The characteristic function for infinite Jacobi matrices, the spectral zeta function, and solvable examples

František Štampach

Faculty of Nuclear Sciences and Physical Engineering, CTU in Prague

il IWOTA2013 Indian Institute of Science, Bangalore.

XXIVth. International Workshop on Operator Theory and its Applications

December 18, 2013
(1) Characteristic function for Jacobi matrices

- Motivation
- Function \mathfrak{F}
- Spectral properties of Jacobi operator via characteristic function

2) Applications - Examples with concrete operators
(3) The logarithm formula for \mathfrak{F}

4 Applications - The spectral zeta function \& Examples
(5) References

Introduction

- Consider Jacobi operator J acting on vectors from standard basis $\left\{e_{n}\right\}_{n=1}^{\infty}$ of $\ell^{2}(\mathbb{N})$ as

$$
J e_{n}=w_{n-1} e_{n-1}+\lambda_{n} e_{n}+w_{n} e_{n+1} \quad\left(w_{0}:=0\right)
$$

where $\lambda_{n} \in \mathbb{C}$, $w_{n} \in \mathbb{C} \backslash\{0\}$, and $n \in \mathbb{N}$.

Introduction

- Consider Jacobi operator J acting on vectors from standard basis $\left\{e_{n}\right\}_{n=1}^{\infty}$ of $\ell^{2}(\mathbb{N})$ as

$$
J e_{n}=w_{n-1} e_{n-1}+\lambda_{n} e_{n}+w_{n} e_{n+1} \quad\left(w_{0}:=0\right)
$$

where $\lambda_{n} \in \mathbb{C}$, $w_{n} \in \mathbb{C} \backslash\{0\}$, and $n \in \mathbb{N}$.

- Set

$$
\operatorname{Dom}(J)=\left\{x \in \ell^{2}(\mathbb{N}): J x \in \ell^{2}(\mathbb{N})\right\}
$$

Introduction

- Consider Jacobi operator J acting on vectors from standard basis $\left\{e_{n}\right\}_{n=1}^{\infty}$ of $\ell^{2}(\mathbb{N})$ as

$$
J e_{n}=w_{n-1} e_{n-1}+\lambda_{n} e_{n}+w_{n} e_{n+1} \quad\left(w_{0}:=0\right)
$$

where $\lambda_{n} \in \mathbb{C}$, $w_{n} \in \mathbb{C} \backslash\{0\}$, and $n \in \mathbb{N}$.

- Set

$$
\operatorname{Dom}(J)=\left\{x \in \ell^{2}(\mathbb{N}): J x \in \ell^{2}(\mathbb{N})\right\}
$$

- The matrix representation of J in the standard basis:

$$
J=\left(\begin{array}{lllll}
\lambda_{1} & w_{1} & & & \\
w_{1} & \lambda_{2} & w_{2} & & \\
& w_{2} & \lambda_{3} & w_{3} & \\
& & \ddots & \ddots & \ddots
\end{array}\right)
$$

Introduction

- Consider Jacobi operator J acting on vectors from standard basis $\left\{e_{n}\right\}_{n=1}^{\infty}$ of $\ell^{2}(\mathbb{N})$ as

$$
J e_{n}=w_{n-1} e_{n-1}+\lambda_{n} e_{n}+w_{n} e_{n+1} \quad\left(w_{0}:=0\right)
$$

where $\lambda_{n} \in \mathbb{C}$, $w_{n} \in \mathbb{C} \backslash\{0\}$, and $n \in \mathbb{N}$.

- Set

$$
\operatorname{Dom}(J)=\left\{x \in \ell^{2}(\mathbb{N}): J x \in \ell^{2}(\mathbb{N})\right\}
$$

- The matrix representation of J in the standard basis:

$$
J=\left(\begin{array}{lllll}
\lambda_{1} & w_{1} & & & \\
w_{1} & \lambda_{2} & w_{2} & & \\
& w_{2} & \lambda_{3} & w_{3} & \\
& & \ddots & \ddots & \ddots
\end{array}\right)
$$

- Objective: Investigation of the spectrum of J when the diagonal sequence dominates the off-diagonal one in some sense.

Motivation - Reformulation of the problem

- For $z \in \mathbb{C}$ and $\lambda_{n}>0$ define

$$
A(z):=L^{-1 / 2}\left(U W+W U^{*}-z\right) L^{-1 / 2}=\left(\begin{array}{ccccc}
-\frac{z}{\lambda_{1}} & \frac{w_{1}}{\sqrt{\lambda_{1} \lambda_{2}}} & & & \\
\frac{w_{1}}{\sqrt{\lambda_{1} \lambda_{2}}} & -\frac{z}{\lambda_{2}} & \frac{w_{2}}{\sqrt{\lambda_{2} \lambda_{3}}} & & \\
& \frac{w_{2}}{\sqrt{\lambda_{2} \lambda_{3}}} & -\frac{z}{\lambda_{3}} & \frac{w_{3}}{\sqrt{\lambda_{3} \lambda_{4}}} \\
& & \ddots & \ddots & \ddots
\end{array}\right)
$$

where $L=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots\right), W=\operatorname{diag}\left(w_{1}, w_{2}, \ldots\right)$, and U is unilateral shift.

Motivation - Reformulation of the problem

- For $z \in \mathbb{C}$ and $\lambda_{n}>0$ define

$$
A(z):=L^{-1 / 2}\left(U W+W U^{*}-z\right) L^{-1 / 2}=\left(\begin{array}{ccccc}
-\frac{z}{\lambda_{1}} & \frac{w_{1}}{\sqrt{\lambda_{1} \lambda_{2}}} & & & \\
\frac{w_{1}}{\sqrt{\lambda_{1} \lambda_{2}}} & -\frac{z}{\lambda_{2}} & \frac{w_{2}}{\sqrt{\lambda_{2} \lambda_{3}}} & & \\
& \frac{w_{2}}{\sqrt{\lambda_{2} \lambda_{3}}} & -\frac{z}{\lambda_{3}} & \frac{w_{3}}{\sqrt{\lambda_{3} \lambda_{4}}} & \\
& & \ddots & \ddots & \ddots
\end{array}\right)
$$

where $L=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots\right), W=\operatorname{diag}\left(w_{1}, w_{2}, \ldots\right)$, and U is unilateral shift.

- Say the diagonal dominance assumption means $A(z)$ to be Hilbert-Schmidt.

Motivation - Reformulation of the problem

- For $z \in \mathbb{C}$ and $\lambda_{n}>0$ define

$$
A(z):=L^{-1 / 2}\left(U W+W U^{*}-z\right) L^{-1 / 2}=\left(\begin{array}{ccccc}
-\frac{z}{\lambda_{1}} & \frac{w_{1}}{\sqrt{\lambda_{1} \lambda_{2}}} & & & \\
\frac{w_{1}}{\sqrt{\lambda_{1} \lambda_{2}}} & -\frac{z}{\lambda_{2}} & \frac{w_{2}}{\sqrt{\lambda_{2} \lambda_{3}}} & & \\
& \frac{w_{2}}{\sqrt{\lambda_{2} \lambda_{3}}} & -\frac{z}{\lambda_{3}} & \frac{w_{3}}{\sqrt{\lambda_{3} \lambda_{4}}} \\
& & \ddots & \ddots & \ddots
\end{array}\right)
$$

where $L=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots\right), W=\operatorname{diag}\left(w_{1}, w_{2}, \ldots\right)$, and U is unilateral shift.

- Say the diagonal dominance assumption means $A(z)$ to be Hilbert-Schmidt.
- If $J=L+U W+W U^{*}$ one can write (formally at least)

$$
(J-z)^{-1}=L^{-1 / 2}(1+A(z))^{-1} L^{-1 / 2} .
$$

Motivation - Reformulation of the problem

- For $z \in \mathbb{C}$ and $\lambda_{n}>0$ define

$$
A(z):=L^{-1 / 2}\left(U W+W U^{*}-z\right) L^{-1 / 2}=\left(\begin{array}{ccccc}
-\frac{z}{\lambda_{1}} & \frac{w_{1}}{\sqrt{\lambda_{1} \lambda_{2}}} & & & \\
\frac{w_{1}}{\sqrt{\lambda_{1} \lambda_{2}}} & -\frac{z}{\lambda_{2}} & \frac{w_{2}}{\sqrt{\lambda_{2} \lambda_{3}}} & & \\
& \frac{w_{2}}{\sqrt{\lambda_{2} \lambda_{3}}} & -\frac{z}{\lambda_{3}} & \frac{w_{3}}{\sqrt{\lambda_{3} \lambda_{4}}} & \\
& & \ddots & \ddots & \ddots .
\end{array}\right)
$$

where $L=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots\right), W=\operatorname{diag}\left(w_{1}, w_{2}, \ldots\right)$, and U is unilateral shift.

- Say the diagonal dominance assumption means $A(z)$ to be Hilbert-Schmidt.
- If $J=L+U W+W U^{*}$ one can write (formally at least)

$$
(J-z)^{-1}=L^{-1 / 2}(1+A(z))^{-1} L^{-1 / 2} .
$$

- From which one deduces

$$
z \in \rho(J) \quad \text { iff } \quad-1 \in \rho(A(z))
$$

Motivation - Reformulation of the problem

- For $z \in \mathbb{C}$ and $\lambda_{n}>0$ define

$$
A(z):=L^{-1 / 2}\left(U W+W U^{*}-z\right) L^{-1 / 2}=\left(\begin{array}{ccccc}
-\frac{z}{\lambda_{1}} & \frac{w_{1}}{\sqrt{\lambda_{1} \lambda_{2}}} & & & \\
\frac{w_{1}}{\sqrt{\lambda_{1} \lambda_{2}}} & -\frac{z}{\lambda_{2}} & \frac{w_{2}}{\sqrt{\lambda_{2} \lambda_{3}}} & & \\
& \frac{w_{2}}{\sqrt{\lambda_{2} \lambda_{3}}} & -\frac{z}{\lambda_{3}} & \frac{w_{3}}{\sqrt{\lambda_{3} \lambda_{4}}} \\
& & \ddots & \ddots & \ddots
\end{array}\right)
$$

where $L=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots\right), W=\operatorname{diag}\left(w_{1}, w_{2}, \ldots\right)$, and U is unilateral shift.

