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Preface

A semi-infinite symmetric matrix

J =


λ1 w1
w1 λ2 w2

w2 λ3 w3
. . . . . . . . .


called the Jacobi matrix in honor of Carolus Gustavus Iacobus Iacobi (1804-1851) is
the central object of this thesis and everything we present is connected by the Jacobi
matrix. First of all, the spectral analysis of linear operators associated with J is of
great interest. A particular class of them are known as discrete Schrödinger operators
and their spectral properties play the fundamental role in Quantum Mechanics.

From the mathematical point of view, operators determined by J constitute a sub-
stantial class of operators. For instance, any self-adjoint operator on a separable Hilbert
space with simple spectrum is generated (as a minimal closed operator) by some matrix
J . This has been proved by M. Stone [40]. Even certain class of closed symmetric opera-
tors with deficiency indices (1, 1) are generated by J , see [16]. Therefore Jacobi matrices
naturally emerge in models for those phenomena governed by operators of mentioned
properties.

Moreover, the spectral theory of operators generated by Jacobi matrices has a sig-
nificant impact in the theory of Orthogonal Polynomials, the Moment Problem and the
theory of Continued Fractions. Several aspects of these connections are discussed in this
thesis.

My scientific work as a Ph.D. student has resulted in 7 papers, not all of them being
published, however. In present (June 4, 2014), 2 papers have already been published
and 2 more have been accepted for publishing. Remaining 3 preprints are still going
through the reviewing process in impacted journals. I list these papers in the order as
they have been written:

(1) F. Štampach, P. Šťovíček: On the eigenvalue problem for a particular class of finite
Jacobi matrices, Linear Alg. Appl. 434 (2011) 1336-1353.

(2) F. Štampach, P. Šťovíček: The characteristic function for Jacobi matrices with
applications, Linear Algebra Appl. 438 (2013) 4130-4155.

(3) F. Štampach, P. Šťovíček: Special functions and spectrum of Jacobi matrices, Lin-
ear Algebra Appl. (2013) (in press).

(4) F. Štampach, P. Šťovíček: Factorization of the characteristic function of a Jacobi
matrix, (submitted).

vii



(5) F. Štampach, P. Šťovíček: Orthogonal polynomials associated with Coulomb wave
functions, J. Math. Anal. Appl. (2014) (in press).

(6) F. Štampach, P. Šťovíček: The Hahn-Exton q-Bessel function as the characteristic
function of a Jacobi matrix, (submitted).

(7) F. Štampach, P. Šťovíček: The Nevanlinna parametrization for q-Lommel polyno-
mials in the indeterminate case, (submitted).

The first paper initiated my work on the characteristic function of a Jacobi matrix. It
has been written in continuation of my master studies, however, it also contains results
that has not been included in my master thesis.

In the second paper the characteristic function of a Jacobi matrix is introduced and
its usage in the spectral analysis of Jacobi operators is described in full details. The
theory is applied on several interesting examples ibidem. Even more concrete Jacobi
operators with solvable spectra are analyzed in the third paper. Spectral properties of
operators under investigation are described in terms of special functions; hypergeometric
series and their q-analogues, exclusively.

In the paper (4) a proof of certain logarithm formula and factorization of the chara-
cteristic function into the Hadamard’s type infinite product is presented. These results
have applications concerning spectral zeta functions of Jacobi operators and continued
fractions.

The fifth paper deals with a construction of the measure of orthogonality for orthog-
onal polynomials from a certain class. In addition, a new family of orthogonal polyno-
mials which is a generalization of the well known Lommel polynomials is introduced and
investigated.

Finally, papers (6) and (7) are closely related. In (6), a number of identities concern-
ing orthogonality and other properties of q-Bessel functions are derived by using spectral
analysis of a suitably chosen Jacobi operator. The notion of characteristic function is
used here again although the formalism from (2) is no longer applicable. Moreover, the
corresponding indeterminate moment problem is solved in (7) by means of derivation of
explicit formulas for entire functions from the Nevanlinna parametrization. This com-
pletes the work initiated by Koelink in [21] on describing measures of orthogonality of
q-Lommel polynomials.

The present thesis is dived into 4 parts. The first part serves as an introduction to
papers (1)-(4). We summarize selected results of the highest importance usually provided
without proofs that can be found in the papers enclosed. Moreover, there are several
explanations and discussion on topics that have not been involved in papers (1)-(4).
Either because they can be considered as a common knowledge in the society of mathe-
maticians working on related topics, for example the construction of Jacobi operators
from the Jacobi matrix J . Or they do not follow the main idea of the respective paper
and form a secondary result, for instance applications concerning continued fractions.

The second part provides some basic informations on orthogonal polynomials and
the moment problem with emphasis on the indeterminate case and the Nevanlinna
parametrization. Part III consists of reprints of (1)-(3) and preprint of (4) which serves
as the complementary material to the first introductory part with full details. Similarly
the last part is composed of reprint to (5) and preprints to papers (6) and (7) which
supplement and provide additional results on problems indicated in the second part.
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At the end, it is to be said a lot of results are simplified or not even mentioned in the
general survey parts I and II. The truly interested reader is encouraged to read papers
(1)-(7).
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Part I

Characteristic Function of a Jacobi
Matrix
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I.1 Jacobi operator
Differences between terms Jacobi matrix and Jacobi operator are sometimes neglected
in literature. While the former means usually a formal semi-infinite tridiagonal matrix,
the meaning of the latter needs not be always fully clear. Let us denote by J a Jacobi
matrix of the form

J =


λ1 w1
w1 λ2 w2

w2 λ3 w3
. . . . . . . . .

 (1)

where λ = {λn}∞n=1 and w = {wn}∞n=1 are given sequences.
In this section, we describe the standard construction of densely defined linear oper-

ators acting on `2(N) associated with a matrix J . We assume λ ⊂ R and w ⊂ R \ {0},
although everything can be done in the general case of complex λ and w as well, see [3].

Let us denote by C∞ the linear space of all complex sequences indexed by N and by
D its subspace of those sequences having at most finitely many nonvanishing entries.
In other words, D coincides with the linear hull of the standard basis {en | n ∈ N} of
`2(N). Notice matrix J acts linearly on C∞ and D is a J -invariant subspace. Action
J x, for x ∈ C∞, is to be understood as the formal matrix product while treating x as
a column vector.

Let us denote by J̇ the restriction of J to D . In general, operator J̇ is not closed
on `2(N), however, it is always closable on `2(N) since it is symmetric. Let us introduce
Jmin := J̇ , the closure of J̇ . The subscript min indicates Jmin is the smallest closed
restriction of J having {en | n ∈ N} in its domain.

Another natural candidate of an operator associated with Jacobi matrix J is so called
maximal domain operator Jmax, see [18, Chp. 3, §2.]. That is Jmax is the restriction of
J on the set

Dom Jmax := {x ∈ `2(N) | J x ∈ `2(N)}.
Clearly J̇ ⊂ Jmax. Further, operators J̇ , Jmin, and Jmax and their adjoints are related as
follows.
Lemma 1: It holds

(J̇)∗ = J∗min = Jmax, J∗max = Jmin.

Proof. The first equality is clear since Jmin = J̇ . In order to prove the second equality
we recall the definition of the adjoint,

Dom J∗min = {y ∈ `2(N) | (∃y∗ ∈ `2)(∀x ∈ Dom Jmin )(〈y, Jminx〉 = 〈y∗, x〉)}.

According to the definition of Jmin and the continuity of the scalar product we can
restrict with x to be from D , or even further to require 〈y, Jminej〉 = 〈y∗, ej〉 holds for
all j ∈ N, by linearity. Thus,

Dom J∗min = {y ∈ `2(N) | (∃y∗ ∈ `2)(∀j ∈ N)(〈y, Jminej〉 = 〈y∗, ej〉)}.

Since 〈y, Jminej〉 coincides with the j-th element of J y we conclude y ∈ `2(N) belongs
to the domain of J∗min if and only if J y ∈ `2(N). Hence Dom J∗min = Dom Jmax and the
equality J∗min = Jmax follows. Equality J∗max = Jmin is obtained by taking adjoints in the
last equation.
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As a consequence of the last lemma, we see Jmax is closed. Further we have Jmin ⊂
Jmax and, in addition, any closed linear operator T which is a restriction of J on a
domain containing the standard basis of `2(N) satisfies Jmin ⊂ T ⊂ Jmax.

If Jmin = Jmax there is a unique densely defined self-adjoint operator whose matrix in
the standard basis of `2(N) coincides with (1), the Jacobi operator. In this case, we drop
the subscripts min and max and write just J referring the Jacobi operator in question.
With some abuse of notation, we can even use the same letter J for the Jacobi matrix
(1).

If Jmin 6= Jmax there is infinitely many densely defined operators associated with J .
In fact, the deficiency indices of the symmetric operator Jmin are either (0, 0) or (1, 1).
Indeed, by Lemma 1, a non-trivial solution x = x(ξ) of the equation

J∗minx = ξx,

where ξ ∈ C, Im ξ 6= 0, is a solution of the system of difference equations

λ1x1 + w1x2 = ξx1, wn−1xn + λnxn + wnxn+1 = ξxn, n ≥ 2,

and it is determined uniquely up to a multiplicative constant. Indeed, by fixing the
value x1, other components of the vector x can be computed recursively since wn 6= 0,
∀n ∈ N. Consequently,

0 ≤ dim Ker(J∗min − ξ) ≤ 1.
Taking into account x(ξ) = x(ξ), we conclude deficiency indices are either (1, 1) or (0, 0)
depending on whether x belongs or does not belong to `2(N), respectively.

In the case Jmin 6= Jmax, deficiency indices of Jmin are (1, 1). By application of the
von-Neumann theory of self-adjoint extensions to Jmin, we obtain a one-parameter family
of self-adjoint operators Jκ, κ ∈ R ∪ {∞}, for which Jmin ⊂ Jκ ⊂ Jmax. The explicit
description of the set Dom Jκ in terms of boundary conditions can be found, for instance,
in [42, Chp. 2, Sec. 6].

To distinguish two cases when Jmin has deficiency indices (0, 0) or (1, 1), various
terminology is used in literature. For example, Teschl [42] defines J to be in the limit
point, or limit circle case if Jmin is, or is not self-adjoint, referring to the Weyl theory of
ordinary differential operators. While Akhiezer [2] uses the terms J being of type C in
the letter case, and of type D in the former case. Furthermore, Beckerman [3] says J is
proper if Jmin = Jmax, although he deals with a more general situation with a complex
Jacobi matrix.

I.2 Function F

The main aim of Part I is to define a function in terms of the diagonal sequence λ and
the off-diagonal sequence w from the Jacobi matrix (1) such that its zeros are related
with the spectrum of the Jacobi operator Jmax. For this purpose we introduce a function
called F which has been defined and studied in [32], for the first time.
Definition 2: Define F : D → C,

F(x) = 1 +
∞∑
m=1

(−1)m
∞∑
k1=1

∞∑
k2=k1+2

. . .
∞∑

km=km−1+2
xk1xk1+1xk2xk2+1 . . . xkmxkm+1, (2)

4



where
D =

{
x ∈ C∞

∣∣∣∣∣
∞∑
k=1
|xkxk+1| <∞

}
.

For a finite number of complex variables we identify F(x1, x2, . . . , xn) with F(x) where
x = (x1, x2, . . . , xn, 0, 0, 0, . . . ). By convention, we also put F(∅) = 1 where ∅ is the
empty sequence.

Note the function F is indeed well defined on the domainD since one has the estimate

|F(x)| ≤ exp
( ∞∑
k=1
|xkxk+1|

)
.

Note also that the domain D is not a linear space. One has, however, `2(N) ⊂ D.
Besides the application using F in the spectral analysis of Jacobi operators, function

F is closely related with solutions of unilateral or bilateral difference equations of the
second order, theory of continued fractions, or orthogonal polynomials. Of course, F is
also a nice mathematical object of independent interest. At the start, we summarize
several algebraic and combinatorial properties of F of which proofs can be found in
[32, 33].

First, F satisfies the relation

F(x) = F(x1, . . . , xk)F(T kx)− F(x1, . . . , xk−1)xkxk+1F(T k+1x), k ∈ N, (3)

where x ∈ D and T stands for the shift operator from the left defined on C∞ by the
relation (Tx)n = xn+1. In particular, for k = 1 one gets the rule

F(x) = F(Tx)− x1x2F(T 2x). (4)

In addition, one has the symmetry property

F(x1, x2, . . . , xk−1, xk) = F(xk, xk−1, . . . , x2, x1).

A particular case of (3) also yields

F(x1, x2, . . . , xk+1) = F(x1, x2, . . . , xk)− xkxk+1 F(x1, x2, . . . , xk−1). (5)

Next, F is a continuous functional on `2(N) and, for x ∈ D, one has

lim
n→∞

F(T nx) = 1 and lim
n→∞

F(x1, x2, . . . , xn) = F(x). (6)

Alternatively, F(x1, . . . , xn) can be expressed as the determinant of n × n matrix X(n),
with entries defined by

X
(n)
ij =


1, if i = j,

xi, if |i− j| = 1,
0, otherwise,

where i, j ∈ {1, . . . , n}. Thus, F(x1, . . . , xn) = detX(n) and, taking into account the
second limit relation in (6), for x ∈ D, one gets

F(x) = lim
n→∞

detX(n).

5



With a concrete choice of x ∈ C∞, the definition relation (2) can be sometimes
further simplified resulting in a power series form which can be written in terms of
special functions. Usually they are hypergeometric series or their q-analogues. The
following illustrative example is concerned with the Bessel functions of the first kind.
The corresponding derivation has been worked out in [32, Sec. 2].
Example 3: For y, ν ∈ C, ν /∈ −N, one has

F
({

y

ν + k

}∞
k=1

)
= Γ(ν + 1)y−νJν(2y). (7)

At the end of this section, let us shortly discuss the link between F and solutions of
unilateral difference equation of the form

αn−1un−1 + βnun + αnun+1 = 0, n = 2, 3, 4, . . . , (8)
where {αn}∞n=1, {βn}∞n=1 ⊂ C \ {0} are given sequences satisfying the convergence condi-
tion

∞∑
n=1

∣∣∣∣∣ α2
n

βnβn+1

∣∣∣∣∣ <∞. (9)

Let x = x(α, β) ∈ C∞ be an arbitrary sequence fulfilling the recurrence rule

xnxn+1 = α2
n

βnβn+1
, n ∈ N,

which is determined unambiguously up to a multiplicative constant.
Condition (9) implies x ∈ D and we define ϕ, ψ ∈ C∞ by the relations

ϕn = (−1)n (α!)n−1

(β!)n
F(T nx), n ∈ N,

and
ψn = (−1)n+1 (β!)n−1

(α!)n−1
F(x1, . . . , xn−1), n ∈ N,

where we put
(y!)n =

n∏
k=1

yk, n ∈ Z+,

for any y ∈ C∞. It is a straightforward application of (4) and (5) to verify both sequences
ϕ and ψ solve difference equation (8). For two solutions u, v ∈ C∞ of (8) the Wronskian
is introduced as

W(u, v) = αn (unvn+1 − un+1vn) ,
see [42, Chp. 1]. Number W(u, v) is a constant independent of the index n. Moreover,
two solutions are linearly dependent if and only if their Wronskian vanishes. By using
formula (3) one gets

W(ϕ, ψ) = F(x).
Thus, sequences ϕ and ψ form a couple of two linearly independent solutions of the
difference equation (8) if and only if F(x) 6= 0.

Similarly can be treated the bilateral difference equation of the form (8) where n ∈
Z. Providing the corresponding convergence condition as (9) one can express a couple
of solutions of the bilateral difference equation in terms of F. However, in this case,
the definition of F has to be slightly generalized, see [33, Subsec. 2.3] for a detailed
discussion.
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I.3 Characteristic function of a Jacobi matrix
With the aid of F, one can describe spectral properties of a Jacobi operator Jmax provid-
ing certain convergence condition in terms of the sequences λ and w is satisfied, see (12)
below. First of all, one can introduce a function whose zeros describe the spectrum of
the Jacobi operator Jmax. In addition, eigenvectors or even the Green function of Jmax
can be described in terms of F as well. The explicit formulas have been derived in [33]
where the reader can find all the omitted proofs from this introductory section.

For the sake of simplicity and taking into consideration concrete applications, we
assume λ ⊂ R and w ⊂ R \ {0}, although the case of complex sequences λ and w can
be treated as well. Even matrix (1) need not be necessarily symmetric.

The main idea can be motivated by the following connection between F and the
characteristic polynomial of a finite Jacobi matrix. Let Jn ∈ Cn,n denotes the n × n
principal submatrix of matrix (1), i.e.,

Jn =



λ1 w1
w1 λ2 w2

. . . . . . . . .
wn−2 λn−1 wn−1

wn−1 λn

,

then for all z ∈ C it holds

det(Jn − zIn) =
(

n∏
k=1

(λk − z)
)
F

(
γ2

1
λ1 − z

,
γ2

2
λ2 − z

, . . . ,
γ2
n

λn − z

)
(10)

where {γk}nk=1 is any sequence satisfying the recurrence γkγk+1 = wk, for k ≥ 1.
Looking at the formula (10) one can try to send n → ∞. Of course both sides can

diverge, however, if the sequence in the argument of F belongs to the domain D, one
can extract this term hoping the resulting function reflects some spectral properties of
an operator associated with matrix (1). By this way one arrives at the function

FJ (z) := F

({
γ 2
n

λn − z

}∞
n=1

)
(11)

which we refer to as the characteristic function associated with a Jacobi matrix J .
Function FJ is well defined whenever the sequence in the argument of F on the RHS of
(11) belongs to D. We proved this to be guaranteed for all z ∈ Cλ

0 := C \ Ran λ under
the assumption that there exists at least one z0 ∈ Cλ

0 such that
∞∑
n=1

∣∣∣∣∣ w 2
n

(λn − z0)(λn+1 − z0)

∣∣∣∣∣ <∞. (12)

Condition (12) determines a class of Jacobi matrices for which the characteristic function
is defined. Moreover, (12) together with reality of λ and w implies Jmax to be self-adjoint,
see [33, Theorem 15], and hence we omit the subscript and write simply J for the Jacobi
operator in question.

Let der(λ) stands for the set of all finite accumulation points of the sequence λ. By
a closer inspection one finds that, under the assumptions of (12) the function FJ (z)
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is meromorphic on C \ der(λ) with poles at the points z = λn for some n ∈ N (not
belonging to der(λ), however). For any such z, the order of the pole is less than or equal
to r(z) where

r(z) :=
∞∑
k=1

δz,λk

is the number of members of the sequence λ coinciding with z (hence r(z) = 0 for
z ∈ Cλ

0).
If condition (12) is fulfilled, the part of spec(J) not intersecting der(λ) coincides with

the set
Z(J ) :=

{
z ∈ C \ der(λ)

∣∣∣ lim
u→z

(u− z)r(z)FJ (u) = 0
}
.

Of course, Z(J ) ∩ Cλ
0 is nothing but the set of zeros of FJ (z). More precisely, we have

proved
spec(J) \ der(λ) = specp(J) \ der(λ) = Z(J )

and the points from this set consist of simple real eigenvalues which have no accumulation
point in R \ der(λ). Let us note the excluded set der(λ) is often empty or a one-point
set since, in applications, we usually encounter Jacobi matrices whose diagonal is either
an unbounded sequence of isolated points or a convergent sequence.

Moreover, the vector valued function ξ : C \ der(λ)→ C∞, where

ξk(z) := lim
u→z

(u− z)r(z)
(

k∏
l=1

wl−1

u− λl

)
F

({
γ 2
l

λl − u

}∞
l=k+1

)
,

for k ∈ N, has the property that for z ∈ Z(J ), ξ(z) is an eigenvector of J corresponding
to the eigenvalue z. Similarly, by using F, we were able to find formulas for the `2-norm
of the eigenvector ξ(z) or the Green function of J (especially the Weyl m-function), see
[33, Propositions 12 and 18].

As an application of the presented results, we provide a description of spectral prop-
erties of many concrete Jacobi operators in [33, 34]. In fact, in several examples of
operators investigated in [34], we go even beyond the presented formalism since the
condition (12) is violated. Nevertheless, one can proceed in a similar way to obtain
desired results. In all cases, spectral properties of Jacobi operators have been described
in terms of special functions such as Bessel functions, q-Bessel functions, Coulomb wave
functions, confluent hypergeometric functions, etc. These special functions can be de-
fined as hypergeometric series or their q-analogues, see [1, 13].
Example 4: We provide an illustrative example of a Jacobi matrix whose diagonal
depends linearly on the index and parallels to the diagonal remain constant, i.e., we set
λn = n and wn = w ∈ R \ {0}, for n ∈ N. The corresponding Jacobi matrix determines
an unbounded self-adjoint operator J with discrete spectrum.

Condition (12) is clearly fulfilled, for instance, with z0 = 0. Further, one has der(λ) =
∅ and spec(J) = Z(J ). Using (7) one derives that

F

({
γ2
k

k − z

}∞
k=r+1

)
= F

({
w

k − z

}∞
k=r+1

)
= wz−rΓ(1 + r − z)Jr−z(2w)

for r ∈ Z+. It follows that

spec(J) = {z ∈ R | J−z(2w) = 0} .
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Components of corresponding eigenvectors v(z) can be chosen as

vk(z) = (−1)kJk−z(2w), k ∈ N.

Moreover, formula [33, Eq. 34] for the Green function

G(z; i, j) := 〈ei, (J − z)−1ej〉, i, j ∈ N,

provides us with an explicit expression for the matrix elements of the resolvent operator
(J − z)−1 in terms of Bessel functions and Lommel polynomials Rn,ν (see [36, Sec. 4],
references therein, or Example 9). Indeed, taking into account [36, Eq. 34], one finds

G(z; i, j) = (−1)i+jRi−1,1−z(2w) Jj−z(2w)
wJ−z(2w) , 1 ≤ i ≤ j,

for all z ∈ C for which J−z(2w) 6= 0. If i > j it suffices to interchange indices i and
j in the last formula due to the symmetry property of the Green function: G(z; i, j) =
G(z; j, i).

For a more detailed analysis of the zeros of the Bessel function considered as a
function of the order based on their relation with the spectrum of the Jacobi operator
J , see [33, Subsec. 4.3].

Let us conclude this section with a short comment on the relation of the characteristic
function FJ with the theory of regularized determinants, see [14] or [31]. Recall a
compact operator A defined on a Hilbert space H belongs to the p-th Schatten-von
Neumann class Ip(H), for 1 ≤ p ≤ ∞, if the set of singular values of A forms a
sequence from `p(N). In particular, I1(H), I2(H), and I∞(H) are spaces of trace
class, Hilbert-Schmidt, and compact operators, respectively. If A ∈ Ip(H), for p ∈ N,
the regularized determinant detp(I−zA) is a well defined entire function of z ∈ C, whose
zeros are reciprocal values of the eigenvalues of A.

Let us temporarily assume λ,w ∈ `2(N). Then (12) holds (for any z0 6= 0 not being
in Ranλ), the Jacobi matrix J is a Hilbert-Schmidt operator on `2(N), and for the
regularized determinant of I − zJ one has

det 2(I − zJ) =
( ∞∏
k=1

(1− zλk)ezλk

)
FJ (z−1).

Indeed, by rewriting (10) into the form

det(In − zJn) =
( ∞∏
k=1

(1− zλk)
)
F

(
γ2

1
λ1 − z−1 ,

γ2
2

λ2 − z−1 , . . . ,
γ2
n

λn − z−1

)
,

multiplying both sides by exp(zTr Jn), and using the well known identity

det exp(A) = exp(Tr(A)), for A ∈ Cn,n,

one arrives at the formula

det [(In − zJn) exp(zJn)] =
(

n∏
k=1

(1− zλk)ezλk

)
F

({
γ2
k

λk − z−1

}n
k=1

)
.
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Now, it suffices to send n → ∞ on both sides of the last identity. The LHS tends
to det 2(I − zJ) since the regularized determinant det2 is continuous functional on
I2(`2(N)), see [31, Thm. 9.2.(c)], and Jn ⊕ 0 → J in I2(`2(N)), as n → ∞. The
expression on the RHS converges too, by the second limit relation from (6) and since
λ ∈ `2(N), see, for instance [28, Chp. 15].

Thus we see, function FJ can be expressed with the aid of the regularized deter-
minant. However, this is true in some special cases only, for instance, if λ,w ∈ `2(N).
On the other hand, FJ has been defined under the assumption (12) exclusively. This
assumption does not imply J to belong to a p-th Schatten-von Neumann class (nor the
compactness of the resolvent). Consequently, function FJ cannot be defined by using the
theory of regularized determinants, in general. Another advantage of the presented con-
struction is the characteristic function FJ has been introduced using only the sequences
λ and w determining the Jacobi matrix (1) (although in a quite complicated manner).
While the regularized determinant is usually introduced in terms of eigenvalues of the
operator in question, see [31, Chps. 3,9].

I.4 Logarithm of F and factorization of the
characteristic function

There is another way how to interpret the definition of F given in (2). The RHS of (2)
can be viewed as an element of the ring of formal power series C[[x]] in countably many
indeterminates x = {xn}∞n=1. So we are no longer restricted with x to the domain D,
however, the RHS of (2) need not converge in C.

It is not our intention to go into details of the theory of formal power series at all.
One can do many things with formal power series at a purely algebraic level. Apart from
multiplication and inversion of invertible elements (C[[x]] is a ring) one can differentiate
them, there is a Taylor’s formula for formal power series, and one can take an exponential
or logarithm of certain elements of C[[x]]. The ring C[[x]] is even equipped with canonical
(product) topology. For the complete theory see [6, § 4.]. Another nice introduction to
the theory of formal power series, however, in one indeterminate only, is given in [25].

A particular subset of invertible formal power series is composed of those of them
having the constant term equal to 1. This is the case of F(x) and the logarithm of F(x) is
a well defined element of C[[x]]. In order to express the formal power series for logF(x)
explicitly we need to introduce the following notation. For a multiindex m ∈ N` denote
by d(m) its length, i.e. d(m) = `. Further, for a multiindex m ∈ N` put

β(m) :=
`−1∏
j=1

(
mj +mj+1 − 1

mj+1

)
, α(m) := β(m)

m1
. (13)

Then in the ring of formal power series in the sequence of indeterminates x = {xk}∞k=1
one has

logF(x) = −
∞∑
`=1

∑
m∈N`

α(m)
∞∑
k=1

d(m)∏
j=1

(xk+j−1xk+j)mj . (14)

In addition, if x ∈ C∞ is such that∑∞k=1 |xkxk+1| < log 2, then the RHS of (14) converges

10



in C and we have

|the RHS of (14)| ≤ − log
(

1−
∞∑
k=1
|xkxk+1|

)
.

The proof of formula (14) is by no means trivial and it is the main result of paper [35].
Next, we recall two formulas derived again in [35] where it is shown the characteristic

function admits Hadamard’s infinite product factorization. The factorization can be
made in two possible ways – either in the spectral parameter or in an auxiliary parameter
which may be called the coupling constant.

First, in order to factorize the characteristic function in the spectral parameter, we
regularize function FJ to obtain an entire function having the property that the set of
its zeros coincides with the spectrum of the corresponding Jacobi operator. For this
purpose we restrict ourself to real sequences λ and w and such that limn→∞ λn = +∞
and wn 6= 0, ∀n ∈ N. In addition, without loss of generality, λ is assumed to be
positive. Moreover, suppose that condition (12) is satisfied for z0 = 0 and the sequence
λ−1 = {1/λn}∞n=1 belongs to `2(N).

Under these assumption, Jacobi operator J is self-adjoint with a compact (even
Hilbert-Schmidt) resolvent, see [33, Cor. 13]. Thus J has discrete spectrum. Moreover,
the characteristic function FJ can be regularized by the multiplication factor

Φλ(z) :=
∞∏
n=1

(
1− z

λn

)
ez/λn .

