Recent Progress on Spectral Analysis of Jacobi Matrices and Related Problems

František Štampach

Faculty of Nuclear Sciences and Physical Engineering, CTU in Prague

Operator Theory, Analysis and Mathematical Physics Conference

July 5, 2012

Outline

- Motivation
- 2 Function 3
- Characteristic function of complex Jacobi matrix
- Applications
- Functinon § and Orthogonal Polynomials

• Consider Jacobi operator J acting on vectors from standard basis $\{e_n\}_{n=1}^{\infty}$ of $\ell^2(\mathbb{N})$ as

$$Je_n = w_{n-1}e_{n-1} + \lambda_n e_n + w_n e_{n+1} \quad (w_0 := 0)$$

where $\lambda_n \in \mathbb{C}$, $w_n \in \mathbb{C} \setminus \{0\}$, and $n \in \mathbb{N}$.

• Consider Jacobi operator J acting on vectors from standard basis $\{e_n\}_{n=1}^{\infty}$ of $\ell^2(\mathbb{N})$ as

$$Je_n = w_{n-1}e_{n-1} + \lambda_n e_n + w_n e_{n+1}$$
 $(w_0 := 0)$

where $\lambda_n \in \mathbb{C}$, $w_n \in \mathbb{C} \setminus \{0\}$, and $n \in \mathbb{N}$.

Set

$$Dom(J) = \{x \in \ell^2(\mathbb{N}) : Jx \in \ell^2(\mathbb{N})\}.$$

• Consider Jacobi operator J acting on vectors from standard basis $\{e_n\}_{n=1}^{\infty}$ of $\ell^2(\mathbb{N})$ as

$$Je_n = w_{n-1}e_{n-1} + \lambda_n e_n + w_n e_{n+1}$$
 $(w_0 := 0)$

where $\lambda_n \in \mathbb{C}$, $w_n \in \mathbb{C} \setminus \{0\}$, and $n \in \mathbb{N}$.

Set

$$Dom(J) = \{x \in \ell^2(\mathbb{N}) : Jx \in \ell^2(\mathbb{N})\}.$$

• The matrix representation of *J* in the standard basis:

$$J = \begin{pmatrix} \lambda_1 & w_1 & & & \\ w_1 & \lambda_2 & w_2 & & & \\ & w_2 & \lambda_3 & w_3 & & \\ & & \ddots & \ddots & \ddots \end{pmatrix}$$

• Consider Jacobi operator J acting on vectors from standard basis $\{e_n\}_{n=1}^{\infty}$ of $\ell^2(\mathbb{N})$ as

$$Je_n = w_{n-1}e_{n-1} + \lambda_n e_n + w_n e_{n+1}$$
 $(w_0 := 0)$

where $\lambda_n \in \mathbb{C}$, $w_n \in \mathbb{C} \setminus \{0\}$, and $n \in \mathbb{N}$.

Set

$$\mathrm{Dom}(J)=\{x\in\ell^2(\mathbb{N}):Jx\in\ell^2(\mathbb{N})\}.$$

• The matrix representation of *J* in the standard basis:

$$J = \begin{pmatrix} \lambda_1 & w_1 & & & \\ w_1 & \lambda_2 & w_2 & & & \\ & w_2 & \lambda_3 & w_3 & & \\ & & \ddots & \ddots & \ddots \end{pmatrix}$$

 Objective: Investigation of the spectrum of J when the diagonal sequence dominates the off-diagonal in some sense.

For $z \in \mathbb{C}$ and $\lambda_n > 0$ define

$$A(z) := L^{-1/2} (UW + WU^* - z) L^{-1/2} = \begin{pmatrix} \frac{-\frac{Z_1}{\lambda_1}}{\sqrt{\lambda_1 \lambda_2}} & \frac{w_2}{\sqrt{\lambda_2 \lambda_3}} & \frac{w_2}{\sqrt{\lambda_2 \lambda_3}} & \frac{w_3}{\sqrt{\lambda_3 \lambda_4}} & \\ & & \ddots & \ddots & \ddots \end{pmatrix}$$

where $L = diag(\lambda_1, \lambda_2, ...)$, $W = diag(w_1, w_2, ...)$, and U is unilateral shift.

For $z \in \mathbb{C}$ and $\lambda_n > 0$ define

$$A(z) := L^{-1/2} (UW + WU^* - z) L^{-1/2} = \begin{pmatrix} \frac{-\frac{Z}{\lambda_1}}{\sqrt{\lambda_1 \lambda_2}} & \frac{w_2}{\sqrt{\lambda_2 \lambda_3}} \\ \frac{w_1}{\sqrt{\lambda_1 \lambda_2}} & -\frac{Z}{\lambda_2} & \frac{w_2}{\sqrt{\lambda_2 \lambda_3}} \\ \frac{w_2}{\sqrt{\lambda_2 \lambda_3}} & -\frac{Z}{\lambda_3} & \frac{w_3}{\sqrt{\lambda_3 \lambda_4}} \\ & \ddots & \ddots & \ddots \end{pmatrix}$$

where $L = \operatorname{diag}(\lambda_1, \lambda_2, \dots)$, $W = \operatorname{diag}(w_1, w_2, \dots)$, and U is unilateral shift.

Assertion

Let A(z) be Hilbert-Schmidt operator for some $0 \neq z \in \mathbb{C}$. Then

$$z \in \rho(J)$$
 iff $-1 \in \rho(A(z))$

and it holds

$$(J-z)^{-1} = L^{-1/2}(1+A(z))^{-1}L^{-1/2}.$$

For $z \in \mathbb{C}$ and $\lambda_n > 0$ define

$$A(z) := L^{-1/2} (UW + WU^* - z) L^{-1/2} = \begin{pmatrix} \frac{-\frac{\lambda}{\lambda_1}}{\sqrt{\lambda_1 \lambda_2}} & \frac{w_2}{\sqrt{\lambda_2 \lambda_3}} & \frac{w_2}{\sqrt{\lambda_2 \lambda_3}} & \frac{w_3}{\sqrt{\lambda_3 \lambda_4}} & \frac{w_2}{\sqrt{\lambda_2 \lambda_3}} & \frac{w_3}{\sqrt{\lambda_3 \lambda_4}} & \vdots & \ddots & \ddots \end{pmatrix}$$

where $L = \operatorname{diag}(\lambda_1, \lambda_2, \dots)$, $W = \operatorname{diag}(w_1, w_2, \dots)$, and U is unilateral shift.