- Say the diagonal dominance assumption means $A(z)$ to be Hilbert-Schmidt.
- If $J=L+U W+W U^{*}$ one can write (formally at least)

$$
(J-z)^{-1}=L^{-1 / 2}(1+A(z))^{-1} L^{-1 / 2} .
$$

- From which one deduces

$$
z \in \rho(J) \quad \text { iff } \quad-1 \in \rho(A(z))
$$

- Hence, to investigate the spectrum of J one can consider operator $A(z)$ instead.

Motivation - Reformulation of the problem

- For $z \in \mathbb{C}$ and $\lambda_{n}>0$ define

$$
A(z):=L^{-1 / 2}\left(U W+W U^{*}-z\right) L^{-1 / 2}=\left(\begin{array}{ccccc}
-\frac{z}{\lambda_{1}} & \frac{w_{1}}{\sqrt{\lambda_{1} \lambda_{2}}} & & & \\
\frac{w_{1}}{\sqrt{\lambda_{1} \lambda_{2}}} & -\frac{z}{\lambda_{2}} & \frac{w_{2}}{\sqrt{\lambda_{2} \lambda_{3}}} & & \\
& \frac{w_{2}}{\sqrt{\lambda_{2} \lambda_{3}}} & -\frac{z}{\lambda_{3}} & \frac{w_{3}}{\sqrt{\lambda_{3} \lambda_{4}}} & \\
& & \ddots & \ddots & \ddots
\end{array}\right)
$$

where $L=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots\right), W=\operatorname{diag}\left(w_{1}, w_{2}, \ldots\right)$, and U is unilateral shift.

- Say the diagonal dominance assumption means $A(z)$ to be Hilbert-Schmidt.
- If $J=L+U W+W U^{*}$ one can write (formally at least)

$$
(J-z)^{-1}=L^{-1 / 2}(1+A(z))^{-1} L^{-1 / 2} .
$$

- From which one deduces

$$
z \in \rho(J) \quad \text { iff } \quad-1 \in \rho(A(z))
$$

- Hence, to investigate the spectrum of J one can consider operator $A(z)$ instead. Main advantages are:

Motivation - Reformulation of the problem

- For $z \in \mathbb{C}$ and $\lambda_{n}>0$ define

$$
A(z):=L^{-1 / 2}\left(U W+W U^{*}-z\right) L^{-1 / 2}=\left(\begin{array}{ccccc}
-\frac{z}{\lambda_{1}} & \frac{w_{1}}{\sqrt{\lambda_{1} \lambda_{2}}} & & & \\
\frac{w_{1}}{\sqrt{\lambda_{1} \lambda_{2}}} & -\frac{z}{\lambda_{2}} & \frac{w_{2}}{\sqrt{\lambda_{2} \lambda_{3}}} & & \\
& \frac{w_{2}}{\sqrt{\lambda_{2} \lambda_{3}}} & -\frac{z}{\lambda_{3}} & \frac{w_{3}}{\sqrt{\lambda_{3} \lambda_{4}}} & \\
& & \ddots & \ddots & \ddots
\end{array}\right)
$$

where $L=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots\right), W=\operatorname{diag}\left(w_{1}, w_{2}, \ldots\right)$, and U is unilateral shift.

- Say the diagonal dominance assumption means $A(z)$ to be Hilbert-Schmidt.
- If $J=L+U W+W U^{*}$ one can write (formally at least)

$$
(J-z)^{-1}=L^{-1 / 2}(1+A(z))^{-1} L^{-1 / 2}
$$

- From which one deduces

$$
z \in \rho(J) \quad \text { iff } \quad-1 \in \rho(A(z))
$$

- Hence, to investigate the spectrum of J one can consider operator $A(z)$ instead. Main advantages are:
- $A(z)$ is Hilbert-Schmidt while J is unbounded;

Motivation - Reformulation of the problem

- For $z \in \mathbb{C}$ and $\lambda_{n}>0$ define

$$
A(z):=L^{-1 / 2}\left(U W+W U^{*}-z\right) L^{-1 / 2}=\left(\begin{array}{ccccc}
-\frac{z}{\lambda_{1}} & \frac{w_{1}}{\sqrt{\lambda_{1} \lambda_{2}}} & & & \\
\frac{w_{1}}{\sqrt{\lambda_{1} \lambda_{2}}} & -\frac{z}{\lambda_{2}} & \frac{w_{2}}{\sqrt{\lambda_{2} \lambda_{3}}} & & \\
& \frac{w_{2}}{\sqrt{\lambda_{2} \lambda_{3}}} & -\frac{z}{\lambda_{3}} & \frac{w_{3}}{\sqrt{\lambda_{3} \lambda_{4}}} & \\
& & \ddots & \ddots & \ddots
\end{array}\right)
$$

where $L=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots\right), W=\operatorname{diag}\left(w_{1}, w_{2}, \ldots\right)$, and U is unilateral shift.

- Say the diagonal dominance assumption means $A(z)$ to be Hilbert-Schmidt.
- If $J=L+U W+W U^{*}$ one can write (formally at least)

$$
(J-z)^{-1}=L^{-1 / 2}(1+A(z))^{-1} L^{-1 / 2} .
$$

- From which one deduces

$$
z \in \rho(J) \quad \text { iff } \quad-1 \in \rho(A(z))
$$

- Hence, to investigate the spectrum of J one can consider operator $A(z)$ instead.

Main advantages are:

- $A(z)$ is Hilbert-Schmidt while J is unbounded;
- one can use function $z \mapsto \operatorname{det}_{2}(1+A(z))$ which is well defined as an entire function.

Function \mathfrak{F}

Definition

Let me define $\mathfrak{F}: D \rightarrow \mathbb{C}$ by relation

$$
\mathfrak{F}(x)=1+\sum_{m=1}^{\infty}(-1)^{m} \sum_{k_{1}=1}^{\infty} \sum_{k_{2}=k_{1}+2}^{\infty} \ldots \sum_{k_{m}=k_{m-1}+2}^{\infty} x_{k_{1}} x_{k_{1}+1} x_{k_{2}} x_{k_{2}+1} \ldots x_{k_{m}} x_{k_{m}+1}
$$

where

$$
D=\left\{\left\{x_{k}\right\}_{k=1}^{\infty} \subset \mathbb{C} ; \sum_{k=1}^{\infty}\left|x_{k} x_{k+1}\right|<\infty\right\}
$$

For a finite number of complex variables let me identify $\mathfrak{F}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ with $\mathfrak{F}(x)$ where $x=\left(x_{1}, x_{2}, \ldots, x_{n}, 0,0,0, \ldots\right)$.

Function \mathfrak{F}

Definition

Let me define $\mathfrak{F}: D \rightarrow \mathbb{C}$ by relation

$$
\mathfrak{F}(x)=1+\sum_{m=1}^{\infty}(-1)^{m} \sum_{k_{1}=1}^{\infty} \sum_{k_{2}=k_{1}+2}^{\infty} \ldots \sum_{k_{m}=k_{m-1}+2}^{\infty} x_{k_{1}} x_{k_{1}+1} x_{k_{2}} x_{k_{2}+1} \ldots x_{k_{m}} x_{k_{m}+1}
$$

where

$$
D=\left\{\left\{x_{k}\right\}_{k=1}^{\infty} \subset \mathbb{C} ; \sum_{k=1}^{\infty}\left|x_{k} x_{k+1}\right|<\infty\right\}
$$

For a finite number of complex variables let me identify $\mathfrak{F}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ with $\mathfrak{F}(x)$ where $x=\left(x_{1}, x_{2}, \ldots, x_{n}, 0,0,0, \ldots\right)$.

- \mathfrak{F} is well defined on D due to estimation

$$
|\mathfrak{F}(x)| \leq \exp \left(\sum_{k=1}^{\infty}\left|x_{k} x_{k+1}\right|\right) .
$$

Function \mathfrak{F}

Definition

Let me define $\mathfrak{F}: D \rightarrow \mathbb{C}$ by relation

$$
\mathfrak{F}(x)=1+\sum_{m=1}^{\infty}(-1)^{m} \sum_{k_{1}=1}^{\infty} \sum_{k_{2}=k_{1}+2}^{\infty} \ldots \sum_{k_{m}=k_{m-1}+2}^{\infty} x_{k_{1}} x_{k_{1}+1} x_{k_{2}} x_{k_{2}+1} \ldots x_{k_{m}} x_{k_{m}+1}
$$

where

$$
D=\left\{\left\{x_{k}\right\}_{k=1}^{\infty} \subset \mathbb{C} ; \sum_{k=1}^{\infty}\left|x_{k} x_{k+1}\right|<\infty\right\}
$$

For a finite number of complex variables let me identify $\mathfrak{F}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ with $\mathfrak{F}(x)$ where $x=\left(x_{1}, x_{2}, \ldots, x_{n}, 0,0,0, \ldots\right)$.

- \mathfrak{F} is well defined on D due to estimation

$$
|\mathfrak{F}(x)| \leq \exp \left(\sum_{k=1}^{\infty}\left|x_{k} x_{k+1}\right|\right) .
$$

- Note that the domain D is not a linear space. One has, however, $\ell^{2}(\mathbb{N}) \subset D$.

