The characteristic function for infinite Jacobi matrices, the spectral zeta function, and solvable examples

František Štampach

Faculty of Nuclear Sciences and Physical Engineering, CTU in Prague

IWOTA2013 Indian Institute of Science, Bangalore. XXIVth. International Workshop on Operator Theory and its Applications

December 18, 2013

Main topic

Characteristic function for Jacobi matrices

- Motivation
- Function \mathfrak{F}
- Spectral properties of Jacobi operator via characteristic function

Applications – Examples with concrete operators

3 The logarithm formula for \mathfrak{F}

Applications – The spectral zeta function & Examples

Beferences

• Consider Jacobi operator J acting on vectors from standard basis $\{e_n\}_{n=1}^{\infty}$ of $\ell^2(\mathbb{N})$ as

$$Je_n = w_{n-1}e_{n-1} + \lambda_n e_n + w_n e_{n+1}$$
 ($w_0 := 0$)

where $\lambda_n \in \mathbb{C}$, $w_n \in \mathbb{C} \setminus \{0\}$, and $n \in \mathbb{N}$.

• Consider Jacobi operator J acting on vectors from standard basis $\{e_n\}_{n=1}^{\infty}$ of $\ell^2(\mathbb{N})$ as

$$Je_n = w_{n-1}e_{n-1} + \lambda_n e_n + w_n e_{n+1}$$
 ($w_0 := 0$)

where $\lambda_n \in \mathbb{C}$, $w_n \in \mathbb{C} \setminus \{0\}$, and $n \in \mathbb{N}$.

Set

$$Dom(J) = \{ x \in \ell^2(\mathbb{N}) : Jx \in \ell^2(\mathbb{N}) \}.$$

• Consider Jacobi operator J acting on vectors from standard basis $\{e_n\}_{n=1}^{\infty}$ of $\ell^2(\mathbb{N})$ as

$$Je_n = w_{n-1}e_{n-1} + \lambda_n e_n + w_n e_{n+1}$$
 ($w_0 := 0$)

where $\lambda_n \in \mathbb{C}$, $w_n \in \mathbb{C} \setminus \{0\}$, and $n \in \mathbb{N}$.

Set

$$Dom(J) = \{ x \in \ell^2(\mathbb{N}) : Jx \in \ell^2(\mathbb{N}) \}.$$

• The matrix representation of *J* in the standard basis:

$$J = \begin{pmatrix} \lambda_1 & w_1 & & \\ w_1 & \lambda_2 & w_2 & \\ & w_2 & \lambda_3 & w_3 & \\ & & \ddots & \ddots & \ddots \end{pmatrix}$$

• Consider Jacobi operator J acting on vectors from standard basis $\{e_n\}_{n=1}^{\infty}$ of $\ell^2(\mathbb{N})$ as

$$Je_n = w_{n-1}e_{n-1} + \lambda_n e_n + w_n e_{n+1}$$
 ($w_0 := 0$)

where $\lambda_n \in \mathbb{C}$, $w_n \in \mathbb{C} \setminus \{0\}$, and $n \in \mathbb{N}$.

Set

$$Dom(J) = \{ x \in \ell^2(\mathbb{N}) : Jx \in \ell^2(\mathbb{N}) \}.$$

• The matrix representation of *J* in the standard basis:

$$J = \begin{pmatrix} \lambda_1 & w_1 & & \\ w_1 & \lambda_2 & w_2 & & \\ & w_2 & \lambda_3 & w_3 & \\ & & \ddots & \ddots & \ddots \end{pmatrix}$$

• Objective: Investigation of the spectrum of *J* when the diagonal sequence dominates the off-diagonal one in some sense.

• For $z \in \mathbb{C}$ and $\lambda_n > 0$ define

$$A(z) := L^{-1/2} (UW + WU^* - z) L^{-1/2} = \begin{pmatrix} -\frac{z}{\lambda_1} & \frac{w_1}{\sqrt{\lambda_1 \lambda_2}} & \\ \frac{w_1}{\sqrt{\lambda_1 \lambda_2}} & -\frac{z}{\lambda_2} & \frac{w_2}{\sqrt{\lambda_2 \lambda_3}} & \\ \frac{w_2}{\sqrt{\lambda_2 \lambda_3}} & -\frac{z}{\lambda_3} & \frac{w_3}{\sqrt{\lambda_3 \lambda_4}} & \\ & \ddots & \ddots & \ddots \end{pmatrix}$$

where $L = \text{diag}(\lambda_1, \lambda_2, ...)$, $W = \text{diag}(w_1, w_2, ...)$, and U is unilateral shift.

• For $z \in \mathbb{C}$ and $\lambda_n > 0$ define

$$A(z) := L^{-1/2} (UW + WU^* - z) L^{-1/2} = \begin{pmatrix} -\frac{z}{\lambda_1} & \frac{w_1}{\sqrt{\lambda_1 \lambda_2}} & & \\ \frac{w_1}{\sqrt{\lambda_1 \lambda_2}} & -\frac{z}{\lambda_2} & \frac{w_2}{\sqrt{\lambda_2 \lambda_3}} & \\ & \frac{w_2}{\sqrt{\lambda_2 \lambda_3}} & -\frac{z}{\lambda_3} & \frac{w_3}{\sqrt{\lambda_3 \lambda_4}} \\ & & \ddots & \ddots & \ddots \end{pmatrix}$$

where $L = \operatorname{diag}(\lambda_1, \lambda_2, \dots)$, $W = \operatorname{diag}(w_1, w_2, \dots)$, and U is unilateral shift.

• Say the diagonal dominance assumption means A(z) to be Hilbert-Schmidt.

• For $z \in \mathbb{C}$ and $\lambda_n > 0$ define

$$A(z) := L^{-1/2} (UW + WU^* - z) L^{-1/2} = \begin{pmatrix} -\frac{z}{\lambda_1} & \frac{w_1}{\sqrt{\lambda_1 \lambda_2}} & & \\ \frac{w_1}{\sqrt{\lambda_1 \lambda_2}} & -\frac{z}{\lambda_2} & \frac{w_2}{\sqrt{\lambda_2 \lambda_3}} & \\ & \frac{w_2}{\sqrt{\lambda_2 \lambda_3}} & -\frac{z}{\lambda_3} & \frac{w_3}{\sqrt{\lambda_3 \lambda_4}} \\ & & \ddots & \ddots & \ddots \end{pmatrix}$$

where $L = \text{diag}(\lambda_1, \lambda_2, ...)$, $W = \text{diag}(w_1, w_2, ...)$, and U is unilateral shift.

Say the diagonal dominance assumption means A(z) to be Hilbert-Schmidt.
If J = L + UW + WU* one can write (formally at least)

$$(J-z)^{-1} = L^{-1/2}(1 + A(z))^{-1}L^{-1/2}.$$

• For $z \in \mathbb{C}$ and $\lambda_n > 0$ define

$$A(z) := L^{-1/2} (UW + WU^* - z) L^{-1/2} = \begin{pmatrix} -\frac{z}{\lambda_1} & \frac{w_1}{\sqrt{\lambda_1 \lambda_2}} & & \\ \frac{w_1}{\sqrt{\lambda_1 \lambda_2}} & -\frac{z}{\lambda_2} & \frac{w_2}{\sqrt{\lambda_2 \lambda_3}} & \\ & \frac{w_2}{\sqrt{\lambda_2 \lambda_3}} & -\frac{z}{\lambda_3} & \frac{w_3}{\sqrt{\lambda_3 \lambda_4}} \\ & & \ddots & \ddots & \ddots \end{pmatrix}$$

where $L = \text{diag}(\lambda_1, \lambda_2, ...)$, $W = \text{diag}(w_1, w_2, ...)$, and U is unilateral shift.

- Say the diagonal dominance assumption means *A*(*z*) to be Hilbert-Schmidt.
- If $J = L + UW + WU^*$ one can write (formally at least)

$$(J-z)^{-1} = L^{-1/2}(1 + A(z))^{-1}L^{-1/2}.$$

• From which one deduces

$$z \in \rho(J)$$
 iff $-1 \in \rho(A(z))$.

• For $z \in \mathbb{C}$ and $\lambda_n > 0$ define

$$A(z) := L^{-1/2} (UW + WU^* - z) L^{-1/2} = \begin{pmatrix} -\frac{z_1}{\lambda_1} & \frac{w_1}{\sqrt{\lambda_1 \lambda_2}} & & \\ \frac{w_1}{\sqrt{\lambda_1 \lambda_2}} & -\frac{z_2}{\lambda_2} & \frac{w_2}{\sqrt{\lambda_2 \lambda_3}} & \\ & \frac{w_2}{\sqrt{\lambda_2 \lambda_3}} & -\frac{z_3}{\lambda_3} & \frac{w_3}{\sqrt{\lambda_3 \lambda_4}} \\ & & \ddots & \ddots & \ddots \end{pmatrix}$$

where $L = \text{diag}(\lambda_1, \lambda_2, ...)$, $W = \text{diag}(w_1, w_2, ...)$, and U is unilateral shift.