Assertion

Let A(z) be Hilbert-Schmidt operator for some $0 \neq z \in \mathbb{C}$. Then

$$z \in \rho(J)$$
 iff $-1 \in \rho(A(z))$

and it holds

$$(J-z)^{-1} = L^{-1/2}(1+A(z))^{-1}L^{-1/2}$$

To investigate the spectrum of J one can consider operator A(z) instead. Main advantages are:

For $z \in \mathbb{C}$ and $\lambda_n > 0$ define

$$A(z) := L^{-1/2} (UW + WU^* - z) L^{-1/2} = \begin{pmatrix} \frac{-\frac{z}{\lambda_1}}{\sqrt{\lambda_1 \lambda_2}} & \frac{w_2}{\sqrt{\lambda_2 \lambda_3}} & \frac{w_2}{\sqrt{\lambda_2 \lambda_3}} & \frac{w_3}{\sqrt{\lambda_3 \lambda_4}} & \\ & \frac{w_2}{\sqrt{\lambda_2 \lambda_3}} & -\frac{z}{\lambda_3} & \frac{w_3}{\sqrt{\lambda_3 \lambda_4}} & \\ & \ddots & \ddots & \ddots \end{pmatrix}$$

where $L = diag(\lambda_1, \lambda_2, ...)$, $W = diag(w_1, w_2, ...)$, and U is unilateral shift.

Assertion

Let A(z) be Hilbert-Schmidt operator for some $0 \neq z \in \mathbb{C}$. Then

$$z \in \rho(J)$$
 iff $-1 \in \rho(A(z))$

and it holds

$$(J-z)^{-1} = L^{-1/2}(1+A(z))^{-1}L^{-1/2}.$$

To investigate the spectrum of J one can consider operator A(z) instead. Main advantages are:

• A(z) is Hilbert-Schmidt, while J is unbounded

For $z \in \mathbb{C}$ and $\lambda_n > 0$ define

$$A(z) := L^{-1/2} (UW + WU^* - z) L^{-1/2} = \begin{pmatrix} \frac{-\frac{z}{\lambda_1}}{\sqrt{\lambda_1 \lambda_2}} & \frac{w_2}{\sqrt{\lambda_2 \lambda_3}} & \frac{w_2}{\sqrt{\lambda_2 \lambda_3}} & \frac{w_3}{\sqrt{\lambda_3 \lambda_4}} & \\ & \frac{w_2}{\sqrt{\lambda_2 \lambda_3}} & -\frac{z}{\lambda_3} & \frac{w_3}{\sqrt{\lambda_3 \lambda_4}} & \\ & \ddots & \ddots & \ddots \end{pmatrix}$$

where $L = \operatorname{diag}(\lambda_1, \lambda_2, \dots)$, $W = \operatorname{diag}(w_1, w_2, \dots)$, and U is unilateral shift.

Assertion

Let A(z) be Hilbert-Schmidt operator for some $0 \neq z \in \mathbb{C}$. Then

$$z \in \rho(J)$$
 iff $-1 \in \rho(A(z))$

and it holds

$$(J-z)^{-1} = L^{-1/2}(1+A(z))^{-1}L^{-1/2}.$$

To investigate the spectrum of J one can consider operator A(z) instead. Main advantages are:

- A(z) is Hilbert-Schmidt, while J is unbounded
- one can use function $z \mapsto \det_2(1 + A(z))$ which is well defined as an entire function.

Function \mathfrak{F}

Definition

Let me define $\mathfrak{F}:D\to\mathbb{C}$ by relation

$$\mathfrak{F}(x) = 1 + \sum_{m=1}^{\infty} (-1)^m \sum_{k_1=1}^{\infty} \sum_{k_2=k_1+2}^{\infty} \dots \sum_{k_m=k_{m-1}+2}^{\infty} x_{k_1} x_{k_1+1} x_{k_2} x_{k_2+1} \dots x_{k_m} x_{k_m+1},$$

where

$$D = \left\{ \{x_k\}_{k=1}^{\infty} \subset \mathbb{C}; \sum_{k=1}^{\infty} |x_k x_{k+1}| < \infty \right\}.$$

For a finite number of complex variables let me identify $\mathfrak{F}(x_1, x_2, \dots, x_n)$ with $\mathfrak{F}(x)$ where $x = (x_1, x_2, \dots, x_n, 0, 0, 0, \dots)$.

Function \mathfrak{F}

Definition

Let me define $\mathfrak{F}:D\to\mathbb{C}$ by relation

$$\mathfrak{F}(x) = 1 + \sum_{m=1}^{\infty} (-1)^m \sum_{k_1=1}^{\infty} \sum_{k_2=k_1+2}^{\infty} \dots \sum_{k_m=k_{m-1}+2}^{\infty} x_{k_1} x_{k_1+1} x_{k_2} x_{k_2+1} \dots x_{k_m} x_{k_m+1},$$

where

$$D = \left\{ \{x_k\}_{k=1}^{\infty} \subset \mathbb{C}; \sum_{k=1}^{\infty} |x_k x_{k+1}| < \infty \right\}.$$

For a finite number of complex variables let me identify $\mathfrak{F}(x_1, x_2, \dots, x_n)$ with $\mathfrak{F}(x)$ where $x = (x_1, x_2, \dots, x_n, 0, 0, 0, \dots)$.

• \mathfrak{F} is well defined on D due to estimation

$$|\mathfrak{F}(x)| \leq \exp\left(\sum_{k=1}^{\infty} |x_k x_{k+1}|\right).$$

Function 3

Definition

Let me define $\mathfrak{F}:D\to\mathbb{C}$ by relation

$$\mathfrak{F}(x) = 1 + \sum_{m=1}^{\infty} (-1)^m \sum_{k_1=1}^{\infty} \sum_{k_2=k_1+2}^{\infty} \dots \sum_{k_m=k_{m-1}+2}^{\infty} x_{k_1} x_{k_1+1} x_{k_2} x_{k_2+1} \dots x_{k_m} x_{k_m+1},$$

where

$$D = \left\{ \{x_k\}_{k=1}^{\infty} \subset \mathbb{C}; \sum_{k=1}^{\infty} |x_k x_{k+1}| < \infty \right\}.$$

For a finite number of complex variables let me identify $\mathfrak{F}(x_1, x_2, \dots, x_n)$ with $\mathfrak{F}(x)$ where $x = (x_1, x_2, \dots, x_n, 0, 0, 0, \dots)$.