Properties of \mathfrak{F}

- For all $x \in D$ and $k=1,2, \ldots$ one has

$$
\mathfrak{F}(x)=\mathfrak{F}\left(x_{1}, \ldots, x_{k}\right) \mathfrak{F}\left(T^{k} x\right)-\mathfrak{F}\left(x_{1}, \ldots, x_{k-1}\right) x_{k} x_{k+1} \mathfrak{F}\left(T^{k+1} x\right)
$$

where T denotes the shift operator from the left defined on the space of complex sequences:

$$
T\left(\left\{x_{k}\right\}_{k=1}^{\infty}\right)=\left\{x_{k+1}\right\}_{k=1}^{\infty} .
$$

Properties of \mathfrak{F}

- For all $x \in D$ and $k=1,2, \ldots$ one has

$$
\mathfrak{F}(x)=\mathfrak{F}\left(x_{1}, \ldots, x_{k}\right) \mathfrak{F}\left(T^{k} x\right)-\mathfrak{F}\left(x_{1}, \ldots, x_{k-1}\right) x_{k} x_{k+1} \mathfrak{F}\left(T^{k+1} x\right)
$$

where T denotes the shift operator from the left defined on the space of complex sequences:

$$
T\left(\left\{x_{k}\right\}_{k=1}^{\infty}\right)=\left\{x_{k+1}\right\}_{k=1}^{\infty} .
$$

- Especially for $k=1$, one gets the simple relation

$$
\mathfrak{F}(x)=\mathfrak{F}(T x)-x_{1} x_{2} \mathfrak{F}\left(T^{2} x\right)
$$

Properties of \mathfrak{F}

- For all $x \in D$ and $k=1,2, \ldots$ one has

$$
\mathfrak{F}(x)=\mathfrak{F}\left(x_{1}, \ldots, x_{k}\right) \mathfrak{F}\left(T^{k} x\right)-\mathfrak{F}\left(x_{1}, \ldots, x_{k-1}\right) x_{k} x_{k+1} \mathfrak{F}\left(T^{k+1} x\right)
$$

where T denotes the shift operator from the left defined on the space of complex sequences:

$$
T\left(\left\{x_{k}\right\}_{k=1}^{\infty}\right)=\left\{x_{k+1}\right\}_{k=1}^{\infty} .
$$

- Especially for $k=1$, one gets the simple relation

$$
\mathfrak{F}(x)=\mathfrak{F}(T x)-x_{1} x_{2} \mathfrak{F}\left(T^{2} x\right)
$$

- Functions \mathfrak{F} restricted on $\ell^{2}(\mathbb{N})$ is a continuous functional on $\ell^{2}(\mathbb{N})$. Further, for $x \in D$, it holds

$$
\lim _{n \rightarrow \infty} \mathfrak{F}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\mathfrak{F}(x) \quad \text { and } \quad \lim _{n \rightarrow \infty} \mathfrak{F}\left(T^{n} x\right)=1
$$

Other properties of \mathfrak{F}

- For $\mathfrak{F}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ it holds:

$$
\mathfrak{F}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\operatorname{det}\left(\begin{array}{ccccc}
1 & x_{1} & & & \\
x_{2} & 1 & x_{2} & & \\
& \ddots & \ddots & \ddots & \\
& & x_{n-1} & 1 & x_{n-1} \\
& & & x_{n} & 1
\end{array}\right)
$$

Other properties of \mathfrak{F}

- For $\mathfrak{F}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ it holds:

$$
\mathfrak{F}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\operatorname{det}\left(\begin{array}{ccccc}
1 & x_{1} & & & \\
x_{2} & 1 & x_{2} & & \\
& \ddots & \ddots & \ddots & \\
& & x_{n-1} & 1 & x_{n-1} \\
& & & x_{n} & 1
\end{array}\right)
$$

- Equivalently we can define $\mathfrak{F}(x)$, for $x \in D$, as the limit

$$
\mathfrak{F}(x)=\lim _{n \rightarrow \infty} \mathfrak{F}\left(x_{1}, x_{2}, \ldots, x_{n}\right) .
$$

Function \mathfrak{F} and continued fractions

- Function \mathfrak{F} is related to a continued fraction. For a given $x \in D$ such that $\mathfrak{F}(x) \neq 0$, it holds

$$
\frac{\mathfrak{F}(T x)}{\mathfrak{F}(x)}=\frac{1}{1-\frac{x_{1} x_{2}}{1-\frac{x_{2} x_{3}}{1-\frac{x_{3} x_{4}}{1-\ldots}}}} .
$$

Function \mathfrak{F} and continued fractions

- Function \mathfrak{F} is related to a continued fraction. For a given $x \in D$ such that $\mathfrak{F}(x) \neq 0$, it holds

$$
\frac{\mathfrak{F}(T x)}{\mathfrak{F}(x)}=\frac{1}{1-\frac{x_{1} x_{2}}{1-\frac{x_{2} x_{3}}{1-\frac{x_{3} x_{4}}{1-\ldots}}}}
$$

Remark: By using properties of the function \mathfrak{F} we can show that with the continued fraction of the above form (S-fraction) is unambiguously associated a formal power series $f(x) \in \mathbb{C}[[x]]$ where $x=\left\{x_{1}, x_{2}, \ldots\right\}$ [Zajta\&Pandikow, 1975].

Function \mathfrak{F} and continued fractions

- Function \mathfrak{F} is related to a continued fraction. For a given $x \in D$ such that $\mathfrak{F}(x) \neq 0$, it holds

$$
\frac{\mathfrak{F}(T x)}{\mathfrak{F}(x)}=\frac{1}{1-\frac{x_{1} x_{2}}{1-\frac{x_{2} x_{3}}{1-\frac{x_{3} x_{4}}{1-\ldots}}}}
$$

Remark: By using properties of the function \mathfrak{F} we can show that with the continued fraction of the above form (S-fraction) is unambiguously associated a formal power series $f(x) \in \mathbb{C}[[x]]$ where $x=\left\{x_{1}, x_{2}, \ldots\right\}$ [Zajta\&Pandikow, 1975]. The explicit formula reads

$$
f(x)=1+\sum_{\ell=1}^{\infty} \sum_{m \in \mathbb{N}^{\ell}} \beta(m) \prod_{j=1}^{\ell}\left(x_{j} x_{j+1}\right)^{m_{j}}
$$

where, for $m \in \mathbb{N}^{\ell}$, we denote

$$
\beta(m)=\prod_{j=1}^{\ell-1}\binom{m_{j}+m_{j+1}-1}{m_{j+1}}
$$

Examples

Various special functions are expressible in terms of \mathfrak{F} applied to a suitable sequence, e.g.:

Examples

Various special functions are expressible in terms of \mathfrak{F} applied to a suitable sequence, e.g.:

- Hypergeometric Functions ${ }_{0} F_{1}$, especially Bessel Functions,

$$
\mathfrak{F}\left(\left\{\frac{w}{k+z}\right\}_{k=1}^{\infty}\right)={ }_{0} F_{1}\left(; z+1,-w^{2}\right)=\Gamma(1+z) w^{-z} J_{z}(2 w)
$$

$(w \in \mathbb{C}, z \notin-\mathbb{N})$

Examples

Various special functions are expressible in terms of \mathfrak{F} applied to a suitable sequence, e.g.:

- Hypergeometric Functions ${ }_{0} F_{1}$, especially Bessel Functions,

$$
\mathfrak{F}\left(\left\{\frac{w}{k+z}\right\}_{k=1}^{\infty}\right)={ }_{0} F_{1}\left(; z+1,-w^{2}\right)=\Gamma(1+z) w^{-z} J_{z}(2 w)
$$

$(w \in \mathbb{C}, z \notin-\mathbb{N})$

- Confluent Hypergeometric Functions ${ }_{1} F_{1}$, especially Regular Coulomb Wave Function

Examples

Various special functions are expressible in terms of \mathfrak{F} applied to a suitable sequence, e.g.:

- Hypergeometric Functions ${ }_{0} F_{1}$, especially Bessel Functions,

$$
\mathfrak{F}\left(\left\{\frac{w}{k+z}\right\}_{k=1}^{\infty}\right)={ }_{0} F_{1}\left(; z+1,-w^{2}\right)=\Gamma(1+z) w^{-z} J_{z}(2 w)
$$

$(w \in \mathbb{C}, z \notin-\mathbb{N})$

- Confluent Hypergeometric Functions ${ }_{1} F_{1}$, especially Regular Coulomb Wave Function
- q-Hypergeometric Functions ${ }_{0} \phi_{1}, q$-Bessel Functions, especially Ramanujan (or q-Airy) function

$$
\mathfrak{F}\left(\left\{z^{1 / 2} q^{(2 k-1) / 4}\right\}_{k=1}^{\infty}\right)={ }_{0} \phi_{1}(; 0 ; q,-q z)
$$

$(z \in \mathbb{C}, 0<q<1)$

Examples

Various special functions are expressible in terms of \mathfrak{F} applied to a suitable sequence, e.g.:

- Hypergeometric Functions ${ }_{0} F_{1}$, especially Bessel Functions,

$$
\mathfrak{F}\left(\left\{\frac{w}{k+z}\right\}_{k=1}^{\infty}\right)={ }_{0} F_{1}\left(; z+1,-w^{2}\right)=\Gamma(1+z) w^{-z} J_{z}(2 w)
$$

$(w \in \mathbb{C}, z \notin-\mathbb{N})$

- Confluent Hypergeometric Functions ${ }_{1} F_{1}$, especially Regular Coulomb Wave Function
- q-Hypergeometric Functions ${ }_{0} \phi_{1}, q$-Bessel Functions, especially Ramanujan (or q-Airy) function

$$
\mathfrak{F}\left(\left\{z^{1 / 2} q^{(2 k-1) / 4}\right\}_{k=1}^{\infty}\right)={ }_{0} \phi_{1}(; 0 ; q,-q z)
$$

$(z \in \mathbb{C}, 0<q<1)$

- q-Confluent Hypergeometric Functions ${ }_{1} \phi_{1}$

Characteristic function of complex Jacobi matrix

Proposition

Let $\left\{\lambda_{n}\right\}$ be positive and

$$
\sum_{n=1}^{\infty} \frac{1}{\lambda_{n}^{2}}<\infty \quad \text { and } \quad \sum_{n=1}^{\infty}\left|\frac{w_{n}^{2}}{\lambda_{n} \lambda_{n+1}}\right|<\infty
$$

Then $A(z)$ is Hilbert-Schmidt for all $z \in \mathbb{C}$ and it holds

$$
\operatorname{det}_{2}(1+A(z))=\mathfrak{F}\left(\left\{\frac{\gamma_{n}^{2}}{\lambda_{n}-z}\right\}_{n=1}^{\infty}\right) \prod_{n=1}^{\infty}\left(1-\frac{z}{\lambda_{n}}\right) e^{z / \lambda_{n}}
$$

where the sequence $\left\{\gamma_{n}\right\}$ can be defined recursively as $\gamma_{1}=1, \gamma_{k+1}=w_{k} / \gamma_{k}$.

