1}^{\infty}
$$

- Especially for $k=1$, one gets the simple relation

$$
\mathfrak{F}(x)=\mathfrak{F}(T x)-x_{1} x_{2} \mathfrak{F}\left(T^{2} x\right)
$$

Properties of \mathfrak{F}

- For all $x \in D$ and $k=1,2, \ldots$ one has

Recursive relation

$$
\mathfrak{F}(x)=\mathfrak{F}\left(x_{1}, \ldots, x_{k}\right) \mathfrak{F}\left(T^{k} x\right)-\mathfrak{F}\left(x_{1}, \ldots, x_{k-1}\right) x_{k} x_{k+1} \mathfrak{F}\left(T^{k+1} x\right)
$$

where T denotes the truncation operator from the left defined on the space of all sequences:

$$
T\left(\left\{x_{k}\right\}_{k=1}^{\infty}\right)=\left\{x_{k+1}\right\}_{k=1}^{\infty} .
$$

- Especially for $k=1$, one gets the simple relation

$$
\mathfrak{F}(x)=\mathfrak{F}(T x)-x_{1} x_{2} \mathfrak{F}\left(T^{2} x\right)
$$

- Functions \mathfrak{F} restricted on $\ell^{2}(\mathbb{N})$ is a continuous functional on $\ell^{2}(\mathbb{N})$. Further, for $x \in D$, it holds

$$
\lim _{n \rightarrow \infty} \mathfrak{F}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\mathfrak{F}(x) \quad \text { and } \quad \lim _{n \rightarrow \infty} \mathfrak{F}\left(T^{n} x\right)=1
$$

Other properties of \mathfrak{F}

- Equivalent definition for $\mathfrak{F}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is:

$$
\mathfrak{F}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\operatorname{det} X_{n}=\operatorname{det}\left(\begin{array}{ccccc}
1 & x_{1} & & & \\
x_{2} & 1 & x_{2} & & \\
& \ddots & \ddots & \ddots & \\
& & x_{n-1} & 1 & x_{n-1} \\
& & & x_{n} & 1
\end{array}\right)
$$

Other properties of \mathfrak{F}

- Equivalent definition for $\mathfrak{F}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is:

$$
\mathfrak{F}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\operatorname{det} X_{n}=\operatorname{det}\left(\begin{array}{ccccc}
1 & x_{1} & & & \\
x_{2} & 1 & x_{2} & & \\
& \ddots & \ddots & \ddots & \\
& & x_{n-1} & 1 & x_{n-1} \\
& & & x_{n} & 1
\end{array}\right)
$$

- Function \mathfrak{F} is related to a continued fraction. For a given $x \in D$ such that $\mathfrak{F}(x) \neq 0$, it holds

$$
\frac{\mathfrak{F}(T x)}{\mathfrak{F}(x)}=\frac{1}{1-\frac{x_{1} x_{2}}{1-\frac{x_{2} x_{3}}{1-\frac{x_{3} x_{4}}{1-\ldots}}}} .
$$

Characteristic function of complex Jacobi matrix

Proposition

Let $\left\{\lambda_{n}\right\}$ be positive and

$$
\sum_{n=1}^{\infty} \frac{1}{\lambda_{n}^{2}}<\infty \quad \text { and } \quad \sum_{n=1}^{\infty}\left|\frac{w_{n}^{2}}{\lambda_{n} \lambda_{n+1}}\right|<\infty
$$

Then $A(z)$ is Hilbert-Schmidt for all $z \in \mathbb{C}$ and it holds

$$
\operatorname{det}_{2}(1+A(z))=\mathfrak{F}\left(\left\{\frac{\gamma_{n}^{2}}{\lambda_{n}-z}\right\}_{n=1}^{\infty}\right) \prod_{n=1}^{\infty}\left(1-\frac{z}{\lambda_{n}}\right) e^{z / \lambda_{n}}
$$

where the sequence $\left\{\gamma_{n}\right\}$ can be defined recursively as $\gamma_{1}=1, \gamma_{k+1}=w_{k} / \gamma_{k}$.

Characteristic function of complex Jacobi matrix

Proposition

Let $\left\{\lambda_{n}\right\}$ be positive and

$$
\sum_{n=1}^{\infty} \frac{1}{\lambda_{n}^{2}}<\infty \quad \text { and } \quad \sum_{n=1}^{\infty}\left|\frac{w_{n}^{2}}{\lambda_{n} \lambda_{n+1}}\right|<\infty
$$

Then $A(z)$ is Hilbert-Schmidt for all $z \in \mathbb{C}$ and it holds

$$
\operatorname{det}_{2}(1+A(z))=\mathfrak{F}\left(\left\{\frac{\gamma_{n}^{2}}{\lambda_{n}-z}\right\}_{n=1}^{\infty}\right) \prod_{n=1}^{\infty}\left(1-\frac{z}{\lambda_{n}}\right) e^{z / \lambda_{n}}
$$

where the sequence $\left\{\gamma_{n}\right\}$ can be defined recursively as $\gamma_{1}=1, \gamma_{k+1}=w_{k} / \gamma_{k}$.