- Say the diagonal dominance assumption means A(z) to be Hilbert-Schmidt.
- If $J = L + UW + WU^*$ one can write (formally at least)

$$(J-z)^{-1} = L^{-1/2}(1 + A(z))^{-1}L^{-1/2}.$$

From which one deduces

$$z \in \rho(J)$$
 iff $-1 \in \rho(A(z))$.

• Hence, to investigate the spectrum of J one can consider operator A(z) instead.

• For $z \in \mathbb{C}$ and $\lambda_n > 0$ define

$$A(z) := L^{-1/2} (UW + WU^* - z) L^{-1/2} = \begin{pmatrix} -\frac{z_1}{\lambda_1} & \frac{w_1}{\sqrt{\lambda_1 \lambda_2}} & & \\ \frac{w_1}{\sqrt{\lambda_1 \lambda_2}} & -\frac{z}{\lambda_2} & \frac{w_2}{\sqrt{\lambda_2 \lambda_3}} & \\ & \frac{w_2}{\sqrt{\lambda_2 \lambda_3}} & -\frac{z}{\lambda_3} & \frac{w_3}{\sqrt{\lambda_3 \lambda_4}} & \\ & & \ddots & \ddots & \ddots \end{pmatrix}$$

where $L = \text{diag}(\lambda_1, \lambda_2, ...)$, $W = \text{diag}(w_1, w_2, ...)$, and U is unilateral shift.

- Say the diagonal dominance assumption means A(z) to be Hilbert-Schmidt.
- If $J = L + UW + WU^*$ one can write (formally at least)

$$(J-z)^{-1} = L^{-1/2}(1 + A(z))^{-1}L^{-1/2}.$$

• From which one deduces

$$z \in \rho(J)$$
 iff $-1 \in \rho(A(z))$.

Hence, to investigate the spectrum of *J* one can consider operator *A*(*z*) instead.
 Main advantages are:

• For $z \in \mathbb{C}$ and $\lambda_n > 0$ define

$$A(z) := L^{-1/2} (UW + WU^* - z) L^{-1/2} = \begin{pmatrix} -\frac{z_1}{\lambda_1} & \frac{w_1}{\sqrt{\lambda_1 \lambda_2}} & & \\ \frac{w_1}{\sqrt{\lambda_1 \lambda_2}} & -\frac{z}{\lambda_2} & \frac{w_2}{\sqrt{\lambda_2 \lambda_3}} & \\ & \frac{w_2}{\sqrt{\lambda_2 \lambda_3}} & -\frac{z}{\lambda_3} & \frac{w_3}{\sqrt{\lambda_3 \lambda_4}} & \\ & & \ddots & \ddots & \ddots \end{pmatrix}$$

where $L = \text{diag}(\lambda_1, \lambda_2, ...)$, $W = \text{diag}(w_1, w_2, ...)$, and U is unilateral shift.

- Say the diagonal dominance assumption means A(z) to be Hilbert-Schmidt.
- If $J = L + UW + WU^*$ one can write (formally at least)

$$(J-z)^{-1} = L^{-1/2}(1 + A(z))^{-1}L^{-1/2}.$$

• From which one deduces

$$z \in \rho(J)$$
 iff $-1 \in \rho(A(z))$.

• Hence, to investigate the spectrum of J one can consider operator A(z) instead.

Main advantages are:

• *A*(*z*) is Hilbert-Schmidt while *J* is unbounded;

• For $z \in \mathbb{C}$ and $\lambda_n > 0$ define

$$A(z) := L^{-1/2} (UW + WU^* - z) L^{-1/2} = \begin{pmatrix} -\frac{z_1}{\lambda_1} & \frac{w_1}{\sqrt{\lambda_1 \lambda_2}} & & \\ \frac{w_1}{\sqrt{\lambda_1 \lambda_2}} & -\frac{z}{\lambda_2} & \frac{w_2}{\sqrt{\lambda_2 \lambda_3}} & \\ & \frac{w_2}{\sqrt{\lambda_2 \lambda_3}} & -\frac{z}{\lambda_3} & \frac{w_3}{\sqrt{\lambda_3 \lambda_4}} \\ & & \ddots & \ddots & \ddots \end{pmatrix}$$

where $L = \text{diag}(\lambda_1, \lambda_2, ...)$, $W = \text{diag}(w_1, w_2, ...)$, and U is unilateral shift.

- Say the diagonal dominance assumption means A(z) to be Hilbert-Schmidt.
- If $J = L + UW + WU^*$ one can write (formally at least)

$$(J-z)^{-1} = L^{-1/2}(1 + A(z))^{-1}L^{-1/2}.$$

• From which one deduces

$$z \in \rho(J)$$
 iff $-1 \in \rho(A(z))$.

• Hence, to investigate the spectrum of J one can consider operator A(z) instead.

Main advantages are:

- A(z) is Hilbert-Schmidt while J is unbounded;
- one can use function $z \mapsto det_2(1 + A(z))$ which is well defined as an entire function.

Definition

Let me define $\mathfrak{F}: D \to \mathbb{C}$ by relation

$$\mathfrak{F}(x) = 1 + \sum_{m=1}^{\infty} (-1)^m \sum_{k_1=1}^{\infty} \sum_{k_2=k_1+2}^{\infty} \dots \sum_{k_m=k_{m-1}+2}^{\infty} x_{k_1} x_{k_1+1} x_{k_2} x_{k_2+1} \dots x_{k_m} x_{k_m+1},$$

where

$$D = \left\{ \{x_k\}_{k=1}^{\infty} \subset \mathbb{C}; \sum_{k=1}^{\infty} |x_k x_{k+1}| < \infty \right\}.$$

For a finite number of complex variables let me identify $\mathfrak{F}(x_1, x_2, \dots, x_n)$ with $\mathfrak{F}(x)$ where $x = (x_1, x_2, \dots, x_n, 0, 0, 0, \dots)$.

Definition

Let me define $\mathfrak{F}: D \to \mathbb{C}$ by relation

$$\mathfrak{F}(x) = 1 + \sum_{m=1}^{\infty} (-1)^m \sum_{k_1=1}^{\infty} \sum_{k_2=k_1+2}^{\infty} \dots \sum_{k_m=k_{m-1}+2}^{\infty} x_{k_1} x_{k_1+1} x_{k_2} x_{k_2+1} \dots x_{k_m} x_{k_m+1},$$

where

$$D = \left\{ \{x_k\}_{k=1}^{\infty} \subset \mathbb{C}; \sum_{k=1}^{\infty} |x_k x_{k+1}| < \infty \right\}.$$

For a finite number of complex variables let me identify $\mathfrak{F}(x_1, x_2, ..., x_n)$ with $\mathfrak{F}(x)$ where $x = (x_1, x_2, ..., x_n, 0, 0, 0, ...)$.

• F is well defined on D due to estimation

$$|\mathfrak{F}(x)| \leq \exp\left(\sum_{k=1}^{\infty} |x_k x_{k+1}|\right).$$

Definition

Let me define $\mathfrak{F}: D \to \mathbb{C}$ by relation

$$\mathfrak{F}(x) = 1 + \sum_{m=1}^{\infty} (-1)^m \sum_{k_1=1}^{\infty} \sum_{k_2=k_1+2}^{\infty} \dots \sum_{k_m=k_{m-1}+2}^{\infty} x_{k_1} x_{k_1+1} x_{k_2} x_{k_2+1} \dots x_{k_m} x_{k_m+1},$$

where

$$D = \left\{ \{x_k\}_{k=1}^{\infty} \subset \mathbb{C}; \sum_{k=1}^{\infty} |x_k x_{k+1}| < \infty \right\}.$$

For a finite number of complex variables let me identify $\mathfrak{F}(x_1, x_2, ..., x_n)$ with $\mathfrak{F}(x)$ where $x = (x_1, x_2, ..., x_n, 0, 0, 0, ...)$.

• \mathfrak{F} is well defined on *D* due to estimation

$$|\mathfrak{F}(x)| \leq \exp\left(\sum_{k=1}^{\infty} |x_k x_{k+1}|\right).$$

Note that the domain D is not a linear space. One has, however, ℓ²(N) ⊂ D.