Characteristic function of complex Jacobi matrix

Proposition

Let $\left\{\lambda_{n}\right\}$ be positive and

$$
\sum_{n=1}^{\infty} \frac{1}{\lambda_{n}^{2}}<\infty \quad \text { and } \quad \sum_{n=1}^{\infty}\left|\frac{w_{n}^{2}}{\lambda_{n} \lambda_{n+1}}\right|<\infty
$$

Then $A(z)$ is Hilbert-Schmidt for all $z \in \mathbb{C}$ and it holds

$$
\operatorname{det}_{2}(1+A(z))=\mathfrak{F}\left(\left\{\frac{\gamma_{n}^{2}}{\lambda_{n}-z}\right\}_{n=1}^{\infty}\right) \prod_{n=1}^{\infty}\left(1-\frac{z}{\lambda_{n}}\right) e^{z / \lambda_{n}}
$$

where the sequence $\left\{\gamma_{n}\right\}$ can be defined recursively as $\gamma_{1}=1, \gamma_{k+1}=w_{k} / \gamma_{k}$.

- In the following we focus just on the function

$$
F_{J}(z):=\mathfrak{F}\left(\left\{\frac{\gamma_{n}^{2}}{\lambda_{n}-z}\right\}_{n=1}^{\infty}\right)
$$

Characteristic function of complex Jacobi matrix

- Function F_{J} is well defined on $\mathbb{C} \backslash \overline{\left\{\lambda_{n}\right\}}$ if

$$
\left\{\frac{\gamma_{n}^{2}}{\lambda_{n}-z}\right\}_{n=1}^{\infty} \in D \quad \text { for all } z \in \mathbb{C} \backslash \overline{\left\{\lambda_{n}\right\}}
$$

which holds if there is at least one $z_{0} \in \mathbb{C} \backslash \overline{\left\{\lambda_{n}\right\}}$ such that

$$
\sum_{n=1}^{\infty}\left|\frac{w_{n}^{2}}{\left(\lambda_{n}-z_{0}\right)\left(\lambda_{n+1}-z_{0}\right)}\right|<\infty
$$

(λ_{n} and w_{n} are complex!)

Characteristic function of complex Jacobi matrix

- Function F_{J} is well defined on $\mathbb{C} \backslash \overline{\left\{\lambda_{n}\right\}}$ if

$$
\left\{\frac{\gamma_{n}^{2}}{\lambda_{n}-z}\right\}_{n=1}^{\infty} \in D \quad \text { for all } z \in \mathbb{C} \backslash \overline{\left\{\lambda_{n}\right\}}
$$

which holds if there is at least one $z_{0} \in \mathbb{C} \backslash \overline{\left\{\lambda_{n}\right\}}$ such that

$$
\sum_{n=1}^{\infty}\left|\frac{w_{n}^{2}}{\left(\lambda_{n}-z_{0}\right)\left(\lambda_{n+1}-z_{0}\right)}\right|<\infty
$$

(λ_{n} and w_{n} are complex!)

- This assumptions is assumed everywhere from now.

Characteristic function of complex Jacobi matrix

- Function F_{J} is well defined on $\mathbb{C} \backslash \overline{\left\{\lambda_{n}\right\}}$ if

$$
\left\{\frac{\gamma_{n}^{2}}{\lambda_{n}-z}\right\}_{n=1}^{\infty} \in D \quad \text { for all } z \in \mathbb{C} \backslash \overline{\left\{\lambda_{n}\right\}}
$$

which holds if there is at least one $z_{0} \in \mathbb{C} \backslash \overline{\left\{\lambda_{n}\right\}}$ such that

$$
\sum_{n=1}^{\infty}\left|\frac{w_{n}^{2}}{\left(\lambda_{n}-z_{0}\right)\left(\lambda_{n+1}-z_{0}\right)}\right|<\infty
$$

(λ_{n} and w_{n} are complex!)

- This assumptions is assumed everywhere from now.
- F_{J} is meromorphic function on $\mathbb{C} \backslash \operatorname{der}\left(\left\{\lambda_{n}\right\}\right)$ with poles in $z \in\left\{\lambda_{n}\right\} \backslash \operatorname{der}\left(\left\{\lambda_{n}\right\}\right)$ of finite order less or equal to the number

$$
r(z):=\sum_{n=1}^{\infty} \delta_{z, \lambda_{n}} .
$$

Characteristic function of complex Jacobi matrix

$$
\mathfrak{Z}(J):=\left\{z \in \mathbb{C} \backslash \operatorname{der}\left(\left\{\lambda_{n}\right\}\right) ; \lim _{u \rightarrow z}(u-z)^{r(z)} F_{J}(u)=0\right\},
$$

Characteristic function of complex Jacobi matrix

$$
\mathcal{Z}(J):=\left\{z \in \mathbb{C} \backslash \operatorname{der}\left(\left\{\lambda_{n}\right\}\right) ; \lim _{u \rightarrow z}(u-z)^{r(z)} F_{J}(u)=0\right\},
$$

- for $k \in \mathbb{Z}_{+}$and $z \in \mathbb{C} \backslash \operatorname{der}\left(\left\{\lambda_{n}\right\}\right)$, we put

$$
\xi_{k}(z):=\lim _{u \rightarrow z}(u-z)^{r(z)}\left(\prod_{l=1}^{k} \frac{w_{l-1}}{u-\lambda_{l}}\right) \mathfrak{F}\left(\left\{\frac{\gamma_{l}^{2}}{\lambda_{l}-u}\right\}_{l=k+1}^{\infty}\right)
$$

where we set $w_{0}:=1$.

Characteristic function of complex Jacobi matrix

$$
\mathfrak{Z}(J):=\left\{z \in \mathbb{C} \backslash \operatorname{der}\left(\left\{\lambda_{n}\right\}\right) ; \lim _{u \rightarrow z}(u-z)^{r(z)} F_{J}(u)=0\right\}
$$

- for $k \in \mathbb{Z}_{+}$and $z \in \mathbb{C} \backslash \operatorname{der}\left(\left\{\lambda_{n}\right\}\right)$, we put

$$
\xi_{k}(z):=\lim _{u \rightarrow z}(u-z)^{r(z)}\left(\prod_{l=1}^{k} \frac{w_{l-1}}{u-\lambda_{l}}\right) \mathfrak{F}\left(\left\{\frac{\gamma_{l}^{2}}{\lambda_{l}-u}\right\}_{l=k+1}^{\infty}\right)
$$

where we set $w_{0}:=1$.

Theorem

Equalities

$$
\operatorname{spec}(J) \backslash \operatorname{der}\left(\left\{\lambda_{n}\right\}\right)=\operatorname{spec}_{p}(J) \backslash \operatorname{der}\left(\left\{\lambda_{n}\right\}\right)=\mathcal{Z}(J)
$$

hold and, for $z \in \mathcal{Z}(J)$,

$$
\xi(z):=\left(\xi_{1}(z), \xi_{2}(z), \xi_{3}(z), \ldots\right)
$$

is the eigenvector for eigenvalue z. Moreover, for $z \notin \overline{\left\{\lambda_{n}\right\}}$, vector $\xi(z)$ satisfies the formula

$$
\sum_{k=1}^{\infty}\left(\xi_{k}(z)\right)^{2}=\xi_{0}^{\prime}(z) \xi_{1}(z)-\xi_{0}(z) \xi_{1}^{\prime}(z)
$$

Green Function

- The Green function $G_{i j}(z)=\left(e_{i},(J-z)^{-1} e_{j}\right)$ of J is expressible in terms of \mathfrak{F},

$$
G_{i j}(z)=-\frac{1}{w_{M}} \prod_{I=m}^{M}\left(\frac{w_{l}}{z-\lambda_{l}}\right) \frac{\mathfrak{F}\left(\left\{\frac{\gamma_{l}^{2}}{\lambda_{I}-z}\right\}_{l=1}^{m-1}\right) \mathfrak{F}\left(\left\{\frac{\gamma_{l}^{2}}{\lambda_{I}-z}\right\}_{I=M+1}^{\infty}\right)}{\mathfrak{F}\left(\left\{\frac{\gamma_{l}^{2}}{\lambda_{I}-z}\right\}_{l=1}^{\infty}\right)_{l}^{\infty}}
$$

where $z \in \rho(J), m:=\min (i, j)$, and $M:=\max (i, j)$.

Green Function

- The Green function $G_{i j}(z)=\left(e_{i},(J-z)^{-1} e_{j}\right)$ of J is expressible in terms of \mathfrak{F},

$$
G_{i j}(z)=-\frac{1}{w_{M}} \prod_{l=m}^{M}\left(\frac{w_{l}}{z-\lambda_{l}}\right) \frac{\mathfrak{F}\left(\left\{\frac{\gamma_{l}^{2}}{\lambda_{l}-z}\right\}_{l=1}^{m-1}\right) \mathfrak{F}\left(\left\{\frac{\gamma_{l}^{2}}{\lambda_{l}-z}\right\}_{l=M+1}^{\infty}\right)}{\mathfrak{F}\left(\left\{\frac{\gamma_{l}^{2}}{\lambda_{I}-z}\right\}_{l=1}^{\infty}\right)^{\infty}}
$$

where $z \in \rho(J), m:=\min (i, j)$, and $M:=\max (i, j)$.