• \mathfrak{F} is well defined on D due to estimation

$$|\mathfrak{F}(x)| \leq \exp\left(\sum_{k=1}^{\infty} |x_k x_{k+1}|\right).$$

• Note that the domain D is not a linear space. One has, however, $\ell^2(\mathbb{N}) \subset D$.

Properties of \mathfrak{F}

• For all $x \in D$ and k = 1, 2, ... one has

Recursive relation

$$\mathfrak{F}(x) = \mathfrak{F}(x_1, \dots, x_k) \mathfrak{F}(T^k x) - \mathfrak{F}(x_1, \dots, x_{k-1}) x_k x_{k+1} \mathfrak{F}(T^{k+1} x)$$

where T denotes the truncation operator from the left defined on the space of all sequences:

$$T({x_k}_{k=1}^{\infty}) = {x_{k+1}}_{k=1}^{\infty}.$$

Properties of \mathfrak{F}

• For all $x \in D$ and k = 1, 2, ... one has

Recursive relation

$$\mathfrak{F}(x) = \mathfrak{F}(x_1, \ldots, x_k) \,\mathfrak{F}(T^k x) - \mathfrak{F}(x_1, \ldots, x_{k-1}) x_k x_{k+1} \mathfrak{F}(T^{k+1} x)$$

where T denotes the truncation operator from the left defined on the space of all sequences:

$$T(\{x_k\}_{k=1}^{\infty}) = \{x_{k+1}\}_{k=1}^{\infty}.$$

• Especially for k = 1, one gets the simple relation

$$\mathfrak{F}(x)=\mathfrak{F}(Tx)-x_1x_2\,\mathfrak{F}(T^2x).$$

Properties of \mathfrak{F}

• For all $x \in D$ and k = 1, 2, ... one has

Recursive relation

$$\mathfrak{F}(x) = \mathfrak{F}(x_1, \ldots, x_k) \,\mathfrak{F}(T^k x) - \mathfrak{F}(x_1, \ldots, x_{k-1}) x_k x_{k+1} \mathfrak{F}(T^{k+1} x)$$

where T denotes the truncation operator from the left defined on the space of all sequences:

$$T(\{x_k\}_{k=1}^{\infty}) = \{x_{k+1}\}_{k=1}^{\infty}.$$

• Especially for k = 1, one gets the simple relation

$$\mathfrak{F}(x) = \mathfrak{F}(Tx) - x_1 x_2 \, \mathfrak{F}(T^2 x).$$

• Functions $\mathfrak F$ restricted on $\ell^2(\mathbb N)$ is a continuous functional on $\ell^2(\mathbb N)$. Further, for $x\in D$, it holds

$$\lim_{n\to\infty}\mathfrak{F}(x_1,x_2,\ldots,x_n)=\mathfrak{F}(x)$$
 and $\lim_{n\to\infty}\mathfrak{F}(T^nx)=1.$

Other properties of ${\mathfrak F}$

• Equivalent definition for $\mathfrak{F}(x_1, x_2, \dots, x_n)$ is:

$$\mathfrak{F}(x_1, x_2, \dots, x_n) = \det X_n = \det \begin{pmatrix} 1 & x_1 & & & \\ x_2 & 1 & x_2 & & & \\ & \ddots & \ddots & \ddots & \\ & & x_{n-1} & 1 & x_{n-1} \\ & & & x_n & 1 \end{pmatrix}.$$

Other properties of $\mathfrak F$

• Equivalent definition for $\mathfrak{F}(x_1, x_2, \dots, x_n)$ is:

$$\mathfrak{F}(x_1, x_2, \dots, x_n) = \det X_n = \det \begin{pmatrix} 1 & x_1 & & & \\ x_2 & 1 & x_2 & & & \\ & \ddots & \ddots & \ddots & \\ & & x_{n-1} & 1 & x_{n-1} \\ & & & x_n & 1 \end{pmatrix}.$$

• Function \mathfrak{F} is related to a continued fraction. For a given $x \in D$ such that $\mathfrak{F}(x) \neq 0$, it holds

$$\frac{\mathfrak{F}(Tx)}{\mathfrak{F}(x)} = \frac{1}{1 - \frac{x_1 x_2}{1 - \frac{x_2 x_3}{1 - \frac{x_3 x_4}{1 - \dots}}}}.$$

Proposition

Let $\{\lambda_n\}$ be positive and

$$\sum_{n=1}^{\infty}\frac{1}{\lambda_n^2}<\infty\quad\text{ and }\quad\sum_{n=1}^{\infty}\left|\frac{w_n^2}{\lambda_n\lambda_{n+1}}\right|<\infty.$$

Then A(z) is Hilbert-Schmidt for all $z \in \mathbb{C}$ and it holds

$$\det_{2}(1 + A(z)) = \mathfrak{F}\left(\left\{\frac{\gamma_{n}^{2}}{\lambda_{n} - z}\right\}_{n=1}^{\infty}\right) \prod_{n=1}^{\infty} \left(1 - \frac{z}{\lambda_{n}}\right) e^{z/\lambda_{n}}$$

where the sequence $\{\gamma_n\}$ can be defined recursively as $\gamma_1 = 1$, $\gamma_{k+1} = w_k/\gamma_k$.

Proposition

Let $\{\lambda_n\}$ be positive and

$$\sum_{n=1}^{\infty} \frac{1}{\lambda_n^2} < \infty \quad \text{ and } \quad \sum_{n=1}^{\infty} \left| \frac{w_n^2}{\lambda_n \lambda_{n+1}} \right| < \infty.$$

Then A(z) is Hilbert-Schmidt for all $z \in \mathbb{C}$ and it holds

$$\det_{2}(1+A(z)) = \mathfrak{F}\left(\left\{\frac{\gamma_{n}^{2}}{\lambda_{n}-z}\right\}_{n=1}^{\infty}\right) \prod_{n=1}^{\infty} \left(1-\frac{z}{\lambda_{n}}\right) e^{z/\lambda_{n}}$$

where the sequence $\{\gamma_n\}$ can be defined recursively as $\gamma_1 = 1$, $\gamma_{k+1} = w_k/\gamma_k$.