- In the following we focus just on the function

$$
F_{J}(z):=\mathfrak{F}\left(\left\{\frac{\gamma_{n}^{2}}{\lambda_{n}-z}\right\}_{n=1}^{\infty}\right)
$$

Characteristic function of complex Jacobi matrix

- Function F_{J} is well defined on $\mathbb{C} \backslash \overline{\left\{\lambda_{n}\right\}}$ if

$$
\left\{\frac{\gamma_{n}^{2}}{\lambda_{n}-z}\right\}_{n=1}^{\infty} \in D \quad \text { for all } z \in \mathbb{C} \backslash \overline{\left\{\lambda_{n}\right\}}
$$

which holds if there is at least one $z_{0} \in \mathbb{C} \backslash \overline{\left\{\lambda_{n}\right\}}$ such that

$$
\sum_{n=1}^{\infty}\left|\frac{w_{n}^{2}}{\left(\lambda_{n}-z_{0}\right)\left(\lambda_{n+1}-z_{0}\right)}\right|<\infty
$$

(λ_{n} and w_{n} are complex!)

Characteristic function of complex Jacobi matrix

- Function F_{J} is well defined on $\mathbb{C} \backslash \overline{\left\{\lambda_{n}\right\}}$ if

$$
\left\{\frac{\gamma_{n}^{2}}{\lambda_{n}-z}\right\}_{n=1}^{\infty} \in D \quad \text { for all } z \in \mathbb{C} \backslash \overline{\left\{\lambda_{n}\right\}}
$$

which holds if there is at least one $z_{0} \in \mathbb{C} \backslash \overline{\left\{\lambda_{n}\right\}}$ such that

$$
\sum_{n=1}^{\infty}\left|\frac{w_{n}^{2}}{\left(\lambda_{n}-z_{0}\right)\left(\lambda_{n+1}-z_{0}\right)}\right|<\infty
$$

(λ_{n} and w_{n} are complex!)

- This assumptions is assumed everywhere from now.

Characteristic function of complex Jacobi matrix

- Function F_{J} is well defined on $\mathbb{C} \backslash \overline{\left\{\lambda_{n}\right\}}$ if

$$
\left\{\frac{\gamma_{n}^{2}}{\lambda_{n}-z}\right\}_{n=1}^{\infty} \in D \quad \text { for all } z \in \mathbb{C} \backslash \overline{\left\{\lambda_{n}\right\}}
$$

which holds if there is at least one $z_{0} \in \mathbb{C} \backslash \overline{\left\{\lambda_{n}\right\}}$ such that

$$
\sum_{n=1}^{\infty}\left|\frac{w_{n}^{2}}{\left(\lambda_{n}-z_{0}\right)\left(\lambda_{n+1}-z_{0}\right)}\right|<\infty
$$

(λ_{n} and w_{n} are complex!)

- This assumptions is assumed everywhere from now.
- F_{J} is meromorphic function on $\mathbb{C} \backslash \overline{\left\{\lambda_{n}\right\}}$ with poles in $z \in\left\{\lambda_{n}\right\} \backslash \operatorname{der}\left(\left\{\lambda_{n}\right\}\right)$ of finite order less or equal to the number

$$
r(z):=\sum_{n=1}^{\infty} \delta_{z, \lambda_{n}} .
$$

Characteristic function of complex Jacobi matrix

Let us define

$$
\mathfrak{Z}(J):=\left\{z \in \mathbb{C} \backslash \operatorname{der}\left(\left\{\lambda_{n}\right\}\right) ; \lim _{u \rightarrow z}(u-z)^{r(z)} F_{J}(u)=0\right\}
$$

and,

Characteristic function of complex Jacobi matrix

Let us define

$$
\mathfrak{Z}(J):=\left\{z \in \mathbb{C} \backslash \operatorname{der}\left(\left\{\lambda_{n}\right\}\right) ; \lim _{u \rightarrow z}(u-z)^{r(z)} F_{J}(u)=0\right\}
$$

and, for $k \in \mathbb{Z}_{+}$and $z \in \mathbb{C} \backslash \operatorname{der}\left(\left\{\lambda_{n}\right\}\right)$, we put

$$
\xi_{k}(z):=\lim _{u \rightarrow z}(u-z)^{r(z)}\left(\prod_{l=1}^{k} \frac{w_{l-1}}{u-\lambda_{l}}\right) \mathfrak{F}\left(\left\{\frac{\gamma_{l}^{2}}{\lambda_{l}-u}\right\}_{l=k+1}^{\infty}\right)
$$

where we set $w_{0}:=1$.