Since λ−1 ∈ `2(N), Φλ is a well defined entire function; see, for instance, [28, Chp. 15].
In this way one arrives at the entire function

HJ(z) := Φλ(z)FJ (z),

which is to be referred as the regularized characteristic function of the Jacobi operator
J . One has

spec(J) = specp(J) = H −1
J ({0}).

If J is invertible and λn(J), n ∈ N, stand for the eigenvalues of J , then HJ is an
entire function of genus one and it admits the Hadamard’s infinite product factorization
of the form

HJ(z) = FJ(0) ebz
∞∏
n=1

(
1− z

λn(J)

)
ez/λn(J) (15)

where
b =

∞∑
n=1

(
1
λn
− 1
λn(J)

)
<∞.

We illustrate the general formula (15) in the example with Bessel functions.
Example 5: Using (7) and the well known formula for the gamma function,

Γ(z) = e−γz

z

∞∏
n=1

(
1 + z

n

)−1
ez/n,

where γ is the Euler constant, one finds

HJ(z) = eγzwzJ−z(2w).
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J is the Jacobi operator introduced in Example 4. As a result one reveals the infinite
product formula for a Bessel function considered as a function of its order. Assuming
J0(2w) 6= 0, the formula reads

wzJ−z(2w)
J0(2w) = ec(w)z

∞∏
n=1

(
1− z

λn(J)

)
ez/λn(J) (16)

where
c(w) = 1

J0(2w)

∞∑
k=0

(−1)kψ(k + 1) w2k

(k!)2

and ψ(z) = Γ′(z)/Γ(z) is the polygamma function, see [1, Sec. 6]. To derive the expres-
sion for c(w) it suffices to compare the coefficients at z on both sides of (16).

Next, we present the factorization formula for the entire function

f(w) := F(wx), w ∈ C.

Here we assume x ∈ D such that xn 6= 0, ∀n ∈ N.
Clearly FJ (z) = f(z−1) where J is the Jacobi matrix (1) with λn = 0 and wn =√
xnxn+1 (any branch of the square root is suitable). The corresponding operator J

represents a Hilbert-Schmidt operator on `2(N) and the set of nonzero eigenvalues of J
coincides with the set of reciprocal values of zeros of f .

Since f is an even function its zeros can be arranged into sequences

{ζk}N(f)
k=1 ∪ {−ζk}

N(f)
k=1 ,

where each zero being repeated according to its multiplicity, and N(f) ∈ Z+ ∪ {∞}.
The multiplicity of a zero z0 of f coincides with the algebraic multiplicity of eigenvalue
z−1

0 of J , see [35, Prop. 12]. Then one has

f(w) =
N(f)∏
k=1

(
1− w2

ζ 2
k

)
. (17)

By taking the logarithm of both sides, using formula (14), expanding the both sides into
a power series at w = 0, and equating the coefficients at w2N one derives

N(f)∑
`=1

1
ζ 2N
`

= N
∑

m∈M(N)
α(m)

∞∑
k=1

d(m)∏
j=1

(xk+j−1xk+j)mj , (18)

for N ∈ N, where

M(N) =

m ∈
N⋃
`=1

N`

∣∣∣∣∣ ∑̀
j=1

mj = N

 .
Consequently, (18) provides us with an explicit expression of the value of a spectral

zeta function at an even integer. Recall, for an invertible operator A, with A−1 ∈ Ip(H),
we call the function

ζA(z) := TrA−z

the spectral zeta function of an operator A, which is a well defined entire function on
the half-plane {z ∈ C | Re z ≥ p} as it follows from Lidskii’s theorem and properties of
trace class operators, see [31, Chp. 3].

Let us recall the example with Bessel functions once more.
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Example 6: Put xk = (ν + k)−1, ∀k ∈ N, where ν > −1. Recalling (7) and putting
z = w/2, one obtains the factorization of Bessel functions [1, 44],(

z

2

)−ν
Γ(ν + 1)Jν(z) =

∞∏
k=1

(
1− z2

j 2
ν,k

)
,

as a particular case of (17), where jν,k stands for the k-th positive zero of the Bessel
function Jν . The corresponding spectral zeta function

σν(s) =
∞∑
k=1

1
jν,ks

, Re s > 1,

is known as the Rayleigh function [19]. Rayleigh function generalizes the famous Rie-
mann zeta function since z1/2J1/2(z) is a constant multiple of sin(z), see [1, Eq. 10.1.11],
hence j1/2,k = πk, from which one deduces

πsσ 1
2
(s) =

∞∑
k=1

1
ks
, Re s > 1.

Values σν(2N) for N ∈ N are rational functions in ν and have originally been computed
by Rayleigh for 1 ≤ N ≤ 5 and by Cayley for N = 8 [44, § 15.51]. The particular case
of (18) implies the equality

σν(2N) = 2−2NN
∞∑
k=1

∑
m∈M(N)

α(m)
d(m)∏
j=1

(
1

(j + k + ν − 1)(j + k + ν)

)mj

, (19)

is valid for allN ∈ N. Thus, one can determine the value σν(2N) for anyN by using (19).
However, it seems a more efficient way to evaluate σν(2N) is the recursive procedure
using the identity

n =
n∑
k=1

(−1)k+14k(k!)2
(
n

k

)(
ν + n

k

)
σν(2k),

which holds true for all n ∈ N, see [19].

I.5 An application in the theory of continued
fractions

For a given x ∈ D such that F(x) 6= 0 let us introduce sequences {Pk}∞k=0 and {Qk}∞k=0
by P0 = 0 and Pk = F(x2, . . . , xk) for k ≥ 1, Qk = F(x1, . . . , xk) for k ≥ 0. According to
(5), the both sequences obey the difference equation

Yk+1 = Yk − xkxk+1Yk−1, k = 1, 2, 3, . . . ,

with the initial conditions P0 = 0, P1 = 1, Q0 = Q1 = 1, and define the infinite continued
fraction

F(Tx)
F(x) = lim

k→∞

Pk
Qk

= 1

1− x1x2

1− x2x3

1− x3x4

1− . . .

. (20)
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For a sequence a ∈ C∞, formal expression of the form
1

1− a1

1− a2

1− a3

1− . . .

(21)

is referred to as formal Stieltjes continued fraction, or shortly as formal S-fraction. We
have already mentioned F(x) represents an invertible element of the ring C[[x]], so
F(x)−1 ∈ C[[x]] and the LHS of equality (20) can be understood in a pure algebraic
manner as

F(Tx)F(x)−1 ∈ C[[x]], (22)
where Tx = {xk+1}∞k=1 is a truncated sequence of indeterminates. Consequently, with
any formal S-fraction (21) there is naturally associated a unique formal power series f(a)
in the indeterminates a which, under identification: ak = xkxk+1, ∀k, equals (22). This
power series expansion has been studied a long time ago, particularly in the case when
the formal indeterminates ak are replaced by ekx where ek are fixed complex coefficients
and x is a complex variable [27]; see also [43, Thm. 52.1]. Somewhat surprisingly, an
explicit formula for f(a) has been derived much later [11, 45]. Here we recall it while
using the above introduced notation (13).
Theorem 7: The formal power series f(a) ∈ C[[a]] associated with the formal Stieltjes
continued fraction (21) is given by the formula

f(a) = 1 +
∞∑
`=1

∑
m∈N`

β(m)
∏̀
j=1

a
mj

j . (23)

Alternatively to the proofs presented in [11, 45] we shall show that formula (23) can
be derived in a straightforward manner from (14). In addition, we get as a byproduct
another formula, this time for log f(a). Note that the logarithm of f(a) actually makes
good sense in C[[a]] (see [6]) since, even if unaware of (23), it is obvious from (21) as
well as (22) that the constant term of f(a) equals 1.
Proposition 8: Let f(a) ∈ C[[a]] be the formal power series expansion of the formal
Stieltjes continued fraction (21). Then

log f(a) =
∞∑
`=1

∑
m∈N`

α(m)
∏̀
j=1

a
mj

j . (24)

Proof. First, note for A,B ∈ C[[x]] with constant terms being equal to 1, the well known
identity

log(AB) = logA+ logB
remains true in C[[x]]], see [6, § 4.]. As a consequence, one verifies logA−1 = − logA in
C[[x]]. Thus, under the identification ak = xkxk+1, ∀k ∈ N, one has the equalities

log f(a) = log
(
F(Tx)F(x)−1

)
= logF(Tx)− logF(x).

By applying formula (14) to the RHS and making obvious cancellations one arrives at
(24).
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Proof of Theorem 7. Let f̃(a) designate the RHS in (23) and g(a) the RHS in (24). We
have to show that f(a) = f̃(a). From (13) it is obvious that a1∂g(a)/∂a1 = f̃(a) − 1.
On the other hand, it is as well clear from (21) that f(a) = (1− a1f(Ta))−1. From here
one derives (using the common rules of differentiation which are known to be valid in
C[[a]], too, see [6]) that

a1
∂

∂a1
log f(a) = f(a)− 1.

At the same time, Proposition 8 implies

a1
∂

∂a1
log f(a) = a1

∂

∂a1
g(a) = f̃(a)− 1.

This shows (23).
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Part II

Orthogonal Polynomials and the
Moment Problem
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II.1 Function F and orthogonal polynomials
Orthogonal Polynomials (=OPs) has been studied for a long time and the theory of OPs
has been developed into a considerable depth [2, 8, 17, 41]. One defines a sequence of
polynomials with real coefficients {Pn}∞n=0, where degPn = n, to be OPs by requiring
the orthogonality relation∫

R
Pm(x)Pn(x) dµ(x) = δmn, m, n ∈ Z+, (25)

to hold where µ is a positive Borel measure on R with finite moments. Without loss of
generality one may assume µ to be a probability measure, i.e. µ(R) = 1. As usual, µ is
unambiguously determined by the distribution function x 7→ µ((−∞, x]).

To avoid some exceptional situations we assume, in addition, that the distribution
function of µ has an infinite number of points of increase. Then the set of monomials,
{xn | n ∈ Z+}, is linearly independent in L2(R, dµ). One can arrive at the set of
polynomials {Pn}∞n=0 which is orthonormal with respect to µ by applying the Gram-
Schmidt process on the set of monomials in the Hilbert space L2(R, dµ). From the
way the Gram-Schmidt process proceeds one deduces {Pn}∞n=0 satisfies a three-term
recurrence relation,

xP0(x) = λ0P0(x) + w0P1(x), xPn(x) = wn−1Pn−1(x) + λnPn(x) + wnPn+1(x), (26)

for n ∈ N, where {λn}∞n=0 is a real sequence and {wn}∞n=0 is a positive sequence, see
[2, 8, 30]. Thus, any sequence of OPs forms a solution of the three-term recurrence (26).

On the other hand, due to the Favard’s theorem, the opposite statement is also true.
For any sequence of real polynomials, {Pn}∞n=0, with degPn = n, satisfying the recurrence
relation (26) there exists a positive Borel measure making this sequence orthonormal.

Polynomials {Pn}∞n=0 that are the solution of equations

xun = wn−1un−1 + λnun + wnun+1, n ∈ N,

satisfying the initial conditions P0(x) = 1 and P1(x) = (x − λ0)/w0 are called OPs of
the first kind. The second linearly independent solution {Qn}∞n=0 of the same difference
equation with initial conditions Q0(x) = 0 and Q1(x) = 1/w0 is referred to as OPs of
the second kind. These two polynomial sequences are related by the formula

Qn(x) =
∫
R

Pn(x)− Pn(y)
x− y

dµ(y), ∀n ∈ Z+,

where µ is the measure of orthogonality of OPs {Pn}∞n=0, see, for example, [2, Chp. 1].
It is a usual situation in applications that a sequence of OPs is prescribed by the three-

term recurrence rule (26). Then a natural question is: How the measure of orthogonality
µ looks like?

This problem is very closely related to the spectral analysis of a Jacobi operator
determined by the Jacobi matrix (1), now however, the defining sequences λ and w
are coefficients from the recurrence (26) and hence they are indexed by Z+ (instead of
N). This choice of the set of indices is quite standard in the theory of OPs, we follow
Akhiezer’s monograph [2]. Let J be a Jacobi operator determined by sequences λ and
w from the three-term recurrence (26). One easily verifies

Pn(J)e0 = en, ∀n ∈ Z+, (27)
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where {en | n ∈ Z+} stands for the standard basis of `2(Z+) and {Pn}∞n=0 are OPs of
the first kind. Assume the Jacobi matrix represents a unique self-adjoint operator J on
`2(Z+) and let EJ denotes the projection-valued spectral measure of J . Then, by using
(27) and the Spectral Theorem, one gets

δm,n = 〈em, en〉 = 〈Pm(J)e0, Pn(J)e0〉 =
∫
R
Pm(x)Pn(x)dµ(x), m, n ∈ Z+,

where we denote
µ(.) := 〈e0, EJ(.)e0〉.

Consequently, the measure of orthogonality µ is determined by the spectral measure of
J . This measure is supported on spec(J), see [2, 30].

If the Jacobi matrix is in the limit circle case we can similarly construct the whole
one-parameter family of measures of orthogonality µh of respective OPs, for h ∈ R∪{∞},
using the spectral measure of Jh, a self-adjoint extension of Jmin. Measures µh are known
as N-extremal measures referring to the corresponding Hamburger moment problem, see
Section II.2. The interesting fact is that the N-extremal measures do not form the whole
set of measures with respect to which OPs {Pn}∞n=0 are orthogonal (see [2, 30] or Section
II.2).

Let us remark the OPs of the first kind {Pn}∞n=0 are related to F. Indeed, by using
(5), one easily verifies

Pn(x) =
n−1∏
k=0

(
x− λk
wk

)
F

{ γ 2
k

λk − x

}n−1

k=0

 , n ∈ Z+. (28)

Recall {γk}∞k=0 is any sequence satisfying equations γkγk+1 = wk, for k ∈ Z+.
Assuming a sequence of OPs is defined via the recurrence rule (26), i.e. via formula

(28), we provide a description of the measure of orthogonality in terms of sequences
λ and w using the advantage of F once more. For the sake of simplicity we suppose
a particular case with λ being a real sequence from `1(Z+), and w being a positive
sequence from `2(Z+). The general result is given in [36, Thm. 1].

Under the above assumptions on λ and w the Jacobi operator J is compact and
(12) holds for any z0 6= 0 not belonging to the range of λ. Moreover, the characteristic
function of J can be regularized with the aid of the entire function

φλ(z) :=
∞∏
n=0

(1− zλn).

Thus we can introduce an entire function GJ by

GJ(z) :=

φλ(z)FJ (z−1) if z 6= 0,
1 if z = 0.

(29)

The measure of orthogonality µ for the corresponding sequence of OPs defined in
(26) fulfills

supp(µ) \ {0} = {z−1 | GJ(z) = 0}
where the RHS is a bounded discrete subset of R with 0 as the only accumulation point.
Moreover, for x ∈ supp(µ) \ {0} one has

µ({x}) = −x GJ(1)(x−1)
G ′J(x−1) .
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Here J (1) denotes the Jacobi operator determined by the diagonal sequence Tλ =
{λn+1}∞n=0 and the weight sequence Tw = {wn+1}∞n=0, see [36, Thm. 3].

The orthogonality relation for {Pn}∞n=0 now reads

µ({0})Pm(0)Pn(0)−
∞∑
k=1

GJ(1)(µk)
µkG ′J(µk)

Pm(µk)Pn(µk) = δm,n, m, n ∈ Z+, (30)

where {µk | k ∈ N} stands for the set of all zeros of GJ . Number µ({0}) vanishes if and
only if 0 is not an eigenvalue of J . If 0 ∈ specp(J) then {Pn(0)}∞n=0 is the corresponding
eigenvector of J and

µ({0}) = 〈e0, EJ({0})e0〉 =
( ∞∑
n=0

(Pn(0))2
)−1

.

Example 9: Let us illustrate the presented method of finding the measure of orthogo-
nality on a concrete example with Lommel polynomials, well known from the theory of
Bessel functions (see, for example [44, § 9.6-9.73] or [10, Chp. VII]). Lommel polynomials
can be written explicitly in the form

Rn,ν(x) =
[n/2]∑
k=0

(−1)k
(
n− k
k

)
Γ(ν + n− k)

Γ(ν + k)

(2
x

)n−2k

where n ∈ Z+, ν ∈ C, −ν /∈ Z+ and x ∈ C\{0}. Here we use the traditional terminology
though, obviously, Rn,ν(x) is a polynomial in the variable x−1 rather than in x. One
readily verifies the Lommel polynomials obey the recurrence

Rn+1,ν(x) = 2 (n+ ν)
x

Rn,ν(x)−Rn−1,ν(x), n ∈ Z+, (31)

with the initial conditions R−1,ν(x) = 0, R0,ν(x) = 1.
For ν > −1 and n ∈ Z+, set temporarily

λn = 0 and wn = 1/
√

(ν + n+ 1)(ν + n+ 2) .

Then the solution {Pn}∞n=0 of recurrence (26) with this particular choice of λ and w is
related with Lommel polynomials by the relation

Rn,ν+1(x) =
√

ν + 1
ν + n+ 1 Pn

(2
x

)
, (32)

as it follows from (31). Since obviously λ ∈ `1(Z+) and w ∈ `2(Z+) is positive for ν > −1,
we can use formula (30) to derive the orthogonality relation for Lommel polynomials.

First, recalling (7), by (29) one has

GJ(z) = FJ(z−1) = Γ(ν + 1) z−νJν(2z)

and similarly
GJ(1)(z) = Γ(ν + 2) z−ν−1Jν+1(2z).

Second, 0 is not an eigenvalue of the corresponding Jacobi operator J . In fact, invert-
ibility of J can be verified straightforwardly by solving the formal eigenvalue equation
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for 0. At last, note x−νJν(x) is an even function, denote by jk,ν the k-th positive zero of
Jν(x) and put j−k,ν = −jk,ν for k ∈ N. Then formula (30) tells us that the orthogonality
relation takes the form

−2(ν + 1)
∑

k∈Z\{0}

Jν+1(jk,ν)
j 2
k,ν J

′
ν(jk,ν)

Pm

(
2
jk,ν

)
Pn

(
2
jk,ν

)
= δmn

where J ′ν(x) denotes the partial derivative of Jν(x) with respect to x. Finally, by using
(32) together with well known identity [1, Eq. 9.1.27],

∂xJν(x) = ν

x
Jν(x)− Jν+1(x),

the orthogonality relation simplifies to a nice formula
∑

k∈Z\{0}
j −2
k,ν Rn,ν+1(jk,ν)Rm,ν+1(jk,ν) = 1

2(n+ ν + 1) δmn, (33)

valid for ν > −1 and m,n ∈ Z+. Most likely, the orthogonality relation (33) has been
originally derived by Dickinson in [9].

Let us remark the so called Askey scheme [20] is a comprehensive list of today’s well
known OPs. OPs from the Askey scheme are defined as terminating hypergeometric
or q-hypergeometric series. The orthogonality relations of OPs as well as many other
properties are listed in the Askey scheme. However, Lommel polynomials are not in-
volved although there is a relation for them in terms of hypergeometric series, see [9].
The reason for that is maybe the orthogonality relation for Lommel polynomials is not
fully explicit due to the presents of zeros jk,ν , in contrast to orthogonality relations of
all OPs from the Askey scheme.

In view of Example 9, one can say Lommel polynomials are associated with Bessel
function Jν since this function plays a crucial role in the orthogonality relation. Apart
from the orthogonality, asymptotic behavior of Lommel polynomials Rn,ν , as n → ∞,
can be expressed in terms of Bessel function Jν−1, as it follows from Hurwitz’ limit rela-
tion [44, § 9.65]. In [36] we have introduced a new family of OPs associated with regular
Coulomb wave function, see [1, Chp. 14]. This family generalizes Lommel polynomials
in one additional parameter. The introduced method of finding the measure of orthog-
onality is applicable in this case. Surprisingly, the orthogonality relation has almost the
same form as in the case of Lommel polynomials, see [36, Thm. 14].

II.2 The moment problem
In this section, we explain what it means to solve a moment problem. We focus on the
so called Hamburger moment problem (=Hmp) in the indeterminate case. In particular,
we stress the importance of the entire functions A, B, C and D from the Nevanlinna
parametrization since having them at hand one can describe any solution of the corre-
sponding indeterminate Hmp in a systematic way.

In [38], we have found explicit expressions for the Nevanlinna functions in the mo-
ment problem related with a q-analogue of Lommel polynomials. These polynomials
are orthogonal and they have been introduced and studied by Koelink and others in
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[21, 22, 23]. Especially paper [21] served as a strong motivation for work [38], Koelink
pointed out that it would be of interest to determine functions from the Nevanlinna
parametrization corresponding to the Hmp in question. He derived one exceptional
solution to the Hmp (N-extremal, see below) and found a corresponding relation of or-
thogonality for q-Lommel polynomials. All other N-extremal measures of orthogonality
are described in [38]. Moreover, in [37] we provide a detailed spectral analysis of a certain
Jacobi operator. This operator is chosen suitably so that its spectral properties allow
us to reproduce, in a quite straightforward but alternative way, some results concerning
the so called Hahn-Exton q-Bessel functions originally derived in [21, 22].

Suppose a real sequence m = {mn}∞n=0 is given. To solve a Hmp means to answer
the following 3 questions. Is there a positive Borel measure µ on R whose n-th moment
is equal to mn, i.e., ∫

R
xndµ(x) = mn, (34)

for all n ∈ Z+? If so, is the measure µ determined uniquely by the sequence m? If this
is not the case, how all the measures with the moment sequence m can be described?

If µ fulfills (34) we say that µ is a solution to the Hmp. If the solution is unique
the Hmp is called determinate. Otherwise the Hmp is said to be indeterminate. A
comprehensive treatise on the classical results from the theory of the moment problem
is given in [2, 29].

The systematic study of the moment problem has been initiated by Stieltjes in his
memoir [39] from 1894-95, though he restricted himself to measures supported on [0,∞).
Hamburger continued his work in the series of papers [15] from 1920-21, dealing with
measures supported on the whole real line. Hamburger’s theorem concerns the existence
of a solution of Hmp. It says the Hmp has a solution if and only if the sequence m is
positive definite which holds true if and only if the (n+ 1)× (n+ 1) Hankel matrices

∆n(m) :=



m0 m1 m2 . . . mn

m1 m2 m3 . . . mn+1
m2 m3 m4 . . . mn+2
... ... ... . . .

...
mn mn+1 mn+2 . . . m2n


are positive definite for all n ∈ Z+. The problem of determinacy of a Hmp has been
treated in terms of Hankel matrices by Hamburger, too. He showed the Hmp is deter-
minate if and only if

lim
n→∞

det ∆n(m)
det ∆n−1(T 4m) = 0

where T stands for the shift operator defined in connection with the identity (3). A
simple criterion for the Hmp to be determinate, which is however a sufficient condition
only, is due to Carleman [7]. He proved that if

∞∑
n=0

1
2n
√
m2n

=∞

then the Hmp is determinate. So if the moment sequence does not grow too rapidly, the
Hmp is determinate. The opposite, however, is not true. By using the Carleman’s crite-
rion one can easily prove, for example, the probability measure of a normally distributed
random variable is uniquely determined by its moments.
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Let a positive measure µ with a moment sequence m be given. Without loss of
generality we can assume the moment sequence is normalized so that m0 = 1. OPs
Pn(x) satisfying orthogonality relation (25) are determined by the moment sequence m.
Indeed, the explicit formula reads

Pn(x) = 1√
det [∆n−1(m)∆n(m)]

∣∣∣∣∣∣∣∣∣∣∣∣∣

m0 m1 . . . mn

m1 m2 . . . mn+1
... ... ...

mn−1 mn . . . m2n−1
1 x . . . xn

∣∣∣∣∣∣∣∣∣∣∣∣∣
,

for n ∈ Z+, where one has to set det ∆−1(m) := 1, see [2, Eq. 1.4].
Let us draw our attention to the Hmp in the indeterminate case. The Hmp is

indeterminate if and only if the Jacobi operator Jmin, determined by diagonal sequences
{λn}∞n=0 and off-diagonal sequence {wn}∞n=0 from recurrence (26), has deficiency indices
(1, 1). In terms of OPs, the indeterminacy of the Hmp is equivalent to the case when
both sequences {Pn(x)}∞n=0 and {Qn(x)}∞n=0 belong to `2(Z+) for at least one x ∈ R.
It is even necessary and sufficient that there exists z ∈ C, Im z 6= 0, such that either
{Pn(z)}∞n=0 or {Qn(z)}∞n=0 belongs to `2(Z+). In this case, series

∞∑
n=0
|Pn(z)|2 and

∞∑
n=0
|Qn(z)|2

converge locally uniformly on C. All proofs of mentioned statements can be found, for
instance, in [2, 30].

Recall one way of the definition of the Nevanlinna functions A, B, C and D is the
following:

A(z) = z
∞∑
n=0

Qn(0)Qn(z), B(z) = −1 + z
∞∑
n=0

Qn(0)Pn(z),

C(z) = 1 + z
∞∑
n=0

Pn(0)Qn(z), D(z) = z
∞∑
n=0

Pn(0)Pn(z),

where Pn and Qn are OPs of the first and second kind, respectively. Since all the series
converge locally uniformly on C all Nevanlinna functions are entire. In addition, the
Nevanlinna matrix (

A(z) B(z)
C(z) D(z)

)
has determinant equal to one, i.e.,

A(z)D(z)−B(z)C(z) = 1, ∀z ∈ C. (35)

Furthermore, functions A, B, C and D share many properties as entire complex func-
tions. For instance, they are of the same order less or equal to 1, the same type (min-
imal exponential) and have the same Phragmén-Lindelöf indicator function which is
non-negative, see [4].

The description of all solutions of indeterminate Hmp is due to Nevanlinna [24].
The parameter space is the one-point compactification of the set P of Pick functions,
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which are holomorphic functions in the upper half-plane C+ = {z ∈ C | Im z > 0}
with nonnegative imaginary part. The Nevanlinna parametrization is established via
the homeomorphism ϕ 7→ µϕ of P ∪ {∞} onto the set of solutions of the indeterminate
Hmp given by the formula

∫
R

dµϕ(x)
x− z

= −A(z)ϕ(z)− C(z)
B(z)ϕ(z)−D(z) , z ∈ C \ R, (36)

which expresses that the Stieltjes (or Cauchy) transform of any solution µ of indetermi-
nate Hmp is given by the RHS of (36) for a unique ϕ ∈P ∪ {∞}.

Strictly speaking it is not the set of solutions which is parametrized but the set of
their Stieltjes transforms which are holomorphic functions in the cut plane C \ R. This
is in principal as good, since the Stieltjes transform is a one-to-one mapping from the
set of finite complex Borel measures to the set of holomorphic functions on C \ R. The
inverse mapping is given by the Perron-Stieltjes inversion formula which states µ is the
weak limit for ε→ 0+ of measures with density

ρε(x) := 1
2πi

(∫
R

dµ(u)
u− x− iε

−
∫
R

dµ(u)
u− x+ iε

)

with respect to the Lebesgue measure, see [2, Chp. 3].
Thus, to solve the indeterminate Hmp means, in certain sense, to find expressions

for Nevanlinna functions A, B, C and D. The formulas in concrete cases are usually in
terms of special functions. In particular functions B and D play an important role.

