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Motivation - introduction

@ Consider Jacobi operator J acting on vectors from standard basis {e,}3°, of £2(N) as
Jen = Wp_1€p_1 + Anén + Wnepp1  (Wp :=0)

where \p € C, wp € C\ {0},and n € N.
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Motivation - introduction

@ Consider Jacobi operator J acting on vectors from standard basis {e,}3°, of £2(N) as
Jen = Wp_1€p_1 + Anén + Wnepp1  (Wp :=0)

where \p € C, wp € C\ {0},and n € N.
@ Set
Dom(J) = {x € £2(N) : Jx € A(N)}.

@ The matrix representation of J in the standard basis:

A %}
Wi A W
J= Wo A3 Ws
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Motivation - introduction

@ Consider Jacobi operator J acting on vectors from standard basis {e,}3°, of £2(N) as
Jen = Wp_1€p_1 + Anén + Wnepp1  (Wp :=0)

where \p € C, wp € C\ {0},and n € N.
@ Set
Dom(J) = {x € £2(N) : Jx € A(N)}.

@ The matrix representation of J in the standard basis:

A %}
Wi A2 W
J= Wo Ag %}

@ Objective: Investigation of the spectrum of J when the diagonal sequence dominates the
off-diagonal in some sense.
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Motivation - reformulation of the problem

For z € C and Ap > 0 define

R \/;\/11*2
4] _z w2
Py
A(Z) = L_1/2(UW+ wuU* — Z)L—1/2 _ VA1 A2 w22 x/kzzkii Wy

where L = diag(\1, Ao, ...), W = diag(wq, ws,...), and U is unilateral shift.
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Motivation - reformulation of the problem

For z € C and Ap > 0 define

5 e
w1 _z w2
A(Z) = L_1/2(UW+ wuU* — Z)L—1/2 _ (VAYEY W)\z V2223 ”

2 _z 3
V32xs3 A3 \/Agrg

where L = diag(\1, Ao, ...), W = diag(wq, ws,...), and U is unilateral shift.

Let A(z) be Hilbert-Schmidt operator for some 0 # z € C. Then

zepd) iff —1€p(A2)

and it holds
(J—2)"" =L + A(z))" "L/
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where L = diag(\1, Ao, ...), W = diag(wq, ws,...), and U is unilateral shift.

Let A(z) be Hilbert-Schmidt operator for some 0 # z € C. Then

zepd) iff —1€p(A2)

and it holds
(J—2)"" =L + A(z))" "L/

To investigate the spectrum of J one can consider operator A(z) instead. Main advantages are:
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zepd) iff —1€p(A2)

and it holds
(J—2)"" =L + A(z))" "L/

To investigate the spectrum of J one can consider operator A(z) instead. Main advantages are:
@ A(z) is Hilbert-Schmidt, while J is unbounded
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Motivation - reformulation of the problem

For z € C and Ap > 0 define

5 e
w1 _z w2
A(Z) = L_1/2(UW+ wuU* — Z)L—1/2 _ (VAYEY W)\z V2223 ”

2 _z 3
V32xs3 A3 \/Agrg

where L = diag(\1, Ao, ...), W = diag(wq, ws,...), and U is unilateral shift.

Let A(z) be Hilbert-Schmidt operator for some 0 # z € C. Then

zepd) iff —1€p(A2)

and it holds
(J—2)"" =L + A(z))" "L/

To investigate the spectrum of J one can consider operator A(z) instead. Main advantages are:
@ A(z) is Hilbert-Schmidt, while J is unbounded
@ one can use function z — deta(1 4 A(z)) which is well defined as an entire function.
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Function §

Let me define § : D — C by relation

oo

=14 Z( nr Z Z Z Xy Xhey +1 Xy Xkp +1 + + + Xk Xkim+15

k=1 ko=kj+2 km:km,1+2

where
oo
D= S {x}2y CC Y XaXkpa] < o0
k=1

For a finite number of complex variables let me identify §(x1, X2, . . ., Xn) With F(x) where
X =(x1,X,...,%,0,0,0,...).
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Function §

Let me define § : D — C by relation

oo

=14 Z( nr Z Z Z Xy Xhey +1 Xy Xkp +1 + + + Xk Xkim+15

k=1 ko=kj+2 km:km,1+2

where
oo
D= {{Xk};i1 CC > IXkXkat] < 00} :
k=1

For a finite number of complex variables let me identify §(x1, X2, . . ., Xn) With F(x) where
X =(x1,X,...,%,0,0,0,...).