Properties of \mathfrak{F}

• For all $x \in D$ and $k = 1, 2, \ldots$ one has

$$\mathfrak{F}(x) = \mathfrak{F}(x_1, \ldots, x_k) \mathfrak{F}(T^k x) - \mathfrak{F}(x_1, \ldots, x_{k-1}) x_k x_{k+1} \mathfrak{F}(T^{k+1} x)$$

where T denotes the shift operator from the left defined on the space of complex sequences:

$$T(\{x_k\}_{k=1}^{\infty}) = \{x_{k+1}\}_{k=1}^{\infty}.$$

Properties of \mathfrak{F}

• For all $x \in D$ and $k = 1, 2, \ldots$ one has

$$\mathfrak{F}(x) = \mathfrak{F}(x_1, \ldots, x_k) \mathfrak{F}(T^k x) - \mathfrak{F}(x_1, \ldots, x_{k-1}) x_k x_{k+1} \mathfrak{F}(T^{k+1} x)$$

where T denotes the shift operator from the left defined on the space of complex sequences:

$$T({x_k}_{k=1}^\infty) = {x_{k+1}}_{k=1}^\infty.$$

• Especially for k = 1, one gets the simple relation

$$\mathfrak{F}(x) = \mathfrak{F}(Tx) - x_1 x_2 \mathfrak{F}(T^2 x).$$

Properties of \mathfrak{F}

• For all $x \in D$ and $k = 1, 2, \ldots$ one has

$$\mathfrak{F}(x) = \mathfrak{F}(x_1, \ldots, x_k) \mathfrak{F}(T^k x) - \mathfrak{F}(x_1, \ldots, x_{k-1}) x_k x_{k+1} \mathfrak{F}(T^{k+1} x)$$

where T denotes the shift operator from the left defined on the space of complex sequences:

$$T({x_k}_{k=1}^\infty) = {x_{k+1}}_{k=1}^\infty$$

• Especially for k = 1, one gets the simple relation

$$\mathfrak{F}(x) = \mathfrak{F}(Tx) - x_1 x_2 \mathfrak{F}(T^2 x).$$

• Functions \mathfrak{F} restricted on $\ell^2(\mathbb{N})$ is a continuous functional on $\ell^2(\mathbb{N})$. Further, for $x \in D$, it holds

$$\lim_{n\to\infty}\mathfrak{F}(x_1,x_2,\ldots,x_n)=\mathfrak{F}(x) \quad \text{and} \quad \lim_{n\to\infty}\mathfrak{F}(T^nx)=1.$$

Other properties of \mathfrak{F}

• For $\mathfrak{F}(x_1, x_2, \ldots, x_n)$ it holds:

$$\mathfrak{F}(x_1, x_2, \dots, x_n) = \det \begin{pmatrix} 1 & x_1 & & \\ x_2 & 1 & x_2 & & \\ & \ddots & \ddots & \ddots & \\ & & x_{n-1} & 1 & x_{n-1} \\ & & & & x_n & 1 \end{pmatrix}.$$

• For $\mathfrak{F}(x_1, x_2, \ldots, x_n)$ it holds:

$$\mathfrak{F}(x_1, x_2, \dots, x_n) = \det \begin{pmatrix} 1 & x_1 & & & \\ x_2 & 1 & x_2 & & \\ & \ddots & \ddots & \ddots & \\ & & x_{n-1} & 1 & x_{n-1} \\ & & & & x_n & 1 \end{pmatrix}.$$

• Equivalently we can define $\mathfrak{F}(x)$, for $x \in D$, as the limit

$$\mathfrak{F}(x) = \lim_{n \to \infty} \mathfrak{F}(x_1, x_2, \dots, x_n).$$

Function \mathfrak{F} and continued fractions

• Function \mathfrak{F} is related to a continued fraction. For a given $x \in D$ such that $\mathfrak{F}(x) \neq 0$, it holds

$$\frac{\mathfrak{F}(Tx)}{\mathfrak{F}(x)} = \frac{1}{1 - \frac{x_1 x_2}{1 - \frac{x_2 x_3}{1 - \frac{x_3 x_4}{1 - \dots}}}}.$$

• Function \mathfrak{F} is related to a continued fraction. For a given $x \in D$ such that $\mathfrak{F}(x) \neq 0$, it holds

$$\frac{\mathfrak{F}(Tx)}{\mathfrak{F}(x)} = \frac{1}{1 - \frac{x_1 x_2}{1 - \frac{x_2 x_3}{1 - \frac{x_2 x_3}{1 - \frac{x_3 x_4}{1 - \dots}}}}.$$

Remark: By using properties of the function \mathfrak{F} we can show that with the continued fraction of the above form (S-fraction) is unambiguously associated a formal power series $f(x) \in \mathbb{C}[[x]]$ where $x = \{x_1, x_2, ...\}$ [Zajta&Pandikow, 1975].

• Function \mathfrak{F} is related to a continued fraction. For a given $x \in D$ such that $\mathfrak{F}(x) \neq 0$, it holds

$$\frac{\mathfrak{F}(Tx)}{\mathfrak{F}(x)} = \frac{1}{1 - \frac{x_1 x_2}{1 - \frac{x_2 x_3}{1 - \frac{x_3 x_4}{1 - \dots}}}}.$$

Remark: By using properties of the function \mathfrak{F} we can show that with the continued fraction of the above form (S-fraction) is unambiguously associated a formal power series $f(x) \in \mathbb{C}[[x]]$ where $x = \{x_1, x_2, ...\}$ [Zajta&Pandikow, 1975]. The explicit formula reads

$$f(x) = 1 + \sum_{\ell=1}^{\infty} \sum_{m \in \mathbb{N}^{\ell}} \beta(m) \prod_{j=1}^{\ell} (x_j x_{j+1})^{m_j}.$$

where, for $m \in \mathbb{N}^{\ell}$, we denote

$$\beta(m) = \prod_{j=1}^{\ell-1} {m_j + m_{j+1} - 1 \choose m_{j+1}}.$$

Various special functions are expressible in terms of \mathfrak{F} applied to a suitable sequence, e.g.:

Various special functions are expressible in terms of \mathfrak{F} applied to a suitable sequence, e.g.:

• Hypergeometric Functions ₀*F*₁, especially Bessel Functions,

$$\mathfrak{F}\left(\left\{\frac{w}{k+z}\right\}_{k=1}^{\infty}\right) = {}_{0}F_{1}(;z+1,-w^{2}) = \Gamma(1+z)w^{-z}J_{z}(2w)$$

 $(w \in \mathbb{C}, z \notin -\mathbb{N})$

Various special functions are expressible in terms of \mathfrak{F} applied to a suitable sequence, e.g.:

• Hypergeometric Functions ₀*F*₁, especially Bessel Functions,

$$\mathfrak{F}\left(\left\{\frac{w}{k+z}\right\}_{k=1}^{\infty}\right) = {}_{0}F_{1}(;z+1,-w^{2}) = \Gamma(1+z)w^{-z}J_{z}(2w)$$

 $(w \in \mathbb{C}, z \notin -\mathbb{N})$

• Confluent Hypergeometric Functions 1 F1, especially Regular Coulomb Wave Function

Various special functions are expressible in terms of \mathfrak{F} applied to a suitable sequence, e.g.:

• Hypergeometric Functions ₀*F*₁, especially Bessel Functions,

$$\mathfrak{F}\left(\left\{\frac{w}{k+z}\right\}_{k=1}^{\infty}\right) = {}_{0}F_{1}(;z+1,-w^{2}) = \Gamma(1+z)w^{-z}J_{z}(2w)$$

 $(w \in \mathbb{C}, z \notin -\mathbb{N})$

- Confluent Hypergeometric Functions ₁*F*₁, especially Regular Coulomb Wave Function
- *q*-Hypergeometric Functions ₀ \u03c6₁, *q*-Bessel Functions, especially Ramanujan (or *q*-Airy) function

$$\Im\left(\left\{z^{1/2}q^{(2k-1)/4}\right\}_{k=1}^{\infty}\right) = {}_{0}\phi_{1}(;0;q,-qz)$$

 $(z \in \mathbb{C}, 0 < q < 1)$

Various special functions are expressible in terms of \mathfrak{F} applied to a suitable sequence, e.g.:

• Hypergeometric Functions ₀*F*₁, especially Bessel Functions,

$$\mathfrak{F}\left(\left\{\frac{w}{k+z}\right\}_{k=1}^{\infty}\right) = {}_{0}F_{1}(;z+1,-w^{2}) = \Gamma(1+z)w^{-z}J_{z}(2w)$$

 $(w \in \mathbb{C}, z \notin -\mathbb{N})$

- Confluent Hypergeometric Functions ₁*F*₁, especially Regular Coulomb Wave Function
- *q*-Hypergeometric Functions ₀ \u03c6₁, *q*-Bessel Functions, especially Ramanujan (or *q*-Airy) function

$$\mathfrak{F}\left(\left\{z^{1/2}q^{(2k-1)/4}\right\}_{k=1}^{\infty}\right) = {}_{0}\phi_{1}\left(;0;q,-qz\right)$$

 $(z \in \mathbb{C}, 0 < q < 1)$

q-Confluent Hypergeometric Functions 1φ1

Proposition

Let $\{\lambda_n\}$ be positive and

$$\sum_{n=1}^{\infty} \frac{1}{\lambda_n^2} < \infty \quad \text{and} \quad \sum_{n=1}^{\infty} \left| \frac{w_n^2}{\lambda_n \lambda_{n+1}} \right| < \infty.$$

Then A(z) is Hilbert-Schmidt for all $z \in \mathbb{C}$ and it holds

$$\det_2(1 + A(z)) = \mathfrak{F}\left(\left\{\frac{\gamma_n^2}{\lambda_n - z}\right\}_{n=1}^{\infty}\right) \prod_{n=1}^{\infty} \left(1 - \frac{z}{\lambda_n}\right) e^{z/\lambda_n}$$

where the sequence $\{\gamma_n\}$ can be defined recursively as $\gamma_1 = 1$, $\gamma_{k+1} = w_k/\gamma_k$.