In the following we focus just on the function

$$F_J(z) := \mathfrak{F}\left(\left\{\frac{\gamma_n^2}{\lambda_n - z}\right\}_{n=1}^{\infty}\right).$$

• Function F_J is well defined on $\mathbb{C}\setminus\overline{\{\lambda_n\}}$ if

$$\left\{\frac{\gamma_n^2}{\lambda_n - z}\right\}_{n=1}^{\infty} \in D \quad \text{ for all } z \in \mathbb{C} \setminus \overline{\{\lambda_n\}}$$

which holds if there is at least one $z_0 \in \mathbb{C} \setminus \overline{\{\lambda_n\}}$ such that

$$\sum_{n=1}^{\infty} \left| \frac{w_n^2}{(\lambda_n - z_0)(\lambda_{n+1} - z_0)} \right| < \infty$$

 $(\lambda_n \text{ and } w_n \text{ are complex!})$

• Function F_J is well defined on $\mathbb{C}\setminus\overline{\{\lambda_n\}}$ if

$$\left\{\frac{\gamma_n^2}{\lambda_n - z}\right\}_{n=1}^{\infty} \in D \quad \text{ for all } z \in \mathbb{C} \setminus \overline{\{\lambda_n\}}$$

which holds if there is at least one $z_0 \in \mathbb{C} \setminus \overline{\{\lambda_n\}}$ such that

$$\sum_{n=1}^{\infty} \left| \frac{w_n^2}{(\lambda_n - z_0)(\lambda_{n+1} - z_0)} \right| < \infty$$

 $(\lambda_n \text{ and } w_n \text{ are complex!})$

This assumptions is assumed everywhere from now.

• Function F_J is well defined on $\mathbb{C} \setminus \overline{\{\lambda_n\}}$ if

$$\left\{\frac{\gamma_n^2}{\lambda_n - z}\right\}_{n=1}^{\infty} \in D \quad \text{ for all } z \in \mathbb{C} \setminus \overline{\{\lambda_n\}}$$

which holds if there is at least one $z_0 \in \mathbb{C} \setminus \overline{\{\lambda_n\}}$ such that

$$\sum_{n=1}^{\infty} \left| \frac{w_n^2}{(\lambda_n - z_0)(\lambda_{n+1} - z_0)} \right| < \infty$$

 $(\lambda_n \text{ and } w_n \text{ are complex!})$

- This assumptions is assumed everywhere from now.
- F_J is meromorphic function on $\mathbb{C} \setminus \overline{\{\lambda_n\}}$ with poles in $z \in \{\lambda_n\} \setminus \text{der}(\{\lambda_n\})$ of finite order less or equal to the number

$$r(z) := \sum_{n=1}^{\infty} \delta_{z,\lambda_n}.$$

Let us define

$$\mathfrak{Z}(J):=\left\{z\in\mathbb{C}\setminus\operatorname{der}(\{\lambda_n\});\ \lim_{u\to z}(u-z)^{r(z)}F_J(u)=0\right\}$$

and,

Let us define

$$\mathfrak{Z}(J):=\left\{z\in\mathbb{C}\setminus \operatorname{der}(\{\lambda_n\}); \lim_{u\to z}(u-z)^{r(z)}F_J(u)=0\right\}$$

and, for $k \in \mathbb{Z}_+$ and $z \in \mathbb{C} \setminus \text{der}(\{\lambda_n\})$, we put

$$\xi_k(z) := \lim_{u \to z} (u - z)^{r(z)} \left(\prod_{l=1}^k \frac{w_{l-1}}{u - \lambda_l} \right) \mathfrak{F} \left(\left\{ \frac{\gamma_l^2}{\lambda_l - u} \right\}_{l=k+1}^{\infty} \right)$$

where we set $w_0 := 1$.

Let us define

$$\mathfrak{Z}(J):=\left\{z\in\mathbb{C}\setminus\operatorname{der}(\{\lambda_n\});\ \lim_{u\to z}(u-z)^{r(z)}F_J(u)=0\right\}$$

and, for $k \in \mathbb{Z}_+$ and $z \in \mathbb{C} \setminus \text{der}(\{\lambda_n\})$, we put

$$\xi_k(z) := \lim_{u \to z} (u - z)^{r(z)} \left(\prod_{l=1}^k \frac{w_{l-1}}{u - \lambda_l} \right) \mathfrak{F}\left(\left\{ \frac{{\gamma_l}^2}{\lambda_l - u} \right\}_{l=k+1}^{\infty} \right)$$

where we set $w_0 := 1$.

Theorem

Equalities

$$\operatorname{spec}(J) \setminus \operatorname{der}(\{\lambda_n\}) = \operatorname{spec}_{\mathcal{D}}(J) \setminus \operatorname{der}(\{\lambda_n\}) = \mathfrak{Z}(J)$$

hold and, for $z \in \mathfrak{Z}(J)$,

$$\xi(z) := (\xi_1(z), \xi_2(z), \xi_3(z), \ldots)$$

is the eigenvector for eigenvalue z. Moreover, for $z \notin \overline{\{\lambda_n\}}$, vector $\xi(z)$ satisfies the formula

$$\sum_{k=1}^{\infty} (\xi_k(z))^2 = \xi_0'(z)\xi_1(z) - \xi_0(z)\xi_1'(z).$$

Green Function

• The Green function $G_{ij}(z) = (e_i, (J-z)^{-1}e_j)$ of J is expressible in terms of \mathfrak{F} ,

$$G_{ij}(z) = -\frac{1}{w_M} \prod_{l=m}^{M} \left(\frac{w_l}{z - \lambda_l}\right) \frac{\mathfrak{F}\left(\left\{\frac{\gamma_l^2}{\lambda_l - z}\right\}_{l=1}^{m-1}\right) \mathfrak{F}\left(\left\{\frac{\gamma_l^2}{\lambda_l - z}\right\}_{l=M+1}^{\infty}\right)}{\mathfrak{F}\left(\left\{\frac{\gamma_l^2}{\lambda_l - z}\right\}_{l=1}^{\infty}\right)}$$

where $z \in \rho(J)$, $m := \min(i, j)$, and $M := \max(i, j)$.