@ F is well defined on D due to estimation

IS(x)| < exp (Z (X Xic-+1 |> :

k=1
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Function §

Let me define § : D — C by relation

oo

=1+ Z( n” Z Z Z Xy Xky +1Xky Xhe 1 -+ - Xk Xk +15

k=1 ko=kj+2 km:km,1+2

where
oo
D= {{Xk};i1 cG Z |Xka+1| < ()o} .
k=1
For a finite number of complex variables let me identify §(x1, X2, . . ., Xn) With F(x) where
X=(X1,X2,...,%,0,0,0,...).

@ F is well defined on D due to estimation
o0
[F(x) < exp <Z [ X5 X1 |> :
k=1

@ Note that the domain D is not a linear space. One has, however, ¢2(N) C D.
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Properties of §

@ Forallx e Dand k =1,2,... one has

Recursive relation

S(X) = S(X1 pooog Xk)%v(TkX) - 3()(1 neooy Xk—1)Xka+1§(Tk+1X)

where T denotes the truncation operator from the left defined on the space of all sequences:

T({xk}ieZ1) = Xt Hiea-
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S(X) = S(X1 pooog Xk)%v(TkX) - 3()(1 neooy Xk—1)Xka+1§(Tk+1X)

where T denotes the truncation operator from the left defined on the space of all sequences:

T({xk}ieZ1) = Xt Hiea-

@ Especially for k = 1, one gets the simple relation

F(x) = §(Tx) — x1x2 §(T2x). )
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Properties of §

@ Forallx e Dand k =1,2,... one has

Recursive relation

S(X) = S(X1 pooog Xk)%v(TkX) - 3()(1 pooog Xk—1)Xka+1§(Tk+1X)

where T denotes the truncation operator from the left defined on the space of all sequences:

T({xk}ieZ1) = Xt Hiea-

@ Especially for k = 1, one gets the simple relation

F(x) = §(Tx) — x1x2 §(T2x). )

@ Functions § restricted on ¢2(N) is a continuous functional on £2(N). Further, for x € D, it holds

nimoo F(x1, X2, .-, Xn) = F(x) and nimoo F(T"x) = 1.
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Other properties of §

@ Equivalent definition for F(xy, X, ..., Xn) is:

1 X1
Xo 1 Xo
F(x1, X2, ..., Xn) = det X, = det

Xn—1 1 Xp—4
Xn 1
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Other properties of §

@ Equivalent definition for F(xy, X, ..., Xn) is:

1 X1
Xo 1 Xo
F(x1, X2, ..., Xn) = det X, = det

Xn—1 1 Xp—4
Xn 1

@ Function § is related to a continued fraction. For a given x € D such that F(x) # 0, it holds

F(Tx) 1
3(x) 1_ X1 X2 '
1 X2X3
1 XX
1—...
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Characteristic function of complex Jacobi matrix

Proposition
Let {\n} be positive and

— < oo and L < 0o
25 2 [Soror

Then A(z) is Hilbert-Schmidt for all z € C and it holds

deto(1+ A(2)) = § <{ Aﬁ Z} > 10‘0[ (1 = %) e#/n

n=1/ n=1

where the sequence {yn} can be defined recursively as vy = 1, vxr1 = Wik /-

Franti$ek Stampach (FNSPE, CTU) Spec. of Jacobi Mat. and Rel. Prob. July 5, 2012 8/20



Characteristic function of complex Jacobi matrix

Let {\n} be positive and

— < oo and L < 0o
25 2 [Soror

Then A(z) is Hilbert-Schmidt for all z € C and it holds

deto(1+ A(2)) = § <{ Aﬁ Z} > 10‘0[ (1 = %) e#/n

n=1/ n=1

where the sequence {yn} can be defined recursively as vy = 1, vxr1 = Wik /-

@ In the following we focus just on the function

wa-r(fitf)
n n=1
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Characteristic function of complex Jacobi matrix

@ Function F, is well defined on C \ {\p} if

2 oo
{7"} €D forallzeC\{an}
An—2 -

which holds if there is at least one zy € C\ {\n} such that

w2
(An — 20)(Ang1 — 20)