- Especially, we get a compact formula for the Weyl m-function $m(z)=G_{11}(z)$,

$$
m(z)=\frac{\mathfrak{F}\left(\left\{\frac{\gamma_{j}^{2}}{\lambda_{j}-z}\right\}_{j=2}^{\infty}\right)}{\left(\lambda_{1}-z\right) \mathfrak{F}\left(\left\{\frac{\gamma_{j}^{2}}{\lambda_{j}-z}\right\}_{j=1}^{\infty}\right)}
$$

Main topic

(1) Characteristic function for Jacobi matrices

- Motivation
- Function ₹
- Spectral properties of Jacobi operator via characteristic function

2 Applications - Examples with concrete operators
(3) The logarithm formula for \mathfrak{F}
(4) Applications - The spectral zeta function \& Examples
(5) References

Examples with concrete operators - Bessel functions

- Let $\lambda_{n}=\alpha n, \alpha \neq 0$ and $w_{n}=w \neq 0, n=1,2, \ldots$. With this choice one has

$$
J=\left(\begin{array}{ccccc}
\alpha & w & & & \\
w & 2 \alpha & w & & \\
& w & 3 \alpha & w & \\
& & \ddots & \ddots & \ddots
\end{array}\right)
$$

Examples with concrete operators - Bessel functions

- Let $\lambda_{n}=\alpha n, \alpha \neq 0$ and $w_{n}=w \neq 0, n=1,2, \ldots$. With this choice one has

$$
J=\left(\begin{array}{ccccc}
\alpha & w & & & \\
w & 2 \alpha & w & & \\
& w & 3 \alpha & w & \\
& & \ddots & \ddots & \ddots
\end{array}\right)
$$

- The characteristic function can be expressed as

$$
F_{J}(z)=\left(\alpha^{-1} w\right)^{\alpha^{-1} z} \Gamma\left(1-\alpha^{-1} z\right) J_{-\alpha^{-1} z}\left(2 \alpha^{-1} w\right)
$$

Examples with concrete operators - Bessel functions

- Let $\lambda_{n}=\alpha n, \alpha \neq 0$ and $w_{n}=w \neq 0, n=1,2, \ldots$. With this choice one has

$$
J=\left(\begin{array}{ccccc}
\alpha & w & & & \\
w & 2 \alpha & w & & \\
& w & 3 \alpha & w & \\
& & \ddots & \ddots & \ddots
\end{array}\right)
$$

- The characteristic function can be expressed as

$$
F_{J}(z)=\left(\alpha^{-1} w\right)^{\alpha^{-1} z} \Gamma\left(1-\alpha^{-1} z\right) J_{-\alpha^{-1} z}\left(2 \alpha^{-1} w\right)
$$

- Hence, one gets

$$
\operatorname{spec}(J)=\left\{z \in \mathbb{C} \mid J_{-\alpha^{-1}}\left(2 \alpha^{-1} w\right)=0\right\},
$$

Examples with concrete operators - Bessel functions

- Let $\lambda_{n}=\alpha n, \alpha \neq 0$ and $w_{n}=w \neq 0, n=1,2, \ldots$. With this choice one has

$$
J=\left(\begin{array}{ccccc}
\alpha & w & & & \\
w & 2 \alpha & w & & \\
& w & 3 \alpha & w & \\
& & \ddots & \ddots & \ddots
\end{array}\right)
$$

- The characteristic function can be expressed as

$$
F_{J}(z)=\left(\alpha^{-1} w\right)^{\alpha^{-1} z} \Gamma\left(1-\alpha^{-1} z\right) J_{-\alpha^{-1} z}\left(2 \alpha^{-1} w\right)
$$

- Hence, one gets

$$
\operatorname{spec}(J)=\left\{z \in \mathbb{C} \mid J_{-\alpha^{-1} z}\left(2 \alpha^{-1} w\right)=0\right\}
$$

- Further for the k-th entry of the respective eigenvector one has

$$
v_{k}(z)=(-1)^{k} J_{k-\alpha^{-1} z}\left(2 \alpha^{-1} w\right)
$$

Examples with concrete operators - Bessel functions

- Let $\lambda_{n}=\alpha n, \alpha \neq 0$ and $w_{n}=w \neq 0, n=1,2, \ldots$. With this choice one has

$$
J=\left(\begin{array}{ccccc}
\alpha & w & & & \\
w & 2 \alpha & w & & \\
& w & 3 \alpha & w & \\
& & \ddots & \ddots & \ddots
\end{array}\right)
$$

- The characteristic function can be expressed as

$$
F_{J}(z)=\left(\alpha^{-1} w\right)^{\alpha^{-1} z} \Gamma\left(1-\alpha^{-1} z\right) J_{-\alpha^{-1} z}\left(2 \alpha^{-1} w\right)
$$

- Hence, one gets

$$
\operatorname{spec}(J)=\left\{z \in \mathbb{C} \mid J_{-\alpha^{-1} z}\left(2 \alpha^{-1} w\right)=0\right\}
$$

- Further for the k-th entry of the respective eigenvector one has

$$
v_{k}(z)=(-1)^{k} J_{k-\alpha^{-1} z}\left(2 \alpha^{-1} w\right)
$$

- These results has been observed by many authors before [Gard \& Zakrajšek, 1973].

Examples with concrete operators - q-Bessel functions

- Let $q \in(0,1), \beta \neq 0, \lambda_{n}=q^{n-1}$, and $w_{n}=\beta q^{(n-1) / 2}$. Then matrix J has the form

$$
J=\left(\begin{array}{ccccc}
1 & \beta & & & \\
\beta & q & \beta \sqrt{q} & & \\
& \beta \sqrt{q} & q^{2} & \beta q & \\
& & \ddots & \ddots & \ddots
\end{array}\right)
$$

Examples with concrete operators - q-Bessel functions

- Let $q \in(0,1), \beta \neq 0, \lambda_{n}=q^{n-1}$, and $w_{n}=\beta q^{(n-1) / 2}$. Then matrix J has the form

$$
J=\left(\begin{array}{ccccc}
1 & \beta & & & \\
\beta & q & \beta \sqrt{q} & & \\
& \beta \sqrt{q} & q^{2} & \beta q & \\
& & \ddots & \ddots & \ddots
\end{array}\right)
$$

- The characteristic function $F_{J}(z)$ can be identified with a basic hypergeometric series ${ }_{0} \phi_{1}$:

$$
F_{J}(z)=0 \phi_{1}\left(; z^{-1} ; q,-\beta^{2} z^{-2}\right), \quad\left(z \notin q^{\mathbb{Z}_{+}} \cup\{0\}\right)
$$

Examples with concrete operators $-q$-Bessel functions

- Let $q \in(0,1), \beta \neq 0, \lambda_{n}=q^{n-1}$, and $w_{n}=\beta q^{(n-1) / 2}$. Then matrix J has the form

$$
J=\left(\begin{array}{ccccc}
1 & \beta & & & \\
\beta & q & \beta \sqrt{q} & & \\
& \beta \sqrt{q} & q^{2} & \beta q & \\
& & \ddots & \ddots & \ddots
\end{array}\right)
$$

- The characteristic function $F_{J}(z)$ can be identified with a basic hypergeometric series ${ }_{0} \phi_{1}$:

$$
F_{J}(z)=0 \phi_{1}\left(; z^{-1} ; q,-\beta^{2} z^{-2}\right), \quad\left(z \notin q^{\mathbb{Z}_{+}} \cup\{0\}\right) .
$$

- If we put $z=q^{\nu+1}$ the characteristic function can be written in terms of q-Bessel function (second Jackson).

Examples with concrete operators $-q$-Bessel functions

- Let $q \in(0,1), \beta \neq 0, \lambda_{n}=q^{n-1}$, and $w_{n}=\beta q^{(n-1) / 2}$. Then matrix J has the form

$$
J=\left(\begin{array}{ccccc}
1 & \beta & & & \\
\beta & q & \beta \sqrt{q} & & \\
& \beta \sqrt{q} & q^{2} & \beta q & \\
& & \ddots & \ddots & \ddots
\end{array}\right)
$$

- The characteristic function $F_{J}(z)$ can be identified with a basic hypergeometric series ${ }_{0} \phi_{1}$:

$$
F_{J}(z)=0 \phi_{1}\left(; z^{-1} ; q,-\beta^{2} z^{-2}\right), \quad\left(z \notin q^{\mathbb{Z}_{+}} \cup\{0\}\right) .
$$

- If we put $z=q^{\nu+1}$ the characteristic function can be written in terms of q-Bessel function (second Jackson).
- It holds

$$
\operatorname{spec}(J)=\left\{z^{-1} \in \mathbb{C} \mid(z ; q)_{\infty} 0 \phi_{1}\left(; z ; q,-\beta^{2} z^{2}\right)=0\right\} \cup\{0\}
$$

Examples with concrete operators $-q$-Bessel functions

- Let $q \in(0,1), \beta \neq 0, \lambda_{n}=q^{n-1}$, and $w_{n}=\beta q^{(n-1) / 2}$. Then matrix J has the form

$$
J=\left(\begin{array}{ccccc}
1 & \beta & & & \\
\beta & q & \beta \sqrt{q} & & \\
& \beta \sqrt{q} & q^{2} & \beta q & \\
& & \ddots & \ddots & \ddots
\end{array}\right)
$$

- The characteristic function $F_{J}(z)$ can be identified with a basic hypergeometric series ${ }_{0} \phi_{1}$:

$$
F_{J}(z)=0 \phi_{1}\left(; z^{-1} ; q,-\beta^{2} z^{-2}\right), \quad\left(z \notin q^{\mathbb{Z}_{+}} \cup\{0\}\right) .
$$

- If we put $z=q^{\nu+1}$ the characteristic function can be written in terms of q-Bessel function (second Jackson).
- It holds

$$
\operatorname{spec}(J)=\left\{z^{-1} \in \mathbb{C} \mid(z ; q)_{\infty 0} \phi_{1}\left(; z ; q,-\beta^{2} z^{2}\right)=0\right\} \cup\{0\} .
$$

- The k-entry of the eigenvector corresponding to eigenvalue z^{-1} reads

$$
v_{k}\left(z^{-1}\right)=q^{(k-1)(k-2) / 4}(\beta z)^{k-1}\left(z q^{k} ; q\right)_{\infty} \phi_{1}\left(; z q^{k} ; q,-q^{k} \beta^{2} z^{2}\right)
$$

Remark on Hilbert-Schmidt Jacobi operators with vanishing diagonal

- In particular, for the characteristic function in the case $\lambda=0$ and $w \in \ell^{2}(\mathbb{N})$, it holds

$$
F_{J}\left(z^{-1}\right)=\mathfrak{F}\left(\left\{z \gamma_{n}^{2}\right\}_{n=1}^{\infty}\right)=\sum_{m=0}^{\infty}\left(-z^{2}\right)^{m} \sum_{k_{1}=1}^{\infty} \sum_{k_{2}=k_{1}+2}^{\infty} \ldots \sum_{k_{m}=k_{m-1}+2}^{\infty} w_{k_{1}}^{2} w_{k_{2}}^{2} \ldots w_{k_{m}}^{2}
$$

Hence the spectrum of J is symmetric with respect to the origin.

Remark on Hilbert-Schmidt Jacobi operators with vanishing diagonal

- In particular, for the characteristic function in the case $\lambda=0$ and $w \in \ell^{2}(\mathbb{N})$, it holds

$$
F_{J}\left(z^{-1}\right)=\mathfrak{F}\left(\left\{z \gamma_{n}^{2}\right\}_{n=1}^{\infty}\right)=\sum_{m=0}^{\infty}\left(-z^{2}\right)^{m} \sum_{k_{1}=1}^{\infty} \sum_{k_{2}=k_{1}+2}^{\infty} \ldots \sum_{k_{m}=k_{m-1}+2}^{\infty} w_{k_{1}}^{2} w_{k_{2}}^{2} \ldots w_{k_{m}}^{2}
$$

Hence the spectrum of J is symmetric with respect to the origin.