Green Function

• The Green function $G_{ij}(z)=(e_i,(J-z)^{-1}e_j)$ of J is expressible in terms of $\mathfrak{F},$

$$G_{ij}(z) = -\frac{1}{w_M} \prod_{l=m}^{M} \left(\frac{w_l}{z - \lambda_l}\right) \frac{\mathfrak{F}\left(\left\{\frac{\gamma_l^2}{\lambda_l - z}\right\}_{l=1}^{m-1}\right) \mathfrak{F}\left(\left\{\frac{\gamma_l^2}{\lambda_l - z}\right\}_{l=M+1}^{\infty}\right)}{\mathfrak{F}\left(\left\{\frac{\gamma_l^2}{\lambda_l - z}\right\}_{l=1}^{\infty}\right)}$$

where $z \in \rho(J)$, $m := \min(i, j)$, and $M := \max(i, j)$.

• Especially, we get a compact formula for the Weyl m-function $m(z) = G_{11}(z)$,

$$m(z) = \frac{\mathfrak{F}\left(\left\{\frac{\gamma_j^2}{\lambda_j - z}\right\}_{j=2}^{\infty}\right)}{(\lambda_1 - z)\mathfrak{F}\left(\left\{\frac{\gamma_j^2}{\lambda_j - z}\right\}_{j=1}^{\infty}\right)}.$$

Various special functions are expressible in terms of $\ensuremath{\mathfrak{F}}$ applied to a suitable sequence, e.g.:

Various special functions are expressible in terms of \mathfrak{F} applied to a suitable sequence, e.g.:

ullet Hypergeometric Functions ${}_0F_1$, especially Bessel Functions,

$$\mathfrak{F}\left(\left\{\frac{w}{k+z}\right\}_{k=1}^{\infty}\right) = {}_{0}F_{1}(;z+1,-w^{2}) = \Gamma(1+z)\,w^{-z}J_{z}(2w)$$

$$(w\in\mathbb{C},z\notin-\mathbb{N})$$

Various special functions are expressible in terms of $\mathfrak F$ applied to a suitable sequence, e.g.:

Hypergeometric Functions ₀F₁, especially Bessel Functions,

$$\mathfrak{F}\left(\left\{\frac{w}{k+z}\right\}_{k=1}^{\infty}\right) = {}_{0}F_{1}(;z+1,-w^{2}) = \Gamma(1+z)\,w^{-z}J_{z}(2w)$$

$$(w \in \mathbb{C}, z \notin -\mathbb{N})$$

• Basic Hypergeometric Functions $_0\phi_1$, especially q-Bessel Functions (second Jackson, Hahn-Exton),

$$\mathfrak{F}\left(\left\{q^{\left\lfloor\frac{k-1}{2}\right\rfloor}\frac{w}{1-zq^{k-1}}\right\}_{k=1}^{\infty}\right)={}_{0}\phi_{1}\left(z;q,-w^{2}\right)$$

$$(w \in \mathbb{C}, 0 < q < 1, z \notin q^{-\mathbb{N}_0})$$

Various special functions are expressible in terms of $\mathfrak F$ applied to a suitable sequence, e.g.:

Hypergeometric Functions ₀F₁, especially Bessel Functions,

$$\mathfrak{F}\left(\left\{\frac{w}{k+z}\right\}_{k=1}^{\infty}\right) = {}_{0}F_{1}(;z+1,-w^{2}) = \Gamma(1+z)\,w^{-z}J_{z}(2w)$$

$$(w \in \mathbb{C}, z \notin -\mathbb{N})$$

• Basic Hypergeometric Functions $_0\phi_1$, especially q-Bessel Functions (second Jackson, Hahn-Exton),

$$\mathfrak{F}\left(\left\{q^{\left\lfloor\frac{k-1}{2}\right\rfloor}\frac{w}{1-zq^{k-1}}\right\}_{k=1}^{\infty}\right)={}_{0}\phi_{1}\left(;z;q,-w^{2}\right)$$

$$(w \in \mathbb{C}, 0 < q < 1, z \notin q^{-\mathbb{N}_0})$$

Confluent Hypergeometric Functions ₁F₁, especially Regular Coulomb Wave Function

Various special functions are expressible in terms of $\mathfrak F$ applied to a suitable sequence, e.g.:

• Hypergeometric Functions $_0F_1$, especially Bessel Functions,

$$\mathfrak{F}\left(\left\{\frac{w}{k+z}\right\}_{k=1}^{\infty}\right) = {}_{0}F_{1}(;z+1,-w^{2}) = \Gamma(1+z)\,w^{-z}J_{z}(2w)$$

$$(w \in \mathbb{C}, z \notin -\mathbb{N})$$

• Basic Hypergeometric Functions $_0\phi_1$, especially q-Bessel Functions (second Jackson, Hahn-Exton),

$$\mathfrak{F}\left(\left\{q^{\left\lfloor\frac{k-1}{2}\right\rfloor}\frac{w}{1-zq^{k-1}}\right\}_{k=1}^{\infty}\right)={}_{0}\phi_{1}\left(;z;q,-w^{2}\right)$$

$$(w \in \mathbb{C}, 0 < q < 1, z \notin q^{-\mathbb{N}_0})$$

- Confluent Hypergeometric Functions ₁F₁, especially Regular Coulomb Wave Function
- Basic Hypergeometric Functions $_1\phi_1$

Function \mathfrak{F} and Orthogonal Polynomials

• For $\lambda_n \in \mathbb{R}$ and $w_n > 0$, OPs can be defined recursively by

$$w_{n-1}y_{n-1}(x) + \lambda_n y_n(x) + w_n y_{n+1}(x) = xy_n(x), \quad n = 1, 2, ... \quad (w_0 := -1)$$

and OPs of the first kind $P_n(x)$ satisfy initial conditions $P_0(x) = 0$, $P_1(x) = 1$, while OPs of the second kind $Q_n(x)$ satisfy $Q_0(x) = 1$, $Q_1(x) = 0$.