< o0

(oo}
>
n=1

(An and wy, are complex!)
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Characteristic function of complex Jacobi matrix

@ Function F, is well defined on C \ {\p} if

2 oo
{7"} €D forallzeC\{an}
An—2 -

which holds if there is at least one zy € C\ {\n} such that

w2
(An — 20)(Ang1 — 20)

< o0

(oo}
>
n=1

(An and wy, are complex!)
@ This assumptions is assumed everywhere from now.
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Characteristic function of complex Jacobi matrix

@ Function F, is well defined on C \ {\p} if

2 oo
{7"} €D forallzeC\{an}
An—2 -

which holds if there is at least one zy € C\ {\n} such that

w2
(An — 20)(Ang1 — 20)

< o0

(oo}
>
n=1

(An and wy, are complex!)
@ This assumptions is assumed everywhere from now.
@ F, is meromorphic function on C\ {\n} with poles in z € {An} \ der({\n}) of finite order less
or equal to the number
I’(Z) = Z 52,)\n'
n=1
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Characteristic function of complex Jacobi matrix

Let us define
3(J) = {z € C\ der({An}); Jim (u— 2)" @ Fy(u) = o}

and,

Franti$ek Stampach (FNSPE, CTU) Spec. of Jacobi Mat. and Rel. Prob. July 5, 2012 10/20



Characteristic function of complex Jacobi matrix

Let us define
3(J) = {z € C\ der({An}); Jim (u— 2)" @ Fy(u) = o}

and, fork € Z4 and z € C\ der({\n}), we put

k 5 .
&(2) == lim (u—z)"® < Wi—4 >3<{ 7 } >
k u—z E u—X N —Uu o

where we set wy 1= 1.
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Characteristic function of complex Jacobi matrix

Let us define
3(J) = {z € C\ der({An}); Jim (u— 2)" @ Fy(u) = o}

and, fork € Z4 and z € C\ der({\n}), we put

k 5 .
&(2) == lim (u—z)"® < Wi—4 >3<{ 7 } >
k u—z E u—X N —Uu o

where we set wy 1= 1.

Theorem

Equalities
spec(J) \ der({An}) = specy(J) \ der({An}) = 3(J)
hold and, for z € 3(J),
g(Z) = (51 (2)762(2)7&3(2)1 00 )

is the eigenvector for eigenvalue z. Moreover, for z ¢ {\n}, vector £(z) satisfies the formula

D (&(2)? = &(2)61(2) - &o(2)€(2).

k=1
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Green Function

@ The Green function Gj(z) = (e;, (J — 2) ")) of J is expressible in terms of §,

=m

Gi(2) = WM,]‘M[<Z—>\/) 5_({ vf }OO)

where z € p(J), m:= min(i,j), and M := max(i, ).
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Green Function

@ The Green function Gj(z) = (e;, (J — 2) ")) of J is expressible in terms of §,

Gi(2) = & 3({>\7122}:i11>3<{>j122}7_0M+1>
)T

=m

where z € p(J), m:= min(i,j), and M := max(i, ).
@ Especially, we get a compact formula for the Weyl m-function m(z) = Gy1(2),

m(z) =
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Applications: Characteristic Function and Special Functions

Various special functions are expressible in terms of § applied to a suitable sequence, e.g.:
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Applications: Characteristic Function and Special Functions

Various special functions are expressible in terms of § applied to a suitable sequence, e.g.:
@ Hypergeometric Functions o F;, especially Bessel Functions,

g({ki"z}:;) —oFi(Gz+1,—w?) = (1 + 2) w2, (2w) J

(weC,z¢ —N)
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Applications: Characteristic Function and Special Functions

Various special functions are expressible in terms of § applied to a suitable sequence, e.g.:
@ Hypergeometric Functions o F;, especially Bessel Functions,

g({ki"z}:;) —oFi(Gz+1,—w?) = (1 + 2) w2, (2w) J

(weC,z¢ —-N)
@ Basic Hypergeometric Functions ¢4, especially g-Bessel Functions (second Jackson,

Hahn-Exton),
k=1 w <\ o >
3"({QL 2 J1_qu71 }k:1) = 061 (vZ,Qa_W) J

(weC,0<qg<1,z¢q )
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Applications: Characteristic Function and Special Functions