- Let $w_{n}=1 / \sqrt{(n+\nu)(n+\nu+1)}, \nu \notin-\mathbb{N}$, then

$$
F_{J}\left(z^{-1}\right)=\Gamma(\nu+1) z^{-\nu} J_{\nu}(2 z) .
$$

and

$$
\operatorname{spec}(J)=\left\{2 z^{-1} \in \mathbb{C} \mid J_{\nu}(z)=0\right\} \cup\{0\} .
$$

Remark on Hilbert-Schmidt Jacobi operators with vanishing diagonal

- In particular, for the characteristic function in the case $\lambda=0$ and $w \in \ell^{2}(\mathbb{N})$, it holds

$$
F_{J}\left(z^{-1}\right)=\mathfrak{F}\left(\left\{z \gamma_{n}^{2}\right\}_{n=1}^{\infty}\right)=\sum_{m=0}^{\infty}\left(-z^{2}\right)^{m} \sum_{k_{1}=1}^{\infty} \sum_{k_{2}=k_{1}+2}^{\infty} \ldots \sum_{k_{m}=k_{m-1}+2}^{\infty} w_{k_{1}}^{2} w_{k_{2}}^{2} \ldots w_{k_{m}}^{2}
$$

Hence the spectrum of J is symmetric with respect to the origin.

- Let $w_{n}=1 / \sqrt{(n+\nu)(n+\nu+1)}, \nu \notin-\mathbb{N}$, then

$$
F_{J}\left(z^{-1}\right)=\Gamma(\nu+1) z^{-\nu} J_{\nu}(2 z) .
$$

and

$$
\operatorname{spec}(J)=\left\{2 z^{-1} \in \mathbb{C} \mid J_{\nu}(z)=0\right\} \cup\{0\}
$$

- Let $w_{n}=q^{n / 2}, 0<q<1$, then

$$
F_{J}\left(z^{-1}\right)={ }_{o} \phi_{1}\left(; 0, q,-q z^{2}\right)
$$

and

$$
\operatorname{spec}(J)=\left\{ \pm z^{-1 / 2} \in \mathbb{R} \mid o \phi_{1}(; 0, q,-q z)=0\right\} \cup\{0\}
$$

Examples with concrete operators - Confluent hypergeometric function

- For $x>1, y \in \mathbb{R}$, put

$$
\lambda(x, y)=\frac{y}{(x-1) x}, \quad w(x, y)=\frac{1}{x} \sqrt{\frac{x^{2}+y^{2}}{4 x^{2}-1}}
$$

Examples with concrete operators - Confluent hypergeometric function

- For $x>1, y \in \mathbb{R}$, put

$$
\lambda(x, y)=\frac{y}{(x-1) x}, \quad w(x, y)=\frac{1}{x} \sqrt{\frac{x^{2}+y^{2}}{4 x^{2}-1}} .
$$

- Consider Jacobi matrix $J=J(\mu, \nu)$, with

$$
\lambda_{k}=\lambda(\mu+k, \nu), \quad w_{k}=w(\mu+k, \nu)
$$

Examples with concrete operators - Confluent hypergeometric function

- For $x>1, y \in \mathbb{R}$, put

$$
\lambda(x, y)=\frac{y}{(x-1) x}, \quad w(x, y)=\frac{1}{x} \sqrt{\frac{x^{2}+y^{2}}{4 x^{2}-1}} .
$$

- Consider Jacobi matrix $J=J(\mu, \nu)$, with

$$
\lambda_{k}=\lambda(\mu+k, \nu), \quad w_{k}=w(\mu+k, \nu) .
$$

- It holds

$$
F_{J}\left(z^{-1}\right)=\frac{\Gamma\left(\frac{1}{2}+\mu-\frac{1}{2} \sqrt{1+4 \nu z}\right) \Gamma\left(\frac{1}{2}+\mu+\frac{1}{2} \sqrt{1+4 \nu z}\right)}{\Gamma(\mu) \Gamma(\mu+1)} e^{-i z}{ }_{1} F_{1}(\mu+i \nu ; 2 \mu ; 2 i z)
$$

Examples with concrete operators - Confluent hypergeometric function

- For $x>1, y \in \mathbb{R}$, put

$$
\lambda(x, y)=\frac{y}{(x-1) x}, \quad w(x, y)=\frac{1}{x} \sqrt{\frac{x^{2}+y^{2}}{4 x^{2}-1}} .
$$

- Consider Jacobi matrix $J=J(\mu, \nu)$, with

$$
\lambda_{k}=\lambda(\mu+k, \nu), \quad w_{k}=w(\mu+k, \nu) .
$$

- It holds

$$
F_{J}\left(z^{-1}\right)=\frac{\Gamma\left(\frac{1}{2}+\mu-\frac{1}{2} \sqrt{1+4 \nu z}\right) \Gamma\left(\frac{1}{2}+\mu+\frac{1}{2} \sqrt{1+4 \nu z}\right)}{\Gamma(\mu) \Gamma(\mu+1)} e^{-i z}{ }_{1} F_{1}(\mu+i \nu ; 2 \mu ; 2 i z)
$$

- Thus we have

$$
\operatorname{spec}(J(\mu, \nu))=\left\{z^{-1} ; e^{-i z}{ }_{1} F_{1}(\mu+i \nu ; 2 \mu ; 2 i z)=0\right\} \cup\{0\}
$$

and

$$
v_{n}\left(z^{-1}\right)=\sqrt{2 \mu+2 n-1} \frac{|\Gamma(\mu+n+i \nu)|}{\Gamma(2 \mu+2 n)}(2 z)^{n-1} e^{-i z}{ }_{1} F_{1}(\mu+n+i \nu ; 2 \mu+2 n ; 2 i z) .
$$

Examples with concrete operators - Coulomb wave function

- In fact, one can show the characteristic function $F_{J}\left(z^{-1}\right)$ is proportional to $F_{\mu-1}\left(-\nu, z^{-1}\right)$ where function $F_{L}(\eta, \rho)$ is regular (at the origin) solution of second-order differential equation

$$
\frac{d^{2} u}{d \rho^{2}}+\left[1-\frac{2 \eta}{\rho}-\frac{L(L+1)}{\rho^{2}}\right] u=0
$$

known as regular Coulomb wave function [Abramowitz\&Stegun].

- Consequently, the spectrum of the corresponding Jacobi operator coincides with the set of reciprocal values of zeros of regular Coulomb wave function (as function of ρ).
- This has been originally observed by [lkebe, 1975].

Examples with concrete operators - q-Confluent hypergeometric function

- For $\delta, a \in \mathbb{C}$, and $|q|<1$, put

$$
\lambda_{n}=(a+1) q^{n-1}, \quad w_{n}^{2}=-a q^{n+\delta-1}\left(1-q^{n-\delta}\right)
$$

Examples with concrete operators - q-Confluent hypergeometric function

- For $\delta, a \in \mathbb{C}$, and $|q|<1$, put

$$
\lambda_{n}=(a+1) q^{n-1}, \quad w_{n}^{2}=-a q^{n+\delta-1}\left(1-q^{n-\delta}\right)
$$

- Then it holds

$$
F_{J}\left(z^{-1}\right)=\frac{(z ; q)_{\infty}}{((a+1) z ; q)_{\infty}} 1 \phi_{1}\left(z q^{\delta}, z ; q, a z\right)
$$

Examples with concrete operators - q-Confluent hypergeometric function

- For $\delta, a \in \mathbb{C}$, and $|q|<1$, put

$$
\lambda_{n}=(a+1) q^{n-1}, \quad w_{n}^{2}=-a q^{n+\delta-1}\left(1-q^{n-\delta}\right)
$$

- Then it holds

$$
F_{J}\left(z^{-1}\right)=\frac{(z ; q)_{\infty}}{((a+1) z ; q)_{\infty}}{ }_{1} \phi_{1}\left(z q^{\delta}, z ; q, a z\right)
$$

- Especially, for $\delta=0$, the identity simplifies to

$$
F_{J}\left(z^{-1}\right)=\frac{(z ; q)_{\infty}(a z ; q)_{\infty}}{((a+1) z ; q)_{\infty}}
$$

Examples with concrete operators - q-Confluent hypergeometric function

- For $\delta, a \in \mathbb{C}$, and $|q|<1$, put

$$
\lambda_{n}=(a+1) q^{n-1}, \quad w_{n}^{2}=-a q^{n+\delta-1}\left(1-q^{n-\delta}\right)
$$

- Then it holds

$$
F_{J}\left(z^{-1}\right)=\frac{(z ; q)_{\infty}}{((a+1) z ; q)_{\infty}}{ }^{1} \phi_{1}\left(z q^{\delta}, z ; q, a z\right)
$$

- Especially, for $\delta=0$, the identity simplifies to

$$
F_{J}\left(z^{-1}\right)=\frac{(z ; q)_{\infty}(a z ; q)_{\infty}}{((a+1) z ; q)_{\infty}}
$$

- The spectrum of corresponding J is then obtained fully explicitly,

$$
\operatorname{spec}(J)=\left\{q^{k}: k=0,1,2, \ldots\right\} \cup\left\{a q^{k}: k=0,1,2, \ldots\right\} \cup\{0\} .
$$

Examples with concrete operators - q-Confluent hypergeometric function

- For $\delta, a \in \mathbb{C}$, and $|q|<1$, put

$$
\lambda_{n}=(a+1) q^{n-1}, \quad w_{n}^{2}=-a q^{n+\delta-1}\left(1-q^{n-\delta}\right)
$$

- Then it holds

$$
F_{J}\left(z^{-1}\right)=\frac{(z ; q)_{\infty}}{((a+1) z ; q)_{\infty}}{ }^{1} \phi_{1}\left(z q^{\delta}, z ; q, a z\right)
$$

- Especially, for $\delta=0$, the identity simplifies to

$$
F_{J}\left(z^{-1}\right)=\frac{(z ; q)_{\infty}(a z ; q)_{\infty}}{((a+1) z ; q)_{\infty}}
$$

- The spectrum of corresponding J is then obtained fully explicitly,

$$
\operatorname{spec}(J)=\left\{q^{k}: k=0,1,2, \ldots\right\} \cup\left\{a q^{k}: k=0,1,2, \ldots\right\} \cup\{0\} .
$$

- For $a>0$, the operator J is not hermitian, however, $\operatorname{spec}(J)$ is real!