Function \mathfrak{F} and Orthogonal Polynomials

• For $\lambda_n \in \mathbb{R}$ and $w_n > 0$, OPs can be defined recursively by

$$w_{n-1}y_{n-1}(x) + \lambda_n y_n(x) + w_n y_{n+1}(x) = xy_n(x), \quad n = 1, 2, ... \quad (w_0 := -1)$$

and OPs of the first kind $P_n(x)$ satisfy initial conditions $P_0(x) = 0$, $P_1(x) = 1$, while OPs of the second kind $Q_n(x)$ satisfy $Q_0(x) = 1$, $Q_1(x) = 0$.

• OPs are related to 3 through identities

$$P_{n+1}(z) = \prod_{k=1}^{n} \left(\frac{z - \lambda_k}{w_k}\right) \mathfrak{F}\left(\left\{\frac{\gamma_l^2}{\lambda_l - z}\right\}_{l=1}^{n}\right), \quad n = 0, 1 \dots,$$

$$Q_{n+1}(z) = \frac{1}{w_1} \prod_{k=2}^n \left(\frac{z - \lambda_k}{w_k} \right) \mathfrak{F}\left(\left\{ \frac{\gamma_l^2}{\lambda_l - z} \right\}_{l=2}^n \right), \quad n = 0, 1 \dots$$

where $\{\gamma_n\}$ can be defined recursively as $\gamma_1 = 1$, $\gamma_{k+1} = w_k/\gamma_k$.

Orthogonal relation for P_n

Proposition

Let *J* be self-adjoint and either *J* has discrete spectrum or it is a compact operator. Then, for $m, n \in \mathbb{N}$, the orthogonality relation

$$\sum_{\lambda \in \mathfrak{J}(J)} \frac{F_{J,2}(\lambda)}{(\lambda - \lambda_1) F_J'(\lambda)} P_n(\lambda) P_m(\lambda) = \delta_{m,n}$$

holds, where $F_{J,k+1}$ is the characteristic function of the Jacobi operator defined by using shifted sequences $\{\lambda_{n+k}\}_{n=1}^{\infty}$ and $\{w_{n+k}\}_{n=1}^{\infty}$, i.e.,

$$F_{J,k+1}(z) = \mathfrak{F}\left(\left\{\frac{\gamma_l^2}{\lambda_l - z}\right\}_{l=k}^{\infty}\right), \quad (F_{J,1} = F_J).$$

ullet The regular Coulomb wave function $F_L(\eta,
ho)$ is one of two linearly independent solutions of the second-order differential equation

$$\frac{d^2u}{d\rho^2} + \left[1 - \frac{2\eta}{\rho} - \frac{L(L+1)}{\rho^2}\right]u = 0$$

where $\rho > 0, \eta \in \mathbb{R}$, and $L \in \mathbb{Z}_+$.

ullet The regular Coulomb wave function $F_L(\eta,
ho)$ is one of two linearly independent solutions of the second-order differential equation

$$\frac{d^2u}{d\rho^2} + \left[1 - \frac{2\eta}{\rho} - \frac{L(L+1)}{\rho^2}\right]u = 0$$

where $\rho > 0, \eta \in \mathbb{R}$, and $L \in \mathbb{Z}_+$.

• $F_L(\eta, \rho)$ can be decomposed as follows,

$$F_L(\eta, \rho) = C_L(\eta)\rho^{L+1}\phi_L(\eta, \rho)$$

where

$$C_L(\eta) = \sqrt{\frac{2\pi\eta}{e^{2\pi\eta} - 1}} \frac{\sqrt{(1 + \eta^2)(4 + \eta^2)\dots(L^2 + \eta^2)}}{(2L + 1)!!L!}$$

and

$$\phi_L(\eta,\rho) = e^{-i\rho} {}_1F_1(L+1-i\eta,2L+2,2i\rho).$$

ullet The regular Coulomb wave function $F_L(\eta,
ho)$ is one of two linearly independent solutions of the second-order differential equation

$$\frac{d^2u}{d\rho^2} + \left[1 - \frac{2\eta}{\rho} - \frac{L(L+1)}{\rho^2}\right]u = 0$$

where $\rho > 0, \eta \in \mathbb{R}$, and $L \in \mathbb{Z}_+$.

• $F_L(\eta, \rho)$ can be decomposed as follows,

$$F_L(\eta, \rho) = C_L(\eta)\rho^{L+1}\phi_L(\eta, \rho)$$

where

$$C_L(\eta) = \sqrt{rac{2\pi\eta}{e^{2\pi\eta}-1}} rac{\sqrt{(1+\eta^2)(4+\eta^2)\dots(L^2+\eta^2)}}{(2L+1)!!L!}$$

and

$$\phi_L(\eta, \rho) = e^{-i\rho} {}_1F_1(L+1-i\eta, 2L+2, 2i\rho).$$

• Hence one can use the relation between \mathfrak{F} and ${}_1F_1$ to find the following formula.

Proposition

For $\eta \in \mathbb{C}$, $\rho \in \mathbb{C} \setminus \{0\}$, $\eta \rho \neq -k(k+1)$, $k \geq n+1$, and $n \in \mathbb{Z}_+$, one has

$$\mathfrak{F}\left(\left\{\frac{\gamma_k^2}{\lambda_k+1/\rho}\right\}_{k=n+1}^{\infty}\right) = \frac{\pi\eta\rho}{\cos\left(\frac{\pi}{2}\sqrt{1-4\eta\rho}\right)}\prod_{k=1}^{n}\left[1+\frac{\eta\rho}{k(k+1)}\right]\phi_n(\eta,\rho).$$

The entry sequences now reads

$$w_n = \frac{\sqrt{(n+1)^2 + \eta^2}}{(n+1)\sqrt{(2n+1)(2n+3)}}$$
 and $\lambda_n := \frac{\eta}{n(n+1)}$.

Proposition

For $\eta \in \mathbb{C}$, $\rho \in \mathbb{C} \setminus \{0\}$, $\eta \rho \neq -k(k+1)$, $k \geq n+1$, and $n \in \mathbb{Z}_+$, one has

$$\mathfrak{F}\left(\left\{\frac{\gamma_k^2}{\lambda_k+1/\rho}\right\}_{k=n+1}^{\infty}\right) = \frac{\pi\eta\rho}{\cos\left(\frac{\pi}{2}\sqrt{1-4\eta\rho}\right)}\prod_{k=1}^{n}\left[1+\frac{\eta\rho}{k(k+1)}\right]\phi_n(\eta,\rho).$$

The entry sequences now reads

$$w_n = \frac{\sqrt{(n+1)^2 + \eta^2}}{(n+1)\sqrt{(2n+1)(2n+3)}}$$
 and $\lambda_n := \frac{\eta}{n(n+1)}$.