Various special functions are expressible in terms of § applied to a suitable sequence, e.g.:
@ Hypergeometric Functions o F;, especially Bessel Functions,

g({ki’z}:;) —oFi(Gz+1,—w?) = (1 + 2) w2, (2w) J

(weC,z¢ —-N)
@ Basic Hypergeometric Functions ¢4, especially g-Bessel Functions (second Jackson,

Hahn-Exton),
e W <N . 2
%({qt : J 1 — zgk—1 }k:1) = (,z, ¢-w ) J

(weC,0<qg<1,z¢q )
@ Confluent Hypergeometric Functions { Fy, especially Regular Coulomb Wave Function
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Applications: Characteristic Function and Special Functions

Various special functions are expressible in terms of § applied to a suitable sequence, e.g.:
@ Hypergeometric Functions o F;, especially Bessel Functions,

g({ki’z}:;) —oFi(Gz+1,—w?) = (1 + 2) w2, (2w) J

(weC,z¢ —-N)
@ Basic Hypergeometric Functions ¢4, especially g-Bessel Functions (second Jackson,

Hahn-Exton),
e W <N . 2
%({qt : J 1 — zgk—1 }k:1) = (,z, ¢-w ) J

(weC,0<qg<1,z¢q )
@ Confluent Hypergeometric Functions { Fy, especially Regular Coulomb Wave Function
@ Basic Hypergeometric Functions ¢4
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Function § and Orthogonal Polynomials

@ For A\ € R and wp > 0, OPs can be defined recursively by
Wn—1Yn—1(X) + Anyn(X) + Wn¥ni1(X) = Xyn(x), n=1,2,... (wp:=—1)

and OPs of the first kind Pp(x) satisfy initial conditions Py(x) = 0, P;(x) = 1, while OPs of
the second kind Qn(x) satisfy Qp(x) =1, Q;(x) = 0.
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Function § and Orthogonal Polynomials

@ For A\ € R and wp > 0, OPs can be defined recursively by
Wn—1Yn—1(X) + Anyn(X) + Wn¥ni1(X) = Xyn(x), n=1,2,... (wp:=—1)

and OPs of the first kind Pp(x) satisfy initial conditions Py(x) = 0, P;(x) = 1, while OPs of
the second kind Qn(x) satisfy Qp(x) =1, @Qi(x) = 0.
@ OPs are related to § through identities

n Z—)\k ’Y/Z "
P - . n=01...,
0e1(2) kl}( - )s({A,_z -
1 & fz—2A 2 "
Q"+1(Z):W1H( Wkk)g<{)\/’yiz} )’ n=01...
=2

k=2

where {yn} can be defined recursively as v1 = 1, yk11 = Wk /Y-

July 5,2012 13/20
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Orthogonal relation for P,

Let J be self-adjoint and either J has discrete spectrum or it is a compact operator. Then, for
m, n € N, the orthogonality relation

Fy2())

mPn(A)Pm(A) = mn

A€3()

holds, where F, x. 1 is the characteristic function of the Jacobi operator defined by using shifted
sequences {An k102, and {Wpk}2, e,

2 oo
Fyk+1(2) = 3({ )\7’_ z} ) » (Fu1=F)).
I=k
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Regular Coulomb Wave Function

@ The regular Coulomb wave function F;(n, p) is one of two linearly independent solutions of
the second-order differential equation

2
A PR B G s Dl

— 0
dp? p PP

where p > 0,p € R,and L € Z.
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Regular Coulomb Wave Function

@ The regular Coulomb wave function F;(n, p) is one of two linearly independent solutions of
the second-order differential equation

2
du [y 20 LL+HT
dp? p PP

where p > 0,p € R,and L € Z.
@ F;(n, p) can be decomposed as follows,

Fi(n,p) = Co(n)p " or(n, p)

2m V(1 + )+ 7). (P +7P)
Culm) = \/ €27 —1 L+ 1)nLl

oL(n,p) = € P F(L+1—in, 2L+ 2,2ip).

where

and
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Regular Coulomb Wave Function

@ The regular Coulomb wave function F;(n, p) is one of two linearly independent solutions of
the second-order differential equation

a? 2 L
du [y 20 LL+HT
dp? p PP
where p > 0,p € R,and L € Z.
@ F;(n, p) can be decomposed as follows,