Proposition

Let $\{\lambda_n\}$ be positive and

$$\sum_{n=1}^{\infty} \frac{1}{\lambda_n^2} < \infty \quad \text{and} \quad \sum_{n=1}^{\infty} \left| \frac{w_n^2}{\lambda_n \lambda_{n+1}} \right| < \infty.$$

Then A(z) is Hilbert-Schmidt for all $z \in \mathbb{C}$ and it holds

$$\det_2(1+A(z)) = \mathfrak{F}\left(\left\{\frac{\gamma_n^2}{\lambda_n - z}\right\}_{n=1}^{\infty}\right) \prod_{n=1}^{\infty} \left(1 - \frac{z}{\lambda_n}\right) e^{z/\lambda_n}$$

where the sequence $\{\gamma_n\}$ can be defined recursively as $\gamma_1 = 1$, $\gamma_{k+1} = w_k/\gamma_k$.

• In the following we focus just on the function

$$F_J(z) := \mathfrak{F}\left(\left\{\frac{\gamma_n^2}{\lambda_n-z}\right\}_{n=1}^{\infty}\right).$$

Characteristic function of complex Jacobi matrix

• Function F_J is well defined on $\mathbb{C} \setminus \overline{\{\lambda_n\}}$ if

$$\left\{\frac{\gamma_n^2}{\lambda_n - z}\right\}_{n=1}^{\infty} \in D \quad \text{for all } z \in \mathbb{C} \setminus \overline{\{\lambda_n\}}$$

which holds if there is at least one $z_0 \in \mathbb{C} \setminus \overline{\{\lambda_n\}}$ such that

$$\sum_{n=1}^{\infty} \left| \frac{w_n^2}{(\lambda_n - z_0)(\lambda_{n+1} - z_0)} \right| < \infty$$

 $(\lambda_n \text{ and } w_n \text{ are complex!})$

Characteristic function of complex Jacobi matrix

• Function F_J is well defined on $\mathbb{C} \setminus \overline{\{\lambda_n\}}$ if

$$\left\{\frac{\gamma_n^2}{\lambda_n - z}\right\}_{n=1}^{\infty} \in D \quad \text{for all } z \in \mathbb{C} \setminus \overline{\{\lambda_n\}}$$

which holds if there is at least one $z_0 \in \mathbb{C} \setminus \overline{\{\lambda_n\}}$ such that

$$\sum_{n=1}^{\infty} \left| \frac{w_n^2}{(\lambda_n - z_0)(\lambda_{n+1} - z_0)} \right| < \infty$$

 $(\lambda_n \text{ and } w_n \text{ are complex!})$

• This assumptions is assumed everywhere from now.

Characteristic function of complex Jacobi matrix

• Function F_J is well defined on $\mathbb{C} \setminus \overline{\{\lambda_n\}}$ if

$$\left\{\frac{\gamma_n^2}{\lambda_n - z}\right\}_{n=1}^{\infty} \in D \quad \text{for all } z \in \mathbb{C} \setminus \overline{\{\lambda_n\}}$$

which holds if there is at least one $z_0 \in \mathbb{C} \setminus \overline{\{\lambda_n\}}$ such that

$$\sum_{n=1}^{\infty} \left| \frac{w_n^2}{(\lambda_n - z_0)(\lambda_{n+1} - z_0)} \right| < \infty$$

 $(\lambda_n \text{ and } w_n \text{ are complex!})$

- This assumptions is assumed everywhere from now.
- *F_J* is meromorphic function on C \ der({λ_n}) with poles in z ∈ {λ_n} \ der({λ_n}) of finite order less or equal to the number

$$r(z):=\sum_{n=1}^{\infty}\delta_{z,\lambda_n}.$$

۲

$$\mathfrak{Z}(J) := \left\{ z \in \mathbb{C} \setminus \operatorname{der}(\{\lambda_n\}); \lim_{u \to z} (u - z)^{r(z)} F_J(u) = 0 \right\},$$
۲

$$\mathfrak{Z}(J) := \left\{ z \in \mathbb{C} \setminus \operatorname{der}(\{\lambda_n\}); \lim_{u \to z} (u-z)^{r(z)} F_J(u) = 0 \right\},$$

• for $k \in \mathbb{Z}_+$ and $z \in \mathbb{C} \setminus der(\{\lambda_n\})$, we put

$$\xi_k(z) := \lim_{u \to z} (u - z)^{r(z)} \left(\prod_{l=1}^k \frac{w_{l-1}}{u - \lambda_l} \right) \mathfrak{F} \left(\left\{ \frac{\gamma_l^2}{\lambda_l - u} \right\}_{l=k+1}^{\infty} \right)$$

where we set $w_0 := 1$.

۲

$$\mathfrak{Z}(J):=\left\{z\in\mathbb{C}\setminus\operatorname{der}(\{\lambda_n\});\ \lim_{u\to z}(u-z)^{r(z)}F_J(u)=0
ight\},$$

• for $k \in \mathbb{Z}_+$ and $z \in \mathbb{C} \setminus \operatorname{der}(\{\lambda_n\})$, we put

$$\xi_k(z) := \lim_{u \to z} (u - z)^{r(z)} \left(\prod_{l=1}^k \frac{w_{l-1}}{u - \lambda_l} \right) \mathfrak{F} \left(\left\{ \frac{\gamma_l^2}{\lambda_l - u} \right\}_{l=k+1}^{\infty} \right)$$

where we set $w_0 := 1$.

Theorem

Equalities

$$\operatorname{spec}(J) \setminus \operatorname{der}(\{\lambda_n\}) = \operatorname{spec}_p(J) \setminus \operatorname{der}(\{\lambda_n\}) = \mathfrak{Z}(J)$$

hold and, for $z \in \mathfrak{Z}(J)$,

$$\xi(z) := (\xi_1(z), \xi_2(z), \xi_3(z), \ldots)$$

is the eigenvector for eigenvalue z. Moreover, for $z \notin \overline{\{\lambda_n\}}$, vector $\xi(z)$ satisfies the formula

$$\sum_{k=1}^{\infty} (\xi_k(z))^2 = \xi'_0(z)\xi_1(z) - \xi_0(z)\xi'_1(z).$$

Green Function

• The Green function $G_{ij}(z) = (e_i, (J-z)^{-1}e_j)$ of J is expressible in terms of \mathfrak{F} ,

$$G_{ij}(z) = -\frac{1}{w_M} \prod_{l=m}^{M} \left(\frac{w_l}{z - \lambda_l}\right) \frac{\mathfrak{F}\left(\left\{\frac{\gamma_l^2}{\lambda_l - z}\right\}_{l=1}^{m-1}\right) \mathfrak{F}\left(\left\{\frac{\gamma_l^2}{\lambda_l - z}\right\}_{l=M+1}^{\infty}\right)}{\mathfrak{F}\left(\left\{\frac{\gamma_l^2}{\lambda_l - z}\right\}_{l=1}^{\infty}\right)}$$

where $z \in \rho(J)$, $m := \min(i, j)$, and $M := \max(i, j)$.

Green Function

• The Green function $G_{ij}(z) = (e_i, (J-z)^{-1}e_j)$ of J is expressible in terms of \mathfrak{F} ,

$$G_{ij}(z) = -\frac{1}{w_M} \prod_{l=m}^{M} \left(\frac{w_l}{z - \lambda_l}\right) \frac{\mathfrak{F}\left(\left\{\frac{\gamma_l^2}{\lambda_l - z}\right\}_{l=1}^{m-1}\right) \mathfrak{F}\left(\left\{\frac{\gamma_l^2}{\lambda_l - z}\right\}_{l=M+1}^{\infty}\right)}{\mathfrak{F}\left(\left\{\frac{\gamma_l^2}{\lambda_l - z}\right\}_{l=1}^{\infty}\right)}$$

where $z \in \rho(J)$, $m := \min(i, j)$, and $M := \max(i, j)$.