Characteristic function of complex Jacobi matrix

Let us define

$$
\mathfrak{Z}(J):=\left\{z \in \mathbb{C} \backslash \operatorname{der}\left(\left\{\lambda_{n}\right\}\right) ; \lim _{u \rightarrow z}(u-z)^{r(z)} F_{J}(u)=0\right\}
$$

and, for $k \in \mathbb{Z}_{+}$and $z \in \mathbb{C} \backslash \operatorname{der}\left(\left\{\lambda_{n}\right\}\right)$, we put

$$
\xi_{k}(z):=\lim _{u \rightarrow z}(u-z)^{r(z)}\left(\prod_{l=1}^{k} \frac{w_{l-1}}{u-\lambda_{l}}\right) \mathfrak{F}\left(\left\{\frac{\gamma_{l}^{2}}{\lambda_{l}-u}\right\}_{l=k+1}^{\infty}\right)
$$

where we set $w_{0}:=1$.

Theorem

Equalities

$$
\operatorname{spec}(J) \backslash \operatorname{der}\left(\left\{\lambda_{n}\right\}\right)=\operatorname{spec}_{p}(J) \backslash \operatorname{der}\left(\left\{\lambda_{n}\right\}\right)=\mathcal{Z}(J)
$$

hold and, for $z \in \mathcal{Z}(J)$,

$$
\xi(z):=\left(\xi_{1}(z), \xi_{2}(z), \xi_{3}(z), \ldots\right)
$$

is the eigenvector for eigenvalue z. Moreover, for $z \notin \overline{\left\{\lambda_{n}\right\}}$, vector $\xi(z)$ satisfies the formula

$$
\sum_{k=1}^{\infty}\left(\xi_{k}(z)\right)^{2}=\xi_{0}^{\prime}(z) \xi_{1}(z)-\xi_{0}(z) \xi_{1}^{\prime}(z)
$$

Green Function

- The Green function $G_{i j}(z)=\left(e_{i},(J-z)^{-1} e_{j}\right)$ of J is expressible in terms of \mathfrak{F},

$$
G_{i j}(z)=-\frac{1}{w_{M}} \prod_{I=m}^{M}\left(\frac{w_{l}}{z-\lambda_{l}}\right) \frac{\mathfrak{F}\left(\left\{\frac{\gamma_{l}^{2}}{\lambda_{I}-z}\right\}_{l=1}^{m-1}\right) \mathfrak{F}\left(\left\{\frac{\gamma_{l}^{2}}{\lambda_{I}-z}\right\}_{I=M+1}^{\infty}\right)}{\mathfrak{F}\left(\left\{\frac{\gamma_{l}^{2}}{\lambda_{I}-z}\right\}_{l=1}^{\infty}\right)_{l}^{\infty}}
$$

where $z \in \rho(J), m:=\min (i, j)$, and $M:=\max (i, j)$.

Green Function

- The Green function $G_{i j}(z)=\left(e_{i},(J-z)^{-1} e_{j}\right)$ of J is expressible in terms of \mathfrak{F},
where $z \in \rho(J), m:=\min (i, j)$, and $M:=\max (i, j)$.
- Especially, we get a compact formula for the Weyl m-function $m(z)=G_{11}(z)$,

$$
m(z)=\frac{\mathfrak{F}\left(\left\{\frac{\gamma_{j}^{2}}{\lambda_{j}-z}\right\}_{j=2}^{\infty}\right)}{\left(\lambda_{1}-z\right) \mathfrak{F}\left(\left\{\frac{\gamma_{j}^{2}}{\lambda_{j}-z}\right\}_{j=1}^{\infty}\right)}
$$

Applications: Characteristic Function and Special Functions

Various special functions are expressible in terms of \mathfrak{F} applied to a suitable sequence, e.g.:

Applications: Characteristic Function and Special Functions

Various special functions are expressible in terms of \mathfrak{F} applied to a suitable sequence, e.g.:

- Hypergeometric Functions ${ }_{0} F_{1}$, especially Bessel Functions,

$$
\mathfrak{F}\left(\left\{\frac{w}{k+z}\right\}_{k=1}^{\infty}\right)={ }_{0} F_{1}\left(; z+1,-w^{2}\right)=\Gamma(1+z) w^{-z} J_{z}(2 w)
$$

$(w \in \mathbb{C}, z \notin-\mathbb{N})$

Applications: Characteristic Function and Special Functions

Various special functions are expressible in terms of \mathfrak{F} applied to a suitable sequence, e.g.:

- Hypergeometric Functions ${ }_{0} F_{1}$, especially Bessel Functions,

$$
\mathfrak{F}\left(\left\{\frac{w}{k+z}\right\}_{k=1}^{\infty}\right)={ }_{0} F_{1}\left(; z+1,-w^{2}\right)=\Gamma(1+z) w^{-z} J_{z}(2 w)
$$

$(w \in \mathbb{C}, z \notin-\mathbb{N})$

- Basic Hypergeometric Functions ${ }_{0} \phi_{1}$, especially q-Bessel Functions (second Jackson, Hahn-Exton),

$$
\mathfrak{F}\left(\left\{q^{\left\lfloor\frac{k-1}{2}\right\rfloor} \frac{w}{1-z q^{k-1}}\right\}_{k=1}^{\infty}\right)={ }_{0} \phi_{1}\left(; z ; q,-w^{2}\right)
$$