A particular subset of the set of solutions of the indeterminate Hmp is formed by so
called Nevanlinna extremal, or shortly N-extremal measures. N-extremal measures can
be parametrized by a parameter t ∈ R ∪ {∞} since these measures correspond to the
choice

ϕ(z) = t, Im z 6= 0, t ∈ R ∪ {∞},

for the Pick function ϕ in (36). Thus, one has
∫
R

dµt(x)
z − x

= A(z)t− C(z)
B(z)t−D(z) , for t ∈ R, or

∫
R

dµ∞(x)
z − x

= A(z)
B(z) . (37)

Measures µt are purely discrete and they can be characterized by at least two different
propositions. First one is due to Riezs, see [26] or [29, p. 62], stating N-extremal measures
are the only measures (among solutions of the Hmp) for which polynomials C[x] are dense
in L2(R, dµ).

At the same time, µt = 〈e0, EJte0〉 where e0 is the first vector of the standard basis of
`2(Z+) and EJt is the projection-valued spectral measure of a self-adjoint extension Jt of
Jmin. Thus, N-extremal measures correspond to spectral measures of all the self-adjoint
Jacobi operators determined by the Jacobi matrix whose diagonal and off-diagonal se-
quences are defined by the three-term recurrence of the corresponding OPs.

The support of µt is the set of poles of meromorphic functions on the RHSs in
formulas in (37). Since the zeros of functions

z 7→ A(z)t− C(z) and z 7→ B(z)t−D(z)
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are real, simple and interlace, see [2, Chp. 2, Sec. 4], one gets µt is supported on the set

Zt := {x ∈ R | B(x)t−D(x) = 0}, for t ∈ R,

or
Z∞ := {x ∈ R | B(x) = 0}.

Consequently, the first formula in (37) is, in fact, the Mittag-Leffler expansion of the
meromorphic function on the RHS, cf. [2, footnote at p. 55],

∑
x∈Zt

µt({x})
z − x

= A(z)t− C(z)
B(z)t−D(z) ,

from which one deduces

µt({x}) = Res
(
A(.)t− C(.)
B(.)t−D(.) , x

)
= A(x)t− C(x)
B′(x)t−D′(x) ,

for x ∈ Zt. We treat the case t ∈ R, if t = ∞ one proceeds in a similar way. The last
identity can be slightly rewritten. Note if x ∈ Zt then B(x)t = D(x) and taking into
account identity (35) one observes

A(x)t− C(x)
B′(x)t−D′(x) = 1

B′(x)D(x)−B(x)D′(x) .

Consequently, the magnitude of jumps of the distribution function x 7→ µt((−∞, x]) is
independent of t.

Altogether, N-extremal measures are completely determined by functions B and D
and they can be written in the form

µt =
∑
x∈Zt

ρ(x)δx,

where we put
ρ(x) := 1

B′(x)D(x)−B(x)D′(x) ,

t ∈ R∪{∞}, and δx stands for the Dirac measure supported on {x}. Recall also for the
function ρ it holds

∞∑
n=0
|Pn(z)|2 = 1

ρ(z)
and 0 < ρ(z) < 1, for all z ∈ C, see again [2, Chp. 2, Sec. 4].

Besides the N-extremal measures, by setting ϕ(z) = t + iγ, with z ∈ C+, t ∈ R,
γ > 0, for the Pick function in (36), one arrives at a two-parametric family

{µt,γ | t ∈ R, γ > 0}

of solutions of Hmp. Berg and Valent [5] proved measures µt,γ are all absolutely contin-
uous with respect to the Lebesgue measure. Their density can be expressed in terms of
functions B and D as follows

dµt,γ
dx = γπ−1

(tB(x)−D(x))2 + (γB(x))2 , x ∈ R.
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It was Krein [2, p. 87] who proved the following criterion: If there exists a solution
µ of the Hmp whose absolutely continuous part wµ is such that

∫
R

logwµ(x)
1 + x2 dx > −∞ (38)

then the Hmp is indeterminate. Measures µt,γ are interesting since the solution µ0,1 is the
one that maximizes the entropy integral from (38) among all the densities of solutions
of the Hmp, see [12] for even more general result.
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1. Introduction

The results of the current paper are related to the eigenvalue problem for finite-dimensional sym-

metric tridiagonal (Jacobi) matrices. Notably, the eigenvalue problem for finite Jacobi matrices is solv-

able explicitly in terms of generalized hypergeometric series [7]. Here we focus on a very particular

class of Jacobi matrices which makes it possible to derive some expressions in a comparatively simple

and compact form. We do not aim at all, however, at a complete solution of the eigenvalue problem.

We restrict ourselves to derivation of several explicit formulas, first of all that for the characteristic

function, as explained in more detail below. We also develop some auxiliary notions which may be, to

our opinion, of independent interest.
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First,we introduce a function, calledF, defined on a subset of the space of complex sequences. In the

remainder of the paper it is intensively used in various formulas. The functionFhas remarkably simple

and nice algebraic properties. Among others, with the aid of F one can relate an infinite continued

fraction to any sequence from the definition domain on which F takes a nonzero value. This may be

compared to the fact that there exists a correspondence between infinite Jacobi matrices and infinite

continued fractions, as explained in [2, Chapter 1]. Let us also note that some special functions are

expressible in terms of F. First of all this concerns the Bessel functions of first kind. We examine the

relationship between F and the Bessel functions and provide some supplementary details on it.

Further we introduce an infinite antisymmetric matrix, with entries indexed by integers, such that

its every row or column obeys a second-order difference equation which is very well known from the

theory of Bessel functions. With the aid of function Fone derives a general formula for entries of this

matrix. The matrix also plays an essential role in the remainder of the paper.

As an applicationwe present a comparatively simple formula for the determinant of a Jacobimatrix

of odd dimension under the assumption that the neighboring parallels to the diagonal are constant.

As far as the determinant is concerned this condition is not very restrictive since a Jacobi matrix can

be written as a product of another Jacobi matrix with all units on the neighboring parallels which is

sandwiched with two diagonal matrices. The formula further simplifies in the particular case when

the diagonal is antisymmetric (with respect to its center). In that case zero is always an eigenvalue and

we give an explicit formula for the corresponding eigenvector.

Finallywe focus on the rather particular class of Jacobimatrices of odddimensionwhoseparallels to

thediagonal are constant andwhosediagonal depends linearly on the index.Within this class it suffices

to consider matrices whose diagonal is, in addition, antisymmetric. In this case we derive a formula

for the characteristic function. Yet another formula is presented in which the characteristic function is

expressed in terms of the function F in a very simple and compact manner. Moreover, we construct a

basis in which the Jacobi matrix becomes a sum of a diagonal matrix and a rank-one matrix operator.

This form is rather suitable for various computations. Particularly, one can readily derive a formula

for the resolvent. In addition, a vector-valued function on the complex plain is constructed having the

property that its values on spectral points of the Jacobimatrix are equal to corresponding eigenvectors.

2. The function F

We introduce a function Fdefined on a subset of the linear space formed by all complex sequences

x = {xk}∞k=1.

Definition 1. Define F : D → C,

F(x) = 1 +
∞∑

m=1

(−1)m
∞∑

k1=1

∞∑
k2=k1+2

· · ·
∞∑

km=km−1+2

xk1xk1+1xk2xk2+1 · · · xkmxkm+1 (1)

where

D =
⎧⎨
⎩{xk}∞k=1;

∞∑
k=1

|xkxk+1| < ∞
⎫⎬
⎭ .

For a finite number of complex variables we identify F(x1, x2, . . . , xn) with F(x) where x = (x1, x2,
. . . , xn, 0, 0, 0, . . . ). By convention, we also put F(∅) = 1 where ∅ is the empty sequence.

Remark 2. Note that the domain D is not a linear space. One has, however, �2(N) ⊂ D. To see that

the series on the RHS of (1) converges absolutely whenever x ∈ D observe that the absolute value of

themth summand is majorized by the expression

∑
k∈N

m

k1<k2<···<km

|xk1xk1+1xk2xk2+1 · · · xkmxkm+1| � 1

m!

⎛
⎝ ∞∑

j=1

|xjxj+1|
⎞
⎠m

.
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Obviously, if all but finitely many elements of a sequence x are zeroes then F(x) reduces to a finite

sum. Thus

F(x1) = 1, F(x1, x2) = 1 − x1x2, F(x1, x2, x3) = 1 − x1x2 − x2x3,

F(x1, x2, x3, x4) = 1 − x1x2 − x2x3 − x3x4 + x1x2x3x4, etc.

Let T denote the truncation operator from the left defined on the space of all sequences:

T
({xk}∞k=1

) = {xk+1}∞k=1.

Tn, n = 0, 1, 2, . . . , stands for a power of T . Hence Tn({xk}∞k=1) = {xk+n}∞k=1.

The proof of the following proposition is immediate.

Proposition 3. For all x ∈ D one has

F(x) = F(Tx)− x1x2 F
(
T2x

)
. (2)

Particularly, if n � 2 then

F(x1, x2, x3, . . . , xn) = F(x2, x3, . . . , xn)− x1x2 F(x3, . . . , xn). (3)

Remark 4. Clearly, given that F(∅) = F(x1) = 1, relation (3) determines recursively and unambigu-

ously F(x1, . . . , xn) for any finite number of variables n ∈ Z+ (including n = 0).

Remark 5. One readily verifies that

F(x1, x2, . . . , xn) = F(xn, . . . , x2, x1). (4)

Hence equality (3) implies, again for n � 2,

F(x1, . . . , xn−2, xn−1, xn) = F(x1, . . . , xn−2, xn−1)− xn−1xn F(x1, . . . , xn−2). (5)

Remark 6. For a given x ∈ D such that F(x) �= 0 let us introduce sequences {Pk}∞k=0 and {Qk}∞k=0 by

P0 = 0 and Pk = F(x2, . . . , xk) for k � 1, Qk = F(x1, . . . , xk) for k � 0. According to (5), the both

sequences obey the difference equation

Yk+1 = Yk − xkxk+1Yk−1, k = 1, 2, 3, . . . ,

with the initial conditions P0 = 0, P1 = 1, Q0 = Q1 = 1, and define the infinite continued fraction

F(Tx)

F(x)
= lim

k→∞
Pk

Qk

= 1

1 − x1x2

1 − x2x3

1 − x3x4

1 − · · ·

.

Proposition 3 admits a generalization.

Proposition 7. For every x ∈ D and k ∈ N one has

F(x) = F(x1, . . . , xk)F(Tkx)− F(x1, . . . , xk−1)xkxk+1 F(Tk+1x). (6)

Proof. Let us proceed by induction in k. For k = 1, equality (6) coincides with (2). Suppose (6) is true

for k ∈ N. Applying Proposition 3 to the sequence Tkx and using (5) one finds that the RHS of (6) equals

F(x1, . . . , xk)F(Tk+1x)− F(x1, . . . , xk)xk+1xk+2 F(Tk+2x)

− F(x1, . . . , xk−1)xkxk+1 F(Tk+1x)

= F(x1, . . . , xk, xk+1)F(Tk+1x)− F(x1, . . . , xk)xk+1xk+2 F(Tk+2x).

This concludes the verification. �
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Remark 8. With the aid of Proposition 3 one can rewrite equality (6) as follows

F(x) = F(x1, . . . , xk)F

(
F(x1, . . . , xk−1)

F(x1, . . . , xk)
xk, xk+1, xk+2, xk+3, . . .

)
. (7)

Later on, we shall also need the following identity.

Lemma 9. For any n ∈ N one has

u1F(u2, u3, . . . , un)F(v1, v2, v3, . . . , vn)− v1F(u1, u2, u3, . . . , un)F(v2, v3, . . . , vn)

=
n∑

j=1

⎛
⎝ j−1∏

k=1

ukvk

⎞
⎠(uj − vj)F(uj+1, uj+2, . . . , un)F(vj+1, vj+2, . . . , vn). (8)

Proof. The equality can be readily proved by induction in nwith the aid of (3). �

Example 10. For t,w ∈ C, |t| < 1, a simple computation leads to the equality

F
({

tk−1w
}∞
k=1

)
= 1 +

∞∑
m=1

(−1)m
tm(2m−1)w2m

(1 − t2)(1 − t4) · · · (1 − t2m)
. (9)

This function can be identifiedwith a basic hypergeometric series (also calledq-hypergeometric series)

defined by

rφs(a; b; q, z) =
∞∑
k=0

(a1; q)k · · · (ar; q)k
(b1; q)k · · · (bs; q)k

(
(−1)kq

1
2
k(k−1)

)1+s−r zk

(q; q)k
where r, s ∈ Z+ (nonnegative integers) and

(α; q)k =
k−1∏
j=0

(
1 − αqj

)
, k = 0, 1, 2, . . . ,

see [5]. In fact, the RHS in (9) equals 0φ1(; 0; t2,−tw2)where

0φ1(; 0; q, z) =
∞∑
k=0

qk(k−1)

(q; q)k zk =
∞∑
k=0

qk(k−1)

(1 − q)(1 − q2) · · · (1 − qk)
zk,

with q, z ∈ C, |q| < 1, and the recursive rule (2) takes the form

0φ1(; 0; q, z) = 0φ1(; 0; q, qz)+ z 0φ1(; 0; q, q2z). (10)

Put e(q; z) = 0φ1(; 0; q, (1 − q)z). Then limq↑1 e(q; z) = exp(z). Hence e(q; z) can be regarded as a

q-deformed exponential function though this is not the standard choice (compare with [5] or [6] and

references therein). Equality (10) can be interpreted as the discrete derivative

e(q; z)− e(q; qz)
(1 − q)z

= e
(
q; q2z

)
.

Moreover, in view of Remark 6, one has

1

1 + z

1 + qz

1 + q2z

1 + · · ·

= 0φ1(; 0; q, qz)
0φ1(; 0; q, z) .

This equality is related to the Rogers–Ramanujan identities, see the discussion in [3, Chapter 7].
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Example 11. The Bessel functions of the first kind can be expressed in terms of function F. More

precisely, for ν /∈ −N, one has

Jν(2w) = wν

�(ν + 1)
F

({
w

ν + k

}∞

k=1

)
. (11)

The recurrence relation (2) transforms to the well known identity

zJν(z)− 2(ν + 1)Jν+1(z)+ zJν+2(z) = 0.

To prove (11) one can proceed by induction in j = 0, 1, . . . ,m − 1, to show that

∞∑
k1=1

∞∑
k2=k1+2

· · ·
∞∑

km=km−1+2

× 1

(ν + k1)(ν + k1 + 1)(ν + k2)(ν + k2 + 1) · · · (ν + km)(ν + km + 1)

= 1

j!
∞∑

k1=1

∞∑
k2=k1+2

· · ·
∞∑

km−j=km−j−1+2

× 1

(ν + k1)(ν + k1 + 1)(ν + k2)(ν + k2 + 1) · · · (ν + km−j)(ν + km−j + 1)

× 1

(ν + km−j + 2)(ν + km−j + 3) · · · (ν + km−j + j + 1)
.

In particular, for j = m − 1, the RHS equals

1

(m − 1)!
∞∑

k1=1

1

(ν + k1)(ν + k1 + 1)(ν + k1 + 2) · · · (ν + k1 + m)

= 1

m! (ν + 1)(ν + 2) · · · (ν + m)
= �(ν + 1)

m!�(ν + m + 1)

and so

wν

�(ν + 1)
F

({
w

ν + k

}∞

k=1

)
=

∞∑
m=0

(−1)m
w2m+ν

m!�(ν + m + 1)
,

as claimed. Furthermore, Remark 6 provides us with the infinite fraction

ν + 1

w

Jν+1(2w)

Jν(2w)
= 1

1 −
w2

(ν + 1)(ν + 2)

1 −
w2

(ν + 2)(ν + 3)

1 −
w2

(ν + 3)(ν + 4)

1 − · · ·

.
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This can be rewritten as

Jν+1(z)

Jν(z)
= z

2(ν + 1)− z2

2(ν + 2)− z2

2(ν + 3)− z2

2(ν + 4)− · · ·

.

Comparing toExample11, onecanalsofind thevalueofFon the truncated sequence {w/(ν+k)}nk=1.

Proposition 12. For n ∈ Z+ and ν ∈ C \ {−n,−n + 1, . . . ,−1} one has

F

(
w

ν + 1
,

w

ν + 2
, . . . ,

w

ν + n

)
= �(ν + 1)

�(ν + n + 1)

[n/2]∑
s=0

(−1)s
(n − s)!

s! (n − 2s)! w
2s

n−1−s∏
j=s

(ν+n− j).

(12)

In particular, for m, n ∈ Z+, m � n, one has

F

(
w

m + 1
,

w

m + 2
, . . . ,

w

n

)
= m!

n!
[(n−m)/2]∑

s=0

(−1)s
(n − s)! (n − m − s)!

s! (m + s)! (n − m − 2s)! w
2s. (13)

Proof. Firstly, the equality

n∑
k=1

(n + 1 − k)(n + 2 − k) · · · (n + s − 1 − k)

(ν + k)(ν + k + 1) · · · (ν + k + s)

= n (n + 1) · · · (n + s − 1)

s (ν + n + s) (ν + 1)(ν + 2) · · · (ν + s)
(14)

holds for all n ∈ Z+, ν ∈ C, ν /∈ −N, and s ∈ N. To show (14) one can proceed by induction in s. The

case s = 1 is easy to verify. For the induction step from s − 1 to s, with s > 1, let us denote the LHS of

(14) by Ys(ν, n). One observes that

Ys(ν, n) = ν + n + s − 1

s
Ys−1(ν, n)− ν + n + 2s − 1

s
Ys−1(ν + 1, n).

Applying the induction hypothesis the equality readily follows.

Next one shows that

n−2s+2∑
k1=1

n−2s+4∑
k2=k1+2

· · ·
n∑

ks=ks−1+2

× 1

(ν + k1)(ν + k1 + 1)(ν + k2)(ν + k2 + 1) · · · (ν + ks)(ν + ks + 1)
(15)

= (n − 2s + 2)(n − 2s + 3) · · · (n − s + 1)

s! (ν + 1)(ν + 2) · · · (ν + s) (ν + n − s + 2)(ν + n − s + 3) · · · (ν + n + 1)

holds for all n ∈ Z+, s ∈ N, 2s � n + 2. To this end, we again proceed by induction in s. The case

s = 1 is easy to verify. In the induction step from s − 1 to s, with s > 1, one applies the induction

hypothesis to the LHS of (15) and arrives at the expression
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n−2s+2∑
k=1

1

(ν + k)(ν + k + 1) (s − 1)!
× (n − k − 2s + 3)(n − k − 2s + 4) · · · (n − k − s + 1)

(ν + k + 2)(ν + k + 3) · · · (ν + k + s) (ν + n − s + 3)(ν + n − s + 4) · · · (ν + n + 1)
.

Using (14) one obtains the RHS of (15), as claimed.

Finally, to conclude the proof, it suffices to notice that

F

(
w

ν + 1
,

w

ν + 2
, · · · , w

ν + n

)
= 1 +

[n/2]∑
s=1

(−1)s
n−2s+1∑
k1=1

n−2s+3∑
k2=k1+2

· · ·
n−1∑

ks=ks−1+2

× w2s

(ν + k1)(ν + k1 + 1)(ν + k2)(ν + k2 + 1) · · · (ν + ks)(ν + ks + 1)

and to use equality (15). �

One can complete Proposition 12 with another relation to Bessel functions.

Proposition 13. For m, n ∈ Z+, m � n, one has

π Jm(2w)Yn+1(2w)

= − n!
m! w

m−n−1
F

(
w

m + 1
,

w

m + 2
, · · · , w

n

)
(16)

−
m−1∑
s=0

(m − s − 1)! (n − m + 2s + 1)!
s! (n + s + 1)! (n − m + s + 1)! w

n−m+2s+1 + O
(
wm+n+1 log(w)

)
.

Proof. Recall the following two facts from the theory of Bessel functions (see, for instance, [4, Chap-

ter VII]). Firstly, for μ, ν /∈ −N, one has

Jμ(z)Jν(z) =
∞∑
s=0

(−1)s
(s + μ+ ν + 1)s

s!�(μ+ s + 1)�(ν + s + 1)

(
z

2

)μ+ν+2s

where (a)s = a(a + 1) · · · (a + s − 1) is the Pochhammer symbol. Secondly, for n ∈ Z+,

πYn(z) = ∂

∂ν

(
Jν(z)− (−1)nJ−ν(z)

) ∣∣∣∣∣
ν=n

.

For m, n ∈ Z+, m � n, a straightforward computation based on these facts yields

π Jm(z)Yn(z)

= −
[(n−m−1)/2]∑

s=0

(−1)s
(n − s − 1)! (n − m − s − 1)!
s! (m + s)! (n − m − 2s − 1)!

(
z

2

)m−n+2s

−
m−1∑
s=0

(m − s − 1)! (n − m + 2s)!
s! (n + s)! (n − m + s)!

(
z

2

)n−m+2s

+ 2Jm(z)Jn(z) log

(
z

2

)
(17)

+
∞∑
s=0

(−1)s
(m + n + 2s)!

s! (m + s)! (n + s)! (m + n + s)!
(
z

2

)m+n+2s (
2ψ(m + n + 2s + 1)

−ψ(m + s + 1)− ψ(n + s + 1)− ψ(m + n + s + 1)− ψ(s + 1)
)

whereψ(z) = �′(z)/�(z) is the digamma function. The proposition follows from (17) and (13). �
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Remark 14. Note that the first term on the RHS of (16) contains only negative powers of w. One can

extend (16) to the case n = m − 1. Then

π Jm(2w)Ym(2w) = −
m−1∑
s=0

(m − s − 1)! (2s)!
(s!)2 (m + s)! w2s + O

(
w2m log(w)

)
.

3. The matrix J

In this section we introduce an infinite matrix J that is basically determined by two simple prop-

erties – it is antisymmetric and its every row satisfies a second-order difference equation known from

the theory of Bessel functions. Of course, in that case every columnof thematrix satisfies the difference

equation as well.

Lemma 15. Suppose w ∈ C \ {0}. The dimension of the vector space formed by infinite-dimensional

matrices A = {A(m, n)}m,n∈Z satisfying, for all m, n ∈ Z,

wA(m, n − 1)− nA(m, n)+ wA(m, n + 1) = 0 (18)

and

A(n,m) = −A(m, n), (19)

equals 1. Every such a matrix is unambiguously determined by the value A(0, 1), and one has

∀n ∈ Z, A(n, n + 1) = A(0, 1). (20)

Proof. Suppose A solves (18) and (19). Then A(m,m) = 0. Equating m = n in (18) and using (19)

one finds that A(n, n + 1) = −A(n, n − 1) = A(n − 1, n). Hence (20) is fulfilled. Clearly, the matrix

A is unambiguously determined by the second-order difference equation (18) in n and by the initial

conditions A(m,m) = 0, A(m,m + 1) = A(0, 1), when m runs through Z.

Conversely, choose λ ∈ C, λ �= 0. Let A be the unique matrix determined by (18) and the initial

conditions A(m,m) = 0, A(m,m + 1) = λ. It suffices to show that A satisfies (19) as well. Note that

A(m,m − 1) = −λ. Furthermore,

wA(m − 1,m + 1)− mA(m,m + 1)+ wA(m + 1,m + 1)

= wA(m − 1,m + 1)− mA(m − 1,m)+ wA(m − 1,m − 1)

= 0.

From (18) and the initial conditions it follows thatA(m,m+2) = (m+1)λ/w, and somA(m,m+2) =
(m + 1)A(m − 1,m + 1). Consequently,

wA(m − 1,m + 2)− mA(m,m + 2)+ wA(m + 1,m + 2)

= wA(m − 1,m + 2)− (m + 1)A(m − 1,m + 1)+ wA(m − 1,m)

= 0.

One observes that, for a given m ∈ Z, the sequence

xn = −A(m − 1, n)+ m

w
A(m, n), n ∈ Z,

solves the difference equation

wxn−1 − nxn + wxn+1 = 0 (21)
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with the initial conditions xm+1 = A(m + 1,m + 1), xm+2 = A(m + 1,m + 2). By the uniqueness,

xn = A(m + 1, n). This means that, for all m, n ∈ Z,

wA(m − 1, n)− mA(m, n)+ wA(m + 1, n) = 0.

Put B(m, n) = −A(n,m). Then B fulfills (18) and B(m,m) = 0, B(m,m + 1) = λ. Whence B = A. �

Lemma 16. Suppose w ∈ C \ {0}. If a matrix A = {A(m, n)}m,n∈Z satisfies (18) and (19) then

∀m, n ∈ Z, A(m,−n) = (−1)nA(m, n), A(−m, n) = (−1)mA(m, n). (22)

Proof. For any sequence {xn}n∈Z satisfying the difference equation (21) one can verify, by mathemat-

ical induction, that x−n = (−1)nxn, n = 0, 1, 2, . . .. �

Definition 17. For a given parameter w ∈ C \ {0} let J = {J(m, n)}m,n∈Z denote the unique matrix

satisfying (18), (19) and J(m,m + 1) = 1, ∀m ∈ Z.

Remark 18. Here are several particular entries of the matrix J,

J(m,m) = 0, J(m,m+1) = 1, J(m,m+2) = m + 1

w
, J(m,m+3) = (m + 1)(m + 2)

w2
−1,

with m ∈ Z. Some other particular values follow from (19) and (22). Below, in Proposition 22, we

derive a general formula for J(m, n).

Lemma 19. For 0 � m < n one has (with the convention F(∅)=1)
J(m, n) = (n − 1)!

m! wm−n+1
F

(
w

m + 1
,

w

m + 2
, . . . ,

w

n − 1

)
. (23)

Proof. The RHS of (23) equals 1 for n = m + 1, and (m + 1)/w for n = m + 2. Moreover, in view of

(5), the RHS satisfies the difference equation (21) in the index n. �

Remark 20. From (23) and (11) it follows that

∀m ∈ Z, lim
n→∞

wn−1

(n − 1)! J(m, n) = Jm(2w).

This is in agreement with the well known fact that, for any w ∈ C, the sequence {Jn(2w)}n∈Z fulfills

the second-order difference equation (21).

Remark 21. Rephrasing Proposition 13 and Remark 14 one has, for m, n ∈ Z+,m � n,

π Jm(2w)Yn(2w)= −w−1
J(m, n)−

m−1∑
s=0

(m − s − 1)! (n − m + 2s)!
s! (n + s)! (n − m + s)! wn−m+2s

+O
(
wm+n log(w)

)
.

Since, by definition, the matrix J is antisymmetric it suffices to determine the values J(m, n) for
m � n, m, n ∈ Z. In the derivations to follow as well as in the remainder of the paper we use the

Newton symbol in the usual sense, i.e. for any z ∈ C and n ∈ Z+ we put(
z

n

)
= z(z − 1) · · · (z − n + 1)

n! .
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Proposition 22. For m, n ∈ Z, m � n, one has

J(m, n) =
[(n−m−1)/2]∑

s=0

(−1)s
(

n − s − 1

n − m − 2s − 1

)
(n − m − s − 1)!

s! wm−n+2s+1. (24)

Proof. We distinguish several cases. First, consider the case 0 � m < n. Then (24) follows from (23)

and (13). Observe also that form = n,m, n ∈ Z, the RHS of (24) is an empty sum and so the both sides

in (24) are equal to 0.

Second, consider the casem � 0 � n. Put m = −k, k ∈ Z+. The RHS of (24) becomes

[(n+k−1)/2]∑
s=0

(−1)s
(

n − s − 1

n + k − 2s − 1

)
(n + k − s − 1)!

s! w−k−n+2s+1. (25)

Suppose k � n. Then the summands in (25) vanish for s = 0, 1, . . . , k − 1, and so the sum equals

[(n−k−1)/2]∑
s=0

(−1)s+k (n − k − s − 1)!
(n − k − 2s − 1)! s!

(n − s − 1)!
(s + k)! wk−n+2s+1.

By the first step, this expression is equal to (−1)kJ(k, n) = J(−k, n) (see Lemma16). Further, suppose

k � n. Then the summands in (25) vanish for s = 0, 1, . . . , n − 1, and so the sum equals

[(k−n−1)/2]∑
s=0

(−1)n+s

( −s − 1

k − n − 2s − 1

)
(k − s − 1)!
(n + s)! wn−k+2s+1.