Consequently, for corresponding Jacobi matrix

$$J_{L} = \begin{pmatrix} -\lambda_{L+1} & w_{L+1} \\ w_{L+1} & -\lambda_{L+2} & w_{L+2} \\ & w_{L+2} & -\lambda_{L+3} & w_{L+3} \\ & & \ddots & \ddots & \ddots \end{pmatrix}$$

we get

$$\operatorname{spec}(J_L) = \{1/\rho : \phi_L(\eta, \rho) = 0\} \cup \{0\} = \{1/\rho : F_L(\eta, \rho) = 0\} \cup \{0\}$$

and

$$v(1/\rho) = \left(\sqrt{2L+3}F_{L+1}(\eta,\rho), \sqrt{2L+5}F_{L+2}(\eta,\rho), \sqrt{2L+7}F_{L+3}(\eta,\rho), \dots\right)^{T}.$$

Proposition

For δ , $a \in \mathbb{C}$, and $n \in \mathbb{Z}_+$, it holds

$$\mathfrak{F}\left(\left\{\frac{\gamma_k^2}{(a+1)q^{k-1}-z}\right\}_{k=n+1}^{\infty}\right) = \frac{(z^{-1}q^n;q)_{\infty}}{((a+1)z^{-1}q^n;q)_{\infty}} {}_{1}\phi_{1}\left(z^{-1}q^{\delta},z^{-1}q^n;q,az^{-1}q^n\right)$$

where

$$\gamma_k^2 \gamma_{k+1}^2 = w_k^2 = -aq^{k+\delta-1}(1-q^{k-\delta}).$$

Proposition

For δ , $a \in \mathbb{C}$, and $n \in \mathbb{Z}_+$, it holds

$$\mathfrak{F}\left(\left\{\frac{\gamma_k^2}{(a+1)q^{k-1}-z}\right\}_{k=n+1}^{\infty}\right) = \frac{(z^{-1}q^n;q)_{\infty}}{((a+1)z^{-1}q^n;q)_{\infty}} {}_{1}\phi_{1}\left(z^{-1}q^{\delta},z^{-1}q^n;q,az^{-1}q^n\right)$$

where

$$\gamma_k^2 \gamma_{k+1}^2 = w_k^2 = -aq^{k+\delta-1}(1-q^{k-\delta}).$$

• Especially, for $n = \delta = 0$, the identity simplifies to

$$F_J(z) = \frac{(z^{-1};q)_{\infty}(az^{-1};q)_{\infty}}{\left((a+1)z^{-1};q\right)_{\infty}}.$$

Proposition

For δ , $a \in \mathbb{C}$, and $n \in \mathbb{Z}_+$, it holds

$$\mathfrak{F}\left(\left\{\frac{\gamma_k^2}{(a+1)q^{k-1}-z}\right\}_{k=n+1}^{\infty}\right) = \frac{(z^{-1}q^n;q)_{\infty}}{((a+1)z^{-1}q^n;q)_{\infty}} {}_{1}\phi_{1}\left(z^{-1}q^{\delta},z^{-1}q^n;q,az^{-1}q^n\right)$$

where

$$\gamma_k^2 \gamma_{k+1}^2 = w_k^2 = -aq^{k+\delta-1}(1-q^{k-\delta}).$$

• Especially, for $n = \delta = 0$, the identity simplifies to

$$F_J(z) = \frac{(z^{-1};q)_{\infty}(az^{-1};q)_{\infty}}{((a+1)z^{-1};q)_{\infty}}.$$

• The spectrum of corresponding J is then obtained fully explicitly,

$$\operatorname{spec}(J) = \{ q^k : k = 0, 1, 2, \dots \} \cup \{ aq^k : k = 0, 1, 2, \dots \} \cup \{ 0 \}.$$

Proposition

For δ , $a \in \mathbb{C}$, and $n \in \mathbb{Z}_+$, it holds

$$\mathfrak{F}\left(\left\{\frac{\gamma_k^2}{(a+1)q^{k-1}-z}\right\}_{k=n+1}^{\infty}\right) = \frac{(z^{-1}q^n;q)_{\infty}}{((a+1)z^{-1}q^n;q)_{\infty}} \mathbf{1}\phi_1\left(z^{-1}q^{\delta},z^{-1}q^n;q,az^{-1}q^n\right)$$

where

$$\gamma_k^2 \gamma_{k+1}^2 = w_k^2 = -aq^{k+\delta-1}(1-q^{k-\delta}).$$

• Especially, for $n = \delta = 0$, the identity simplifies to

$$F_J(z) = \frac{(z^{-1};q)_{\infty}(az^{-1};q)_{\infty}}{((a+1)z^{-1};q)_{\infty}}.$$

• The spectrum of corresponding J is then obtained fully explicitly,

$$\operatorname{spec}(J) = \{q^k : k = 0, 1, 2, \dots\} \cup \{aq^k : k = 0, 1, 2, \dots\} \cup \{0\}.$$

• For a > 0, the operator J is not hermitian, however, spec(J) is real!

Let

$$w_n := \frac{\sqrt{(n+1)^2 + \eta^2}}{(n+1)\sqrt{(2n+1)(2n+3)}}$$
 and $\lambda_n := \frac{\eta}{n(n+1)}$.

Let

$$w_n := \frac{\sqrt{(n+1)^2 + \eta^2}}{(n+1)\sqrt{(2n+1)(2n+3)}} \quad \text{ and } \quad \lambda_n := \frac{\eta}{n(n+1)}.$$

• For $\eta \in \mathbb{R}$, $L \in \mathbb{Z}_+$, define the set of OG polynomials $\{P_n^{(L)}(\eta;z)\}_{n=0}^{\infty}$ by recurrence rule

$$zP_{n}^{(L)}(\eta;z) = w_{n-1+L}P_{n-1}^{(L)}(\eta;z) - \lambda_{n+L}P_{n}^{(L)}(\eta;z) + w_{n+L}P_{n+1}^{(L)}(\eta;z)$$

with $P_0^{(L)}(\eta; z) = 0$ and $P_1^{(L)}(\eta; z) = 1$.