$\left(w \in \mathbb{C}, 0<q<1, z \notin q^{-\mathbb{N}_{0}}\right)$

Applications: Characteristic Function and Special Functions

Various special functions are expressible in terms of \mathfrak{F} applied to a suitable sequence, e.g.:

- Hypergeometric Functions ${ }_{0} F_{1}$, especially Bessel Functions,

$$
\mathfrak{F}\left(\left\{\frac{w}{k+z}\right\}_{k=1}^{\infty}\right)={ }_{0} F_{1}\left(; z+1,-w^{2}\right)=\Gamma(1+z) w^{-z} J_{z}(2 w)
$$

$(w \in \mathbb{C}, z \notin-\mathbb{N})$

- Basic Hypergeometric Functions ${ }_{0} \phi_{1}$, especially q-Bessel Functions (second Jackson, Hahn-Exton),

$$
\mathfrak{F}\left(\left\{q^{\left\lfloor\frac{k-1}{2}\right\rfloor} \frac{w}{1-z q^{k-1}}\right\}_{k=1}^{\infty}\right)=0 \phi_{1}\left(; z ; q,-w^{2}\right)
$$

$\left(w \in \mathbb{C}, 0<q<1, z \notin q^{-\mathbb{N}_{0}}\right)$

- Confluent Hypergeometric Functions ${ }_{1} F_{1}$, especially Regular Coulomb Wave Function

Applications: Characteristic Function and Special Functions

Various special functions are expressible in terms of \mathfrak{F} applied to a suitable sequence, e.g.:

- Hypergeometric Functions ${ }_{0} F_{1}$, especially Bessel Functions,

$$
\mathfrak{F}\left(\left\{\frac{w}{k+z}\right\}_{k=1}^{\infty}\right)={ }_{0} F_{1}\left(; z+1,-w^{2}\right)=\Gamma(1+z) w^{-z} J_{z}(2 w)
$$

$(w \in \mathbb{C}, z \notin-\mathbb{N})$

- Basic Hypergeometric Functions ${ }_{0} \phi_{1}$, especially q-Bessel Functions (second Jackson, Hahn-Exton),

$$
\mathfrak{F}\left(\left\{q^{\left\lfloor\frac{k-1}{2}\right\rfloor} \frac{w}{1-z q^{k-1}}\right\}_{k=1}^{\infty}\right)={ }_{0} \phi_{1}\left(; z ; q,-w^{2}\right)
$$

$\left(w \in \mathbb{C}, 0<q<1, z \notin q^{-\mathbb{N}_{0}}\right)$

- Confluent Hypergeometric Functions ${ }_{1} F_{1}$, especially Regular Coulomb Wave Function
- Basic Hypergeometric Functions ${ }_{1} \phi_{1}$
- For $\lambda_{n} \in \mathbb{R}$ and $w_{n}>0$, OPs can be defined recursively by

$$
w_{n-1} y_{n-1}(x)+\lambda_{n} y_{n}(x)+w_{n} y_{n+1}(x)=x y_{n}(x), \quad n=1,2, \ldots \quad\left(w_{0}:=-1\right)
$$

and OPs of the first kind $P_{n}(x)$ satisfy initial conditions $P_{0}(x)=0, P_{1}(x)=1$, while OPs of the second kind $Q_{n}(x)$ satisfy $Q_{0}(x)=1, Q_{1}(x)=0$.

Function \mathfrak{F} and Orthogonal Polynomials

- For $\lambda_{n} \in \mathbb{R}$ and $w_{n}>0$, OPs can be defined recursively by

$$
w_{n-1} y_{n-1}(x)+\lambda_{n} y_{n}(x)+w_{n} y_{n+1}(x)=x y_{n}(x), \quad n=1,2, \ldots \quad\left(w_{0}:=-1\right)
$$

and OPs of the first kind $P_{n}(x)$ satisfy initial conditions $P_{0}(x)=0, P_{1}(x)=1$, while OPs of the second kind $Q_{n}(x)$ satisfy $Q_{0}(x)=1, Q_{1}(x)=0$.

- OPs are related to \mathfrak{F} through identities

$$
\begin{gathered}
P_{n+1}(z)=\prod_{k=1}^{n}\left(\frac{z-\lambda_{k}}{w_{k}}\right) \mathfrak{F}\left(\left\{\frac{\gamma_{l}^{2}}{\lambda_{l}-z}\right\}_{l=1}^{n}\right), \quad n=0,1 \ldots, \\
Q_{n+1}(z)=\frac{1}{w_{1}} \prod_{k=2}^{n}\left(\frac{z-\lambda_{k}}{w_{k}}\right) \mathfrak{F}\left(\left\{\frac{\gamma_{l}^{2}}{\lambda_{l}-z}\right\}_{l=2}^{n}\right), \quad n=0,1 \ldots
\end{gathered}
$$

where $\left\{\gamma_{n}\right\}$ can be defined recursively as $\gamma_{1}=1, \gamma_{k+1}=w_{k} / \gamma_{k}$.