Main topic

(1) Characteristic function for Jacobi matrices

- Motivation
- Function \mathfrak{F}
- Spectral properties of Jacobi operator via characteristic function

2 Applications - Examples with concrete operators
(3) The logarithm formula for \mathfrak{F}
(4) Applications - The spectral zeta function \& Examples
(5) References

The logarithm formula for \mathfrak{F}

Theorem

In the ring of formal power series in the variables t_{1}, \ldots, t_{n}, one has

$$
\log \mathfrak{F}\left(t_{1}, \ldots, t_{n}\right)=-\sum_{\ell=1}^{n-1} \sum_{m \in \mathbb{N}^{\ell}} \alpha(m) \sum_{k=1}^{n-\ell} \prod_{j=1}^{\ell}\left(t_{k+j-1} t_{k+j}\right)^{m_{j}} .
$$

For a complex sequence $x=\left\{x_{k}\right\}_{k=1}^{\infty}$ such that $\sum_{k=1}^{\infty}\left|x_{k} x_{k+1}\right|<\log 2$ one has

$$
\log \mathfrak{F}(x)=-\sum_{\ell=1}^{\infty} \sum_{m \in \mathbb{N}^{\ell}} \alpha(m) \sum_{k=1}^{\infty} \prod_{j=1}^{\ell}\left(x_{k+j-1} x_{k+j}\right)^{m_{j}} .
$$

The logarithm formula for \mathfrak{F}

Theorem

In the ring of formal power series in the variables t_{1}, \ldots, t_{n}, one has

$$
\log \mathfrak{F}\left(t_{1}, \ldots, t_{n}\right)=-\sum_{\ell=1}^{n-1} \sum_{m \in \mathbb{N}^{\ell}} \alpha(m) \sum_{k=1}^{n-\ell} \prod_{j=1}^{\ell}\left(t_{k+j-1} t_{k+j}\right)^{m_{j}} .
$$

For a complex sequence $x=\left\{x_{k}\right\}_{k=1}^{\infty}$ such that $\sum_{k=1}^{\infty}\left|x_{k} x_{k+1}\right|<\log 2$ one has

$$
\log \mathfrak{F}(x)=-\sum_{\ell=1}^{\infty} \sum_{m \in \mathbb{N}^{\ell}} \alpha(m) \sum_{k=1}^{\infty} \prod_{j=1}^{\ell}\left(x_{k+j-1} x_{k+j}\right)^{m_{j}}
$$

where we denote

$$
\alpha(m):=\frac{1}{m_{1}} \prod_{j=1}^{\ell-1}\binom{m_{j}+m_{j+1}-1}{m_{j+1}} .
$$

The logarithm formula for \mathfrak{F}

Theorem

In the ring of formal power series in the variables t_{1}, \ldots, t_{n}, one has

$$
\log \mathfrak{F}\left(t_{1}, \ldots, t_{n}\right)=-\sum_{\ell=1}^{n-1} \sum_{m \in \mathbb{N}^{\ell}} \alpha(m) \sum_{k=1}^{n-\ell} \prod_{j=1}^{\ell}\left(t_{k+j-1} t_{k+j}\right)^{m_{j}} .
$$

For a complex sequence $x=\left\{x_{k}\right\}_{k=1}^{\infty}$ such that $\sum_{k=1}^{\infty}\left|x_{k} x_{k+1}\right|<\log 2$ one has

$$
\log \mathfrak{F}(x)=-\sum_{\ell=1}^{\infty} \sum_{m \in \mathbb{N}^{\ell}} \alpha(m) \sum_{k=1}^{\infty} \prod_{j=1}^{\ell}\left(x_{k+j-1} x_{k+j}\right)^{m_{j}}
$$

where we denote

$$
\alpha(m):=\frac{1}{m_{1}} \prod_{j=1}^{\ell-1}\binom{m_{j}+m_{j+1}-1}{m_{j+1}} .
$$

The proof is based on identity

$$
\operatorname{det} \exp (A)=\exp (\operatorname{Tr} A), \quad A \in \mathbb{C}^{n, n}
$$

together with formula relating $\mathfrak{F}\left(t_{1}, \ldots, t_{n}\right)$ with determinant of a tridiagonal matrix depending on t_{1}, \ldots, t_{n}.

The Hadamard factorization

- Let $\left\{x_{n}\right\}_{n=1}^{\infty} \subset \mathbb{C}$ such that $\sum_{n \geq 1}\left|x_{n} x_{n+1}\right|<\infty$ then we have

$$
\mathfrak{F}\left(\left\{z x_{n}\right\}_{n=1}^{\infty}\right)=\operatorname{det}_{2}(1-z J)
$$

where J is Jacobi operator with vanishing diagonal and off-diagonal $w_{n}=\sqrt{x_{n} x_{n+1}}$.

The Hadamard factorization

- Let $\left\{x_{n}\right\}_{n=1}^{\infty} \subset \mathbb{C}$ such that $\sum_{n \geq 1}\left|x_{n} x_{n+1}\right|<\infty$ then we have

$$
\mathfrak{F}\left(\left\{z x_{n}\right\}_{n=1}^{\infty}\right)=\operatorname{det}_{2}(1-z J)
$$

where J is Jacobi operator with vanishing diagonal and off-diagonal $w_{n}=\sqrt{x_{n} x_{n+1}}$.

- Since we assume $w \in \ell^{2}(\mathbb{N})$ operator J is Hilbert-Schmidt and as it is well known the regularized determinant admits the Hadamard factorization into the (infinite) product.

The Hadamard factorization

- Let $\left\{x_{n}\right\}_{n=1}^{\infty} \subset \mathbb{C}$ such that $\sum_{n \geq 1}\left|x_{n} x_{n+1}\right|<\infty$ then we have

$$
\mathfrak{F}\left(\left\{z x_{n}\right\}_{n=1}^{\infty}\right)=\operatorname{det}_{2}(1-z J)
$$

where J is Jacobi operator with vanishing diagonal and off-diagonal $w_{n}=\sqrt{x_{n} x_{n+1}}$.

- Since we assume $w \in \ell^{2}(\mathbb{N})$ operator J is Hilbert-Schmidt and as it is well known the regularized determinant admits the Hadamard factorization into the (infinite) product.
- Let $\left\{\xi_{n}\right\}_{n=1}^{\Omega}$ denotes zeros of the even function

$$
z \mapsto \mathfrak{F}\left(\left\{z x_{n}\right\}_{n=1}^{\infty}\right)
$$

with non-negative real parts. Moreover, we arrange these zeros in the ascending order of their modulus.

The Hadamard factorization

- Let $\left\{x_{n}\right\}_{n=1}^{\infty} \subset \mathbb{C}$ such that $\sum_{n \geq 1}\left|x_{n} x_{n+1}\right|<\infty$ then we have

$$
\mathfrak{F}\left(\left\{z x_{n}\right\}_{n=1}^{\infty}\right)=\operatorname{det}_{2}(1-z J)
$$

where J is Jacobi operator with vanishing diagonal and off-diagonal $w_{n}=\sqrt{x_{n} x_{n+1}}$.

- Since we assume $w \in \ell^{2}(\mathbb{N})$ operator J is Hilbert-Schmidt and as it is well known the regularized determinant admits the Hadamard factorization into the (infinite) product.
- Let $\left\{\xi_{n}\right\}_{n=1}^{\Omega}$ denotes zeros of the even function

$$
z \mapsto \mathfrak{F}\left(\left\{z x_{n}\right\}_{n=1}^{\infty}\right)
$$

with non-negative real parts. Moreover, we arrange these zeros in the ascending order of their modulus.

Theorem

Let $\sum_{n \geq 1}\left|x_{n} x_{n+1}\right|<\infty$ then it holds

$$
\mathfrak{F}\left(\left\{z x_{n}\right\}_{n=1}^{\infty}\right)=\prod_{n=1}^{\Omega}\left(1-\frac{z^{2}}{\xi_{n}^{2}}\right) .
$$

Main topic

(1) Characteristic function for Jacobi matrices

- Motivation
- Function 5
- Spectral properties of Jacobi operator via characteristic function

2 Applications - Examples with concrete operators
(3) The logarithm formula for \mathfrak{F}

4 Applications - The spectral zeta function \& Examples
(5) References

Formula for the spectral zeta function

Notation:

- For a multiindex $m \in \mathbb{N}^{\ell}$ denote by $|m|=\sum_{j=1}^{\ell} m_{j}$ its order and by $d(m)=\ell$ its length.

Formula for the spectral zeta function

Notation:

- For a multiindex $m \in \mathbb{N}^{\ell}$ denote by $|m|=\sum_{j=1}^{\ell} m_{j}$ its order and by $d(m)=\ell$ its length.
- For $N \in \mathbb{N}$ define

$$
\mathcal{M}(N)=\left\{m \in \bigcup_{\ell=1}^{N} \mathbb{N}^{\ell} ;|m|=N\right\} .
$$

Formula for the spectral zeta function

Notation:

- For a multiindex $m \in \mathbb{N}^{\ell}$ denote by $|m|=\sum_{j=1}^{\ell} m_{j}$ its order and by $d(m)=\ell$ its length.
- For $N \in \mathbb{N}$ define

$$
\mathcal{M}(N)=\left\{m \in \bigcup_{\ell=1}^{N} \mathbb{N}^{\ell} ;|m|=N\right\} .
$$

Still assuming J to be the Hilbert-Schmidt Jacobi matrix with vanishing diagonal and off-diagonal sequence $w_{n}=\sqrt{x_{n} x_{n+1}}$ one arrives at the following formula.

Formula for the spectral zeta function

Notation:

- For a multiindex $m \in \mathbb{N}^{\ell}$ denote by $|m|=\sum_{j=1}^{\ell} m_{j}$ its order and by $d(m)=\ell$ its length.
- For $N \in \mathbb{N}$ define

$$
\mathcal{M}(N)=\left\{m \in \bigcup_{\ell=1}^{N} \mathbb{N}^{\ell} ;|m|=N\right\} .
$$

Still assuming J to be the Hilbert-Schmidt Jacobi matrix with vanishing diagonal and off-diagonal sequence $w_{n}=\sqrt{x_{n} x_{n+1}}$ one arrives at the following formula.