• Especially, we get a compact formula for the Weyl m-function $m(z) = G_{11}(z)$,

$$m(z) = \frac{\mathfrak{F}\left(\left\{\frac{\gamma_j^2}{\lambda_j - z}\right\}_{j=2}^{\infty}\right)}{(\lambda_1 - z)\mathfrak{F}\left(\left\{\frac{\gamma_j^2}{\lambda_j - z}\right\}_{j=1}^{\infty}\right)}.$$

Characteristic function for Jacobi matrices

- Motivation
- Function \mathfrak{F}
- Spectral properties of Jacobi operator via characteristic function

Applications – Examples with concrete operators

- 3 The logarithm formula for \mathfrak{F}
- Applications The spectral zeta function & Examples

References

$$J = \begin{pmatrix} \alpha & w & & \\ w & 2\alpha & w & \\ & w & 3\alpha & w \\ & & \ddots & \ddots & \ddots \end{pmatrix}$$

٠

$$J = \begin{pmatrix} \alpha & w & & \\ w & 2\alpha & w & \\ & w & 3\alpha & w \\ & & \ddots & \ddots & \ddots \end{pmatrix}$$

• The characteristic function can be expressed as

$$F_{J}(z) = \left(\alpha^{-1}w\right)^{\alpha^{-1}z} \Gamma\left(1 - \alpha^{-1}z\right) J_{-\alpha^{-1}z}\left(2\alpha^{-1}w\right).$$

$$J = \begin{pmatrix} \alpha & w & & \\ w & 2\alpha & w & \\ & w & 3\alpha & w \\ & & \ddots & \ddots & \ddots \end{pmatrix}$$

The characteristic function can be expressed as

$$F_J(z) = \left(\alpha^{-1}w\right)^{\alpha^{-1}z} \Gamma\left(1-\alpha^{-1}z\right) J_{-\alpha^{-1}z}\left(2\alpha^{-1}w\right).$$

Hence, one gets

$$\operatorname{spec}(J) = \left\{ z \in \mathbb{C} \mid J_{-\alpha^{-1}z}\left(2\alpha^{-1}w\right) = 0 \right\},$$

$$J = \begin{pmatrix} \alpha & w & & \\ w & 2\alpha & w & \\ & w & 3\alpha & w \\ & & \ddots & \ddots & \ddots \end{pmatrix}$$

The characteristic function can be expressed as

$$F_J(z) = \left(\alpha^{-1}w\right)^{\alpha^{-1}z} \Gamma\left(1-\alpha^{-1}z\right) J_{-\alpha^{-1}z}\left(2\alpha^{-1}w\right).$$

Hence, one gets

spec(J) =
$$\left\{ z \in \mathbb{C} \mid J_{-\alpha^{-1}z}\left(2\alpha^{-1}w\right) = 0 \right\},$$

• Further for the k-th entry of the respective eigenvector one has

$$v_k(z) = (-1)^k J_{k-\alpha^{-1}z}\left(2\alpha^{-1}w\right).$$

$$J = \begin{pmatrix} \alpha & w & & & \\ w & 2\alpha & w & & \\ & w & 3\alpha & w & \\ & & \ddots & \ddots & \ddots \end{pmatrix}$$

• The characteristic function can be expressed as

$$F_J(z) = \left(\alpha^{-1}w\right)^{\alpha^{-1}z} \Gamma\left(1-\alpha^{-1}z\right) J_{-\alpha^{-1}z}\left(2\alpha^{-1}w\right).$$

Hence, one gets

spec(J) =
$$\left\{ z \in \mathbb{C} \mid J_{-\alpha^{-1}z}\left(2\alpha^{-1}w\right) = 0 \right\},$$

• Further for the k-th entry of the respective eigenvector one has

$$v_k(z) = (-1)^k J_{k-\alpha^{-1}z}\left(2\alpha^{-1}w\right).$$

These results has been observed by many authors before [Gard & Zakrajšek, 1973].

$$J = \begin{pmatrix} 1 & \beta & & \\ \beta & q & \beta \sqrt{q} & & \\ & \beta \sqrt{q} & q^2 & \beta q & \\ & & \ddots & \ddots & \ddots \end{pmatrix}$$

$$J = egin{pmatrix} 1 & eta & & & \ eta & eta & eta & eta \sqrt{eta} & & \ eta \sqrt{eta} & eta^2 & eta eta & \ & \ddots & \ddots & \ddots & \ddots \end{pmatrix}.$$

• The characteristic function $F_J(z)$ can be identified with a basic hypergeometric series $_0\phi_1$:

$$F_{J}(z) = {}_{0}\phi_{1}(; z^{-1}; q, -\beta^{2}z^{-2}), \qquad (z \notin q^{\mathbb{Z}_{+}} \cup \{0\}).$$

$$J = egin{pmatrix} 1 & eta & & & \ eta & eta & eta & eta \sqrt{eta} & & \ eta \sqrt{eta} & eta^2 & eta eta & \ & \ddots & \ddots & \ddots & \ddots \end{pmatrix}.$$

• The characteristic function $F_J(z)$ can be identified with a basic hypergeometric series $_0\phi_1$:

$$F_J(z) = {}_0\phi_1(;z^{-1};q,-\beta^2 z^{-2}), \qquad (z \notin q^{\mathbb{Z}_+} \cup \{0\}).$$

• If we put $z = q^{\nu+1}$ the characteristic function can be written in terms of *q*-Bessel function (second Jackson).

$$J = egin{pmatrix} 1 & eta & & & \ eta & eta & eta & eta \sqrt{q} & & \ eta \sqrt{q} & eta^2 & eta q & \ & \ddots & \ddots & \ddots & \ddots \end{pmatrix}.$$

• The characteristic function $F_J(z)$ can be identified with a basic hypergeometric series $_0\phi_1$:

$$F_{J}(z) = {}_{0}\phi_{1}(;z^{-1};q,-\beta^{2}z^{-2}), \qquad (z \notin q^{\mathbb{Z}_{+}} \cup \{0\}).$$

- If we put $z = q^{\nu+1}$ the characteristic function can be written in terms of *q*-Bessel function (second Jackson).
- It holds

$$\operatorname{spec}(J) = \left\{ z^{-1} \in \mathbb{C} \mid (z;q)_{\infty \ 0} \phi_1(;z;q,-\beta^2 z^2) = 0 \right\} \cup \{0\}.$$

$$J = egin{pmatrix} 1 & eta & & & \ eta & eta & eta & eta \sqrt{eta} & & \ eta \sqrt{eta} & eta^2 & eta eta & \ & \ddots & \ddots & \ddots & \ddots \end{pmatrix}.$$

• The characteristic function $F_J(z)$ can be identified with a basic hypergeometric series $_0\phi_1$:

$$F_J(z) = {}_0\phi_1(;z^{-1};q,-\beta^2 z^{-2}), \qquad (z \notin q^{\mathbb{Z}_+} \cup \{0\}).$$

- If we put z = q^{v+1} the characteristic function can be written in terms of q-Bessel function (second Jackson).
- It holds

$$\operatorname{spec}(J) = \left\{ z^{-1} \in \mathbb{C} \mid (z;q)_{\infty \ 0} \phi_1(;z;q,-\beta^2 z^2) = 0 \right\} \cup \{0\}.$$

• The *k*-entry of the eigenvector corresponding to eigenvalue z^{-1} reads

$$v_k(z^{-1}) = q^{(k-1)(k-2)/4} \, (\beta z)^{k-1} \, (zq^k; q)_{\infty \, 0} \phi_1(; zq^k; q, -q^k \beta^2 z^2) \, .$$

• In particular, for the characteristic function in the case $\lambda = 0$ and $w \in \ell^2(\mathbb{N})$, it holds

$$F_{J}(z^{-1}) = \mathfrak{F}\left(\left\{z\gamma_{n}^{2}\right\}_{n=1}^{\infty}\right) = \sum_{m=0}^{\infty} (-z^{2})^{m} \sum_{k_{1}=1}^{\infty} \sum_{k_{2}=k_{1}+2}^{\infty} \cdots \sum_{k_{m}=k_{m-1}+2}^{\infty} w_{k_{1}}^{2} w_{k_{2}}^{2} \cdots w_{k_{m}}^{2}.$$

Hence the spectrum of J is symmetric with respect to the origin.

• In particular, for the characteristic function in the case $\lambda = 0$ and $w \in \ell^2(\mathbb{N})$, it holds

$$F_{J}(z^{-1}) = \mathfrak{F}\left(\left\{z\gamma_{n}^{2}\right\}_{n=1}^{\infty}\right) = \sum_{m=0}^{\infty} (-z^{2})^{m} \sum_{k_{1}=1}^{\infty} \sum_{k_{2}=k_{1}+2}^{\infty} \dots \sum_{k_{m}=k_{m-1}+2}^{\infty} w_{k_{1}}^{2} w_{k_{2}}^{2} \dots w_{k_{m}}^{2}.$$

Hence the spectrum of J is symmetric with respect to the origin.