Using once more the first step, this expression is readily seen to be equal to

(−1)k+1J(n, k) = J(−k, n).
Finally, consider the case m � n � 0. Put m = −k, n = −�, k, � ∈ Z+. Hence 0 � � � k. The

RHS of (24) becomes

[(k−�−1)/2]∑
s=0

(−1)s
( −�− s − 1

k − �− 2s − 1

)
(k − �− s − 1)!

s! w�−k+2s+1.

Using again the first step, this expression is readily seen to be equal to (−1)k+�+1J(�, k)
= J(−k,−�). �

4. The characteristic function for the antisymmetric diagonal

For a given d ∈ Z+ let E± denote the (2d + 1)× (2d + 1)matrix with units on the upper (lower)

parallel to the diagonal and with all other entries equal to zero. Hence

(E+)j,k = δj+1,k, (E−)j,k = δj,k+1, j, k = −d,−d + 1,−d + 2, . . . , d.

For y = (y−d, y−d+1, y−d+2, . . . , yd) ∈ C
2d+1 let diag(y) denote the diagonal (2d + 1)× (2d + 1)

matrix with the sequence y on the diagonal. Everywhere in what follows, I stands for a unit matrix.

First a formula is presented for the determinant of a Jacobi matrix with a general diagonal but with

constant neighboring parallels to the diagonal. As explained in the subsequent remark, however, this

formula can be extended to the general case with the aid of a simple decomposition of the Jacobi

matrix in question.

Proposition 23. For d ∈ N, w ∈ C and y = (y−d, y−d+1, y−d+2, . . . , yd) ∈ C
2d+1,

∏d
k=1 yky−k �= 0,

one has
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det
(
diag(y)+ wE+ + wE−

) =
⎛
⎝ d∏

k=1

yky−k

⎞
⎠ [

y0 F

(
w

y1
, . . . ,

w

yd

)
F

(
w

y−1

, . . . ,
w

y−d

)

− w2

y1
F

(
w

y2
, . . . ,

w

yd

)
F

(
w

y−1

, . . . ,
w

y−d

)

− w2

y−1

F

(
w

y1
, . . . ,

w

yd

)
F

(
w

y−2

, . . . ,
w

y−d

)]
. (26)

Proof. Let us proceed by induction in d. The case d = 1 is easy to verify. PutNd(w; y) = det
(
diag(y)+

wE+ + wE−
)
. Suppose (26) is true for some d � 1. For given w ∈ C and y ∈ C

2d+3 consider the

quantityNd+1(w; y). Let us split the corresponding (2d+3)× (2d+3) Jacobi matrix into four blocks

by splitting the set of indices into two disjoint sets {−d−1, d+1} and {−d,−d+1,−d+2, . . . , d}.
Applying the rule

det

⎛
⎝A B

C D

⎞
⎠ = det(A) det(D − CA−1B)

one derives the recurrence relation

Nd+1(w; y−d−1, y−d, y−d+1, . . . , yd, yd+1)

= yd+1y−d−1Nd(w; y′−d, y−d+1, y−d+2, . . . , yd−1, y
′
d)

where

y′
d =

(
1 − w2

ydyd+1

)
yd, y′−d =

(
1 − w2

y−dy−d−1

)
y−d.

Now it is sufficient to use the induction hypothesis jointly with the equality

(1 − xn−1xn)F

(
x1, x2, . . . , xn−2,

xn−1

1 − xn−1xn

)
= F(x1, x2, . . . , xn−1, xn)

which is valid for n � 2 and which follows from relations (4) and (7), with k = 2. �

Remark 24. Let us consider a general finite symmetric Jacobi matrix J of the form

J =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ1 w1

w1 λ2 w2

. . .
. . .

. . .

. . .
. . .

. . .

wn−2 λn−1 wn−1

wn−1 λn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

such that
∏n−1

k=1 wk �= 0. The Jacobi matrix can be decomposed into the product

J = GJ̃G (27)

where G = diag(γ1, γ2, . . . , γn) is a diagonal matrix and J̃ is a Jacobi matrix with all units on the

neighboring parallels to the diagonal,
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J̃ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ̃1 1

1 λ̃2 1

. . .
. . .

. . .

. . .
. . .

. . .

1 λ̃n−1 1

1 λ̃n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Hence det(J) =
(∏n

k=1 γ
2
k

)
det(J̃), and one can employ formula (26) to evaluate det(J̃) (in the case of

odd dimension). In more detail, one can put

γ2k−1 =
k−1∏
j=1

w2j

w2j−1

, γ2k = w1

k−1∏
j=1

w2j+1

w2j

, k = 1, 2, 3, . . . .

Alternatively, the sequence {γk}nk=1 is defined recursively by γ1 = 1, γk+1 = wk/γk . Furthermore,

λ̃k = λk/γ
2
k . With this choice, (27) is clearly true.

Next we aim to derive a formula for the characteristic function of a Jacobi matrix with an antisym-

metric diagonal. Supposeλ = (λ−d, λ−d+1, λ−d+2, . . . , λd) ∈ C
2d+1 andλ−k = −λk for−d � k �

d; in particular,λ0 = 0.We consider the Jacobimatrix K = diag(λ)+wE+ +wE−. Let us denote, tem-

porarily, by S the diagonal matrix with alternating signs on the diagonal, S = diag(1,−1, 1, . . . , 1),
and by Q the permutation matrix with the entries Qj,k = δj+k,0 for −d � j, k � d. The commutation

relations

SQKQS = −K, S2 = Q2 = I,

imply

det(K − zI) = det
(
SQ(K − zI)QS

) = − det(K + zI).

Hence the characteristic function of K is an odd polynomial in the variable z. This can be also seen

from the explicit formula (28) derived below.

Proposition 25. Suppose d ∈ N, w ∈ C, λ ∈ C
2d+1 and λ−k = −λk for k = −d,−d + 1,−d +

2, . . . , d. Then

(−1)d+1

z
det

(
diag(λ)+ wE+ + wE− − zI

)
(28)

=
⎛
⎝ d∏

k=1

(
λ2k − z2

)⎞
⎠ F

(
w

λ1 − z
, . . . ,

w

λd − z

)
F

(
w

λ1 + z
, . . . ,

w

λd + z

)

+ 2

d∑
j=1

w2j

⎛
⎝ d∏

k=j+1

(
λ2k − z2

)⎞
⎠F

(
w

λj+1 − z
, . . . ,

w

λd − z

)
F

(
w

λj+1 + z
, . . . ,

w

λd + z

)
.

Proof. This is a particular case of (26) where one has to set yk = λk − z for k > 0, y0 = −z,

yk = −(λ−k + z) for k < 0. To complete the proof it suffices to verify that
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w2

z (λ1 − z)
F

(
w

λ2 − z
, . . . ,

w

λd − z

)
F

(
w

λ1 + z
,

w

λ2 + z
, . . . ,

w

λd + z

)

− w2

z (λ1 + z)
F

(
w

λ1 − z
,

w

λ2 − z
, . . . ,

w

λd − z

)
F

(
w

λ2 + z
, . . . ,

w

λd + z

)

= 2

d∑
j=1

w2j

⎛
⎝ j∏

k=1

1

λ2k − z2

⎞
⎠F

(
w

λj+1 − z
, . . . ,

w

λd − z

)
F

(
w

λj+1 + z
, . . . ,

w

λd + z

)
.

To this end, one can apply (8), with n = d, uk = w/(λk − z), vk = w/(λk + z). Note that uj − vj =
2zujvj/w. �

Zero always belongs to spectrum of the Jacobi matrix K for the characteristic function is odd.

Moreover, as is well known and as it simply follows from the analysis of the eigenvalue equation, if

w �= 0 then to every eigenvalue of K there belongs exactly one linearly independent eigenvector.

Proposition 26. Suppose w ∈ C, λ ∈ C
2d+1, λ−k = −λk for −d � k � d, and

∏d
k=1 λk �= 0. Then

the vector v ∈ C
2d+1, vT = (θ−d, θ−d+1, θ−d+2, . . . , θd), with the entries

θk = (−1)kwk

⎛
⎝ d∏

j=k+1

λj

⎞
⎠ F

(
w

λk+1

,
w

λk+2

, . . . ,
w

λd

)
for k = 0, 1, 2, . . . , d, (29)

θ−k = (−1)k θk for −d � k � d, belongs to the kernel of the Jacobi matrix diag(λ) + wE+ + wE−.

In particular, θ0 = λ1λ2 . . . λd F(w/λ1,w/λ2, . . . ,w/λd), θd = (−1)dwd, and so v �= 0.

Remark. Clearly, formulas (29) can be extended to the case
∏d

k=1 λk = 0 as well provided onemakes

the obvious cancellations.

Proof. One has to show that

wθk−1 + λkθk + wθk+1 = 0, k = −d + 1,−d + 2, . . . , d − 1,

andλ−dθ−d+wθ−d+1 = 0,wθd−1+λdθd = 0.Owing to the symmetriesλ−k = −λk,θ−k = (−1)kθk ,
it suffices to verify the equalities only for indices 0 � k � d. This can be readily carried out using the

explicit formulas (29) and the rule (3). �

5. Jacobi matrices with a linear diagonal

Finally we focus on finite-dimensional Jacobi matrices of odd dimension whose diagonal depends

linearly on the index and whose parallels to the diagonal are constant. Without loss of generality one

can assume that the diagonal equals

(−d,−d + 1,−d + 2, . . . , d), d ∈ Z+. For w ∈ C put

K0 = diag(−d,−d + 1,−d + 2, . . . , d), K(w) = K0 + wE+ + wE−.

Concerning the characteristic function χ(z) = det(K(w) − z), we know that this is an odd function.

Put

χred(z) = (−1)d+1

z
det(K(w)− z).

Hence χred(z) is an even polynomial of degree 2d. Further, denote by

{e−d, e−d+1, e−d+2, . . . , ed} the standard basis in C
2d+1.



F. Štampach, P. Šťovíček / Linear Algebra and its Applications 434 (2011) 1336–1353 1349

Suppose w �= 0. Let us consider a family of column vectors xs,n ∈ C
2d+1 depending on the

parameters s, n ∈ Z and defined by

x T
s,n = (

J(s + d, n), J(s + d − 1, n), J(s + d − 2, n), . . . , J(s − d, n)
)
.

From the fact that the matrix J obeys (18), (19) one derives that

∀s, n ∈ Z, K(w)xs,n = s xs,n − w J(s + d + 1, n)e−d − w J(s − d − 1, n)ed.

Put

vs = xs,s+d+1, s ∈ Z.

Recalling that J(m,m) = J(−m,m) = 0 one has

K(w)vs = s vs − w J(s − d − 1, s + d + 1)ed. (30)

Remark 27. Putting s = 0 one gets K(w)v0 = 0, and so v0 spans the kernel of K(w).

Lemma 28. For every � = −d,−d + 1,−d + 2, . . . , d, one has

wd+� �∑
s=−d

(−1)�+s

(d + s)! (�− s)! vs ∈ e� + span{e�+1, e�+2, . . . , ed}.

In particular,

ed = w2d
d∑

s=−d

(−1)d+s

(d + s)! (d − s)! vs. (31)

Consequently, V = {v−d, v−d+1, v−d+2, . . . , vd} is a basis in C
2d+1.

Proof. One has to show that

wd+� �∑
s=−d

(−1)�+s

(d + s)! (�− s)! J(s − k, s + d + 1) = δ�,k for − d � k � �.

Note that for any a ∈ C and n ∈ Z+,

n∑
k=0

(−1)k
(
n

k

)(
a + k

r

)
= 0, r = 0, 1, 2, . . . , n − 1,

n∑
k=0

(−1)k
(
n

k

)(
a + k

n

)
= (−1)n.

Using these equalities and (24) one can readily show, more generally, that

�∑
s=−d

(−1)�+s

(d + s)! (�− s)! J(m + s, n + s) = 0 for m, n ∈ Z,m � n � m + d + �,

and

�∑
s=−d

(−1)�+s

(d + s)! (�− s)! J(m + s,m + d + �+ s + 1) = w−d−�.

This proves the lemma. �
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Denote by K̃(w) thematrix of K(w) in the basis V introduced in Lemma 28. Let a, b ∈ C
2d+1 be the

column vectors defined by aT = (α−d, α−d+1, α−d+2, . . . αd), b
T = (β−d, β−d+1, β−d+2, . . . βd),

αs = J(s−d−1, s+d+1), βs = (−1)d+s w2d+1

(d + s)! (d − s)! , s = −d,−d+1,−d+2, . . . , d. (32)

Note that

α−s = −αs, β−s = βs. (33)

The former equality follows from (22) and (19). From (30) and (31) one deduces that

K̃(w) = K0 − baT . (34)

Note, however, that the components of the vectors a and b depend on w, too, though not indicated in

the notation.

According to (34), K̃(w) differs from the diagonal matrix K0 by a rank-one correction. This form is

suitable for various computations. Particularly, one can express the resolvent of K̃(w) explicitly,

(K̃(w)− z)−1 = (K0 − z)−1 + 1

1 − aT (K0 − z)−1b
(K0 − z)−1baT (K0 − z)−1.

The equality holds for any z ∈ C such that z /∈ spec{K0} = {−d,−d + 1,−d + 2, . . . , d} and

1 − aT (K0 − z)−1b �= 0. Clearly, this set of excluded values of z is finite.

Let us proceed to derivation of a formula for the characteristic function of K(w). Proposition 25 is

applicable to K(w) and so

χred(z) =
⎛
⎝ d∏

k=1

(
k2 − z2

)⎞
⎠ F

(
w

1 − z
, . . . ,

w

d − z

)
F

(
w

1 + z
, . . . ,

w

d + z

)
(35)

+ 2

d∑
j=1

w2j

⎛
⎝ d∏

k=j+1

(
k2 − z2

)⎞
⎠F

(
w

j + 1 − z
, . . . ,

w

d − z

)
F

(
w

j + 1 + z
, . . . ,

w

d + z

)
.

Below we derive a more convenient formula for χred(z).

Lemma 29. One has

χred(0) =
d∑

s=0

(
(d − s)!)2 (2d − s + 1)!

s! (2d − 2s + 1)! w2s (36)

and

χred(n) = 1

n

n−1∑
k=0

(−1)k(2k + 1)!
(
n + k

2k + 1

)(
d + k + 1

2k + 1

)
w2d−2k (37)

for n = 1, 2, . . . , d.

Proof. Let us first verify the formula for χred(0). From (35) it follows that

χred(0) = (d!)2 F

(
w,

w

2
, . . . ,

w

d

)2
+ 2

d∑
j=1

w2j

(
d!
j!

)2
F

(
w

j + 1
,

w

j + 2
, . . . ,

w

d

)2
.
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By Proposition 13,

χred(0) = π2w2d+2 Yd+1(2w)
2

⎛
⎝J0(2w)

2 + 2

d∑
j=1

Jj(2w)
2

⎞
⎠ + O

(
w2d+2 log(w)

)
.

Further we need some basic facts concerning Bessel functions; see, for instance, [1, Chapter 9]. Recall

that

J0(z)
2 + 2

∞∑
j=1

Jj(z)
2 = 1.

Hence

χred(0)= π2w2d+2 Yd+1(2w)
2 + O

(
w2d+2 log(w)

)

=
⎛
⎝ d∑

k=0

(d − k)!
k! w2k

⎞
⎠2

+ O
(
w2d+2 log(w)

)
.

Note that χred(0) is a polynomial in the variable w of degree 2d, and so

χred(0) =
d∑

s=0

s∑
k=0

(d − k)! (d − s + k)!
k! (s − k)! w2s.

Using the identity

s∑
k=0

(d − k)! (d − s + k)!
k! (s − k)! = (

(d − s)!)2 s∑
k=0

(
d − k

d − s

)(
d − s + k

d − s

)

=
(
(d − s)!)2 (2d − s + 1)!

s! (2d − 2s + 1)!

one arrives at (36).

To show (37) one can make use of (34). One has

χred(z) = (−1)d+1

z
det(K̃(w)− z) = (−1)d+1

z
det(K0 − z) det

(
I − (K0 − z)−1baT

)
.

Note that det(I + baT ) = 1 + aTb. Hence, in view of (33),

χred(z) =
d∏

k=1

(
k2 − z2

) ⎛
⎝1 −

d∑
s=−d

βsαs

s − z

⎞
⎠ =

d∏
k=1

(
k2 − z2

) ⎛
⎝1 − 2

d∑
s=1

sβsαs

s2 − z2

⎞
⎠ .

Using (32) one gets

χred(n) = −2nβnαn

d∏
k=1

k �=n

(
k2 − n2

)
= (−1)d

n
w2d+1

J(n − d − 1, n + d + 1).

Formula (37) then follows from (24). �
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Proposition 30. For every d ∈ Z+ one has

χred(z) =
d∑

s=0

(
2d − s + 1

s

)
w2s

d−s∏
k=1

(
k2 − z2

)
. (38)

Proof. Since χred(z) is an even polynomial in z of degree 2d it is enough to check that the RHS of (38)

coincides, for z = 0, 1, 2, . . . , d, with χred(0), χred(1), χred(2), . . . , χred(d). With the knowledge of

values (36) and (37), this is a matter of straightforward computation. �

Remark 31. Using (38) it is not difficult to check that formula (37) is valid for any n ∈ N, including

n > d (the summation index k runs from 1 to min{n − 1, d}).
Remark 32. If w ∈ R, w �= 0, then the spectrum of the Jacobi matrix K(w) is real and simple, and

formula (38) implies that the interval [−1, 1] contains no other eigenvalue except of 0.

Eigenvectors of K(w) can be expressed in terms of the function F, too. Suppose w �= 0. Let us

introduce the vector-valued function x(z) ∈ C
2d+1 depending on z ∈ C, x(z)T = (ξ−d(z), ξ−d+1(z),

ξ−d+2(z), . . . , ξd(z)),

ξk(z) = w−d−k �(z + d + 1)

�(z − k + 1)
F

(
w

z − k + 1
,

w

z − k + 2
, . . . ,

w

z + d

)
, − d � k � d.

With the aid of (3) one derives the equality

(
K(w)− z

)
x(z) = −w−2d �(z + d + 1)

�(z − d)
F

(
w

z − d
,

w

z − d + 1
, . . . ,

w

z + d

)
ed. (39)

Remark 33. According to (12),

ξk(z) = w−d−k
[(d+k)/2]∑

s=0

(−1)s
(d + k − s)!

s! (d + k − 2s)! w
2s

d+k−s−1∏
j=s

(z + d − j).

Hence ξk(z) is a polynomial in z of degree d + k. In particular, ξ−d(z) = 1, and so x(z) �= 0.

Proposition 34. One has

χ(z) = −z

⎛
⎝ d∏

k=1

(
z2 − k2

)⎞
⎠ F

(
w

z − d
,

w

z − d + 1
,

w

z − d + 2
, . . . ,

w

z + d

)
. (40)

If w ∈ C, w �= 0, then for every eigenvalue λ ∈ spec(K(w)), x(λ) is an eigenvector corresponding to λ.

Proof. Denote by P(z) the RHS of (40). By (39), if P(λ) = 0 then x(λ) is an eigenvector of K(w). Thus
it suffices to verify (40). The both sides depend on w polynomially and so it is enough to prove the

equality for w ∈ R \ {0}. Note that P(z) is a polynomial in z of degree 2d + 1, and the coefficient

standing at z2d+1 equals −1. The set of roots of P(z) is contained in spec(K(w)). One can show that

P(z) has nomultiple roots. In fact, suppose P(λ) = P′(λ) = 0 for some λ ∈ R. From (39) one deduces

that (K(w)− λ)x(λ) = 0, (K(w)− λ)x′(λ) = x(λ) (here x′(z) is the derivative of x(z)). Hence

(K(w)− λ)2x(λ) = (K(w)− λ)2x′(λ) = 0.

Note that x′(λ) �= 0, and x′(λ) differs from amultiple of x(λ) for ξ−d(z) = 1. This contradicts the fact,

however, that the spectrum of K(w) is simple. One concludes that the set of roots of P(z) coincides
with spec(K(w)). Necessarily, P(z) is equal to the characteristic function of K(w). �
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Remark 35. With the aid of (40) one can rederive equality (37). For 1 � n � d, a straightforward

computation gives

χ(n) = (−1)d+nw2d+1
J(d − n + 1, d + n + 1).

Equality (37) then follows from (24).
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part of λ to be semibounded or J to be real, one can show that J determines a unique closed Jacobi

operator J on �2(N). Moreover, the spectrum of J in the domain C
λ
0 is discrete and coincides with

the zero set of FJ(z). When establishing this relationship one may also treat the poles of FJ(z)which

occur at the points from the range of the sequence λ not belonging to the set of accumulation points,

however. In addition, as an important step of the proof, one makes use of an explicit formula for the

Green function associated with J.

The characteristic function as well as numerous formulas throughout the paper are expressed in

terms of a function, called F, defined on a subset of the space of complex sequences. In the introductory

part we recall from [14] the definition of F and its basic properties which are then completed by vari-

ous additional facts. On the other hand, we conclude the paper with some applications of the derived

results. We present several examples of Jacobi matrices for which the characteristic function can be

expressed in terms of special functions (the Bessel functions or the basic hypergeometric series). A

particular attention is paid to the example where the diagonal sequence λ is linear while the neigh-

boring parallels to the diagonal are constant. In this case the characteristic equation in the variable z

reads J−z(2w) = 0, withw being a parameter, and ourmain concern is how the spectrum of the Jacobi

operator depends on w.

2. The function F

2.1. Definition and basic properties

Let us recall from [14] some basic definitions and properties concerning a function F defined on a

subset of the linear space formed by all complex sequences x = {xk}∞k=1. Moreover, we complete this

brief overview by a few additional facts.

Definition 1. Define F : D → C,

F(x) = 1 +
∞∑

m=1

(−1)m
∞∑

k1=1

∞∑
k2=k1+2

· · ·
∞∑

km=km−1+2

xk1xk1+1xk2xk2+1 · · · xkmxkm+1, (1)

where

D =
⎧⎨
⎩{xk}∞k=1 ⊂ C;

∞∑
k=1

|xkxk+1| < ∞
⎫⎬
⎭ .

For a finite number of complex variables we identify F(x1, x2, . . . , xn) with F(x) where x =
(x1, x2, . . . , xn, 0, 0, 0, . . .). By convention, we also put F(∅) = 1 where ∅ is the empty sequence.

Letus remark that thevalueofFonafinite complex sequencecanbeexpressedas thedeterminantof

a finite Jacobimatrix. Using somebasic linear algebra it is easy to show that, forn ∈ N and {xj}nj=1 ⊂ C,

one has

F(x1, x2, . . . , xn) = det Xn, (2)

where

Xn =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 x1

x2 1 x2

. . .
. . .

. . .

. . .
. . .

. . .

xn−1 1 xn−1

xn 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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Note that the domain D is not a linear space. One has, however, �2(N) ⊂ D. In fact, the absolute

value of themth summand on the RHS of (1) is majorized by the expression

∑
k∈N

m

k1<k2<···<km

|xk1xk1+1xk2xk2+1 · · · xkmxkm+1| � 1

m!

⎛
⎝ ∞∑

j=1

|xjxj+1|
⎞
⎠m

.

Hence for x ∈ D one has the estimate

|F(x)| � exp

⎛
⎝ ∞∑

k=1

|xkxk+1|
⎞
⎠. (3)

Furthermore, F satisfies the relation

F(x) = F(x1, . . . , xk)F(T
kx)− F(x1, . . . , xk−1)xkxk+1F(T

k+1x), k = 1, 2, . . . , (4)

where x ∈ D and T denotes the truncation operator from the left defined on the space of all sequences,

T({xn}∞n=1) = {xn+1}∞n=1. In particular, for k = 1 one gets the rule

F(x) = F(Tx)− x1x2F(T
2x). (5)

In addition, one has the symmetry property

F(x1, x2, . . . , xk−1, xk) = F(xk, xk−1, . . . , x2, x1).

If combined with (4), one gets

F(x1, x2, . . . , xk+1) = F(x1, x2, . . . , xk)− xkxk+1 F(x1, x2, . . . , xk−1). (6)

Lemma 2. For x ∈ D one has

lim
n→∞ F(Tnx) = 1 (7)

and

lim
n→∞ F(x1, x2, . . . , xn) = F(x). (8)

Proof. First, similarly as in (3), one gets the estimate

∣∣F(Tnx)− 1
∣∣ � exp

⎛
⎝ ∞∑

k=n+1

|xkxk+1|
⎞
⎠ − 1.

This shows (7).

Second, in view of (4), the difference |F(x)−F(x1, x2, . . . , xn)| can bemajorized by the expression

|1 − F(Tnx)| exp
⎛
⎝ ∞∑

k=1

|xkxk+1|
⎞
⎠ + |xnxn+1| exp

⎛
⎝2

∞∑
k=1

|xkxk+1|
⎞
⎠.

From here one derives the (rather rough) estimate

|F(x)− F(x1, x2, . . . , xn)| � 2 exp

⎛
⎝2

∞∑
k=1

|xkxk+1|
⎞
⎠ ∞∑

k=n

|xkxk+1|. (9)

This shows (8). �

Proposition 3. The function F is continuous on �2(N).
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Proof. If x ∈ �2(N) ⊂ D then from (9) one derives that, for any n ∈ N,

|F(x)− F(x1, x2, . . . , xn)| � 2 exp
(
2 ‖x‖2

)
‖(I − Pn−1)x‖2

where Pm stands for the orthogonal projection on �2(N) onto the subspace spanned by the firstm vec-

tors of the canonical basis. From this estimate and from the fact that F(x1, x2, . . . , xn) is a polynomial

function the proposition readily follows. �

2.2. Jacobi matrices

Let us denote by J an infinite Jacobi matrix of the form

J =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

λ1 w1

v1 λ2 w2

v2 λ3 w3

. . .
. . .

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

where w = {wn}∞n=1, v = {vn}∞n=1 ⊂ C \ {0} and λ = {λn}∞n=1 ⊂ C. Provided any of the sequences

is unbounded it is reasonable to distinguish in the notation between J and an operator represented

by this matrix. Such an operator J need not be unique, as discussed in Section 3.2. Further, by Jn we

denote the nth truncation of J, i.e.

Jn =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ1 w1

v1 λ2 w2

. . .
. . .

. . .

vn−2 λn−1 wn−1

vn−1 λn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (10)

As is well known and in fact quite obvious, any solution {xk} of the formal eigenvalue equation

λ1x1 + w1x2 = zx1, vk−1xk−1 + λkxk + wkxk+1 = zxk for k � 2, (11)

with z ∈ C, is unambiguously determined by its first component x1. Consequently, any operator J

whose matrix equals J may have only simple eigenvalues.

We wish to show that the characteristic function of the finite Jacobi matrix Jn can be expressed in

terms of F. To this end, let us introduce the sequences {γ±
k }nk=1 defined recursively by

γ±
1 = 1, γ+

k+1 = wk/γ
−
k and γ−

k+1 = vk/γ
+
k , k � 1. (12)

More explicitly, the sequence {γ−
k }nk=1 can be expressed as

γ−
2k−1 =

k−1∏
j=1

v2j

w2j−1

, γ−
2k = v1

k−1∏
j=1

v2j+1

w2j

, k = 1, 2, 3, . . . .

As for the sequence {γ+
k }nk=1, the corresponding expressions are of the same form but with w being

replaced by v and vice versa. Note that if vk = wk for all k = 1, 2, . . . , n − 1, then γ−
k = γ+

k for all

k = 1, 2, . . . , n.
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Proposition 4. Let {γ±
k }nk=1 be the sequences defined in (12). Then the equality

det(Jn − zIn) =
⎛
⎝ n∏

k=1

(λk − z)

⎞
⎠ F

(
γ−
1 γ

+
1

λ1 − z
,
γ−
2 γ

+
2

λ2 − z
, . . . ,

γ−
n γ

+
n

λn − z

)
(13)

holds for all z ∈ C (after obvious cancellations, the RHS is well defined even for z = λk).