Fi(n,p) = Co(n)p " or(n, p)

2m V(1 + )+ 7). (P +7P)
Culm) = \/ €27 —1 L+ 1)nLl

¢1(n, p) = e "P1Fi(L+1—in,2L+2,2ip).
@ Hence one can use the relation between § and { F; to find the following formula.

where

and
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Regular Coulomb Wave Function

Proposition
Forne C,pe C\ {0}, np# —k(k+1),k>n+1,and n € Z, one has

% 1~ B -
5 ({)‘k +k1/p}k_n+1> B cos (g /1 —dnp ) E |: k(k + 1):| on(n, p)-

The entry sequences now reads

2 2
Wp = (n+1)"+n and \p = L.
(n+1)y/(2n+1)(2n+3) n(n+1)
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Regular Coulomb Wave Function

Proposition
Forne C,pe C\ {0}, np# —k(k+1),k>n+1,and n € Z, one has

% 1~ B -
5 ({ Ak +k1/p}k_n+1> B cos (g /1 —dnp ) E |: k(k + 1):| on(n, p)-

The entry sequences now reads

n+1)2 +n?
Wp = (n+1)"+n and )\,,::L.
(n+1)y/(2n+1)(2n+3) n(n+1)
Consequently, for corresponding Jacobi matrix
—AL+1 W1
Wit =AW
J= W2 =MLy Wiys

we get
spec(J) = {1/p: ¢r(n,p) =0} U {0} = {1/p: Fi(n, p) = 0} U {0}

;
v(1/p) = (V2L+ Fii1(n, p), V2L +5F 12(n, p 7\/2L+7FL+3(777P)7---) -

and
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g-hypergeometric function ;¢4

Foré,a € C,and n € Z+, it holds

2 b —1An.
Tk (279" @) 1.8 ,—1.n —1.n
'k = z 4 . q,az
3({ (@a+1)gk—1 Z}k_n+1> ((3+1)Z—‘q":q)oo1¢1 ( q q.q q )

where

2 2 2 K51 k5
VeVkrt = Wi = —ag" = (1 = g" ).
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g-hypergeometric function ;¢4

Foré,a € C,and n € Z+, it holds

2 b —1An.
Tk (279" @) 1.8 ,—1.n —1.n
'k = z 4 . q,az
3({ (@a+1)gk—1 Z}k_n+1> ((3+1)Z—‘q":q)oo1¢1 ( q q.q q )

where
k+65—1 (1 _ qkfé).

oo o
Vi Vi1 = W = —aq

@ Especially, for n = § = 0, the identity simplifies to

(27 9) (a2 Q)0
Fu(z) = (@a+ Dz g,
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g-hypergeometric function ¢4

Foré,a € C,and n € Z+, it holds

2 b —1An.
Tk (279" @) 1.8 ,—1.n —1.n
'k = z 4 . q,az
3({ (@a+1)gk—1 Z}k_n+1> ((3+1)Z—‘q":q)oo1¢1 ( q q.q q )

where

2 o 2 K451 k-6
VeVkrt = Wi = —ag" = (1 = g" ).

@ Especially, for n = § = 0, the identity simplifies to

(27" @)oo(az7"; @)oo
((a+ 1)z %q)

@ The spectrum of corresponding J is then obtained fully explicitly,

Fy(2) =

spec(J) = {q* : k=0,1,2,...}u{ag" : k=0,1,2,...} U {0}.
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g-hypergeometric function ¢4

Foré,a € C,and n € Z+, it holds

2 b —1An.
Tk (279" @) 1.8 ,—1.n —1.n
'k = z 4 . q,az
3({ (@a+1)gk—1 Z}k_n+1> ((3+1)Z—‘q":q)oo1¢1 ( q q.q q )

where
k+65—1 (1 _ qkfé).

oo o
Vi Vi1 = W = —aq

@ Especially, for n = § = 0, the identity simplifies to

(27" 9)o0(az7"; @)oo _

Fy(z) = ((a+1)z_1;q)oo

@ The spectrum of corresponding J is then obtained fully explicitly,
spec(J) = {q* : k=0,1,2,...}u{ag" : k=0,1,2,...} U {0}.