• Let $w_n = 1/\sqrt{(n+\nu)(n+\nu+1)}, \nu \notin -\mathbb{N}$, then

$$F_J(z^{-1}) = \Gamma(\nu+1)z^{-\nu}J_{\nu}(2z).$$

and

$$\operatorname{spec}(J) = \left\{ 2z^{-1} \in \mathbb{C} \mid J_{\nu}(z) = 0 \right\} \cup \{0\}.$$

• In particular, for the characteristic function in the case $\lambda = 0$ and $w \in \ell^2(\mathbb{N})$, it holds

$$F_{J}(z^{-1}) = \mathfrak{F}\left(\left\{z\gamma_{n}^{2}\right\}_{n=1}^{\infty}\right) = \sum_{m=0}^{\infty} (-z^{2})^{m} \sum_{k_{1}=1}^{\infty} \sum_{k_{2}=k_{1}+2}^{\infty} \dots \sum_{k_{m}=k_{m-1}+2}^{\infty} w_{k_{1}}^{2} w_{k_{2}}^{2} \dots w_{k_{m}}^{2}.$$

Hence the spectrum of J is symmetric with respect to the origin.

• Let $w_n = 1/\sqrt{(n+\nu)(n+\nu+1)}, \nu \notin -\mathbb{N}$, then

$$F_J(z^{-1}) = \Gamma(\nu+1)z^{-\nu}J_{\nu}(2z).$$

and

$$\operatorname{spec}(J) = \left\{ 2z^{-1} \in \mathbb{C} \mid J_{\nu}(z) = 0 \right\} \cup \{0\}.$$

• Let $w_n = q^{n/2}$, 0 < q < 1, then

$$F_J(z^{-1}) = {}_0\phi_1(;0,q,-qz^2)$$

and

$$\operatorname{spec}(J) = \left\{ \pm z^{-1/2} \in \mathbb{R} \mid {}_0\phi_1(; 0, q, -qz) = 0 \right\} \cup \{0\}.$$

$$\lambda(x,y) = \frac{y}{(x-1)x}, \quad w(x,y) = \frac{1}{x}\sqrt{\frac{x^2+y^2}{4x^2-1}}.$$

$$\lambda(x,y) = \frac{y}{(x-1)x}, \quad w(x,y) = \frac{1}{x}\sqrt{\frac{x^2+y^2}{4x^2-1}}.$$

• Consider Jacobi matrix $J = J(\mu, \nu)$, with

$$\lambda_k = \lambda(\mu + k, \nu), \quad w_k = w(\mu + k, \nu).$$

$$\lambda(x,y) = \frac{y}{(x-1)x}, \quad w(x,y) = \frac{1}{x}\sqrt{\frac{x^2+y^2}{4x^2-1}}.$$

• Consider Jacobi matrix $J = J(\mu, \nu)$, with

$$\lambda_k = \lambda(\mu + k, \nu), \quad w_k = w(\mu + k, \nu).$$

It holds

$$F_{J}(z^{-1}) = \frac{\Gamma(\frac{1}{2} + \mu - \frac{1}{2}\sqrt{1 + 4\nu z})\Gamma(\frac{1}{2} + \mu + \frac{1}{2}\sqrt{1 + 4\nu z})}{\Gamma(\mu)\Gamma(\mu + 1)} e^{-iz} {}_{1}F_{1}(\mu + i\nu; 2\mu; 2iz)$$

$$\lambda(x,y) = \frac{y}{(x-1)x}, \quad w(x,y) = \frac{1}{x}\sqrt{\frac{x^2+y^2}{4x^2-1}}.$$

• Consider Jacobi matrix $J = J(\mu, \nu)$, with

$$\lambda_k = \lambda(\mu + k, \nu), \quad w_k = w(\mu + k, \nu).$$

It holds

$$F_{J}(z^{-1}) = \frac{\Gamma(\frac{1}{2} + \mu - \frac{1}{2}\sqrt{1 + 4\nu z})\Gamma(\frac{1}{2} + \mu + \frac{1}{2}\sqrt{1 + 4\nu z})}{\Gamma(\mu)\Gamma(\mu + 1)} e^{-iz} {}_{1}F_{1}(\mu + i\nu; 2\mu; 2iz)$$

• Thus we have

spec
$$(J(\mu,\nu)) = \left\{ z^{-1}; e^{-iz} {}_1F_1(\mu+i\nu;2\mu;2iz) = 0 \right\} \cup \{0\}$$

and

$$v_n(z^{-1}) = \sqrt{2\mu + 2n - 1} \frac{|\Gamma(\mu + n + i\nu)|}{\Gamma(2\mu + 2n)} (2z)^{n-1} e^{-iz} {}_1F_1(\mu + n + i\nu; 2\mu + 2n; 2iz).$$

• In fact, one can show the characteristic function $F_J(z^{-1})$ is proportional to $F_{\mu-1}(-\nu, z^{-1})$ where function $F_L(\eta, \rho)$ is regular (at the origin) solution of second-order differential equation

$$\frac{d^2u}{d\rho^2} + \left[1 - \frac{2\eta}{\rho} - \frac{L(L+1)}{\rho^2}\right]u = 0,$$

known as regular Coulomb wave function [Abramowitz&Stegun].

- Consequently, the spectrum of the corresponding Jacobi operator coincides with the set of reciprocal values of zeros of regular Coulomb wave function (as function of *ρ*).
- This has been originally observed by [lkebe, 1975].

Examples with concrete operators – *q*-Confluent hypergeometric function

• For $\delta, a \in \mathbb{C}$, and |q| < 1, put

$$\lambda_n = (a+1)q^{n-1}, \quad w_n^2 = -aq^{n+\delta-1}(1-q^{n-\delta}).$$

Examples with concrete operators – *q*-Confluent hypergeometric function

• For $\delta, a \in \mathbb{C}$, and |q| < 1, put

$$\lambda_n = (a+1)q^{n-1}, \quad w_n^2 = -aq^{n+\delta-1}(1-q^{n-\delta}).$$

• Then it holds

$$F_{J}(z^{-1}) = \frac{(z;q)_{\infty}}{((a+1)z;q)_{\infty}} {}_{1}\phi_{1}\left(zq^{\delta},z;q,az\right).$$

Examples with concrete operators – *q*-Confluent hypergeometric function

• For $\delta, a \in \mathbb{C}$, and |q| < 1, put

$$\lambda_n = (a+1)q^{n-1}, \quad w_n^2 = -aq^{n+\delta-1}(1-q^{n-\delta}).$$

• Then it holds

$$F_J(z^{-1}) = \frac{(z;q)_\infty}{((a+1)z;q)_\infty} {}_1\phi_1\left(zq^\delta,z;q,az\right).$$

• Especially, for $\delta = 0$, the identity simplifies to

$$F_J(z^{-1}) = \frac{(z;q)_{\infty}(az;q)_{\infty}}{((a+1)z;q)_{\infty}}$$

• For $\delta, a \in \mathbb{C}$, and |q| < 1, put

$$\lambda_n = (a+1)q^{n-1}, \quad w_n^2 = -aq^{n+\delta-1}(1-q^{n-\delta}).$$

Then it holds

$$F_{J}(z^{-1}) = \frac{(z;q)_{\infty}}{((a+1)z;q)_{\infty}} {}_{1}\phi_{1}\left(zq^{\delta},z;q,az\right).$$

• Especially, for $\delta = 0$, the identity simplifies to

$$F_J(z^{-1}) = \frac{(z;q)_{\infty}(az;q)_{\infty}}{((a+1)z;q)_{\infty}}$$

• The spectrum of corresponding J is then obtained fully explicitly,

$$\operatorname{spec}(J) = \{q^k : k = 0, 1, 2, \dots\} \cup \{aq^k : k = 0, 1, 2, \dots\} \cup \{0\}.$$

• For $\delta, a \in \mathbb{C}$, and |q| < 1, put

$$\lambda_n = (a+1)q^{n-1}, \quad w_n^2 = -aq^{n+\delta-1}(1-q^{n-\delta}).$$

Then it holds

$$F_{J}(z^{-1}) = \frac{(z;q)_{\infty}}{((a+1)z;q)_{\infty}} {}_{1}\phi_{1}\left(zq^{\delta},z;q,az\right).$$

• Especially, for $\delta = 0$, the identity simplifies to

$$F_J(z^{-1}) = \frac{(z;q)_{\infty}(az;q)_{\infty}}{((a+1)z;q)_{\infty}}.$$

• The spectrum of corresponding J is then obtained fully explicitly,

$$\operatorname{spec}(J) = \{q^k : k = 0, 1, 2, \dots\} \cup \{aq^k : k = 0, 1, 2, \dots\} \cup \{0\}.$$

• For a > 0, the operator J is not hermitian, however, spec(J) is real!