Proof. Put λ̃k = λk/γ
−
k γ

+
k . As remarked in [14, Remark 24], the Jacobi matrix Jn can be decomposed

into the product Jn = G−
n J̃nG

+
n where G±

n = diag(γ±
1 , γ

±
2 , . . . , γ

±
n ) are diagonal matrices, and J̃n is

a Jacobi matrix whose diagonal equals the sequence (λ̃1, λ̃2, . . . , λ̃n) and which has all units on the

neighboring parallels to the diagonal. The proposition now readily follows from this decomposition

combined with (2). �

Moreover, with the aid of (13) and using some basic calculus from linear algebra one can derive the

following formula for the resolvent.

Proposition 5. The matrix entries of the resolvent Rn(z) = (Jn − zIn)
−1, with z ∈ C \ spec(Jn), may be

expressed as (1 � i, j � n)

Rn(z)i,j = −�(i, j)

⎛
⎝ max(i,j)∏

l=min(i,j)

(z − λl)

⎞
⎠

−1

(14)

×F

⎛
⎝{
γ−
l γ

+
l

λl − z

}min(i,j)−1

l=1

⎞
⎠ F

⎛
⎝{
γ−
l γ

+
l

λl − z

}n

l=max(i,j)+1

⎞
⎠F

({
γ−
l γ

+
l

λl − z

}n

l=1

)−1

where

�(i, j) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∏j−1
l=i wl, if i < j,

1, if i = j,∏i−1
l=j vl, if i > j.

In the remainder of the paper we concentrate, however, on symmetric Jacobi matrices with v = w,

i.e. we put

J =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

λ1 w1

w1 λ2 w2

w2 λ3 w3

. . .
. . .

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
,

where λ = {λn}∞n=1 ⊂ C and w = {wn}∞n=1 ⊂ C \ {0}. In that case some definitions introduced

above simplify. First of all, one has γ−
k = γ+

k = γk where

γ2k−1 =
k−1∏
j=1

w2j

w2j−1

, γ2k = w1

k−1∏
j=1

w2j+1

w2j

, k = 1, 2, 3, . . . .

Then γkγk+1 = wk .
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2.3. More on the function F

In [14] one can find two examples of special functions expressed in terms of F. The first example is

concerned with the Bessel functions of the first kind. In more detail, for w, ν ∈ C, ν /∈ −N, one has

Jν(2w) = wν

�(ν + 1)
F

({
w

ν + k

}∞

k=1

)
. (15)

Notice that jointly with (3) this implies

|Jν(2w)| �
∣∣∣∣∣ wν

�(ν + 1)

∣∣∣∣∣ exp
⎛
⎝ ∞∑

k=1

∣∣∣∣∣ w2

(ν + k)(ν + k + 1)

∣∣∣∣∣
⎞
⎠. (16)

In the second example one shows that the formula

F
({

tk−1w
}∞
k=1

)
= 1 +

∞∑
m=1

(−1)m
tm(2m−1)w2m

(1 − t2)(1 − t4) · · · (1 − t2m)
= 0φ1(; 0; t2,−tw2) (17)

holds for t,w ∈ C, |t| < 1. Here 0φ1 is the basic hypergeometric series (also called q-hypergeometric

series) being defined by

0φ1(; b; q, z) =
∞∑
k=0

qk(k−1)

(q; q)k(b; q)k zk,

and

(a; q)k =
k−1∏
j=0

(
1 − aqj

)
, k = 0, 1, 2, . . . ,

is the q-Pochhammer symbol; see [8] for more details.

In this connection let us recall one more identity proved in [14, Lemma 9], namely

u1 F (u2, u3, . . . , un)F (v1, v2, . . . , vn)− v1 F (u1, u2, . . . , un)F (v2, v3, . . . , vn)

=
n∑

j=1

⎛
⎝ j−1∏

k=1

ukvk

⎞
⎠ (

uj − vj
)
F

(
uj+1, uj+2, . . . , un

)
F

(
vj+1, vj+2, . . . , vn

)
.

For the particular choice

uk = w

μ+ k
, vk = w

ν + k
, 1 � k � n,

one can consider the limit n → ∞. Using (15) and (16) one arrives at the equation

Jμ(2w)Jν+1(2w)− Jμ+1(2w)Jν(2w) = μ− ν

w

∞∑
j=1

Jμ+j(2w)Jν+j(2w). (18)

Definition (1) can naturally be extended to more general ranges of indices. For any sequence

{xn}N2
n=N1

, N1,N2 ∈ Z ∪ {−∞,+∞}, N1 � N2 + 1, (if N1 = N2 + 1 ∈ Z then the sequence is

considered as empty) such that

N2−1∑
k=N1

|xkxk+1| < ∞

one can define

F
(
{xk}N2

k=N1

)
= 1 +

∞∑
m=1

(−1)m
∑

k∈I(N1,N2,m)

xk1xk1+1xk2xk2+1 . . . xkmxkm+1,
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where

I(N1,N2,m) = {
k ∈ Z

m; kj + 2 � kj+1 for 1 � j � m − 1, N1 � k1, km < N2

}
.

With this definition one can generalize the rule (4). Now one has

F
(
{xk}N2

k=N1

)
= F

(
{xk}nk=N1

)
F
(
{xk}N2

k=n+1

)
− xnxn+1 F

(
{xk}n−1

k=N1

)
F
(
{xk}N2

k=n+2

)
(19)

provided n ∈ Z satisfies N1 � n < N2.

This extension also opens a way for applications of the function F to bilateral difference equations.

Suppose that sequences {wn}∞n=−∞ and {ζn}∞n=−∞ are such that wn 	= 0, ζn 	= 0 for all n, and

∞∑
k=−∞

∣∣∣∣∣ w 2
k

ζkζk+1

∣∣∣∣∣ < ∞.

Consider the difference equation

wnun+1 − ζnun + wn−1un−1 = 0, n ∈ Z. (20)

Define the sequence {Pn}n∈Z by P0 = 1 and Pn+1 = (wn/ζn+1)Pn for all n. Hence

Pn =
n∏

k=1

wk−1

ζk
for n > 0, P0 = 1, Pn =

0∏
k=n+1

ζk

wk−1

for n < 0.

The sequence {γn}n∈Z is again defined so that γ1 = 1 and γnγn+1 = wn for all n ∈ Z. Hence

γ2k−1 =
k−1∏
j=1

w2j

w2j−1

, γ2k = w1

k−1∏
j=1

w2j+1

w2j

, for k = 1, 2, 3, . . . ,

and

γ2k−1 =
0∏

j=k

w2j−1

w2j

, γ2k = w1

0∏
j=k

w2j

w2j+1

, for k = 0,−1,−2, . . . .

Then the sequences {fn}n∈Z and {gn}n∈Z,

fn = Pn F

({
γ 2
k

ζk

}∞

k=n+1

)
, gn = 1

wn−1Pn−1

F

⎛
⎝{
γ 2
k

ζk

}n−1

k=−∞

⎞
⎠, (21)

represent two solutions of the bilateral difference equation (20).

For two solutions u = {un}n∈Z and v = {vn}n∈Z of (20) the Wronskian is introduced as

W(u, v) = wn (unvn+1 − un+1vn) .

As is well known, this is a constant independent of the index n. Moreover, two solutions are linearly

dependent iff their Wronskian vanishes. For the solutions f and g given in (21) one can use (19) to

evaluate their Wronskian getting

W(f , g) = F

({
γ 2
n

ζn

}∞

n=−∞

)
.

One may also consider an application of a discrete analog of Green’s formula to the solutions (21)

[2]. In general, suppose that sequences {un}∞n=0 and {vn}∞n=0 solve respectively the difference equations

wnun+1 − ζ (1)n un + wn−1un−1 = 0, wnvn+1 − ζ (2)n vn + wn−1vn−1 = 0, n ∈ N. (22)
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In that case it is well known and easy to check that

n∑
j=1

(
ζ
(1)
j − ζ

(2)
j

)
ujvj = w0 (u0v1 − u1v0)− wn (unvn+1 − un+1vn) . (23)

Proposition 6. Suppose that the convergence condition

∞∑
k=1

∣∣∣∣∣ w 2
k

ζkζk+1

∣∣∣∣∣ < ∞

is satisfied for the both difference equations in (22). Moreover, assume that

sup
n�1

∣∣∣∣∣∣
w 2

n

ζ
(1)
n ζ

(2)
n+1

∣∣∣∣∣∣ < ∞ and sup
n�1

∣∣∣∣∣∣
w 2

n

ζ
(2)
n ζ

(1)
n+1

∣∣∣∣∣∣ < ∞.

Then the corresponding solutions f (1), f (2) from (21) fulfill

∞∑
j=1

(
ζ
(1)
j − ζ

(2)
j

)
f
(1)
j f

(2)
j = w0

(
f
(1)
0 f

(2)
1 − f

(1)
1 f

(2)
0

)
. (24)

Proof. In view of (23) it suffices to show that

lim
n→∞wnf

(1)
n f

(2)
n+1 = lim

n→∞wnf
(1)
n+1f

(2)
n = 0. (25)

By the convergence assumption, for all n > n0 one has

|wn| � 1

2

√
|ζ (1)n ||ζ (1)n+1|, |wn| � 1

2

√
|ζ (2)n ||ζ (2)n+1| .

Using (3), after some straightforward manipulations one gets the estimate

∣∣∣wnf
(1)
n f

(2)
n+1

∣∣∣ � 2−2(n−n0) exp

⎛
⎝ ∞∑

k=1

∣∣∣∣∣∣
w 2

k

ζ
(1)
k ζ

(1)
k+1

∣∣∣∣∣∣ +
∣∣∣∣∣∣

w 2
k

ζ
(2)
k ζ

(2)
k+1

∣∣∣∣∣∣
⎞
⎠ n0∏

k=1

∣∣∣∣∣∣
w 2

k−1

ζ
(1)
k ζ

(2)
k

∣∣∣∣∣∣
× |ζ (1)n0

ζ (2)n0
|1/2 |wn|∣∣∣ζ (1)n ζ

(2)
n+1

∣∣∣1/2 .
This implies (25). �

In the literature on Jacobi matrices one encounters a construction of an infinite matrix associated

with the bilateral difference equation (20) [15, Section 1.1], [9, Theorem 1.2]. Let us define the matrix

J with entries J(m, n), m, n ∈ Z, so that for every fixed m, the sequence un = J(m, n), n ∈ Z, solves

(20) with the initial conditions J(m,m) = 0, J(m,m + 1) = 1/wm.

Using (6) one verifies that, for m < n,

J(m, n) = 1

wm

⎛
⎝ n−1∏

j=m+1

ζj

wj

⎞
⎠F

(
γ 2
m+1

ζm+1

,
γ 2
m+2

ζm+2

, . . . ,
γ 2
n−1

ζn−1

)
.

Moreover, it is quite obvious that, for all m, n ∈ Z,

J(m, n) = 1

W(u, v) (umvn − vmun) ,
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where {un}, {vn} is any couple of independent solutions of (20). Hence the matrix J is antisymmetric.

It also follows that, ∀m, n, k, � ∈ Z,

J(m, k)J(n, �)− J(m, �)J(n, k) = J(m, n)J(k, �).

Example 7. As an example let us again have a look at the particular case where wn = w, ζn = ν + n

for all n ∈ Z and somew, ν ∈ C,w 	= 0, ν /∈ Z. One finds, with the aid of (15), that the solutions (21)

now read

fn = �(ν + 1)w−ν Jν+n(2w), gn = (−1)nπ

sin(πν)�(ν + 1)
wν J−ν−n(2w).

Hence the Wronskian equals

W(f , g) = πw

sin(πν)
(−Jν(2w)J−ν−1(2w)− Jν+1(2w)J−ν(2w)) = F

({
w

ν + n

}∞

n=−∞

)
.

Recalling once more (15) we note that the RHS equals

lim
N→∞ F

({
w

ν − N + n

}∞

n=1

)
= lim

N→∞
∞∑
n=0

(−1)n

n!
�(ν − N + 1)

�(ν − N + n + 1)
w2n = 1.

Thus one gets the well known relation [1, Eq. (9.1.15)]

Jν+1(2w)J−ν(2w)+ Jν(2w)J−ν−1(2w) = − sin(πν)

πw
. (26)

Concerning thematrixJ, this particular choicebringsus to the casediscussed in [14, Proposition22].

Then the Bessel functions Yn+ν(2w) and Jn+ν(2w), depending on the index n ∈ Z, represent other

two linearly independent solutions of (20). Since [1, Eq. (9.1.16)]

Jν+1(z)Yν(z)− Jν(z)Yν+1(z) = 2

πz

one finds that

J(m, n) = π (Ym+ν(2w)Jn+ν(2w)− Jm+ν(2w)Yn+ν(2w)) .

Moreover, for σ = m + μ and k = n − m > 0 one has

Jσ+k(2w)Yσ (2w)− Jσ (2w)Yσ+k(2w) = �(σ + k)

πwk �(σ + 1)
F

⎛
⎝{

w

σ + j

}k−1

j=1

⎞
⎠.

Finally, putting ζ
(1)
n = μ+ n, ζ

(2)
n = ν+ n andwn = w, ∀n ∈ N, in Eq. (22), one verifies that (24)

holds true and reveals this way once more the identity (18).

3. A class of Jacobi operators with point spectra

3.1. The characteristic function

Being inspired by Proposition 4 and notably by Eq. (13), we introduce the (renormalized) charac-

teristic function associated with a Jacobi matrix J as

FJ(z) := F

({
γ 2
n

λn − z

}∞

n=1

)
. (27)
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It is treated as a complex function of a complex variable z and is well defined provided the sequence in

the argument of F belongs to the domain D. Let us show that this is guaranteed under the assumption

that there exists z0 ∈ C such that

∞∑
n=1

∣∣∣∣∣ w 2
n

(λn − z0)(λn+1 − z0)

∣∣∣∣∣ < ∞. (28)

For λ = {λn}∞n=1 let us denote

C
λ
0 := C \ {λn; n ∈ N}.

Clearly,

{λn; n ∈ N} = {λn; n ∈ N} ∪ der(λ)

where der(λ) stands for the set of all finite accumulation points of the sequence λ (i.e. der(λ) is equal
to the set of limit points of all possible convergent subsequences of λ).

Lemma 8. Let condition (28) be fulfilled for at least one z0 ∈ C
λ
0 . Then the series

∞∑
n=1

w 2
n

(λn − z)(λn+1 − z)
(29)

converges absolutely and locally uniformly in z on C
λ
0 . Moreover,

∀z ∈ C
λ
0 ,

{
γ 2
k

λk − z

}∞

k=1

∈ D and lim
n→∞ F

({
γ 2
k

λk − z

}n

k=1

)
= FJ(z), (30)

and the convergence is locally uniform onC
λ
0 . Consequently, FJ(z) is awell defined analytic function onC

λ
0 .

Proof. Let K ⊂ C
λ
0 be a compact subset. Then the ratio

|λn − z0|
|λn − z| � 1 + |z − z0|

|λn − z|
admits an upper bound, uniform in z ∈ K and n ∈ N. The uniform convergence on K of the

series (29) thus becomes obvious. Moreover, the absolute convergence of (29) means nothing but{
γ 2
k /(λk − z)

}∞
k=1

∈ D.

The limit (30) follows from Lemma 2. Moreover, using (30) and also (6), (3) one has∣∣∣∣∣F
({

γ 2
k

λk − z

}n

k=1

)
− FJ(z)

∣∣∣∣∣ �
∞∑
l=n

∣∣∣∣∣∣F
⎛
⎝{

γ 2
k

λk − z

}l

k=1

⎞
⎠ − F

⎛
⎝{

γ 2
k

λk − z

}l+1

k=1

⎞
⎠
∣∣∣∣∣∣

�
∞∑
l=n

∣∣∣∣∣ w 2
l

(λl − z)(λl+1 − z)

∣∣∣∣∣ exp
⎛
⎝ ∞∑

k=1

∣∣∣∣∣ w 2
k

(λk − z)(λk+1 − z)

∣∣∣∣∣
⎞
⎠.

From this estimate and the locally uniform convergence of the series (29) one deduces the locally

uniform convergence of the sequence of functions (30). �

By a closer inspection one finds that, under the assumptions of Lemma 8, the function FJ(z) is
meromorphic on C \ der(λ)with poles at the points z = λn for some n ∈ N (not belonging to der(λ),
however). For any such z, the order of the pole is less than or equal to r(z)where
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r(z) :=
∞∑
k=1

δz,λk

is the number of members of the sequence λ coinciding with z (hence r(z) = 0 for z ∈ C
λ
0). To see

this, suppose that r(z) � 1 and let M be the maximal index such that λM = z. Using (4) one derives

that, for u ∈ C
λ
0 ,

FJ(u) = F

⎛
⎝{

γ 2
n

λn − u

}M

n=1

⎞
⎠F

({
γ 2
n

λn − u

}∞

n=M+1

)

+ F

⎛
⎝{

γ 2
n

λn − u

}M−1

n=1

⎞
⎠ γ 2

Mγ
2
M+1

(u − z)(λM+1 − u)
F

({
γ 2
n

λn − u

}∞

n=M+2

)
.

The RHS clearly has a pole at the point u = z of order at most r(z).

3.2. The Jacobi operator J

Our goal is to investigate spectral properties of a closed operator J on �2(N) whose matrix in

the canonical basis coincides with J. Unless the Jacobi matrix determines a bounded operator, there

need not be a unique way how to introduce J, however. But among all admissible operators one may

distinguish two particular cases which may respectively be regarded, in a natural way, as the minimal

and the maximal operator with the required properties; see, for instance, [3].

Definition 9. The operator Jmax is defined so that

Dom(Jmax) = {y ∈ �2(N); Jy ∈ �2(N)},
and one sets Jmaxy = Jy, ∀y ∈ Dom Jmax. Here and in what follows Jy is understood as the formal

matrix product while treating y as a column vector. To define the operator Jmin one first introduces the

operator J̇ so that Dom(J̇) is the linear hull of the canonical basis, and again J̇y = Jy for all y ∈ Dom(J̇).
J̇ is known to be closable [3], and Jmin is defined as the closure of J̇.

One has the following relations between the operators Jmin, Jmax and their adjoint operators [3,

Lemma 2.1]. Let JH designates the Jacobi matrix obtained from J by taking the complex conjugate of

each entry. Then J ∗
min = JHmax, J

∗
max = JHmin. In particular, themaximal operator Jmax is a closed extension

of Jmin. It is even true that any closed operator J whose domain contains the canonical basis andwhose

matrix in this basis equals J fulfills Jmin ⊂ J ⊂ Jmax. Moreover, if J is Hermitian, i.e. J = JH (which

means nothing but J is real), then J ∗
min = Jmax ⊃ Jmin. Hence Jmin is symmetric with the deficiency

indices either (0, 0) or (1, 1).
We are primarily interested in the situation where Jmin = Jmax since then there exists a unique

closed operator J defined by the Jacobi matrix J, and it turns out that the spectrum of J is determined

in a well defined sense by the characteristic function FJ(z). If this happens J is sometimes called

proper [3].

Let us recall more details on this property. We remind the reader that the orthogonal polynomials

of the first kind, pn(z), n ∈ Z+, are defined by the recurrence

wn−1pn−2(z)+ (λn − z)pn−1(z)+ wnpn(z) = 0, n = 2, 3, 4, . . . ,

with the initial conditions p0(z) = 1, p1(z) = (z−λ1)/w1. The orthogonal polynomials of the second

kind, qn(z), obey the same recurrence but the initial conditions are q0(z) = 0, q1(z) = 1/w1; see

[2,4]. It is not difficult to verify that these polynomials are expressible in terms of the function F as

follows:

pn(z) =
⎛
⎝ n∏

k=1

z − λk

wk

⎞
⎠F

({
γ 2
l

λl − z

}n

l=1

)
, n = 0, 1, 2 . . . ,
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and

qn(z) = 1

w1

⎛
⎝ n∏

k=2

z − λk

wk

⎞
⎠F

({
γ 2
l

λl − z

}n

l=2

)
, n = 1, 2, 3 . . . .

The complex Jacobi matrix J is called determinate if at least one of the sequences p(0) =
{pn−1(0)}∞n=1 or q(0) = {qn−1(0)}∞n=1 is not an element of �2(N). For real Jacobi matrices there

exits a parallel terminology. Instead of determinate one calls J limit point at +∞, and instead of in-

determinate one calls J limit circle at +∞, see [15, Section 2.6]. According to [16, Theorem 22.1], J is

indeterminate if both p(z) and q(z) are elements of �2 for at least one z ∈ C, and in this case they are

elements of �2 for all z ∈ C. For a real Jacobi matrix J one can prove that it is proper if and only if it is

determinate (or, in another terminology, limit point), and this happens if and only if p(z) /∈ �2(N) for
some and hence any z ∈ C \ R; see [2, Section 4.1] or [15, Lemma 2.16].

For complex Jacobi matrices one can also specify assumptions under which Jmin = Jmax. In what

follows,ρ(A)designates the resolvent setof a closedoperatorA. Concerning theessential spectrum,one

observes that specess(Jmin) = specess(Jmax) [3, Eq. (2.10)]. Hence if ρ(Jmax) 	= ∅ then specess(Jmin) 	=
C. Moreover, in that case J is determinate [3, Theorem 2.11(a)] and proper [3, Theorem 2.6(a)]. This

way one extracts from [3] the following result.

Theorem 10. If ρ(Jmax) 	= ∅ then Jmin = Jmax.

3.3. The spectrum and the zero set of the characteristic function

Let us define

Z(J) :=
{
z ∈ C \ der(λ); lim

u→z
(u − z)r(z)FJ(u) = 0

}
. (31)

Of course, Z(J) ∩ C
λ
0 is nothing but the set of zeros of FJ(z). Further, for k ∈ Z+ and z ∈ C \ der(λ)

we put

ξk(z) := lim
u→z

(u − z)r(z)

⎛
⎝ k∏

l=1

wl−1

u − λl

⎞
⎠F

({
γ 2
l

λl − u

}∞

l=k+1

)
, (32)

where one sets w0 = 1. Either denote byM = Mz the maximal index, if any, such that z = λM or put

M = 0 otherwise. One observes that for k � M,

ξk(z) =
k∏

l=1

wl−1

(
k∏

l=1
λl 	=z

(z − λl)

)−1

F

({
γ 2
l

λl − z

}∞

l=k+1

)
. (33)

Proposition 11. Let condition (28) be fulfilled for at least one z0 ∈ C
λ
0 . If

ξ0(z) ≡ lim
u→z

(u − z)r(z)FJ(u) = 0

for some z ∈ C \ der(λ), then z is an eigenvalue of Jmax and

ξ(z) := (ξ1(z), ξ2(z), ξ3(z), . . .)

is a corresponding eigenvector.

Proof. Using (5) one verifies that if ξ0(z) = 0 then the column vector ξ(z) solves the matrix equation

Jξ(z) = zξ(z). To complete the proof one has to show that ξ(z) does not vanish and belongs to �2(N).
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First, we claim ξ1(z) 	= 0. Suppose, on the contrary, that ξ1(z) = 0. Then the formal eigenvalue

equation (which is a second order recurrence) implies ξ(z) = 0. From (33) it follows that

F

({
γ 2
l

λl − z

}∞

l=k+1

)
= 0

for all k � M = Mz . This equality is in contradiction with (7), however.

Second, suppose z /∈ der(λ) is fixed. By Lemma 8, there exists N ∈ N, N > M, such that

|w2
n| � |λn − z||λn+1 − z|/2, ∀n � N.

Let us denote

C =
N∏

l=1

|wl−1|2
N∏

l=1
λl 	=z

|z − λl|−2.

Using also (3) one can estimate

∞∑
k=N

|ξk(z)|2 =
∞∑

k=N

k∏
l=1

|wl−1|2
k∏

l=1
λl 	=z

|z − λl|−2

∣∣∣∣∣F
({

γ 2
l

λl − z

}∞

l=k+1

)∣∣∣∣∣
2

� C exp

⎛
⎝2

∞∑
k=N+1

∣∣∣∣∣ w 2
k

(λk − z)(λk+1 − z)

∣∣∣∣∣
⎞
⎠ ∞∑

k=N

k∏
l=N+1

(
1

2

∣∣∣∣∣ z − λl−1

z − λl

∣∣∣∣∣
)
.

Since |λk − z| � τ for all k > M and some τ > 0, the RHS is finite. �

Furtherwewish toprove a statement converse toProposition11.Our approach is basedona formula

for the Green function generalizing a similar result known for the finite-dimensional case; see (14).

Proposition 12. Let condition (28) be fulfilled for at least one z0 ∈ C
λ
0 . If z ∈ C\ der(λ) does not belong

to the zero set Z(J) then z ∈ ρ(Jmax) and the Green function for the spectral parameter z,

G(z; i, j) := 〈ei, (Jmax − z)−1ej〉, i, j ∈ N,

(a matrix in the canonical basis) is given by the formula

G(z; i, j) = − 1

wmax(i,j)

⎛
⎝ max(i,j)∏

l=min(i,j)

wl

z − λl

⎞
⎠ (34)

×F

⎛
⎝{

γ 2
l

λl − z

}min(i,j)−1

l=1

⎞
⎠F

⎛
⎝{

γ 2
l

λl − z

}∞

l=max(i,j)+1

⎞
⎠F

({
γ 2
l

λl − z

}∞

l=1

)−1

.

In particular, for the Weyl m-function one has

m(z) := G(z; 1, 1) = 1

λ1 − z
F

({
γ 2
l

λl − z

}∞

l=2

)
F

({
γ 2
l

λl − z

}∞

l=1

)−1

. (35)

Proof. Denote by R(z)i,j the RHS of (34). Thus R(z) is an infinite matrix provided its entries R(z)i,j ,
i, j ∈ N, make good sense. Suppose that a complex number z does not belong to Z(J) ∪ der(λ). By
Lemma 8, in that case the RHS of (34) is well defined. By inspection of the expression one finds that

this is so even if z happens to coincidewith amemberλk of the sequenceλ not belonging to der(λ), i.e.
the seeming singularity at z = λk is removable. For the sake of simplicity we assume in the remainder

of the proof, however, that z does not belong to the range of the sequence λ. The only purpose of this
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assumption is just to simplify the discussion and to avoid more complex expressions but otherwise it

is not essential for the result.

First let us show that there exists a constant C, possibly depending on z but independent of the

indices i, j, such that

|R(z)i,j| � C 2−|i−j|, ∀i, j ∈ N. (36)

To this end, denote

τ = inf{|z − λn|; n ∈ N} > 0.

Assuming (28), one can choose n0 ∈ N so that, for all n � n0,

|wn|2 � |λn − z| |λn+1 − z|/4. (37)

Let us assume, for the sake of definiteness, that i � j. Again by (28) and (3),∣∣∣∣∣∣F
⎛
⎝{

γ 2
l

λl − z

}i−1

l=1

⎞
⎠F

⎛
⎝{

γ 2
l

λl − z

}∞

l=j+1

⎞
⎠F

({
γ 2
l

λl − z

}∞

l=1

)−1
∣∣∣∣∣∣ � C1,

for all i, j. It remains to estimate the expression

1

|λj − z|

∣∣∣∣∣∣
j−1∏
l=i

wl

λl − z

∣∣∣∣∣∣. (38)

We distinguish three cases. For the finite set of couples i, j, i � j � n0, (38) is bounded from above

by a constant C2. Using (37), if i � n0 � j then (38) is majorized by

C2

∣∣∣∣∣∣
λn0 − z

λj − z

j−1∏
l=n0

wl

λl − z

∣∣∣∣∣∣ � C2τ
−1/2|λn0 − z|1/2 2−j+n0 .