Orthogonal relation for P_{n}

Proposition

Let J be self-adjoint and either J has discrete spectrum or it is a compact operator. Then, for $m, n \in \mathbb{N}$, the orthogonality relation

$$
\sum_{\lambda \in \mathfrak{Z}(J)} \frac{F_{J, 2}(\lambda)}{\left(\lambda-\lambda_{1}\right) F_{J}^{\prime}(\lambda)} P_{n}(\lambda) P_{m}(\lambda)=\delta_{m, n}
$$

holds, where $F_{J, k+1}$ is the characteristic function of the Jacobi operator defined by using shifted sequences $\left\{\lambda_{n+k}\right\}_{n=1}^{\infty}$ and $\left\{w_{n+k}\right\}_{n=1}^{\infty}$, i.e.,

$$
F_{J, k+1}(z)=\mathfrak{F}\left(\left\{\frac{\gamma_{l}^{2}}{\lambda_{I}-z}\right\}_{l=k}^{\infty}\right), \quad\left(F_{J, 1}=F_{J}\right) .
$$

- The regular Coulomb wave function $F_{L}(\eta, \rho)$ is one of two linearly independent solutions of the second-order differential equation

$$
\frac{d^{2} u}{d \rho^{2}}+\left[1-\frac{2 \eta}{\rho}-\frac{L(L+1)}{\rho^{2}}\right] u=0
$$

where $\rho>0, \eta \in \mathbb{R}$, and $L \in \mathbb{Z}_{+}$.

- The regular Coulomb wave function $F_{L}(\eta, \rho)$ is one of two linearly independent solutions of the second-order differential equation

$$
\frac{d^{2} u}{d \rho^{2}}+\left[1-\frac{2 \eta}{\rho}-\frac{L(L+1)}{\rho^{2}}\right] u=0
$$

where $\rho>0, \eta \in \mathbb{R}$, and $L \in \mathbb{Z}_{+}$.

- $F_{L}(\eta, \rho)$ can be decomposed as follows,

$$
F_{L}(\eta, \rho)=C_{L}(\eta) \rho^{L+1} \phi_{L}(\eta, \rho)
$$

where

$$
C_{L}(\eta)=\sqrt{\frac{2 \pi \eta}{e^{2 \pi \eta}-1}} \frac{\sqrt{\left(1+\eta^{2}\right)\left(4+\eta^{2}\right) \ldots\left(L^{2}+\eta^{2}\right)}}{(2 L+1)!!L!}
$$

and

$$
\phi_{L}(\eta, \rho)=e^{-i \rho}{ }_{1} F_{1}(L+1-i \eta, 2 L+2,2 i \rho) .
$$

- The regular Coulomb wave function $F_{L}(\eta, \rho)$ is one of two linearly independent solutions of the second-order differential equation

$$
\frac{d^{2} u}{d \rho^{2}}+\left[1-\frac{2 \eta}{\rho}-\frac{L(L+1)}{\rho^{2}}\right] u=0
$$

where $\rho>0, \eta \in \mathbb{R}$, and $L \in \mathbb{Z}_{+}$.

- $F_{L}(\eta, \rho)$ can be decomposed as follows,

$$
F_{L}(\eta, \rho)=C_{L}(\eta) \rho^{L+1} \phi_{L}(\eta, \rho)
$$

where

$$
C_{L}(\eta)=\sqrt{\frac{2 \pi \eta}{e^{2 \pi \eta}-1}} \frac{\sqrt{\left(1+\eta^{2}\right)\left(4+\eta^{2}\right) \ldots\left(L^{2}+\eta^{2}\right)}}{(2 L+1)!!L!}
$$

and

$$
\phi_{L}(\eta, \rho)=e^{-i \rho}{ }_{1} F_{1}(L+1-i \eta, 2 L+2,2 i \rho) .
$$

- Hence one can use the relation between \mathfrak{F} and ${ }_{1} F_{1}$ to find the following formula.

Regular Coulomb Wave Function

Proposition

For $\eta \in \mathbb{C}, \rho \in \mathbb{C} \backslash\{0\}, \eta \rho \neq-k(k+1), k \geq n+1$, and $n \in \mathbb{Z}_{+}$, one has

$$
\mathfrak{F}\left(\left\{\frac{\gamma_{k}^{2}}{\lambda_{k}+1 / \rho}\right\}_{k=n+1}^{\infty}\right)=\frac{\pi \eta \rho}{\cos \left(\frac{\pi}{2} \sqrt{1-4 \eta \rho}\right)} \prod_{k=1}^{n}\left[1+\frac{\eta \rho}{k(k+1)}\right] \phi_{n}(\eta, \rho)
$$

The entry sequences now reads

$$
w_{n}=\frac{\sqrt{(n+1)^{2}+\eta^{2}}}{(n+1) \sqrt{(2 n+1)(2 n+3)}} \quad \text { and } \quad \lambda_{n}:=\frac{\eta}{n(n+1)} .
$$