@ For a > 0, the operator J is not hermitian, however, spec(J) is real!
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Applications: The class of OG polynomials related to Regular Coulomb Wave Function

@ Let
2 2
Wp 1= (n+1)° 41 and )\,,::L.
(n+1)y/(2n+1)(2n+3) n(n+1)
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Applications: The class of OG polynomials related to Regular Coulomb Wave Function

@ Let
2 2
Wp 1= (n+1)° 41 and )\,,::L.
(n+1)y/(2n+1)(2n+3) n(n+1)

@ Forn € R, L € Z4, define the set of OG polynomials {P,(,L)(n; z)}72, by recurrence rule

(L)

2P (0 2) = W1 1. P (15 2) — Mnst P (15 2) + W P, (1 2)

with P? (n; 2) = 0 and P{P(; 2) = 1.
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Applications: The class of OG polynomials related to Regular Coulomb Wave Function

@ Let
2 2
Wp 1= (n+1)° 41 and )\,,::L.
(n+1)y/(2n+1)(2n+3) n(n+1)

@ Forn € R, L € Z4, define the set of OG polynomials {P,(,L)(n; z)}72, by recurrence rule
2P (0:2) = W1 P4 (1:2) = An P (03 2) + W P, (m; 2)

with P? (n; 2) = 0 and P{P(; 2) = 1.

@ Relation to §:
(L) (L YL i
PO (. 7y — Akt ¥ )
n (m:2) E Wit L § { ApL—2 },_1

Franti$ek Stampach (FNSPE, CTU) Spec. of Jacobi Mat. and Rel. Prob. July 5, 2012 18/20



Applications: The class of OG polynomials related to Regular Coulomb Wave Function

@ Relation to Regular Coulomb Wave Function:

OV (i p)Fu(n. p) = O (: p)Fior(n, p) =

L F
\/ﬁ L+n(1, )

LDy b [ 2L+3 sy
On (W,p)-—m 2L+ 2n+1 no (e ),

andneZy,LeN,n,peC.

where
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Applications: The class of OG polynomials related to Regular Coulomb Wave Function

@ Relation to Regular Coulomb Wave Function:

OV (i p)Fi(n, p) — O (m: p)Fu—1(n, p) =

L F
\/ﬁ L+n(1, )

D p) - L[ 2L+38  pwyg,.
ip) = Py (m; .
(n:p) o\ 2leens1” (m:p™")

andne€Zy,LeN,n,peC.
@ OG relation:

where

(L+1)2+7?
5 omn

-2 (L) -1y _
ZP P WPT,L)P( "’L)_m

Pn.L

where m,n € N, n € R, and L € Z. The summation is over the set of all nonzero roots p,, |
of F(n, p).
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Applications: The class of OG polynomials related to Regular Coulomb Wave Function

@ Relation to Regular Coulomb Wave Function:

OV (i p)Fi(n, p) — O (m: p)Fu—1(n, p) =

L F
\/ﬁ L+n(1, )

D p) - L[ 2L+38  pwyg,.
ip) = Py (m; .
(n:p) o\ 2leens1” (m:p™")

andne€Zy,LeN,n,peC.
@ OG relation:

where

(L+1)2+7?
5 omn

-2 (L) -1y _
ZP P WPT,L)P( "’L)_m

Pn.L

where m,n € N, n € R, and L € Z. The summation is over the set of all nonzero roots p,, |
of F(n, p).

@ Explicit formula for Pf,L)(n; p): ?
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Applications: The class of OG polynomials related to Regular Coulomb Wave Function

@ Relation to Regular Coulomb Wave Function:

OV (i p)Fi(n, p) — O (m: p)Fu—1(n, p) =

L F
\/ﬁ L+n(1, )

D p) - L[ 2L+38  pwyg,.
ip) = Py (m; .
(n:p) o\ 2leens1” (m:p™")

andne€Zy,LeN,n,peC.
@ OG relation:

where

(L+1)2+7?
5 omn

-2 (L) -1y _
ZP P WPT,L)P( "’L)_m

Pn.L

where m,n € N, n € R, and L € Z. The summation is over the set of all nonzero roots p,, |
of F(n, p).

@ Explicit formula for Pf,L)(n;p): ?
@ Rodrigez type formula for P,(,L)(n;p): ?
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Thank you!
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