Similarly, if n0 � i � j then (38) is majorized by τ−12−j+i. From these partial upper bounds the

estimate (36) readily follows.

From (36) one deduces that the matrix R(z) represents a bounded operator on �2(N). In fact, one

can write R(z) as a countable sum,

R(z) = ∑
s∈Z

R(z; s), (39)

where the matrix elements of the summands are R(z; s)i,j = R(z)i,j if i − j = s and R(z; s)i,j = 0

otherwise. Thus R(z; s) has nonvanishing elements on only one parallel to the diagonal and

‖R(z; s)‖ = sup{|R(z)i,j|; i − j = s} � C 2−|s|.

Hence the series (39) converges in the operator norm. With some abuse of notation, we shall denote

the corresponding bounded operator again by the symbol R(z).
Further one observes that, on the level of formal matrix products,

(J − z)R(z) = R(z)(J − z) = I.

The both equalities are in fact equivalent to the countable system of equations (with w0 = 0)

wk−1G(z; i, k − 1)+ (λk − z)G(z; i, k)+ wkG(z; i, k + 1) = δi,k, i, k ∈ N.

This can be verified, in a straightforward manner, with the aid of the rule (4) or some of its particular

cases (5) and (6). By inspection of the domains one then readily shows that the operators Jmax − z and

R(z) are mutually inverse and so z ∈ ρ(Jmax). �
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Corollary 13. Suppose, in addition to the assumptions of Proposition 12, that |λn| → ∞ as n → ∞.

Then der(λ) = ∅ and for every z ∈ C\Z(J), the resolvent (Jmax − z)−1 is compact.

Proof. Keeping the notation from the proof of Proposition 12, suppose |λn| → ∞ as n → ∞, and

z ∈ C \ Z(J). Then it readily turns out that the estimatesmay be somewhat refined. In particular, (38)

is majorized by

|λi − z|−1/2|λj − z|−1/2 2−j+i

for n0 � i � j. But this implies that R(z; s)i,j → 0 as i, j → ∞, with i − j = s being constant. It

follows that the operators R(z; s) are compact. Since the series (39) converges in the operator norm,

R(z) is compact as well. �

Corollary 14. If condition (28) is fulfilled for at least one z0 ∈ C
λ
0 then

spec(Jmax) \ der(λ) = specp(Jmax) \ der(λ) = Z(J).
Proof. Propositions 11 and12 respectively imply the inclusions

Z(J) ⊂ specp(Jmax) \ der(λ), spec(Jmax) \ der(λ) ⊂ Z(J).
This shows the equality. �

Theorem 15. Suppose that the convergence condition (28) is fulfilled for at least one z0 ∈ C
λ
0 and the

function FJ(z) does not vanish identically on C
λ
0 . Then Jmin = Jmax =: J and

spec(J) \ der(λ) = specp(J) \ der(λ) = Z(J). (40)

Suppose, in addition, that the set C\ der(λ) is connected. Then spec(J) \ der(λ) consists of simple eigen-

values which have no accumulation points in C \ der(λ).

Proof. By the assumptions,C\(der(λ)∪Z(J)) 	= ∅. FromProposition 12 one infers thatρ(Jmax) 	= ∅.
According to Theorem 10, one has Jmin = Jmax. Then (40) becomes a particular case of Corollary 14.

Let us assume that C\ der(λ) is connected. Then the set C
λ
0 is clearly connected as well. Suppose

on the contrary that the point spectrum of J has an accumulation point inC\der(λ). Then, by equality
(40), the set of zeros of the analytic function FJ(z) has an accumulation point in C \ der(λ). This
accumulation point may happen to be a member λn of the sequence λ, but then one knows that FJ(z)
has a pole of finite order at λn. In any case, taking into account that C

λ
0 is connected one comes to the

conclusion that FJ(z) = 0 everywhere on C
λ
0 , a contradiction. �

Remark 16. Theorem 15 is derived under two assumptions:

(i) The convergence condition (28) is fulfilled for at least one z0 ∈ C
λ
0 .

(ii) The function FJ(z) does not vanish identically on C
λ
0 .

But let us point out that assumption (ii) is automatically fulfilled if (i) is true and the range of the

sequence λ is contained in a halfplane. This happens, for example, if the sequence λ is real or the

sequence {Re λn}∞n=1 is semibounded. In fact, let us fordefiniteness consider the latter caseandsuppose

that Re λn � c, ∀n ∈ N. Then (−∞, c) ⊂ C
λ
0 and 1/|λn − z| tends to 0 monotonically for all n as

z → −∞. Similarly as in (3) one derives the estimate

|FJ(z)− 1| � exp

( ∞∑
n=1

∣∣∣∣∣ w 2
n

(λn − z)(λn+1 − z)

∣∣∣∣∣
)

− 1.
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It follows that limz→−∞ FJ(z) = 1. Notice that in the real case, the function FJ(z) can identically

vanish neither on the upper nor on the lower halfplane.

Corollary 17. Let J be real and suppose (28) is fulfilled for at least one z0 ∈ C
λ
0 . Then Jmin = Jmax = J is

self-adjoint and spec(J) \ der(λ) = Z(J) consists of simple real eigenvalues which have no accumulation

points in R \ der(λ).

Proof. Some assumptions in Theorem 15 become superfluous if J is real. As observed in Remark 16,

assuming the convergence condition the function FJ(z) cannot vanish identically on C
λ
0 . The operator

J is self-adjoint andmay have only real eigenvalues. The setC\der(λ)may happen to be disconnected

only if the range of the sequence λ is dense in R, i.e. der(λ) = R. But even then the conclusion of the

theorem remains trivially true. �

Let us complete this analysis by a formula for the norms of the eigenvectors described in Propo-

sition 11. In order to simplify the discussion we restrict ourselves to the domain C
λ
0 . Then instead of

(32) one may write

ξk(z) =
⎛
⎝ k∏

l=1

wl−1

z − λl

⎞
⎠ F

({
γ 2
l

λl − z

}∞

l=k+1

)
, z ∈ C

λ
0 , k ∈ Z+. (41)

This is in fact nothing but the solution fn from (21) restricted to nonnegative indices.

Proposition 18. If z ∈ C
λ
0 satisfies (28) then the functions ξk(z), k ∈ Z+, defined in (41) fulfill

∞∑
k=1

ξk(z)
2 = ξ ′

0(z)ξ1(z)− ξ0(z)ξ
′
1(z). (42)

Particularly, if in addition J is real and z ∈ R ∩ C
λ
0 is an eigenvalue of J then ξ(z) = (ξk(z))

∞
k=1 is a

corresponding eigenvector and

‖ξ(z)‖2 = ξ ′
0(z)ξ1(z). (43)

Proof. Put ζ
(1)
j = z − λj , ζ

(2)
j = y − λj , j ∈ N, in Eq. (23), where z, y ∈ C

λ
0 . Then Proposition 6 is

applicable to f
(1)
j = ξj(z), f

(2)
j = ξj(y), j ∈ Z+. Hence (w0 = 1)

(z − y)
∞∑
k=0

ξk(z)ξk(y) = ξ1(z)ξ0(y)− ξ0(z)ξ1(y).

Now the limit y → z can be treated in a routine way. �

Corollary 19. Suppose J is real and let condition (28) be fulfilled for at least one z0 ∈ C
λ
0 . Then the

function FJ(z) has only simple real zeros on C
λ
0 .

Proof. Suppose z ∈ C
λ
0 is a zero of FJ(z), i.e. FJ(z) ≡ ξ0(z) = 0. Then z is a real eigenvalue of J where

J = Jmax = Jmin is self-adjoint, as we know from Corollary 17. Moreover, by Proposition 11, ξ(z) 	= 0

is a corresponding real eigenvector. Hence from (43) one infers that necessarily ξ ′
0(z) 	= 0. �

4. Examples

4.1. Explicitly solvable examples of point spectra

In all examples presented below the Jacobi matrix J is real and symmetric. The set of accumulation

points der(λ) is either empty or the one-point set {0}. Moreover, condition (28) is readily checked to
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be satisfied for any z0 ∈ C \ R. Thus Corollary 17 applies to all these examples and may be used to

determine the spectrumof theunique self-adjointoperator Jwhosematrix in thecanonical basis equals

J (recall also definition (31) of the zero set of the characteristic function). In addition, Proposition 11

and Eq. (32) (or (41)) provide us with explicit formulas for the corresponding eigenvectors.

Example 20. This is an example of an unbounded Jacobi operator. Let λn = nα, where α ∈ R \ {0},
and wn = w > 0 for all n ∈ N. Thus

J =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

α w

w 2α w

w 3α w

. . .
. . .

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
.

One has der(λ) = ∅ and spec(J) = Z(J). Using (15) one derives that

F

({
γ 2
k

αk − z

}∞

k=r+1

)
= F

({
w

αk − z

}∞

k=r+1

)
=

(
w

α

)−r+z/α

�

(
1 + r − z

α

)
Jr−z/α

(
2w

α

)

for r ∈ Z+. It follows that

spec(J) =
{
z ∈ R; J−z/α

(
2w

α

)
= 0

}
. (44)

For components of corresponding eigenvectors v(z) one obtains

vk(z) = (−1)kJk−z/α

(
2w

α

)
, k ∈ N.

Let us remark that the characterization of the spectrum of J, as given in (44), was observed earlier

by several authors, see [10, Section 3] and [13, Theorem 3.1]. We discuss inmore detail solutions of the

characteristic equation J−z(2w) = 0 below in Section 4.3.

Furtherwedescribe four examples inwhich the Jacobimatrix always represents a compact operator

on�2(N). In thefirst twoof themwemakeuseof the followingconstruction. Letusfixpositiveconstants

c, α and β . For n ∈ Z+ we define the c-deformed number n as

[n]c =
n−1∑
i=0

ci.

Hence [n]c = (cn − 1)/(c − 1) if c 	= 1 and [n]c = n for c = 1. Notice that

[n + m − 1]c − [n − 1]c
[m]c = [n]c − [n − 1]c, ∀n,m ∈ N. (45)

As for the Jacobi matrix J, we put

λn = 1

α + [n − 1]c , wn = β
√
λn − λn+1, n = 1, 2, 3, . . . . (46)

Condition (28) is readily verified, for example for z0 < 0.

Proposition 21. Let J be defined by (46) for some c � 1 and α, β > 0. Then for all r ∈ Z+,

F

({
γ 2
n

λn − z

}∞

n=r+1

)
=

∞∑
s=0

β2s

zs

s∏
i=1

(
[ i ]c

(
1 − z

λr+i

))−1

. (47)
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Proof. We claim that

∞∑
k1=r

∞∑
k2=k1+2

· · ·
∞∑

ks=ks−1+2

× w 2
k1

(λk1 − z)(λk1+1 − z)

w 2
k2

(λk2 − z)(λk2+1 − z)
· · · w 2

ks

(λks − z)(λks+1 − z)

= (−1)s

zs
β2s

s∏
i=1

(
[ i ]c

(
1 − z

λr+i−1

))−1

(48)

holds for every r, s ∈ N. In fact, to show (48) one can proceed by mathematical induction in s. The

case s = 1 as well as all induction steps are straightforward consequences of the equality

w 2
j

(λj − z)(λj+1 − z)

s−1∏
i=1

(
[ i ]c

(
1 − z

λj+i+1

))−1

= −β
2

z

⎛
⎝ s∏

i=1

(
[ i ]c

(
1 − z

λj+i−1

))−1

−
s∏

i=1

(
[ i ]c

(
1 − z

λj+i

))−1
⎞
⎠,

with s = 1, 2, 3, . . ., which in turn can be verified with the aid of (45). Identity (47) follows from (48)

and definition (1). �

Example 22. In (46), let us put c = 1 and α = 1 while β is arbitrary positive. Then λn = 1/n,

wn = β/
√

n(n + 1) , for all n ∈ N, and so

J =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 β/
√

2

β/
√

2 1/2 β/
√

6

β/
√

6 1/3 β/
√

12

. . .
. . .

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
.

One finds that

F

({
γ 2
n

λn − z

}∞

n=k+1

)
=

∞∑
s=0

β2s

s! zs
s∏

j=1

1

1 − (k + j)z
= 0F1

(
k + 1 − 1

z
; −β

2

z2

)

=
(
z

β

)k−1/z

�

(
k + 1 − 1

z

)
Jk−1/z

(
2β

z

)
, (49)

with k ∈ Z+, see [1, Eq. (9.1.69)]. Then

FJ(z) = �

(
1 − 1

z

)(
z

β

)−1/z

J−1/z

(
2β

z

)

and

spec(J) =
{
z ∈ R \ {0}; J−1/z

(
2β

z

)
= 0

}
∪ {0}.

For components of corresponding eigenvectors v(z) one has

vk(z) = √
k Jk−1/z

(
2β

z

)
, k ∈ N.
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Example 23. Nowwe suppose in (46) that c > 1 and putα = 1/(c−1). Thenλn = (c−1)c−n+1 and

wn = β (c − 1)c−1/2c(−n+1)/2. In order to simplify the expressions let us divide all matrix elements

by the term c − 1. Furthermore, we also replace the parameter β by βc1/2 and use the substitution

c = 1/q, with 0 < q < 1. Thus for the matrix simplified in this way we have λn = qn−1 and

wn = βq(n−1)/2. Hence

J =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 β

β q β
√

q

β
√

q q2 βq

. . .
. . .

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
.

Eq. (47) then becomes

F

({
γ 2
n

λn − z

}∞

n=r+1

)
= F

⎛
⎝{
βq(2n−3)/4

qn−1 − z

}∞

n=r+1

⎞
⎠ =

∞∑
s=0

(−1)s
qs(s−1)

(q; q)s(qr/z; q)s

(
qr/2β

z

)2s

= 0φ1

(
; qr

z
; q,−qrβ2

z2

)
, r ∈ Z+. (50)

Thus we get

spec(J) =
{
z ∈ R \ {0};

(
1

z
; q

)
∞ 0φ1

(
; 1

z
; q,−β

2

z2

)
= 0

}
∪ {0}.

The kth entry of an eigenvector v(z) corresponding to a nonzero point of the spectrum zmaybewritten

in the form

vk(z) = q(k−1)(k−2)/4

(
β

z

)k−1 (
qk

z
; q

)
∞

0φ1

(
; qk

z
; q,−qkβ2

z2

)
, k ∈ N.

Furtherwe shortly discuss twoexamples of Jacobimatriceswith zerodiagonal andw ∈ �2(N). Such
a Jacobi matrix represents a compact operator (even Hilbert–Schmidt). The characteristic function is

an even function,

F

({
γ 2
n

z

}∞

n=1

)
=

∞∑
m=0

(−1)m

z2m

∞∑
k1=1

∞∑
k2=k1+2

· · ·
∞∑

km=km−1+2

w 2
k1
w 2

k2
· · ·w 2

km
.

Hence the spectrum of J is symmetric with respect to the origin.

Though 0 always belongs to the spectrum of a compact Jacobi operator, one may ask under which

conditions 0 is even an eigenvalue (necessarily simple). An answer can be deduced directly from the

eigenvalue equation (11). One immediately finds that any eigenvector x must satisfy x2k = 0 and

x2k−1 = (−1)k+1x1/γ2k−1, k ∈ N. Consequently, zero is a simple eigenvalue of J iff

∞∑
k=1

1

γ 2
2k−1

=
∞∑
k=1

k−1∏
j=1

(
w2j−1

w2j

)2
< ∞. (51)

Example 24. Let λn = 0 and wn = 1/
√
(n + α)(n + α + 1), n ∈ N, where α > −1 is fixed.

According to (15) one has, for k ∈ Z+,

F

({
γ 2
n

z

}∞

n=k+1

)
= F

({
1

z(α + n)

}∞

n=k+1

)
= �(α + k + 1)zα+kJα+k

(
2

z

)
.



F. Štampach, P. Šťovíček / Linear Algebra and its Applications 438 (2013) 4130–4155 4149

Hence

spec(J) =
{
z ∈ R\{0}; Jα

(
2

z

)
= 0

}
∪ {0}.

The kth entry of an eigenvector v(z) corresponding to a nonzero eigenvalue z may be written in the

form

vk(z) = √
α + k Jα+k

(
2

z

)
, k ∈ N.

It is well known that for α ∈ 1/2 + Z, the Bessel function Jα(z) can be expressed as a linear

combination of sine and cosine functions, the simplest cases being

J−1/2(z) =
√

2

πz
cos(z), J1/2(z) =

√
2

πz
sin(z).

Thus for α = ±1/2 the spectrum of J is described fully explicitly. In other cases the eigenvalues of J

close to zero can approximately be determined from the known asymptotic formulas for large zeros

of Bessel functions, see [1, Eq. (9.5.12)].

Example 25. Suppose that 0 < q < 1 and put λn = 0, wn = qn−1, n ∈ N. With the aid of (17) one

derives that

F

({
γ 2
n

z

}∞

n=k+1

)
= 0φ1(; 0; q2,−q2kz−2), k ∈ Z+.

It follows that

spec(J) = {z ∈ R \ {0}; 0φ1(; 0; q2,−z−2) = 0} ∪ {0}.
The components of an eigenvector v(z) corresponding to an eigenvalue z 	= 0 may be expressed as

vk(z) = q(k−1)(k−2)/2z−k+1
0φ1(; 0; q2,−q2kz−2), k ∈ N.

In this example as well as in the previous one, 0 belongs to the continuous spectrum of J since the

condition (51) is not fulfilled.

Example 26. Finallywe give another example of an unbounded Jacobi operator. It is obtained bymod-

ifying Example 23 inwhichwe replace decreasing geometric sequences on the diagonals by increasing

ones. Thus we put λn = q−n+1 and wn = βq−(n−1)/2 where again 0 < q < 1, β > 0. From (50) one

infers that

F

({
γ 2
n

λn − z

}∞

n=r+1

)
= F

⎛
⎝{

βq(2n−1)/4

z (qn−1 − z−1)

}∞

n=r+1

⎞
⎠ =0 φ1(; qrz; q,−qr+1β2), r ∈ Z+.

Thus one has

spec(J) =
{
z ∈ R; (z ; q)∞ 0φ1(; z; q,−qβ2) = 0

}
.

The kth entry of an eigenvector v(z) corresponding to an eigenvalue z can be written in the form

vk(z) = qk(k+1)/4 (−β)k−1 (qkz ; q)∞ 0φ1(; qkz; q,−qk+1β2), k ∈ N.

4.2. Applications of Proposition 18

Here we apply identity (42) to the six examples of Jacobi matrices described above (though not

in the same order). Without going into details, the final form of the presented identities is achieved
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after some simple substitutions. On the other hand, no attempt is made here to optimize the range of

involved parameters; it is basically the same as it was for the Jacobi matrix in question.

(1) In case of Example 20 one gets

∞∑
k=1

Jν+k(x)
2 = x

2

(
Jν+1(x)

∂

∂ν
Jν(x)− Jν(x)

∂

∂ν
Jν+1(x)

)
,

where x > 0 and ν ∈ C. This is in fact a particular case of (18).

(2) In case of Example 22 one gets

∞∑
k=1

k J−αz+k(z)
2 = z2

2

(
J−αz(z)

d

dz
J−αz+1(z)− J−αz+1(z)

d

dz
J−αz(z)

)
,

where α > 0 and z ∈ C.

(3) In case of Example 24 one gets

∞∑
k=1

(α + k)Jα+k(z)
2 = z2

2

(
Jα(z)

d

dz
Jα+1(z)− Jα+1(z)

d

dz
Jα(z)

)
,

where α > −1 and z ∈ C.

(4) In case of Example 23 one gets

∞∑
k=1

q(k−1)(k−2)/2 (tz2)k−1
(
(qkz; q)∞ 0φ1(; qkz; q,−qktz2)

)2

= (qz; q) 2∞
(

0φ1(; z; q,−tz2) 0φ1(; qz; q,−qtz2)

+ z (z − 1)
(
0φ1(; qz; q,−qtz2)

d

dz
0φ1(; z; q,−tz2)

− 0φ1(; z; q,−tz2)
d

dz
0φ1(; qz; q,−qtz2)

))
,

where 0 < q < 1, t > 0 and z ∈ C.

(5) In case of Example 26 one gets

∞∑
k=1

qk(k−1)/2tk−1 (qkz; q) 2∞ 0φ1(; qkz; q,−qkt)2

= (qz; q) 2∞
(
0φ1(; z; q,−t) 0φ1(; qz; q,−qt)+ (z − 1)

(
0φ1(; qz; q,−qt)

d

dz
0φ1(; z; q,−t)

− 0φ1(; z; q,−t)
d

dz
0φ1(; qz; q,−qt)

))
,

where 0 < q < 1, t > 0 and z ∈ C.

(6) In case of Example 25 one gets

∞∑
k=1

q(k−1)(k−2)/2 zk−1
0φ1(; 0; q,−qkz)2 = 0φ1(; 0; q,−z) 0φ1(; 0; q,−qz)

+ 2z

(
0φ1(; 0; q,−z)

d

dz
0φ1(; 0; q,−qz)− 0φ1(; 0; q,−qz)

d

dz
0φ1(; 0; q,−z)

)
,

where 0 < q < 1 and z ∈ C.
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Fig. 1. Several first eigenvalues λs(w) as functions of the parameterw for the Jacobi operator J = J(w) from Example 20, with α = 1.

4.3. A Jacobi matrix with a linear diagonal and constant parallels

Here we discuss in somewhat more detail Example 20 concerned with a Jacobi matrix having a

linear diagonal and constant parallels. For simplicity and with no loss of generality we put α = 1. Our

goal is to study how the spectrum of the Jacobi operator J depends on the real parameterw. We treat J

as a linear operator-valued function, J = J(w). One may write J(w) = L + wT where L is the diagonal

operator with the diagonal sequence λn = n, ∀n ∈ N, and T has all units on the parallels neighboring

to the diagonal and all zeros elsewhere. Notice that ‖T‖ � 2.

We know that J(w) has, for allw ∈ R, a semibounded simple discrete spectrum. Let us enumerate

the eigenvalues in ascending order as λs(w), s ∈ N. From the standard perturbation theory one infers

that all functionsλs(w) are real analytic,withλs(0) = s.Moreover, the functionsλs(w) are also known

to be even and so we restrict w to the positive real half-axis. In Example 20 we learned that for every

w > 0 fixed, the roots of the equation J−z(2w) = 0 are exactly λs(w), s ∈ N. Several first eigenvalues

λs(w) as functions of w are depicted in Fig. 1.

The problem of roots of a Bessel function depending on the order, with the argument being fixed,

has a long history. Herewemake use of some results derived in the classical paper [5]. Some numerical

aspects of the problem are discussed in [10]. For comparatively recent results in this domain one may

consult [13] and references therein.

In [5] it is shown that

dλs(w)

dw
= −

(
2w

ˆ ∞
0

K0(4w sinh(t)) exp (2λs(w)t) dt

)−1

.

From this relation one immediately deduces a few basic qualitative properties of the spectrum of the

Jacobi operator.

Proposition 27 (M.J. Coulomb). The spectrum {λs(w); s ∈ N} of the above introduced Jacobi operator,

depending on the parameter w � 0, has the following properties.

(i) For every s ∈ N, the function λs(w) is strictly decreasing.

(ii) If r < s then λr
′(w) < λs

′(w).
(iii) In particular, the distance between two neighboring eigenvalues λs+1(w)−λs(w), s ∈ N, increases

with increasing w and is always greater than or equal to 1, with the equality only for w = 0.

Let us next check the asymptotic behavior of λs(w) at infinity. The asymptotic expansion at infinity

of the sth root x = js(ν) of the equation Jν(x) = 0 reads [1, Eq. (9.5.22)]

js(ν) = ν − 2−1/3asν
1/3 + O

(
ν−1/3

)
as ν → +∞,
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where as is the sth negative zero of the Airy function Ai(x). From here one deduces that

λs(w) = −2w − asw
1/3 + O

(
w−1/3

)
as w → +∞.

Concerning the asymptotic behavior of λs(w) at w = 0, one may use the expression for the Bessel

function as a power series and apply the substitution, λs(w) = s− z(w), s = 1, 2, 3, . . .. The solution
z = z(w), with z(0) = 0, is then defined implicitly near w = 0 by the equation

∞∑
m=0

(−1)m

m!�(m + 1 − s + z(w))
w2m = 0.

The computation is straightforward and based on the relation

1

�(−m + z)
= (−1)mm!

(
z − ψ(0)(m + 1) z2

)
+ O

(
z3

)
, m = 0, 1, 2, 3, . . . ,

whereψ(0) is the polygamma function. This way one derives that, as w → 0,

λ1(w)= 1 − w2 + 1

2
w4 + O

(
w6

)
, (52)

λs(w)= s − 1

(s − 1)!s! w
2s + 2s

(s − 1)(s − 1)!(s + 1)! w
2s+2 + O

(
w2s+4

)
, for s � 2.

The same asymptotic formulas, as given in (52), can also be derived using the standard perturba-

tion theory [12, Section II.2]. Alternatively, one may use equivalent formulas for coefficients of the

perturbation series derived in [6,7] which are perhaps more convenient for this particular example.

The distance of s ∈ N to the rest of the spectrum of the diagonal operator L equals 1. The Kato–

Rellich theorem tells us that there exists exactly one eigenvalue of J(w) in the disk centered at s and of

radius 1/2 as long as |w| < 1/4. The explicit expression for the leading term in (52) suggests, however,

that the eigenvalueλs(w)may stay close to s on amuch larger interval at least for high orders s. It turns

out that actually λs(w) is well approximated by this leading asymptotic term on an interval [0, βs),
with βs ∼ s/e for s � 1. A precise formulation is given in Proposition 30 below.

Denote by yk(ν) the kth root of the Bessel function Yν(z), k ∈ N. Let us put

βs :=
(
(s − 1)! s!

π

)1/(2s)
, s ∈ N. (53)

In order to avoid confusion with the usual notation for Bessel functions, the nth truncation of J(w) is
now denoted by a bold letter as JJJn(w).

Lemma 28. The following estimate holds true:

βs <
1

2
y1

(
s − 1

2

)
, ∀s ∈ N. (54)

Proof. One knows that ν < y1(ν),∀ν � 0 [1, Eq. (9.5.2)], and in particular this is true for ν = s−1/2,
s ∈ N. On the other hand, the sequence

φs = π

(s − 1)! s!
(
s − 1

2

)2s
2−2s

is readily verified to be increasing, and 1 < φ4. This shows (54) for all s � 4. The cases s = 1, 2, 3 can

be checked numerically. �
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Lemma 29. Denote by χn(w; z) the characteristic polynomial of the nth truncation JJJn(w) of the Jacobi

matrix J(w). If 0 � w � βs for some s ∈ N then z = λs(w) solves the equation

χ2s−1(w; z)− wJ2s−z(2w)

J2s−1−z(2w)
χ2s−2(w; z) = 0. (55)

Proof. Let {ek; k ∈ N}be the canonical basis in�2(N). Let us split theHilbert space into theorthogonal
sum

�2(N) = span {ek; 1 � k � 2s − 1} ⊕ span {ek; 2s � k}.
Then J(w) splits correspondingly into four matrix blocks,

J(w) =
⎛
⎝ A(w) B(w)

C(w) D(w)

⎞
⎠.

Here A(w) = JJJ2s−1(w), D(w) = J(w)+ (2s− 1)I, the block B(w) has just one nonzero element in the

lower left corner and C(w) is transposed to B(w).
By theminmax principle, theminimal eigenvalue ofD(w) is greater than or equal to 2s−2w. Since

λs(w) � s one can estimate

min spec(D(w))− λs(w) = λ1(w)− λs(w)+ 2s − 1 � s − 2w.