Characteristic function for Jacobi matrices

- Motivation
- Function \mathfrak{F}
- Spectral properties of Jacobi operator via characteristic function

Applications – Examples with concrete operators

3 The logarithm formula for \mathfrak{F}

Applications – The spectral zeta function & Examples

Beferences

Theorem

In the ring of formal power series in the variables t_1, \ldots, t_n , one has

$$\log \mathfrak{F}(t_1,\ldots,t_n) = -\sum_{\ell=1}^{n-1} \sum_{m \in \mathbb{N}^\ell} \alpha(m) \sum_{k=1}^{n-\ell} \prod_{j=1}^\ell \left(t_{k+j-1} t_{k+j} \right)^{m_j}.$$

For a complex sequence $x = \{x_k\}_{k=1}^{\infty}$ such that $\sum_{k=1}^{\infty} |x_k x_{k+1}| < \log 2$ one has

$$\log \mathfrak{F}(x) = -\sum_{\ell=1}^{\infty} \sum_{m \in \mathbb{N}^{\ell}} \alpha(m) \sum_{k=1}^{\infty} \prod_{j=1}^{\ell} (x_{k+j-1} x_{k+j})^{m_j}.$$

Theorem

In the ring of formal power series in the variables t_1, \ldots, t_n , one has

$$\log \mathfrak{F}(t_1,\ldots,t_n) = -\sum_{\ell=1}^{n-1} \sum_{m \in \mathbb{N}^\ell} \alpha(m) \sum_{k=1}^{n-\ell} \prod_{j=1}^\ell \left(t_{k+j-1} t_{k+j} \right)^{m_j}.$$

For a complex sequence $x = \{x_k\}_{k=1}^{\infty}$ such that $\sum_{k=1}^{\infty} |x_k x_{k+1}| < \log 2$ one has

$$\log \mathfrak{F}(x) = -\sum_{\ell=1}^{\infty} \sum_{m \in \mathbb{N}^{\ell}} \alpha(m) \sum_{k=1}^{\infty} \prod_{j=1}^{\ell} \left(x_{k+j-1} x_{k+j} \right)^{m_j}.$$

where we denote

$$\alpha(m) := \frac{1}{m_1} \prod_{j=1}^{\ell-1} {m_j + m_{j+1} - 1 \choose m_{j+1}}.$$

Theorem

In the ring of formal power series in the variables t_1, \ldots, t_n , one has

$$\log \mathfrak{F}(t_1,\ldots,t_n) = -\sum_{\ell=1}^{n-1} \sum_{m \in \mathbb{N}^\ell} \alpha(m) \sum_{k=1}^{n-\ell} \prod_{j=1}^\ell \left(t_{k+j-1} t_{k+j} \right)^{m_j}.$$

For a complex sequence $x = \{x_k\}_{k=1}^\infty$ such that $\sum_{k=1}^\infty |x_k x_{k+1}| < \log 2$ one has

$$\log \mathfrak{F}(x) = -\sum_{\ell=1}^{\infty} \sum_{m \in \mathbb{N}^{\ell}} \alpha(m) \sum_{k=1}^{\infty} \prod_{j=1}^{\ell} \left(x_{k+j-1} x_{k+j} \right)^{m_j}.$$

where we denote

$$\alpha(m) := \frac{1}{m_1} \prod_{j=1}^{\ell-1} {m_j + m_{j+1} - 1 \choose m_{j+1}}.$$

The proof is based on identity

$$\det \exp(A) = \exp(\operatorname{Tr} A), \quad A \in \mathbb{C}^{n,n}$$

together with formula relating $\mathfrak{F}(t_1, \ldots, t_n)$ with determinant of a tridiagonal matrix depending on t_1, \ldots, t_n .

• Let $\{x_n\}_{n=1}^{\infty} \subset \mathbb{C}$ such that $\sum_{n\geq 1} |x_n x_{n+1}| < \infty$ then we have

$$\mathfrak{F}\left(\{zx_n\}_{n=1}^{\infty}\right) = \det_2(1-zJ)$$

where J is Jacobi operator with vanishing diagonal and off-diagonal $w_n = \sqrt{x_n x_{n+1}}$.

• Let $\{x_n\}_{n=1}^{\infty} \subset \mathbb{C}$ such that $\sum_{n>1} |x_n x_{n+1}| < \infty$ then we have

$$\mathfrak{F}\left(\{zx_n\}_{n=1}^{\infty}\right) = \det_2(1-zJ)$$

where J is Jacobi operator with vanishing diagonal and off-diagonal $w_n = \sqrt{x_n x_{n+1}}$.

• Since we assume $w \in \ell^2(\mathbb{N})$ operator *J* is Hilbert-Schmidt and as it is well known the regularized determinant admits the Hadamard factorization into the (infinite) product.

• Let $\{x_n\}_{n=1}^{\infty} \subset \mathbb{C}$ such that $\sum_{n>1} |x_n x_{n+1}| < \infty$ then we have

$$\mathfrak{F}\left(\{zx_n\}_{n=1}^{\infty}\right) = \det_2(1-zJ)$$

where J is Jacobi operator with vanishing diagonal and off-diagonal $w_n = \sqrt{x_n x_{n+1}}$.

- Since we assume $w \in \ell^2(\mathbb{N})$ operator *J* is Hilbert-Schmidt and as it is well known the regularized determinant admits the Hadamard factorization into the (infinite) product.
- Let $\{\xi_n\}_{n=1}^{\Omega}$ denotes zeros of the even function

$$z\mapsto \mathfrak{F}\left(\{zx_n\}_{n=1}^\infty\right)$$

with non-negative real parts. Moreover, we arrange these zeros in the ascending order of their modulus.

• Let $\{x_n\}_{n=1}^{\infty} \subset \mathbb{C}$ such that $\sum_{n>1} |x_n x_{n+1}| < \infty$ then we have

$$\mathfrak{F}\left(\{zx_n\}_{n=1}^{\infty}\right) = \det_2(1-zJ)$$

where J is Jacobi operator with vanishing diagonal and off-diagonal $w_n = \sqrt{x_n x_{n+1}}$.

- Since we assume w ∈ ℓ²(N) operator J is Hilbert-Schmidt and as it is well known the regularized determinant admits the Hadamard factorization into the (infinite) product.
- Let $\{\xi_n\}_{n=1}^{\Omega}$ denotes zeros of the even function

$$z\mapsto \mathfrak{F}\left(\{zx_n\}_{n=1}^\infty\right)$$

with non-negative real parts. Moreover, we arrange these zeros in the ascending order of their modulus.

Theorem

Let $\sum_{n\geq 1} |x_n x_{n+1}| < \infty$ then it holds

$$\mathfrak{F}\left(\{zx_n\}_{n=1}^{\infty}\right) = \prod_{n=1}^{\Omega} \left(1 - \frac{z^2}{\xi_n^2}\right).$$
Characteristic function for Jacobi matrices

- Motivation
- Function \mathfrak{F}
- Spectral properties of Jacobi operator via characteristic function

Applications – Examples with concrete operators

 ${}_{3}$) The logarithm formula for ${\mathfrak F}$

Applications – The spectral zeta function & Examples

6 References

• For a multiindex $m \in \mathbb{N}^{\ell}$ denote by $|m| = \sum_{j=1}^{\ell} m_j$ its order and by $d(m) = \ell$ its length.

- For a multiindex $m \in \mathbb{N}^{\ell}$ denote by $|m| = \sum_{j=1}^{\ell} m_j$ its order and by $d(m) = \ell$ its length.
- For $N \in \mathbb{N}$ define

$$\mathcal{M}(N) = \left\{ m \in \bigcup_{\ell=1}^{N} \mathbb{N}^{\ell}; \ |m| = N
ight\}.$$

- For a multiindex $m \in \mathbb{N}^{\ell}$ denote by $|m| = \sum_{j=1}^{\ell} m_j$ its order and by $d(m) = \ell$ its length.
- For $N \in \mathbb{N}$ define

$$\mathcal{M}(N) = \left\{ m \in \bigcup_{\ell=1}^{N} \mathbb{N}^{\ell}; \ |m| = N
ight\}.$$

Still assuming *J* to be the Hilbert-Schmidt Jacobi matrix with vanishing diagonal and off-diagonal sequence $w_n = \sqrt{x_n x_{n+1}}$ one arrives at the following formula.

- For a multiindex $m \in \mathbb{N}^{\ell}$ denote by $|m| = \sum_{i=1}^{\ell} m_i$ its order and by $d(m) = \ell$ its length.
- For $N \in \mathbb{N}$ define

$$\mathcal{M}(N) = \left\{ m \in \bigcup_{\ell=1}^{N} \mathbb{N}^{\ell}; \ |m| = N
ight\}.$$

Still assuming *J* to be the Hilbert-Schmidt Jacobi matrix with vanishing diagonal and off-diagonal sequence $w_n = \sqrt{x_n x_{n+1}}$ one arrives at the following formula.

Corollary

For any $n \in \mathbb{N}$,

$$\zeta_J(2n) = \sum_{k=1}^{\Omega} \frac{1}{\xi_k^{2n}} = n \sum_{m \in \mathcal{M}(n)} \alpha(m) \sum_{k=1}^{\infty} \prod_{j=1}^{d(m)} (x_{k+j-1} x_{k+j})^{m_j}.$$

- For a multiindex $m \in \mathbb{N}^{\ell}$ denote by $|m| = \sum_{i=1}^{\ell} m_i$ its order and by $d(m) = \ell$ its length.
- For $N \in \mathbb{N}$ define

$$\mathcal{M}(N) = \left\{ m \in \bigcup_{\ell=1}^{N} \mathbb{N}^{\ell}; \ |m| = N
ight\}.$$

Still assuming *J* to be the Hilbert-Schmidt Jacobi matrix with vanishing diagonal and off-diagonal sequence $w_n = \sqrt{x_n x_{n+1}}$ one arrives at the following formula.