Regular Coulomb Wave Function

Proposition

For $\eta \in \mathbb{C}, \rho \in \mathbb{C} \backslash\{0\}, \eta \rho \neq-k(k+1), k \geq n+1$, and $n \in \mathbb{Z}_{+}$, one has

$$
\mathfrak{F}\left(\left\{\frac{\gamma_{k}^{2}}{\lambda_{k}+1 / \rho}\right\}_{k=n+1}^{\infty}\right)=\frac{\pi \eta \rho}{\cos \left(\frac{\pi}{2} \sqrt{1-4 \eta \rho}\right)} \prod_{k=1}^{n}\left[1+\frac{\eta \rho}{k(k+1)}\right] \phi_{n}(\eta, \rho)
$$

The entry sequences now reads

$$
w_{n}=\frac{\sqrt{(n+1)^{2}+\eta^{2}}}{(n+1) \sqrt{(2 n+1)(2 n+3)}} \quad \text { and } \quad \lambda_{n}:=\frac{\eta}{n(n+1)} .
$$

Consequently, for corresponding Jacobi matrix

$$
J_{L}=\left(\begin{array}{ccccc}
-\lambda_{L+1} & w_{L+1} & & & \\
w_{L+1} & -\lambda_{L+2} & w_{L+2} & & \\
& w_{L+2} & -\lambda_{L+3} & w_{L+3} & \\
& & \ddots & \ddots & \ddots
\end{array}\right)
$$

we get

$$
\operatorname{spec}\left(J_{L}\right)=\left\{1 / \rho: \phi_{L}(\eta, \rho)=0\right\} \cup\{0\}=\left\{1 / \rho: F_{L}(\eta, \rho)=0\right\} \cup\{0\}
$$

and

$$
v(1 / \rho)=\left(\sqrt{2 L+3} F_{L+1}(\eta, \rho), \sqrt{2 L+5} F_{L+2}(\eta, \rho), \sqrt{2 L+7} F_{L+3}(\eta, \rho), \ldots\right)^{T}
$$

q-hypergeometric function ${ }_{1} \phi_{1}$

Proposition

For $\delta, a \in \mathbb{C}$, and $n \in \mathbb{Z}_{+}$, it holds

$$
\mathfrak{F}\left(\left\{\frac{\gamma_{k}^{2}}{(a+1) q^{k-1}-z}\right\}_{k=n+1}^{\infty}\right)=\frac{\left(z^{-1} q^{n} ; q\right)_{\infty}}{\left((a+1) z^{-1} q^{n} ; q\right)_{\infty}}{ }^{1} \phi_{1}\left(z^{-1} q^{\delta}, z^{-1} q^{n} ; q, a z^{-1} q^{n}\right)
$$

where

$$
\gamma_{k}^{2} \gamma_{k+1}^{2}=w_{k}^{2}=-a q^{k+\delta-1}\left(1-q^{k-\delta}\right)
$$

Proposition

For $\delta, a \in \mathbb{C}$, and $n \in \mathbb{Z}_{+}$, it holds

$$
\mathfrak{F}\left(\left\{\frac{\gamma_{k}^{2}}{(a+1) q^{k-1}-z}\right\}_{k=n+1}^{\infty}\right)=\frac{\left(z^{-1} q^{n} ; q\right)_{\infty}}{\left((a+1) z^{-1} q^{n} ; q\right)_{\infty}}{ }^{1} \phi_{1}\left(z^{-1} q^{\delta}, z^{-1} q^{n} ; q, a z^{-1} q^{n}\right)
$$

where

$$
\gamma_{k}^{2} \gamma_{k+1}^{2}=w_{k}^{2}=-a q^{k+\delta-1}\left(1-q^{k-\delta}\right)
$$

- Especially, for $n=\delta=0$, the identity simplifies to

$$
F_{J}(z)=\frac{\left(z^{-1} ; q\right)_{\infty}\left(a z^{-1} ; q\right)_{\infty}}{\left((a+1) z^{-1} ; q\right)_{\infty}}
$$

Proposition

For $\delta, a \in \mathbb{C}$, and $n \in \mathbb{Z}_{+}$, it holds

$$
\mathfrak{F}\left(\left\{\frac{\gamma_{k}^{2}}{(a+1) q^{k-1}-z}\right\}_{k=n+1}^{\infty}\right)=\frac{\left(z^{-1} q^{n} ; q\right)_{\infty}}{\left((a+1) z^{-1} q^{n} ; q\right)_{\infty}}{ }^{1} \phi_{1}\left(z^{-1} q^{\delta}, z^{-1} q^{n} ; q, a z^{-1} q^{n}\right)
$$

where

$$
\gamma_{k}^{2} \gamma_{k+1}^{2}=w_{k}^{2}=-a q^{k+\delta-1}\left(1-q^{k-\delta}\right)
$$

- Especially, for $n=\delta=0$, the identity simplifies to

$$
F_{J}(z)=\frac{\left(z^{-1} ; q\right)_{\infty}\left(a z^{-1} ; q\right)_{\infty}}{\left((a+1) z^{-1} ; q\right)_{\infty}}
$$