We claim that 0 � w � βs implies min spec(D(w)) − λs(w) > 0. This is obvious for s = 1. For

s � 2, it suffices to show that βs < s/2. This can be readily done by induction in s. Hence, under this

assumption, D(w)− z is invertible for z = λs(w).
Solving the eigenvalue equation J(w)vvv = zvvv one can write the eigenvector as a sum vvv = xxx + yyy, in

accordance with the above orthogonal decomposition. If D(w) − z is invertible then the eigenvalue

equation reduces to the finite-dimensional linear system(
A − z − B(D − z)−1C

)
xxx = 0. (56)

One observes that B(D− z)−1C has all entries equal to zero except of the element in the lower right

corner. Using (35) and (15) one finds that this nonzero entry equals

wJ2s−z(2w)J2s−1−z(2w)
−1.

Eq. (55) then immediately follows from (56). �

Proposition 30. For s ∈ N and 0 � w � βs, with βs given in (53), one has

0 � s − λs(w) � 1

π
arcsin

(
πw2s

(s − 1)!s!
)
.

Proof. We start from Lemma 29 and Eq. (55). Let us recall from [14, Proposition 30] that

det (JJJ2s−1(w)− s − x) = (−1)sx
s−1∑
k=0

(
2s − k − 1

k

)
w2k

s−k−1∏
j=1

(
j2 − x2

)
.

Hence if z ∈ R, |z − s| � 1, then

|χ2s−1(w; z)| � |z − s|
s−1∏
j=1

(
j2 − (z − s)2

)
. (57)
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Since J−s+1/2(x) = (−1)s Ys−1/2(x) it is true that for 2w = y1(s− 1/2) one has λs(w) = s− 1/2.
Because of monotonicity of λs(w) one makes the following observation: if 2w � y1(s − 1/2) then
s � λs(w) � s − 1/2.

By Lemma 28, if w � βs then 2w � y1(s − 1/2), and so the estimate (57) applies for z = λs(w).
Using also Proposition 4 to express χ2s−2(w; z) one derives from (55) that

|λ− s| � w

∣∣∣∣∣ J2s−λ(2w)
J2s−1−λ(2w)

∣∣∣∣∣
∣∣∣∣∣ s − λ

2s − 1 − λ
F

(
w

1 − λ
,

w

2 − λ
, . . . ,

w

2s − 2 − λ

)∣∣∣∣∣ (58)

where as well as in the remainder of the proof we write for short λ instead of λs(w).
Starting from the equation

F

(
w

1 − λ
,

w

2 − λ
,

w

3 − λ
, . . .

)
= 0, with λ = λs(w),

and using (4), (15) one derives that, for all k ∈ Z+,⎛
⎝ k∏

j=1

(j − λ)

⎞
⎠F

(
w

1 − λ
,

w

2 − λ
, . . . ,

w

k − λ

)
= wk Jk+1−λ(2w)

J1−λ(2w)
. (59)

Combining (58) and (59) we get (knowing that 0 � s − λ � 1/2 for λ = λs(w))

s − λ � w2s−1

∣∣∣∣∣∣∣
⎛
⎝s−1∏

j=1

(λ− j)
s−1∏
j=1

(j + s − λ)

⎞
⎠−1

J2s−λ(2w)
J1−λ(2w)

∣∣∣∣∣∣∣ .
But notice that, by expressing the sine function as an infinite product,

s−1∏
j=1

(λ− j)
s−1∏
j=1

(j + s − λ) = ((s − 1)!)2 sin(π(s − λ))

π(s − λ)

⎛
⎝∞∏

j=s

(
1 − (s − λ)2

j2

)⎞
⎠−1

.

Hence

sin(π(s − λ)) � π
w2s−1

((s − 1)!)2
∣∣∣∣∣ J2s−λ(2w)J1−λ(2w)

∣∣∣∣∣.
From (26) one gets, while taking into account that J−λ(2w) = 0,

sin(πλ) = πwJλ(2w)J1−λ(2w).
In addition, one knows that

|Jν(x)| � 1

�(ν + 1)

∣∣∣∣ x
2

∣∣∣∣ν

provided ν > −1/2 and x ∈ R [1, Eq. (9.1.62)]. Hence

sin(π(s − λ))2 � π2w4s

((s − 1)!)2 �(2s + 1 − λ)�(λ+ 1)
.

Writing λ = s − ζ , with 0 � ζ � 1/2, one has

d

dζ
log

(
1

�(s + ζ + 1)�(s − ζ + 1)

)
= −ψ(0)(s + ζ + 1)+ ψ(0)(s − ζ + 1) < 0.

Thus we arrive at the estimate

sin(π(s − λ))2 � π2w4s

((s − 1)!)2 (s!)2 .
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To complete the proof it suffices to notice that the assumption w � βs means nothing but

w2s
/
((s − 1)!s!) � 1, and it also implies that 0 � s − λ � 1/2. �
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[6] P. Duclos, P. Št’ovíček, M. Vittot, Perturbation of an eigen-value from a dense point spectrum: an example, J. Phys. A 30 (1997)

7167–7185.
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their relationship to Jacobi (tridiagonal) matrices. In more detail, the zeros of an appropriate special
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of special functions. Particularly, Gard and Zakrajšek reported in [3] a matrix equation approach for
numerical computation of the zeros of Bessel functions; on this point see also [8]. In [7], Ikebe then
showed that the same approach was applicable, too, for determining the zeros of regular Coulomb
wave functions. In practical computations, an infinite tridiagonal matrix should be truncated which
raises a question of error estimates. Such an analysis has been carried out in [9,11].

In [13], the authors initiated an approach to a class of Jacobi matrices with discrete spectra. The
basic tool is a function F depending on a countable number of variables. In more detail, we define
F : D →C,

F(x) = 1 +
∞∑

m=1

(−1)m
∞∑

k1=1

∞∑
k2=k1+2

. . .

∞∑
km=km−1+2

xk1 xk1+1xk2 xk2+1 . . . xkm xkm+1, (1)

where the set D is formed by complex sequences x = {xk}∞k=1 obeying

∞∑
k=1

|xkxk+1| < ∞. (2)

For a finite number of variables we identify F(x1, x2, . . . , xn) with F(x) where x = (x1, x2, . . . , xn,

0,0,0, . . .). By convention, we put F(∅) = 1 where ∅ is the empty sequence. Notice that the domain
D is not a linear space though �2(N) ⊂ D .

In the same paper, two examples are given of special functions expressed directly in terms of F.
The first example is concerned with Bessel functions of the first kind. For w, ν ∈ C, ν /∈ −N, one has

Jν(2w) = wν

Γ (ν + 1)
F

({
w

ν + k

}∞

k=1

)
. (3)

Secondly, the formula

F
({

tk−1 w
}∞

k=1

) = 1 +
∞∑

m=1

(−1)m tm(2m−1)w2m

(1 − t2)(1 − t4) . . . (1 − t2m)
= 0φ1

(;0; t2,−t w2) (4)

holds for t, w ∈ C, |t| < 1. Here 0φ1 is the basic hypergeometric series (also called q-hypergeometric
series) being defined by

0φ1(;b;q, z) =
∞∑

k=0

qk(k−1)

(q;q)k(b;q)k
zk,

and

(a;q)k =
k−1∏
j=0

(
1 − aq j), k = 0,1,2, . . . ,

is the q-Pochhammer symbol, see [4].
In [14], the approach is further developed and a construction in terms of F of the characteristic

function of certain Jacobi matrices is established. As an application, a series of examples of Jacobi
matrices with explicitly expressible characteristic functions is described. The method works well for
Jacobi matrices obeying a simple convergence condition imposed on the matrix entries which is in
principle dictated by condition (2) characterizing the domain of F.

In the current paper, we present more interesting examples of Jacobi matrices whose spectrum co-
incides with the set of zeros of a particular special function. As a byproduct, we provide examples of
sequences on which the function F can be evaluated explicitly. The paper is organized as follows. In
Section 2 we recall from [13,14] some basic facts needed in the current paper. Section 3 is concerned
with regular Coulomb wave functions. Here we reconsider the example due to Ikebe while using our
formalism. In Section 4 we deal with confluent hypergeometric functions. Here we go beyond the
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above mentioned convergence condition (see (14) below) which is violated in this example. Section 5
is concerned with q-Bessel functions. This example is particular in that respect that the constructed
second order difference operator is bilateral, i.e. it acts in �2(Z) rather than in �2(N). We first derive
several useful properties of q-Bessel functions and then we use this knowledge to solve the spec-
tral problem for the bilateral difference operator fully explicitly. Finally, another interplay between
special functions, namely q-confluent hypergeometric functions, and an appropriate Jacobi matrix is
demonstrated in Section 6.

2. Preliminaries

Let us recall from [13,14] some basic facts concerning the function F and its properties and possi-
ble applications. First of all, quite crucial property of F is the recurrence rule

F
({xk}∞k=1

) = F
({xk}∞k=2

) − x1x2F
({xk}∞k=3

)
. (5)

In addition, F(x1, x2, . . . , xk−1, xk) = F(xk, xk−1, . . . , x2, x1). Furthermore, for x ∈ D ,

lim
n→∞F

({xk}∞k=n

) = 1 and lim
n→∞F(x1, x2, . . . , xn) = F(x). (6)

Let us note that the definition of F naturally extends to more general ranges of indices. For any
sequence {xn}N2

n=N1
, N1, N2 ∈ Z ∪ {−∞,+∞}, N1 � N2 + 1 (if N1 = N2 + 1 ∈ Z then the sequence is

considered as empty) such that
∑N2−1

k=N1
|xkxk+1| < ∞ one defines

F
({xk}N2

k=N1

) = 1 +
∞∑

m=1

(−1)m
∑

k∈I(N1,N2,m)

xk1 xk1+1xk2 xk2+1 . . . xkm xkm+1

where

I(N1, N2,m) = {
k ∈ Z

m; k j + 2 � k j+1 for 1 � j � m − 1, N1 � k1, km < N2
}
.

With this definition, one has the generalized recurrence rule

F
({xk}N2

k=N1

) = F
({xk}n

k=N1

)
F
({xk}N2

k=n+1

) − xnxn+1F
({xk}n−1

k=N1

)
F
({xk}N2

k=n+2

)
(7)

provided n ∈ Z satisfies N1 � n < N2.
Let us denote by J an infinite Jacobi matrix of the form

J =

⎛
⎜⎜⎝

λ1 w1
w1 λ2 w2

w2 λ3 w3
. . .

. . .
. . .

⎞
⎟⎟⎠ (8)

where {wn; n ∈ N} ⊂ C\{0} and {λn; n ∈ N} ⊂ C. In all examples treated in the current paper, the
matrix J determines in a natural way a unique closed operator in �2(N) (in other words, Jmin = Jmax;
see, for instance, [2]). If the matrix is real then the operator is self-adjoint. For the sake of simplicity
of the notation the operator is again denoted by J . One notes, too, that all eigenvalues of J , if any,
are simple since any solution {xk} of the formal eigenvalue equation

λ1x1 + w1x2 = zx1, wk−1xk−1 + λkxk + wkxk+1 = zxk for k � 2, (9)

with z ∈C, is unambiguously determined by its first component x1.
Let {γk} be any sequence fulfilling γkγk+1 = wk , k ∈ N. If Jn is the principal n × n submatrix of J

then

det( Jn − zIn) =
(

n∏
k=1

(λk − z)

)
F

(
γ 2

1

λ1 − z
,

γ 2
2

λ2 − z
, . . . ,

γ 2
n

λn − z

)
. (10)
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The function F can also be applied to bilateral difference equations. Suppose that sequences
{wn}∞n=−∞ and {ζn}∞n=−∞ are such that wn 	= 0, ζn 	= 0 for all n, and

∞∑
k=−∞

∣∣∣∣ w2
k

ζkζk+1

∣∣∣∣ < ∞.

Consider the difference equation

wnxn+1 − ζnxn + wn−1xn−1 = 0, n ∈ Z. (11)

Define the sequence {Pn}n∈Z by P0 = 1 and Pn+1 = (wn/ζn+1)Pn for all n. The sequence {γn}n∈Z is
again defined by the rule γnγn+1 = wn for all n ∈ Z, and any choice of γ1 	= 0. Then the sequences
{ fn}n∈Z and {gn}n∈Z ,

fn = PnF

({
γ 2

k

ζk

}∞

k=n+1

)
, gn = 1

wn−1Pn−1
F

({
γ 2

k

ζk

}n−1

k=−∞

)
, (12)

represent two solutions of the bilateral difference equation (11). With the usual definition of the
Wronskian, W( f , g) = wn( fn gn+1 − fn+1 gn), one has

W( f , g) = F
({

γ 2
n /ζn

}∞
n=−∞

)
. (13)

For λ = {λn}∞n=1 let us denote C
λ
0 := C \ {λn; n ∈ N}, and let der(λ) stand for the set of all finite

accumulation points of the sequence λ. Further, for z ∈C \ der(λ), let r(z) be the number of members
of the sequence λ coinciding with z (hence r(z) = 0 for z ∈ C

λ
0). We assume everywhere that C

λ
0 	= ∅.

Suppose

∞∑
n=1

∣∣∣∣ w2
n

(λn − z0)(λn+1 − z0)

∣∣∣∣ < ∞ (14)

for at least one z0 ∈ C
λ
0. Then (14) is true for all z0 ∈ C

λ
0 [14]. In particular, the following definitions

make good sense. For k ∈ Z+ (Z+ standing for nonnegative integers) and z ∈C \ der(λ) put

ξk(z) := lim
u→z

(u − z)r(z)

(
k∏

l=1

wl−1

u − λl

)
F

({
γ 2

l

λl − u

}∞

l=k+1

)
. (15)

Here one sets w0 := 1. Particularly, for z ∈ C
λ
0, one simply has

ξk(z) =
(

k∏
l=1

wl−1

z − λl

)
F

({
γ 2

l

λl − z

}∞

l=k+1

)
(16)

(this is in fact nothing but the solution fn from (12) restricted to nonnegative indices). All functions
ξk(z), k ∈ Z+ , are holomorphic on C

λ
0 and extend to meromorphic functions on C \ der(λ), with poles

at the points z = λn , n ∈ N, and with orders of the poles not exceeding r(z). This justifies definition
(15).

The sequence {ξk(z)} solves the second order difference equation

wk−1xk−1 + (λk − z)xk + wkxk+1 = 0 for k � 2. (17)

In addition, (λ1 − z)ξ1(z) + w1ξ2(z) = 0 provided ξ0(z) = 0. Proceeding this way one can show [14,
Section 3.3] that if ξ0(z) does not vanish identically on C

λ
0 then

spec( J ) \ der(λ) = {
z ∈C \ der(λ); ξ0(z) = 0

}
. (18)

Moreover, if z ∈ C\der(λ) is an eigenvalue of J then ξ(z) := (ξ1(z), ξ2(z), ξ3(z), . . .) is a corresponding
eigenvector. If J is real and z ∈R∩C

λ
0 is an eigenvalue then ‖ξ(z)‖2 = ξ ′

0(z)ξ1(z). Finally, let us remark
that the Weyl m-function can be expressed as m(z) = −ξ1(z)/ξ0(z).
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Lemma 1. For p, r, � ∈ N, 1 < p � r + 1 � �, and any �-tuple of complex numbers x j , 1 � j � �, it holds true
that

F
({x j}r

j=1

)
F
({x j}�j=p

) − F
({x j}�j=1

)
F
({x j}r

j=p

) =
(

r∏
j=p−1

x jx j+1

)
F
({x j}p−2

j=1

)
F
({x j}�j=r+2

)
.

If p, r ∈ N, 1 < p � r + 1, and a complex sequence {x j}∞j=1 fulfills (2) then

F
({x j}r

j=1

)
F
({x j}∞j=p

) − F
({x j}r

j=p

)
F
({x j}∞j=1

) =
(

r∏
j=p−1

x jx j+1

)
F
({x j}p−2

j=1

)
F
({x j}∞j=r+2

)
.

Proof. Suppose {z j}∞j=−∞ is any nonvanishing bilateral complex sequence. In [14, Section 2] it is
shown (under somewhat more general circumstances) that there exists an antisymmetric matrix
J(m,n), m,n ∈ Z, such that

J(m,n) =
(

n−1∏
j=m+1

1

z j

)
F(zm+1, zm+2, . . . , zn−1)

for m < n, and J(m,k)J(n, �) − J(m, �)J(n,k) = J(m,n)J(k, �) for all m,n,k, � ∈ Z. In particular, as-
suming that indices p, r, � obey the restrictions from the lemma,

J(0, r + 1)J(p − 1, � + 1) − J(0, � + 1)J(p − 1, r + 1) = J(0, p − 1)J(r + 1, � + 1).

After obvious cancellations in this equation one can drop the assumption on nonvanishing sequences.
The lemma readily follows. �
Lemma 2. Let x = {xn}∞n=1 be a nonvanishing complex sequence satisfying (2). Then

Fn := F
({xk}∞k=n

)
, n ∈N, (19)

is the unique solution of the second order difference equation

Fn − Fn+1 + xnxn+1 Fn+2 = 0, n ∈N, (20)

satisfying the boundary condition limn→∞ Fn = 1.

Proof. The sequence {Fn} defined in (19) fulfills all requirements, as stated in (5) and (6). It suffices
to show that there exists another solution {Gn} of (20) such that limn→∞ Gn = ∞. If F1 = F(x) 	= 0
then {Gn} can be defined by G1 = 0 and

Gn =
(

n−2∏
k=1

1

xkxk+1

)
F
({xk}n−2

k=1

)
, for n � 2. (21)

If F1 = 0 then necessarily F2 	= 0 since otherwise (20) would imply Fn = 0 for all n which is impossi-
ble. Hence in that case one can shift the index by 1, i.e. one can put G2 = 0,

Gn =
(

n−2∏
k=2

1

xkxk+1

)
F
({xk}n−2

k=2

)
, for n � 3

(and G1 = −x1x2). In any case, Fn is the minimal solution of (20), see [5]. �
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Remark 3. If F(x) = 0 then F(x1, x2, . . . , xn) tends to 0 as n → ∞ quite rapidly, more precisely,

F(x1, x2, . . . , xn+1) = o

(
n∏

k=1

xkxk+1

)
, as n → ∞. (22)

In fact, if F(x) = 0 then F2 	= 0 and the solutions {Fn} and {Gn} defined in (19) and (21), respectively,
are linearly dependent, Fn = F2Gn , ∀n. Sending n to infinity one gets

1 = F2 lim
n→∞

(
n∏

k=1

1

xkxk+1

)
F
({xk}n

k=1

) = lim
n→∞

(
n∏

k=1

1

xkxk+1

)
F
({xk}n

k=1

)
F
({xk}n+1

k=2

)
.

Now, Lemma 1 provides us with the identity

F
({xk}n

k=1

)
F
({xk}n+1

k=2

) − F
({xk}n+1

k=1

)
F
({xk}n

k=2

) =
n∏

k=1

xkxk+1,

and so one arrives at the equation

lim
n→∞

(
n∏

k=1

1

xkxk+1

)
F
({xk}n+1

k=1

)
F
({xk}n

k=2

) = 0.

Since F({xk}∞k=2) 	= 0 this shows (22).

3. Coulomb wave functions

For x > 1, y ∈R, put

λ(x, y) = y

(x − 1)x
, w(x, y) = 1

x

√
x2 + y2

4x2 − 1
,

and

γ (x, y) = Γ ( 1
2 x)√

2x − 1Γ ( 1
2 (x + 1))

∣∣∣∣Γ ( 1
2 (x + iy + 1))

Γ ( 1
2 (x + iy))

∣∣∣∣.
Then γ (x, y)γ (x + 1, y) = w(x, y). For μ > 0, ν ∈ R, consider the Jacobi matrix J = J (μ,ν) of the
form (8), with

λk = λ(μ + k, ν), wk = w(μ + k, ν), k = 1,2,3, . . . . (23)

Similarly, γk = γ (μ + k, ν). Clearly, the matrix J (μ,ν) represents a Hermitian Hilbert–Schmidt op-
erator in �2(N). Moreover, the convergence condition (14) is satisfied for any z0 ∈ C\{0} such that
z0 	= λk , ∀k ∈N.

Recall the definition of regular Coulomb wave functions [1, Eq. 14.1.3]

F L(η,ρ) = 2Le−πη/2 |Γ (L + 1 + iη)|
Γ (2L + 2)

ρL+1e−iρ
1 F1(L + 1 − iη;2L + 2;2iρ), (24)

valid for L ∈ Z+ , η ∈ R, ρ > 0. Let us remark that, though not obvious from its form, the values of
the regular Coulomb wave function in the indicated range are real. But nothing prevents us to extend,
by analyticity, the Coulomb wave function to the values L > −1 and ρ ∈ C (assuming that a proper
branch of ρ L+1 has been chosen).

As observed in [7], the eigenvalue equation for J (μ,ν) may be written in the form
Fμ−1(−ν, z−1) = 0. Moreover, if z 	= 0 is an eigenvalue of J (μ,ν) then the components vn(z), n ∈ N,
of a corresponding eigenvector v(z) are proportional to

√
2μ + 2n − 1Fμ+n−1(−ν, z−1). Thus, using

definition (24), one can write
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spec
(

J (μ,ν)
)\{0} = {

ζ−1; e−iζ
1 F1(μ + iν;2μ;2iζ ) = 0

}
(25)

and

vn
(
ζ−1) = √

2μ + 2n − 1
|Γ (μ + n + iν)|

Γ (2μ + 2n)
(2ζ )n−1e−iζ

1 F1(μ + n + iν;2μ + 2n;2iζ ). (26)

Here we wish to shortly reconsider this example while using our formalism.

Proposition 4. Under the above assumptions (see (23)),

F

({
γ 2

k

λk − ζ−1

}∞

k=1

)

= Γ ( 1
2 + μ − 1

2

√
1 + 4νζ )Γ ( 1

2 + μ + 1
2

√
1 + 4νζ )

Γ (μ)Γ (μ + 1)
e−iζ

1 F1(μ + iν;2μ;2iζ ). (27)

Proof. Observe that the convergence condition (14) is satisfied in this example. For n ∈ N put

f1,n = F

({
γk

2

λk − ζ−1

}∞

k=n

)
,

and let f2,n be equal to the RHS of (27) where we replace μ by μ + n − 1. According to (5), the
sequence { f1,n} obeys the recurrence rule

f1,n − f1,n+1 + X(μ + n) f1,n+2 = 0, n ∈N, (28)

where

X(x) = w(x, ν)2

(λ(x, ν) − ζ−1)(λ(x + 1, ν) − ζ−1)

= (x2 − 1)(x2 + ν2)ζ 2

(4x2 − 1)((x − 1)x − νζ )(x(x + 1) − νζ )
for x > 1.

Next one can apply the identity

1 F1(a − 1;b − 2; z) − b2 − 2b + (2a − b)z

(b − 2)b
1 F1(a;b; z)

− a(b − a)z2

(b2 − 1)b2 1 F1(a + 1;b + 2; z) = 0, (29)

as it follows from [1, §13.4], to verify that the sequence { f2,n} obeys (28) as well. Notice that, if
rewritten in terms of Coulomb wave functions, (29) amounts to the recurrence rule [1, Eq. 14.2.3]

L
√

(L + 1)2 + η2uL+1 − (2L + 1)

(
η + L(L + 1)

ρ

)
uL + (L + 1)

√
L2 + η2uL−1 = 0,

where uL = F L(η,ρ).
To evaluate the limit of f2,n , as n → ∞, one may notice that

lim
n→∞ 1 F1(a + n;b + κn; z) = ez/κ

for κ 	= 0, and apply the Stirling formula. Alternatively, avoiding the Stirling formula, the limit is also
obvious from the identity [6, Eq. 8.325(1)]

∞∏
k=0

(
1 + z

(y + k)(y + k + 1)

)
= Γ (y)Γ (y + 1)

Γ ( 1
2 + y − 1

2

√
1 − 4z)Γ ( 1

2 + y + 1
2

√
1 − 4z)

. (30)
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In any case, limn→∞ f2,n = 1 and so, in virtue of Lemma 2, f1,n = f2,n , ∀n. In particular, for n = 1 one
gets (27). �
Proof of formulas (25) and (26). As recalled in Section 2 (see (18)), z = ζ−1 	= 0 is an eigenvalue of
J (μ,ν) if and only if ξ0(z) = 0 which means nothing but (25). In that case the components ξn(z),

n ∈N, of a corresponding eigenvector can be chosen as described in (15). Note that

n−1∏
k=1

wk = 2n−1
√

(2μ + 1)(2μ + 2n − 1)

∣∣∣∣Γ (μ + n + iν)

Γ (μ + 1 + iν)

∣∣∣∣ Γ (2μ + 1)

Γ (2μ + 2n)

and that (30) means in fact the equality

∞∏
k=1

1

1 − λ(μ + k, ν)z
= Γ ( 1

2 + μ − 1
2

√
1 + 4νz)Γ ( 1

2 + μ + 1
2

√
1 + 4νz)

Γ (μ)Γ (μ + 1)
.

Using these equations and omitting a constant factor one finally arrives at formula (26). �
4. Confluent hypergeometric functions

First, let us show an identity.

Proposition 5. The equation

Γ (x + γ + n)

Γ (x + γ )
exF

({ √
2xΓ ( 1

2 (γ − α + k + 1))

(x + γ + k − 1)Γ ( 1
2 (γ − α + k))

}n

k=1

)

= Γ (γ + n)

Γ (γ )
1 F1(α;γ ; x)1 F1(α − γ − n;1 − γ − n; x)

− Γ (γ − 1)Γ (γ − α + n + 1)

Γ (γ − α)Γ (γ + n + 1)
xn+1

1 F1(α − γ + 1;2 − γ ; x)1 F1(α;γ + n + 1; x), (31)

is valid for α,γ , x ∈C and n ∈ Z+ (if considering the both sides as meromorphic functions).

Remark 6. For instance, as a particular case of (31) one gets, for n = 0,

1 F1(α;γ ; x)1 F1(α − γ ;1 − γ ; x)

− (γ − α)x

γ (γ − 1)
1 F1(α;γ + 1; x)1 F1(α − γ + 1;2 − γ ; x) = ex. (32)

Proof. For α, γ and x fixed and n ∈ Z, put

ϕn = 1

Γ (n + γ )
1 F1(α;n + γ ; x), ψn = 1

Γ (n + γ − α)
U (α,n + γ , x).

Then {ϕn} and {ψn} obey the second order difference equation [1, Eqs. 13.4.2,13.4.16]

(n + γ − α)xun+1 − (n + γ + x − 1)un + un−1 = 0, n ∈ Z. (33)

Note also that

(α − γ )1 F1(α;γ + 1; x)U (α,γ , x) + γ 1 F1(α;γ ; x)U (α,γ + 1, x) = Γ (γ + 1)

Γ (α)
x−γ ex

(as it follows, for example, from Eqs. 13.4.12 and 13.4.25 combined with 13.1.22 in [1]). Whence
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ϕ0ψ1 − ϕ1ψ0 = 1

Γ (α)Γ (1 − α + γ )
x−γ ex,

and so the solutions ϕn , ψn are linearly independent except of the cases −α ∈ Z+ and α − γ ∈ N.
The difference equation (33) can be symmetrized using the substitution

un = x−n

Γ (γ − α + n)
vn.

Then wn vn+1 − ζn vn + wn−1 vn−1 = 0 where

wn = x−n

Γ (γ − α + n)
, ζn = (x + γ + n − 1)x−n

Γ (γ − α + n)
.

For a solution of the equation γnγn+1 = wn , ∀n, one can take

γn = 2
1
4 x− n

2 + 1
4

√√√√ Γ ( 1
2 (γ − α + n + 1))

Γ (γ − α + n)Γ ( 1
2 (γ − α + n))

.