Corollary

For any $n \in \mathbb{N}$,

$$
\zeta_{J}(2 n)=\sum_{k=1}^{\Omega} \frac{1}{\xi_{k}^{2 n}}=n \sum_{m \in \mathcal{M}(n)} \alpha(m) \sum_{k=1}^{\infty} \prod_{j=1}^{d(m)}\left(x_{k+j-1} x_{k+j}\right)^{m_{j}} .
$$

Formula for the spectral zeta function

Notation:

- For a multiindex $m \in \mathbb{N}^{\ell}$ denote by $|m|=\sum_{j=1}^{\ell} m_{j}$ its order and by $d(m)=\ell$ its length.
- For $N \in \mathbb{N}$ define

$$
\mathcal{M}(N)=\left\{m \in \bigcup_{\ell=1}^{N} \mathbb{N}^{\ell} ;|m|=N\right\} .
$$

Still assuming J to be the Hilbert-Schmidt Jacobi matrix with vanishing diagonal and off-diagonal sequence $w_{n}=\sqrt{x_{n} x_{n+1}}$ one arrives at the following formula.

Corollary

For any $n \in \mathbb{N}$,

$$
\zeta_{J}(2 n)=\sum_{k=1}^{\Omega} \frac{1}{\xi_{k}^{2 n}}=n \sum_{m \in \mathcal{M}(n)} \alpha(m) \sum_{k=1}^{\infty} \prod_{j=1}^{d(m)}\left(x_{k+j-1} x_{k+j}\right)^{m_{j}} .
$$

To prove the identity one has to apply logarithm on both sides of

$$
\mathfrak{F}\left(\left\{z x_{n}\right\}_{n=1}^{\infty}\right)=\prod_{n=1}^{\Omega}\left(1-\frac{z^{2}}{\xi_{n}^{2}}\right),
$$

use the formula for the logarithm of \mathfrak{F} and equate coefficients at the same power of z.

Application of the spectral zeta function

- By using the spectral zeta function one can localize the largest eigenvalue in modulus (the spectral radius) of Hermitian J since

$$
\frac{\zeta_{J}(2 n+2)}{\zeta_{J}(2 n)}<\frac{1}{\xi_{1}^{2}}<\sqrt[n]{\zeta_{J}(2 n)}
$$

Application of the spectral zeta function

- By using the spectral zeta function one can localize the largest eigenvalue in modulus (the spectral radius) of Hermitian J since

$$
\frac{\zeta_{J}(2 n+2)}{\zeta_{J}(2 n)}<\frac{1}{\xi_{1}^{2}}<\sqrt[n]{\zeta_{J}(2 n)}
$$

- In fact, the inequalities become equalities in the limit $n \rightarrow \infty$. Thus, one can even obtain an explicit formula

$$
\frac{1}{\xi_{1}}=\lim _{N \rightarrow \infty}\left(\sum_{m \in \mathcal{M}(N)} \alpha(m) \sum_{k=1}^{\infty} \prod_{j=1}^{d(m)}\left(x_{k+j-1} x_{k+j}\right)^{m_{j}}\right)^{1 /(2 N)}
$$

Two examples - Rayleigh special function

- Put $x_{n}=(2 \nu+2 n)^{-1}$, where $\nu>-1$. Then, as a particular case of the factorization theorem, one has

$$
\mathfrak{F}\left(\left\{z x_{n}\right\}_{n=1}^{\infty}\right)=\Gamma(\nu+1)\left(\frac{z}{2}\right)^{-\nu} J_{\nu}(z)=\prod_{k=1}^{\infty}\left(1-\frac{z^{2}}{j_{\nu, k}^{2}}\right)
$$

where $j_{\nu, k}$ stands for the k-th positive zero of J_{ν}.

Two examples - Rayleigh special function

- Put $x_{n}=(2 \nu+2 n)^{-1}$, where $\nu>-1$. Then, as a particular case of the factorization theorem, one has

$$
\mathfrak{F}\left(\left\{z x_{n}\right\}_{n=1}^{\infty}\right)=\Gamma(\nu+1)\left(\frac{z}{2}\right)^{-\nu} J_{\nu}(z)=\prod_{k=1}^{\infty}\left(1-\frac{z^{2}}{j_{\nu, k}^{2}}\right)
$$

where $j_{\nu, k}$ stands for the k-th positive zero of J_{ν}.

- The zeta function

$$
\sigma_{\nu}(s)=\sum_{k=1}^{\infty} \frac{1}{j_{\nu, k}^{s}}, \quad \text { Res }>1
$$

is known as Raighley function (intensively studied by [Kishore,1963]).

Two examples - Rayleigh special function

- Put $x_{n}=(2 \nu+2 n)^{-1}$, where $\nu>-1$. Then, as a particular case of the factorization theorem, one has

$$
\mathfrak{F}\left(\left\{z x_{n}\right\}_{n=1}^{\infty}\right)=\Gamma(\nu+1)\left(\frac{z}{2}\right)^{-\nu} J_{\nu}(z)=\prod_{k=1}^{\infty}\left(1-\frac{z^{2}}{j_{\nu, k}^{2}}\right)
$$

where $j_{\nu, k}$ stands for the k-th positive zero of J_{ν}.

- The zeta function

$$
\sigma_{\nu}(s)=\sum_{k=1}^{\infty} \frac{1}{j_{\nu, k}^{s}}, \quad \text { Res }>1
$$

is known as Raighley function (intensively studied by [Kishore,1963]).

- Its values $\sigma_{\nu}(2 N)$ for $N \in \mathbb{N}$ are rational functions in ν.
- originally computed by Rayleigh for $1 \leq N \leq 5$;
- by Cayley for $N=8$.

Two examples - Rayleigh special function

- Put $x_{n}=(2 \nu+2 n)^{-1}$, where $\nu>-1$. Then, as a particular case of the factorization theorem, one has

$$
\mathfrak{F}\left(\left\{z x_{n}\right\}_{n=1}^{\infty}\right)=\Gamma(\nu+1)\left(\frac{z}{2}\right)^{-\nu} J_{\nu}(z)=\prod_{k=1}^{\infty}\left(1-\frac{z^{2}}{j_{\nu, k}^{2}}\right)
$$

where $j_{\nu, k}$ stands for the k-th positive zero of J_{ν}.

- The zeta function

$$
\sigma_{\nu}(s)=\sum_{k=1}^{\infty} \frac{1}{j_{\nu, k}^{s}}, \quad \operatorname{Re} s>1
$$

is known as Raighley function (intensively studied by [Kishore,1963]).

- Its values $\sigma_{\nu}(2 N)$ for $N \in \mathbb{N}$ are rational functions in ν.
- originally computed by Rayleigh for $1 \leq N \leq 5$;
- by Cayley for $N=8$.
- The general formula reads

$$
\sigma_{\nu}(2 N)=2^{-2 N} N \sum_{k=1}^{\infty} \sum_{m \in \mathcal{M}(N)} \alpha(m) \prod_{j=1}^{d(m)}\left(\frac{1}{(j+k+\nu-1)(j+k+\nu)}\right)^{m_{j}}
$$

- Put $x_{n}=q^{(2 n-1) / 4}$, where $0<q<1$. Then we have

$$
\mathfrak{F}\left(\left\{w q^{(2 n-1) / 4}\right\}_{n=1}^{\infty}\right)=A_{q}\left(w^{2}\right)
$$

where A_{q} is the q-Airy function.

Two examples - Zeta function associated with q-Airy function

- Put $x_{n}=q^{(2 n-1) / 4}$, where $0<q<1$. Then we have

$$
\mathfrak{F}\left(\left\{w q^{(2 n-1) / 4}\right\}_{n=1}^{\infty}\right)=A_{q}\left(w^{2}\right)
$$

where A_{q} is the q-Airy function.

- Zeros of $A_{q}(z)$ are exactly $0<\iota_{1}(q)<\iota_{2}(q)<\iota_{3}(q)<\ldots$, all of them are simple and

$$
A_{q}(z)=\prod_{k=1}^{\infty}\left(1-\frac{z}{\iota_{k}(q)}\right)
$$

- Put $x_{n}=q^{(2 n-1) / 4}$, where $0<q<1$. Then we have

$$
\mathfrak{F}\left(\left\{w q^{(2 n-1) / 4}\right\}_{n=1}^{\infty}\right)=A_{q}\left(w^{2}\right)
$$

where A_{q} is the q-Airy function.

- Zeros of $A_{q}(z)$ are exactly $0<\iota_{1}(q)<\iota_{2}(q)<\iota_{3}(q)<\ldots$, all of them are simple and

$$
A_{q}(z)=\prod_{k=1}^{\infty}\left(1-\frac{z}{\iota_{k}(q)}\right)
$$

- Formula for integer values of the Rayleigh-like function associated with $A_{q}(z)$, denoted as $Z_{n}(q)$, reads

$$
Z_{n}(q):=\sum_{k=1}^{\infty} \frac{1}{\iota_{k}(q)^{n}}=\frac{n q^{n}}{1-q^{n}} \sum_{m \in \mathcal{M}(n)} \alpha(m) q^{\epsilon_{1}(m)}
$$

where

$$
\forall m \in \mathbb{N}^{\ell}, \epsilon_{1}(m)=\sum_{j=1}^{\ell}(j-1) m_{j} .
$$

Main topic

(1) Characteristic function for Jacobi matrices

- Motivation
- Function \mathfrak{F}
- Spectral properties of Jacobi operator via characteristic function

2 Applications - Examples with concrete operators
(3) The logarithm formula for \mathfrak{F}
(4) Applications - The spectral zeta function \& Examples
(5) References

References

(1) F. Štampach, P. Štooviček: The characteristic function for Jacobi matrices with applications, Linear Alg. Appl. 438 (2013) 4130-4155.
(2) F. Štampach, P. Štoovíček: Special functions and spectrum of Jacobi matrices, Linear Algebra Appl. (2013) (in press).
(3) F. Štampach, P. Šťovíček: A logarithm formula and factorization of the characteristic function of a Jacobi matrix , (2013) (preprint).

Preprints are available on arXiv or at websites http://users.fit.cvut.cz/~stampfra/.

Thank you!