- The spectrum of corresponding J is then obtained fully explicitly,

$$
\operatorname{spec}(J)=\left\{q^{k}: k=0,1,2, \ldots\right\} \cup\left\{a q^{k}: k=0,1,2, \ldots\right\} \cup\{0\} .
$$

Proposition

For $\delta, a \in \mathbb{C}$, and $n \in \mathbb{Z}_{+}$, it holds

$$
\mathfrak{F}\left(\left\{\frac{\gamma_{k}^{2}}{(a+1) q^{k-1}-z}\right\}_{k=n+1}^{\infty}\right)=\frac{\left(z^{-1} q^{n} ; q\right)_{\infty}}{\left((a+1) z^{-1} q^{n} ; q\right)_{\infty}}{ }^{1} \phi_{1}\left(z^{-1} q^{\delta}, z^{-1} q^{n} ; q, a z^{-1} q^{n}\right)
$$

where

$$
\gamma_{k}^{2} \gamma_{k+1}^{2}=w_{k}^{2}=-a q^{k+\delta-1}\left(1-q^{k-\delta}\right)
$$

- Especially, for $n=\delta=0$, the identity simplifies to

$$
F_{J}(z)=\frac{\left(z^{-1} ; q\right)_{\infty}\left(a z^{-1} ; q\right)_{\infty}}{\left((a+1) z^{-1} ; q\right)_{\infty}}
$$

- The spectrum of corresponding J is then obtained fully explicitly,

$$
\operatorname{spec}(J)=\left\{q^{k}: k=0,1,2, \ldots\right\} \cup\left\{a q^{k}: k=0,1,2, \ldots\right\} \cup\{0\} .
$$

- For $a>0$, the operator J is not hermitian, however, $\operatorname{spec}(J)$ is real!
- Let

$$
w_{n}:=\frac{\sqrt{(n+1)^{2}+\eta^{2}}}{(n+1) \sqrt{(2 n+1)(2 n+3)}} \quad \text { and } \quad \lambda_{n}:=\frac{\eta}{n(n+1)}
$$

- Let

$$
w_{n}:=\frac{\sqrt{(n+1)^{2}+\eta^{2}}}{(n+1) \sqrt{(2 n+1)(2 n+3)}} \quad \text { and } \quad \lambda_{n}:=\frac{\eta}{n(n+1)}
$$

- For $\eta \in \mathbb{R}, L \in \mathbb{Z}_{+}$, define the set of OG polynomials $\left\{P_{n}^{(L)}(\eta ; z)\right\}_{n=0}^{\infty}$ by recurrence rule

$$
z P_{n}^{(L)}(\eta ; z)=w_{n-1+L} P_{n-1}^{(L)}(\eta ; z)-\lambda_{n+L} P_{n}^{(L)}(\eta ; z)+w_{n+L} P_{n+1}^{(L)}(\eta ; z)
$$

with $P_{0}^{(L)}(\eta ; z)=0$ and $P_{1}^{(L)}(\eta ; z)=1$.

- Let

$$
w_{n}:=\frac{\sqrt{(n+1)^{2}+\eta^{2}}}{(n+1) \sqrt{(2 n+1)(2 n+3)}} \quad \text { and } \quad \lambda_{n}:=\frac{\eta}{n(n+1)}
$$

- For $\eta \in \mathbb{R}, L \in \mathbb{Z}_{+}$, define the set of OG polynomials $\left\{P_{n}^{(L)}(\eta ; z)\right\}_{n=0}^{\infty}$ by recurrence rule

$$
z P_{n}^{(L)}(\eta ; z)=w_{n-1+L} P_{n-1}^{(L)}(\eta ; z)-\lambda_{n+L} P_{n}^{(L)}(\eta ; z)+w_{n+L} P_{n+1}^{(L)}(\eta ; z)
$$

with $P_{0}^{(L)}(\eta ; z)=0$ and $P_{1}^{(L)}(\eta ; z)=1$.

- Relation to \mathfrak{F} :

$$
P_{n}^{(L)}(\eta ; z)=\left(\prod_{k=1}^{n-1} \frac{z-\lambda_{k+L}}{w_{k+L}}\right) \mathfrak{F}\left(\left\{\frac{\gamma_{l+L}^{2}}{\lambda_{l+L}-z}\right\}_{l=1}^{n-1}\right)
$$

- Relation to Regular Coulomb Wave Function:

$$
O_{n+1}^{(L-1)}(\eta ; \rho) F_{L}(\eta, \rho)-O_{n}^{(L)}(\eta ; \rho) F_{L-1}(\eta, \rho)=\frac{L}{\sqrt{L^{2}+\eta^{2}}} F_{L+n}(\eta, \rho)
$$

where

$$
O_{n}^{(L-1)}(\eta ; \rho):=\frac{L}{\sqrt{L^{2}+\eta^{2}}} \sqrt{\frac{2 L+3}{2 L+2 n+1}} P_{n}^{(L)}\left(\eta ; \rho^{-1}\right)
$$

and $n \in \mathbb{Z}_{+}, L \in \mathbb{N}, \eta, \rho \in \mathbb{C}$.