Corollary

For any $n \in \mathbb{N}$,

$$\zeta_J(2n) = \sum_{k=1}^{\Omega} \frac{1}{\xi_k^{2n}} = n \sum_{m \in \mathcal{M}(n)} \alpha(m) \sum_{k=1}^{\infty} \prod_{j=1}^{d(m)} (x_{k+j-1} x_{k+j})^{m_j}.$$

To prove the identity one has to apply logarithm on both sides of

$$\mathfrak{F}\left(\{zx_n\}_{n=1}^{\infty}\right) = \prod_{n=1}^{\Omega} \left(1 - \frac{z^2}{\xi_n^2}\right),$$

use the formula for the logarithm of \mathfrak{F} and equate coefficients at the same power of z.

Application of the spectral zeta function

• By using the spectral zeta function one can localize the largest eigenvalue in modulus (the spectral radius) of Hermitian *J* since

$$\frac{\zeta_J(2n+2)}{\zeta_J(2n)} < \frac{1}{\xi_1^2} < \sqrt[n]{\zeta_J(2n)}.$$

Application of the spectral zeta function

• By using the spectral zeta function one can localize the largest eigenvalue in modulus (the spectral radius) of Hermitian *J* since

$$rac{\zeta_J(2n+2)}{\zeta_J(2n)} < rac{1}{\xi_1^2} < \sqrt[n]{\zeta_J(2n)}.$$

• In fact, the inequalities become equalities in the limit $n \to \infty$. Thus, one can even obtain an explicit formula

$$\frac{1}{\xi_1} = \lim_{N \to \infty} \left(\sum_{m \in \mathcal{M}(N)} \alpha(m) \sum_{k=1}^{\infty} \prod_{j=1}^{d(m)} (x_{k+j-1} x_{k+j})^{m_j} \right)^{1/(2N)}$$

Two examples – Rayleigh special function

• Put $x_n = (2\nu + 2n)^{-1}$, where $\nu > -1$. Then, as a particular case of the factorization theorem, one has

$$\mathfrak{F}\left(\left\{zx_{n}\right\}_{n=1}^{\infty}\right)=\Gamma(\nu+1)\left(\frac{z}{2}\right)^{-\nu}J_{\nu}(z)=\prod_{k=1}^{\infty}\left(1-\frac{z^{2}}{j_{\nu,k}^{2}}\right)$$

where $j_{\nu,k}$ stands for the *k*-th positive zero of J_{ν} .

• Put $x_n = (2\nu + 2n)^{-1}$, where $\nu > -1$. Then, as a particular case of the factorization theorem, one has

$$\mathfrak{F}\left(\left\{zx_{n}\right\}_{n=1}^{\infty}\right)=\Gamma(\nu+1)\left(\frac{z}{2}\right)^{-\nu}J_{\nu}(z)=\prod_{k=1}^{\infty}\left(1-\frac{z^{2}}{j_{\nu,k}^{2}}\right)$$

where $j_{\nu,k}$ stands for the *k*-th positive zero of J_{ν} .

The zeta function

$$\sigma_
u(s) = \sum_{k=1}^\infty rac{1}{j_{
u,k}^s}\,, \qquad {
m Re}s>1,$$

is known as Raighley function (intensively studied by [Kishore, 1963]).

• Put $x_n = (2\nu + 2n)^{-1}$, where $\nu > -1$. Then, as a particular case of the factorization theorem, one has

$$\mathfrak{F}\left(\left\{zx_{n}\right\}_{n=1}^{\infty}\right)=\Gamma(\nu+1)\left(\frac{z}{2}\right)^{-\nu}J_{\nu}(z)=\prod_{k=1}^{\infty}\left(1-\frac{z^{2}}{j_{\nu,k}^{2}}\right)$$

where $j_{\nu,k}$ stands for the *k*-th positive zero of J_{ν} .

The zeta function

$$\sigma_{\nu}(\boldsymbol{s}) = \sum_{k=1}^{\infty} \frac{1}{j_{\nu,k}^{s}}, \qquad \text{Re}\boldsymbol{s} > 1,$$

is known as Raighley function (intensively studied by [Kishore, 1963]).

• Its values $\sigma_{\nu}(2N)$ for $N \in \mathbb{N}$ are rational functions in ν .

– originally computed by Rayleigh for $1 \le N \le 5$;

– by Cayley for N = 8.

• Put $x_n = (2\nu + 2n)^{-1}$, where $\nu > -1$. Then, as a particular case of the factorization theorem, one has

$$\mathfrak{F}\left(\left\{zx_{n}\right\}_{n=1}^{\infty}\right)=\Gamma(\nu+1)\left(\frac{z}{2}\right)^{-\nu}J_{\nu}(z)=\prod_{k=1}^{\infty}\left(1-\frac{z^{2}}{j_{\nu,k}^{2}}\right)$$

where $j_{\nu,k}$ stands for the *k*-th positive zero of J_{ν} .

• The zeta function

$$\sigma_{\nu}(\boldsymbol{s}) = \sum_{k=1}^{\infty} \frac{1}{j_{\nu,k}^{s}}, \qquad \text{Re}\boldsymbol{s} > 1,$$

is known as Raighley function (intensively studied by [Kishore, 1963]).

- Its values σ_ν(2N) for N ∈ N are rational functions in ν.
 originally computed by Rayleigh for 1 ≤ N ≤ 5;
 by Cayley for N = 8.
- The general formula reads

$$\sigma_{\nu}(2N) = 2^{-2N}N \sum_{k=1}^{\infty} \sum_{m \in \mathcal{M}(N)} \alpha(m) \prod_{j=1}^{d(m)} \left(\frac{1}{(j+k+\nu-1)(j+k+\nu)}\right)^{m_j}.$$

• Put $x_n = q^{(2n-1)/4}$, where 0 < q < 1. Then we have

$$\mathfrak{F}\left(\left\{wq^{(2n-1)/4}\right\}_{n=1}^{\infty}\right) = A_q(w^2)$$

where A_q is the *q*-Airy function.

• Put $x_n = q^{(2n-1)/4}$, where 0 < q < 1. Then we have

$$\mathfrak{F}\left(\left\{wq^{(2n-1)/4}\right\}_{n=1}^{\infty}\right) = A_q(w^2)$$

where A_q is the *q*-Airy function.

• Zeros of $A_q(z)$ are exactly $0 < \iota_1(q) < \iota_2(q) < \iota_3(q) < \ldots$, all of them are simple and

$$A_q(z) = \prod_{k=1}^{\infty} \left(1 - \frac{z}{\iota_k(q)}\right).$$

• Put $x_n = q^{(2n-1)/4}$, where 0 < q < 1. Then we have

$$\mathfrak{F}\left(\left\{wq^{(2n-1)/4}\right\}_{n=1}^{\infty}\right) = A_q(w^2)$$

where A_q is the *q*-Airy function.

• Zeros of $A_q(z)$ are exactly $0 < \iota_1(q) < \iota_2(q) < \iota_3(q) < \ldots$, all of them are simple and

$$A_q(z) = \prod_{k=1}^{\infty} \left(1 - \frac{z}{\iota_k(q)}\right).$$

• Formula for integer values of the Rayleigh-like function associated with $A_q(z)$, denoted as $Z_n(q)$, reads

$$Z_n(q) := \sum_{k=1}^{\infty} \frac{1}{\iota_k(q)^n} = \frac{nq^n}{1-q^n} \sum_{m \in \mathcal{M}(n)} \alpha(m) q^{\epsilon_1(m)},$$

where

$$\forall m \in \mathbb{N}^{\ell}, \ \epsilon_1(m) = \sum_{j=1}^{\ell} (j-1) \ m_j.$$

Characteristic function for Jacobi matrices

- Motivation
- Function \mathfrak{F}
- Spectral properties of Jacobi operator via characteristic function

Applications – Examples with concrete operators

3 The logarithm formula for \mathfrak{F}

Applications – The spectral zeta function & Examples

6 References

References

- F. Štampach, P. Št'ovíček: The characteristic function for Jacobi matrices with applications, Linear Alg. Appl. 438 (2013) 4130-4155.
- P. Štampach, P. Štovíček: Special functions and spectrum of Jacobi matrices, Linear Algebra Appl. (2013) (in press).
- F. Štampach, P. Šťovíček: A logarithm formula and factorization of the characteristic function of a Jacobi matrix, (2013) (preprint).

Preprints are available on arXiv or at websites http://users.fit.cvut.cz/~stampfra/.

Thank you!