Let

$$w_n := \frac{\sqrt{(n+1)^2 + \eta^2}}{(n+1)\sqrt{(2n+1)(2n+3)}} \quad \text{ and } \quad \lambda_n := \frac{\eta}{n(n+1)}.$$

• For $\eta \in \mathbb{R}$, $L \in \mathbb{Z}_+$, define the set of OG polynomials $\{P_n^{(L)}(\eta;z)\}_{n=0}^{\infty}$ by recurrence rule

$$zP_n^{(L)}(\eta;z) = w_{n-1+L}P_{n-1}^{(L)}(\eta;z) - \lambda_{n+L}P_n^{(L)}(\eta;z) + w_{n+L}P_{n+1}^{(L)}(\eta;z)$$

with
$$P_0^{(L)}(\eta; z) = 0$$
 and $P_1^{(L)}(\eta; z) = 1$.

Relation to \$\foats:

$$P_n^{(L)}(\eta;z) = \left(\prod_{k=1}^{n-1} \frac{z - \lambda_{k+L}}{w_{k+L}}\right) \mathfrak{F}\left(\left\{\frac{\gamma_{l+L}^2}{\lambda_{l+L} - z}\right\}_{l=1}^{n-1}\right).$$

Relation to Regular Coulomb Wave Function:

$$O_{n+1}^{(L-1)}(\eta;\rho)F_{L}(\eta,\rho) - O_{n}^{(L)}(\eta;\rho)F_{L-1}(\eta,\rho) = \frac{L}{\sqrt{L^{2} + \eta^{2}}}F_{L+n}(\eta,\rho)$$

where

$$O_n^{(L-1)}(\eta;\rho) := \frac{L}{\sqrt{L^2 + \eta^2}} \sqrt{\frac{2L+3}{2L+2n+1}} P_n^{(L)}(\eta;\rho^{-1}),$$

and $n \in \mathbb{Z}_+$, $L \in \mathbb{N}$, $\eta, \rho \in \mathbb{C}$.

Relation to Regular Coulomb Wave Function:

$$O_{n+1}^{(L-1)}(\eta;\rho)F_{L}(\eta,\rho) - O_{n}^{(L)}(\eta;\rho)F_{L-1}(\eta,\rho) = \frac{L}{\sqrt{L^{2} + \eta^{2}}}F_{L+n}(\eta,\rho)$$

where

$$O_n^{(L-1)}(\eta;\rho) := \frac{L}{\sqrt{L^2 + \eta^2}} \sqrt{\frac{2L+3}{2L+2n+1}} P_n^{(L)}(\eta;\rho^{-1}),$$

and $n \in \mathbb{Z}_+$, $L \in \mathbb{N}$, $\eta, \rho \in \mathbb{C}$.

OG relation:

$$\sum_{\rho_{\eta,L}} \rho_{\eta,L}^{-2} P_n^{(L)}(\eta; \rho_{\eta,L}^{-1}) P_m^{(L)}(\eta; \rho_{\eta,L}^{-1}) = \frac{(L+1)^2 + \eta^2}{(2L+3)(L+1)^2} \delta_{mn}$$

where $m, n \in \mathbb{N}$, $\eta \in \mathbb{R}$, and $L \in \mathbb{Z}_+$. The summation is over the set of all nonzero roots $\rho_{\eta,L}$ of $F_L(\eta,\rho)$.

Relation to Regular Coulomb Wave Function:

$$O_{n+1}^{(L-1)}(\eta;\rho)F_L(\eta,\rho) - O_n^{(L)}(\eta;\rho)F_{L-1}(\eta,\rho) = \frac{L}{\sqrt{L^2 + \eta^2}}F_{L+n}(\eta,\rho)$$

where

$$O_n^{(L-1)}(\eta;\rho) := \frac{L}{\sqrt{L^2 + \eta^2}} \sqrt{\frac{2L+3}{2L+2n+1}} P_n^{(L)}(\eta;\rho^{-1}),$$

and $n \in \mathbb{Z}_+$, $L \in \mathbb{N}$, $\eta, \rho \in \mathbb{C}$.

OG relation:

$$\sum_{\rho_{\eta,L}} \rho_{\eta,L}^{-2} P_n^{(L)}(\eta; \rho_{\eta,L}^{-1}) P_m^{(L)}(\eta; \rho_{\eta,L}^{-1}) = \frac{(L+1)^2 + \eta^2}{(2L+3)(L+1)^2} \delta_{mn}$$

where $m, n \in \mathbb{N}$, $\eta \in \mathbb{R}$, and $L \in \mathbb{Z}_+$. The summation is over the set of all nonzero roots $\rho_{\eta,L}$ of $F_L(\eta, \rho)$.

• Explicit formula for $P_n^{(L)}(\eta; \rho)$:

Relation to Regular Coulomb Wave Function:

$$O_{n+1}^{(L-1)}(\eta;\rho)F_{L}(\eta,\rho) - O_{n}^{(L)}(\eta;\rho)F_{L-1}(\eta,\rho) = \frac{L}{\sqrt{L^{2} + \eta^{2}}}F_{L+n}(\eta,\rho)$$

where

$$O_n^{(L-1)}(\eta;\rho) := \frac{L}{\sqrt{L^2 + \eta^2}} \sqrt{\frac{2L+3}{2L+2n+1}} P_n^{(L)}(\eta;\rho^{-1}),$$

and $n \in \mathbb{Z}_+$, $L \in \mathbb{N}$, $\eta, \rho \in \mathbb{C}$.

OG relation:

$$\sum_{\rho_{\eta,L}} \rho_{\eta,L}^{-2} P_n^{(L)}(\eta; \rho_{\eta,L}^{-1}) P_m^{(L)}(\eta; \rho_{\eta,L}^{-1}) = \frac{(L+1)^2 + \eta^2}{(2L+3)(L+1)^2} \delta_{mn}$$

where $m, n \in \mathbb{N}$, $\eta \in \mathbb{R}$, and $L \in \mathbb{Z}_+$. The summation is over the set of all nonzero roots $\rho_{\eta,L}$ of $F_L(\eta, \rho)$.

- Explicit formula for $P_n^{(L)}(\eta; \rho)$:
- Rodrigez type formula for $P_n^{(L)}(\eta; \rho)$:

Thank you!