Applications: The class of OG polynomials related to Regular Coulomb Wave Function

- Relation to Regular Coulomb Wave Function:

$$
O_{n+1}^{(L-1)}(\eta ; \rho) F_{L}(\eta, \rho)-O_{n}^{(L)}(\eta ; \rho) F_{L-1}(\eta, \rho)=\frac{L}{\sqrt{L^{2}+\eta^{2}}} F_{L+n}(\eta, \rho)
$$

where

$$
O_{n}^{(L-1)}(\eta ; \rho):=\frac{L}{\sqrt{L^{2}+\eta^{2}}} \sqrt{\frac{2 L+3}{2 L+2 n+1}} P_{n}^{(L)}\left(\eta ; \rho^{-1}\right),
$$

and $n \in \mathbb{Z}_{+}, L \in \mathbb{N}, \eta, \rho \in \mathbb{C}$.

- OG relation:

$$
\sum_{\rho_{\eta, L}} \rho_{\eta, L}^{-2} P_{n}^{(L)}\left(\eta ; \rho_{\eta, L}^{-1}\right) P_{m}^{(L)}\left(\eta ; \rho_{\eta, L}^{-1}\right)=\frac{(L+1)^{2}+\eta^{2}}{(2 L+3)(L+1)^{2}} \delta_{m n}
$$

where $m, n \in \mathbb{N}, \eta \in \mathbb{R}$, and $L \in \mathbb{Z}_{+}$. The summation is over the set of all nonzero roots $\rho_{\eta, L}$ of $F_{L}(\eta, \rho)$.

Applications: The class of OG polynomials related to Regular Coulomb Wave Function

- Relation to Regular Coulomb Wave Function:

$$
O_{n+1}^{(L-1)}(\eta ; \rho) F_{L}(\eta, \rho)-O_{n}^{(L)}(\eta ; \rho) F_{L-1}(\eta, \rho)=\frac{L}{\sqrt{L^{2}+\eta^{2}}} F_{L+n}(\eta, \rho)
$$

where

$$
O_{n}^{(L-1)}(\eta ; \rho):=\frac{L}{\sqrt{L^{2}+\eta^{2}}} \sqrt{\frac{2 L+3}{2 L+2 n+1}} P_{n}^{(L)}\left(\eta ; \rho^{-1}\right)
$$

and $n \in \mathbb{Z}_{+}, L \in \mathbb{N}, \eta, \rho \in \mathbb{C}$.

- OG relation:

$$
\sum_{\rho_{\eta, L}} \rho_{\eta, L}^{-2} P_{n}^{(L)}\left(\eta ; \rho_{\eta, L}^{-1}\right) P_{m}^{(L)}\left(\eta ; \rho_{\eta, L}^{-1}\right)=\frac{(L+1)^{2}+\eta^{2}}{(2 L+3)(L+1)^{2}} \delta_{m n}
$$

where $m, n \in \mathbb{N}, \eta \in \mathbb{R}$, and $L \in \mathbb{Z}_{+}$. The summation is over the set of all nonzero roots $\rho_{\eta, L}$ of $F_{L}(\eta, \rho)$.

- Explicit formula for $P_{n}^{(L)}(\eta ; \rho)$:

Applications: The class of OG polynomials related to Regular Coulomb Wave Function

- Relation to Regular Coulomb Wave Function:

$$
O_{n+1}^{(L-1)}(\eta ; \rho) F_{L}(\eta, \rho)-O_{n}^{(L)}(\eta ; \rho) F_{L-1}(\eta, \rho)=\frac{L}{\sqrt{L^{2}+\eta^{2}}} F_{L+n}(\eta, \rho)
$$

where

$$
O_{n}^{(L-1)}(\eta ; \rho):=\frac{L}{\sqrt{L^{2}+\eta^{2}}} \sqrt{\frac{2 L+3}{2 L+2 n+1}} P_{n}^{(L)}\left(\eta ; \rho^{-1}\right),
$$

and $n \in \mathbb{Z}_{+}, L \in \mathbb{N}, \eta, \rho \in \mathbb{C}$.

- OG relation:

$$
\sum_{\rho_{\eta, L}} \rho_{\eta, L}^{-2} P_{n}^{(L)}\left(\eta ; \rho_{\eta, L}^{-1}\right) P_{m}^{(L)}\left(\eta ; \rho_{\eta, L}^{-1}\right)=\frac{(L+1)^{2}+\eta^{2}}{(2 L+3)(L+1)^{2}} \delta_{m n}
$$

where $m, n \in \mathbb{N}, \eta \in \mathbb{R}$, and $L \in \mathbb{Z}_{+}$. The summation is over the set of all nonzero roots $\rho_{\eta, L}$ of $F_{L}(\eta, \rho)$.

- Explicit formula for $P_{n}^{(L)}(\eta ; \rho)$: ?
- Rodrigez type formula for $P_{n}^{(L)}(\eta ; \rho)$:

Thank you!