Referring to another solution, namely

vn = 1

wn−1Pn−1
F

({
γ 2

k

ζk

}n−1

k=1

)
, with n ∈N,

using otherwise the same notation as in (12), one concludes that there exist constants A and B such
that

Γ (x + γ + n)

Γ (γ − α + n + 1)
x−nF

({ √
2xΓ ( 1

2 (γ − α + k + 1))

(x + γ + k − 1)Γ ( 1
2 (γ − α + k))

}n

k=1

)
= Aϕn+1 + Bψn+1

for all n ∈ Z+ . A and B can be determined from the values for n = −1,0 (putting F({xk}−1
k=1) = 0,

as dictated by the recurrence rule (7) provided the admissible values are extended to N1 = N2 = 1,
n = 0). After some manipulations one gets

Γ (γ − α)

Γ (γ − α + n + 1)
1 F1(α;γ ; x)U (α,γ + n + 1, x)

− Γ (γ )

Γ (γ + n + 1)
U (α,γ , x)1 F1(α;γ + n + 1; x)

= Γ (γ )Γ (γ − α)Γ (x + γ + n)

Γ (α)Γ (γ − α + n + 1)Γ (x + γ )
x−γ −nexF

({ √
2xΓ ( 1

2 (γ − α + k + 1))

(x + γ + k − 1)Γ ( 1
2 (γ − α + k))

}n

k=1

)
.

Recall that

U (a,b, x) = Γ (1 − b)

Γ (a − b + 1)
1 F1(a;b; x) + Γ (b − 1)

Γ (a)
x1−b

1 F1(a − b + 1;2 − b; x), (34)

whence (31). �
Remark 7. Let us point out two particular cases of (31). Putting α = 0 one gets the identity

F

({ √
2xΓ ( 1

2 (γ + k + 1))

(x + γ + k − 1)Γ ( 1
2 (γ + k))

}n

k=1

)
= Γ (x + γ )

Γ (x + γ + n)

n∑
j=0

Γ (γ + n − j)

Γ (γ )
x j, (35)

and for α = −1 one obtains
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F

({ √
2xΓ ( 1

2 (γ + k + 2))

(x + γ + k − 1)Γ ( 1
2 (γ + k + 1))

}n

k=1

)

= Γ (x + γ )

Γ (x + γ + n)

n∑
j=0

Γ (γ + n − j)

Γ (γ + 1)

(
γ − j(n − j)

)
x j . (36)

Let us sketch a derivation of (36), Eq. (35) is simpler. Substitute −1 for α and γ + n for γ in (32),
and put

Bn = Γ (γ + n − 1)

γ − x + n
x−n

1 F1(−γ − n;2 − γ ; x).

Then

Bn+1 − Bn = Γ (γ + n + 1)

(γ − x + n)(γ − x + n + 1)
x−n−1ex.

Whence

Bn+1 = B0 + ex
n+1∑
j=1

Γ (γ + j)

(γ − x + j − 1)(γ − x + j)
x− j

which means nothing but

Γ (γ + n)(γ − x)1 F1(−γ − n − 1;1 − γ − n; x)

−Γ (γ − 1)(γ − x + n + 1)xn+1
1 F1(−γ ;2 − γ ; x)

= (γ − x + n + 1)(γ − x)ex
n+1∑
j=1

Γ (γ + j)

(γ − x + j − 1)(γ − x + j)
xn+1− j. (37)

Set α = −1 in (31) and notice that 1 F1(−1;b; x) = 1 − x/b. After some simplifications, a combination
of thus obtained identity with (37) gives (36).

As an application of (31) consider the Jacobi matrix operator J (α,β,γ ) depending on parameters
α, β , γ , with β > 0, γ > 0 and α + β > 0, as introduced in (8) where we put

λk = γ k, wk = √
α + βk, k = 1,2,3, . . . . (38)

For the sequence γk (fulfilling γkγk+1 = wk) one can take

γk
2 = √

2βΓ

(
1

2

(
α

β
+ k + 1

))
/Γ

(
1

2

(
α

β
+ k

))
.

Regarding the diagonal of J (α,β,γ ) as an unperturbed part and the off-diagonal elements as a
perturbation one immediately realizes that the matrix J (α.β,γ ) determines a unique semibounded
self-adjoint operator in �2(N). Moreover, the Weyl theorem about invariance of the essential spectrum
tells us that its spectrum is discrete and simple. Our goal here is to show that one can explicitly
construct a “characteristic” function of this operator in terms of confluent hypergeometric functions.

Proposition 8. The spectrum of J (α,β,γ ) defined in (8) and (38) coincides with the set of zeros of the function

F J (α,β,γ ; z) = 1 F1

(
1 − α

β
− β

γ 2
− z

γ
;1 − β

γ 2
− z

γ
; β

γ 2

)
/Γ

(
1 − β

γ 2
− z

γ

)
. (39)
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Moreover, if z is an eigenvalue then the components of a corresponding eigenvector v can be chosen as

vk = (−1)kβk/2γ −k
Γ (α

β
+ k)1/2

Γ (1 − β

γ 2 − z
γ + k)

1 F1

(
1 − α

β
− β

γ 2
− z

γ
;1 − β

γ 2
− z

γ
+ k; β

γ 2

)
,

k ∈ N. (40)

Remark 9. (i) In principle it would be sufficient to consider the case γ = 1; observe that

F J (α,β,γ ; z) = F J

(
α

γ 2
,

β

γ 2
,1; z

γ

)
.

Thus for γ = 1 we get a simpler expression,

F J (α,β,1; z) = 1 F1

(
1 − α

β
− β − z;1 − β − z;β

)
/Γ (1 − β − z).

(ii) Notice that the convergence condition (14) is violated in this example.

Before the proof we consider analogous results for finite matrices. Let Jn(α,β,γ ) be the principal
n ×n submatrix of J (α,β,γ ). The characteristic polynomial F Jn (z) of Jn(α,β,γ ) can be expressed in
terms of confluent hypergeometric functions, too. According to (10),

F Jn (α,β,γ ; z) = γ n
Γ (1 − z

γ + n)

Γ (1 − z
γ )

F

({√
2β

γ

Γ ( 1
2 (α

β
+ k + 1))

(k − z
γ )Γ ( 1

2 (α
β

+ k))

}n

k=1

)
.

Applying (31) one arrives at the expression

F Jn (α,β,γ ; z)

= γ ne
− β

γ 2

(Γ (n + 1 − β

γ 2 − z
γ )

Γ (1 − β

γ 2 − z
γ )

1 F1

(
1 − α

β
− β

γ 2
− z

γ
;1 − β

γ 2
− z

γ
; β

γ 2

)

× 1 F1

(
−n − α

β
;−n + β

γ 2
+ z

γ
; β

γ 2

)

−
(

β

γ 2

)n+1 Γ (n + 1 + α
β
)Γ (− β

γ 2 − z
γ )

Γ (α
β
)Γ (n + 2 − β

γ 2 − z
γ )

1 F1

(
1 − α

β
;1 + β

γ 2
+ z

γ
; β

γ 2

)

× 1 F1

(
1 − α

β
− β

γ 2
− z

γ
;n + 2 − β

γ 2
− z

γ
; β

γ 2

))
.

Eigenvectors can be explicitly expressed as well. If z is an eigenvalue of Jn(α,β,γ ) then formula
(16) admits adaptation to this situation giving the expression for the components of a corresponding
eigenvector,

ξ
(n)

k = (−1)k−1

(
k−1∏
j=1

w j

)(
n∏

j=k+1

(λ j − z)

)
F

({
γ j

2

λ j − z

}n

j=k+1

)
, k = 1,2, . . . ,n.

Notice that ξ
(n)

k makes sense also for k = n +1, and in that case its value is 0. Using (31) and omitting
a redundant constant factor one arrives after some straightforward computation at the formula for an
eigenvector v(n) of Jn(α,β,γ ):
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v(n)

k = (−1)kβk/2γ −k 1√
Γ (α

β
+ k)

(Γ (α
β

+ k)Γ (1 − β

γ 2 − z
γ + n)

Γ (1 − β

γ 2 − z
γ + k)

×1 F1

(
1 − α

β
− β

γ 2
− z

γ
;1 − β

γ 2
− z

γ
+ k; β

γ 2

)
1 F1

(
−α

β
− n; β

γ 2
+ z

γ
− n; β

γ 2

)

−
(

β

γ 2

)n−k+1 Γ (1 + α
β

+ n)Γ (− β

γ 2 − z
γ + k)

Γ (2 − β

γ 2 − z
γ + n)

×1 F1

(
1 − α

β
− k;1 + β

γ 2
+ z

γ
− k; β

γ 2

)

×1 F1

(
1 − α

β
− β

γ 2
− z

γ
;2 − β

γ 2
− z

γ
+ n; β

γ 2

))
, 1 � k � n.

Remark 10. Formula (40) can be derived informally using a limit procedure. Suppose z is an eigen-
value of the infinite Jacobi matrix J (α,β,γ ). For k ∈ N fixed, considering the asymptotic behavior of
v(n)

k as n → ∞ one expects that the leading term may give the component vk of an eigenvector corre-
sponding to the eigenvalue z. Omitting some constant factors one actually arrives in this way at (40).
But having in hand the explicit expressions (39) and (40) it is straightforward to verify directly that
the former one represents a characteristic function while the latter one describes an eigenvector.

Proof of Proposition 8. Observe first that for k = 0 the RHS of (40) is equal, up to a constant factor,
to the announced characteristic function (39). If z solves the equation v0 = 0 then one can make use
of the identity [1, Eq. 13.4.2]

b(b − 1)1 F1(a;b − 1; x) + b(1 − b − x)1 F1(a;b; x) + (b − a)x1 F1(a;b + 1; x) = 0

to verify that v ∈ �2(N) actually fulfills the eigenvalue equation (9). Note that the Stirling formula tells
us that

vk = (−1)k

(2π)1/4
k
− 3

4 + α
2β

+ β

γ 2 + z
γ

(
βe

γ 2k

)k/2(
1 + O

(
1

k

))
as k → ∞.

On the other hand, whatever the complex number z is, the sequence vk , k ∈ N, solves the second
order difference equation (17), and in that case it is even true that

w0 v0 + (λ1 − z)v1 + w1 v2 = 0.

Let gk , k ∈N, be any other independent solution of (17). Since the Wronskian

wk(vk gk+1 − vk+1 gk) = const 	= 0

does not depend on k, and clearly limk→∞ wk vk = limk→∞ wk vk+1 = 0, the sequence gk cannot be
bounded in any neighborhood of infinity. Hence, up to a multiplier, {vk} is the only square summable
solution of (17). One concludes that z is an eigenvalue of J (α,β,γ ) if and only if w0 v0 = 0 (which
covers also the case α = 0). �
Remark 11. A second independent solution of (17) can be found explicitly. For example, this is the
sequence

gk = (−1)kβk/2γ −kΓ

(
α

β
+ k

)−1/2

U

(
1 − α

β
− β

γ 2
− z

γ
,1 − β

γ 2
− z

γ
+ k,

β

γ 2

)
, k ∈N,

as it follows from the identity [1, Eq. 13.4.16]

(b − a − 1)U (a,b − 1, x) + (1 − b − x)U (a,b, x) + xU (a,b + 1, x) = 0.
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But using once more relation (34) one may find as a more convenient the solution

gk =
(

β

γ 2

) β

γ 2 + z
γ − k

2 1√
Γ (α

β
+ k)Γ (1 + β

γ 2 + z
γ − k)

× 1 F1

(
1 − α

β
− k;1 + β

γ 2
+ z

γ
− k; β

γ 2

)
, k ∈N.

Remark 12. Let us point out that for α = 0 one gets a nontrivial example of an unbounded Jacobi
matrix operator whose spectrum is known fully explicitly. In that case

λk = γ k, wk = √
βk, k = 1,2,3, . . . ,

and

F J (0, β,γ ; z) = eβ/γ 2
/Γ

(
1 − β

γ 2
− z

γ

)
.

Hence

spec J (0, β,γ ) =
{
− β

γ
+ γ j; j = 1,2,3, . . .

}
.

Remark 13. Finally we remark that another particular case of interest is achieved in the formal limit
β → 0. Set α = w2 for some w > 0. Since [1, Eq. 13.3.2]

lim
a→∞ 1 F1

(
a;b;− z

a

)
= z(1−b)/2Γ (b) Jb−1(2

√
z )

one finds that

lim
β→0

F J
(

w2, β,γ ; z
) =

(
w

γ

)z/γ

J−z/γ

(
2w

γ

)
.

It is known for quite a long time [3,8] that actually

spec J
(

w2,0, γ
) =

{
z ∈ C; J−z/γ

(
2w

γ

)
= 0

}
.

5. Q-Bessel functions

5.1. Some properties of q-Bessel functions

Here we aim to explore a q-analogue to the following well-known property of Bessel functions.
Consider the eigenvalue problem

wxk−1 − kxk + wxk+1 = νxk, k ∈ Z,

for a second order difference operator acting in �2(Z) and depending on a parameter w > 0. If ν /∈ Z

then one can take { Jν+k(2w)} and {(−1)k J−ν−k(2w)} for two independent solutions of the formal
eigenvalue equation while for ν ∈ Z this may be the couple { Jν+k(2w)} and {Yν+k(2w)}. Taking into
account the asymptotic behavior of Bessel functions for large orders (see [1, Eqs. 9.3.1, 9.3.2]) one
finds that a square summable solution exists if and only if ν ∈ Z. Then xk = Jν+k(2w), k ∈ Z, is such
a solution and is unique up to a constant multiplier. Since

∞∑
k=−∞

Jk(z)2 = 1, (41)
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thus obtained eigenbasis vν = {vν,k}∞k=−∞ , ν ∈ Z, with vν,k = Jν+k(2w), is even orthonormal. One
observes that the spectrum of the difference operator is stable and equals Z independently of the
parameter w .

Hereafter we assume 0 < q < 1. Recall the second definition of the q-Bessel function introduced
by Jackson [10] (for some basic information and references one can also consult [4]),

J (2)
ν (x;q) = (qν+1;q)∞

(q;q)∞

(
x

2

)ν

0φ1

(
;qν+1;q,−qν+1x2

4

)
.

Here we prefer a slight modification of the second q-Bessel function, obtained just by some rescaling,
and define

jν(x;q) := qν2/4 J (2)
ν

(
q1/4x;q

)
= qν(ν+1)/4 (qν+1;q)∞

(q;q)∞

(
x

2

)ν

0φ1

(
;qν+1;q,−qν+3/2 x2

4

)
. (42)

With our definition we have the following property.

Lemma 14. For every n ∈N,

j−n(x;q) = (−1)njn(x;q). (43)

Proof. One can readily verify that

lim
ν→−n

(
1 − qν+n)

0φ1
(;qν+1;q,−qν+3/2 w2) = − qn2/2 w2n

(q;q)n−1(q;q)n
0φ1

(;qn+1;q,−qn+3/2 w2)
and

lim
ν→−n

(qν+1;q)∞
1 − qν+n

= (−1)n−1q−n(n−1)/2(q;q)n−1(q;q)∞.

The lemma is an immediate consequence. �
Proposition 15. For 0 < q < 1, w, ν ∈C, q−ν /∈ qZ+ , one has

F

({
w

q−(ν+k)/2 − q(ν+k)/2

}∞

k=0

)
= 0φ1

(;qν;q,−qν+1/2 w2). (44)

Remark 16. If rewritten in terms of q-Bessel functions, (44) becomes a q-analogue of (3). Explicitly,

F

({
w

[ν + k]q

}∞

k=1

)
= qν/4Γq(ν + 1)w−ν J (2)

ν

(
2q−1/4(1 − q)w;q

)
where [4]

[x]q = qx/2 − q−x/2

q1/2 − q−1/2
, Γq(x) = (q;q)∞

(qx;q)∞
(1 − q)1−x.

Lemma 17. For ν ∈ C, q−ν /∈ qZ+ , and all s ∈N,

∞∑
k=0

qsk

(qν+k;q)s+1
= 1

(1 − qs)(qν;q)s
. (45)
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Proof. One can proceed by mathematical induction in s. The identity

qsk

(qν+k;q)s+1
= q(s−1)k

qν(1 − qs)

(
1

(qν+k;q)s
− 1

(qν+k+1;q)s

)
can be used to verify both the case s = 1 and the induction step s → s + 1. �
Proof of Proposition 15. One possibility how to prove (44) is based on Lemma 2. The proof presented
below relies, however, on explicit evaluation of the involved sums. For ν ∈ C, qν /∈ qZ , k ∈ Z, put

ρk = q(ν+k)/2

1 − qν+k
.

Then (45) immediately implies that, for n ∈ Z and s ∈N,

∞∑
k=n

q(s−1)(ν+k)/2ρkρk+1 . . . ρk+s = qs(ν+n+1)/2

1 − qs
ρnρn+1 . . . ρn+s−1.

This equation in turn can be used in the induction step on m to show that, for m ∈N, n ∈ Z,

∞∑
k1=n

∞∑
k2=k1+2

. . .

∞∑
km=km−1+2

ρk1ρk1+1ρk2ρk2+1 . . . ρkmρkm+1

= qm(3m+1)/4qm(ν+n−1)/2

(q;q)m
ρnρn+1 . . . ρn+m−1.

In particular, for n = 1 one gets

∞∑
k1=1

∞∑
k2=k1+2

. . .

∞∑
km=km−1+2

ρk1ρk1+1ρk2ρk2+1 . . . ρkmρkm+1 = qm(2m+1)/2+νm

(q;q)m(qν+1;q)m
, m ∈N.

Now, in order to evaluate F({wρk}∞k=1), it suffices to apply the very definition (1). �
The q-hypergeometric function is readily seen to satisfy the recurrence rule

0φ1
(;qν;q, z

) − 0φ1
(;qν+1;q,qz

) − z

(1 − qν)(1 − qν+1)
0φ1

(;qν+2;q,q2z
) = 0.

Consequently,

wjν(2w;q) − (
q−(ν+1)/2 − q(ν+1)/2)jν+1(2w;q) + wjν+2(2w;q) = 0.

This is in agreement with (12) if applied to the bilateral second order difference equation

wxn−1 − (
q−(ν+n)/2 − q(ν+n)/2)xn + wxn+1 = 0, n ∈ Z. (46)

Suppose qν /∈ qZ . Then the two solutions described in (12) in this case give

fn = q−ν(ν+1)/4 (q;q)∞
(qν+1;q)∞

w−ν jν+n(2w;q), (47)

gn = (−1)n+1q−ν(ν+1)/4 (q;q)∞
(q−ν;q)∞

wν j−ν−n(2w;q), n ∈ Z. (48)

Let us show that they are generically independent. For the proof we need the identity [4, §1,3]

∞∑
k=0

qk(k−1)/2

(q;q)k
zk = (−z;q)∞.
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Lemma 18. For ν ∈ C, qν /∈ qZ , the Wronskian of the solutions of (46), { fn} and {gn} defined in (47) and (48),
respectively, fulfills

W( f , g) = F

({
wq(ν+k)/2

1 − qν+k

}∞

k=−∞

)
= (−q1/2 w2;q

)
∞. (49)

Proof. The first equality in (49) is nothing but (13). Further, in virtue of (44), the second member in
(49) equals

lim
N→∞ 0φ1

(;qν−N;q,−qν−N+1/2 w2) = lim
M→∞

∞∑
k=0

qk(k−1)

(q;q)k(q−M;q)k

(−q−Mq1/2 w2)k

=
∞∑

k=0

qk2/2

(q;q)k
w2k = (−q1/2 w2;q

)
∞.

The lemma follows. �
At the same time, W( f , g) equals

q−ν(ν+1)/2(q;q)∞2 w

(qν+1;q)∞(q−ν;q)∞
(
jν(2w;q)j−ν−1(2w;q) + jν+1(2w;q)j−ν(2w;q)

)
.

This implies the following result.

Proposition 19. For w ∈ C one has

jν(2w;q)j−ν−1(2w;q) + jν+1(2w;q)j−ν(2w;q)

= qν(ν+1)/2(qν+1;q)∞(q−ν;q)∞(−q1/2 w2;q)∞
(q;q)∞2 w

(50)

and, rewriting (50) in terms of q-hypergeometric functions,

0φ1
(;qν+1;q,−qν+1z

)
0φ1

(;q−ν;q,−q−ν z
)

− qν z

(1 − qν)(1 − qν+1)
0φ1

(;qν+2;q,−qν+2z
)

0φ1
(;q−ν+1;q,−q−ν+1z

)
= (−z;q)∞. (51)

Remark 20. Let us examine the limit q → 1− applied to (50) while replacing w by (1 − q)w . One
knows that [4]

lim
q→1− jν

(
(1 − q)z;q

) = Jν(z), lim
q→1−(1 − q)1−x (q;q)∞

(qx;q)∞
= Γ (x).

Thus one finds that the limiting equation coincides with the well-known identity

Jν(2w) J−ν−1(2w) + Jν+1(2w) J−ν(2w) = 1

wΓ (ν + 1)Γ (−ν)
= − sin(πν)

π w
.

It is desirable to have some basic information about the asymptotic behavior of q-Bessel functions
for large orders. It is straightforward to see that

jν(x;q) = qν(ν+1)/4 1

(q;q)∞

(
x

2

)ν(
1 + O

(
qν

))
as Reν → +∞. (52)

The asymptotic behavior at −∞ is described as follows.
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Lemma 21. For σ , w ∈C, qσ /∈ qZ , one has

lim|ν|→∞
ν∈−σ−N

sin(πν)qν(ν+1)/4 w−ν jν(2w;q)

= − sin(πσ )q−σ (1−σ )/2 (qσ ;q)∞(q1−σ ;q)∞(−q1/2 w2;q)∞
(q;q)∞

. (53)

Proof. Put ν = −σ − n where n ∈ N. Using (44) and (7) one can write

0φ1
(;q−σ−n;q,−q−σ−n+1/2 w2)

= F

({
w

q(σ+k)/2 − q−(σ+k)/2

}n

k=0

)
F

({
w

q(σ−k)/2 − q−(σ−k)/2

}∞

k=1

)

+ w2

(qσ/2 − q−σ/2)(q(1−σ )/2 − q−(1−σ )/2)

× F

({
w

q(σ+k)/2 − q−(σ+k)/2

}n

k=1

)
F

({
w

q(σ−k)/2 − q−(σ−k)/2

}∞

k=2

)
.

Applying the limit n → ∞ one obtains

lim
n→∞ 0φ1

(;q−σ−n;q,−q−σ−n+1/2 w2)
= 0φ1

(;qσ ;q,−qσ+1/2 w2)
0φ1

(;q1−σ ;q,−q−σ+3/2 w2)
+ w2

(qσ/2 − q−σ/2)(q(1−σ )/2 − q−(1−σ )/2)

× 0φ1
(;q1+σ ;q,−qσ+3/2 w2)

0φ1
(;q2−σ ;q,−q−σ+5/2 w2)

= (−q1/2 w2;q
)
∞.

To get the last equality we have used (51). Notice also that

lim
n→∞(−1)nq(−σ−n)(−σ−n+1)/2(q−σ−n+1;q

)
∞ = qσ (σ−1)/2(qσ ;q

)
∞

(
q1−σ ;q

)
∞.

The limit (53) then readily follows. �
Finally we establish an identity which can be viewed as a q-analogue to (41).

Proposition 22. For 0 < q < 1 and w ∈ C one has

∞∑
k=−∞

q−k/2jk(2w;q)2 = j0(2w;q)2 +
∞∑

k=1

(
qk/2 + q−k/2)jk(2w;q)2 = (−q1/2 w2;q

)
∞. (54)

Equivalently, if rewritten in terms of q-Bessel functions,

J (2)
0 (2w;q)2 +

∞∑
k=1

(
qk/2 + q−k/2)qk2/2 J (2)

k (2w;q)2 = (−w2;q
)
∞.

Proof. In [12, (1.20)] it is shown that

J (2)
ν (2w;q)2

(−w2;q)∞
=

(
(qν+1;q)∞

(q;q)∞

)2

w2ν
3φ2

(
qν+ 1

2 ,−qν+ 1
2 ,−qν+1;qν+1,q2ν+1;q,−w2),
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and this can be rewritten as

0φ1
(;qν+1;q,−qν+1x

)2 = (−x;q)∞3φ2
(
qν+ 1

2 ,−qν+ 1
2 ,−qν+1;qν+1,q2ν+1;q,−x

)
.

Hence (54) is equivalent to

3φ2
(
q1/2,−q1/2,−q;q,q;q,−x

)
+

∞∑
k=1

(q−k/2 + qk/2)qk2/2

(q;q)k
2 3φ2

(
qk+ 1

2 ,−qk+ 1
2 ,−qk+1;qk+1,q2k+1;q,−x

)
xk = 1.

Looking at the power expansion in x one gets, equivalently, a countable system of equations, for
n = 1,2,3, . . .,

(q1/2;q)n(−q1/2;q)n(−q;q)n

(q;q)n
3

+
n∑

k=1

(−1)k (q−k/2 + qk/2)qk2/2

(q;q)k
2

(qk+1/2;q)n−k(−qk+1/2;q)n−k(−qk+1;q)n−k

(q;q)n−k(qk+1;q)n−k(q2k+1;q)n−k
= 0.

The equations can be brought to the form

1

(q;q)n
2

+
n∑

k=1

(−1)k q.k(k−1)/2(1 + qk)

(q;q)n+k(q;q)n−k
= 0

or, more conveniently,

2n∑
j=0

(−1) j q− j(2n− j+1)/2

(q;q)2n− j(q;q) j
= 0.

This is true indeed since, for any m ∈ Z+ ,

m∑
j=0

(−1) j (q;q)m

(q;q)m− j(q;q) j
q− j(m− j)/2x j = (

q−(m−1)/2x;q
)

m =
m−1∏
k=0

(
1 − q−(m−1)/2+kx

)
.

This concludes the proof. �
5.2. A bilateral second order difference equation

We know that the sequence un = jν+n(2w;q) obeys (46). Applying the substitution q−ν−1 = z,

w = q
ν
2 + 1

4 β , one finds that the sequence

vn = q−n/4un = q−n/4jν+n
(
2q(2ν+1)/4β;q

)
(55)

= q−(ν2+2ν+2)/4q(n−1)(n−2)/4 (qnz−1;q)∞
(q;q)∞

(
β

z

)ν+n

0φ1
(;qnz−1;q,−qnz−2β2),

fulfills

q(n−1)/2βvn + (
qn − z

)
vn+1 + qn/2βvn+2 = 0, n ∈ Z. (56)

Remark 23. One can as well consider the unilateral second order difference equation

(1 − z)v1 + βv2 = 0, q(n−1)/2βvn + (
qn − z

)
vn+1 + qn/2βvn+2 = 0, n = 1,2,3, . . . .
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From (52) it can be seen that the sequence {vn} given in (55) is square summable over N. Considering
the Wronskian one also concludes that any other linearly independent solution of (56) cannot be
bounded on any neighborhood of +∞. Hence the sequence vn , n ∈ N, solves the eigenvalue problem
in �2(N) iff v0 = 0, i.e. iff jν(2w;q) = 0. In terms of the new parameters β , z this condition becomes
the characteristic equation for an eigenvalue z,(

z−1;q
)
∞0φ1

(; z−1;q,−z−2β2) = 0.

This example has already been treated in [14, Sec. 4.1].

For the bilateral equation it may be more convenient shifting the index by 1 in (56). This is to say
that we are going to solve the equation

q(n−1)/2βvn−1 + (
qn − z

)
vn + qn/2βvn+1 = 0, n ∈ Z, (57)

rather than (56). Denote again by J = J (β,q), with β ∈ R and 0 < q < 1, the corresponding matrix
operator in �2(Z). One knows, however, that J (−β,q) and J (β,q) are unitarily equivalent and so, if
convenient, one can consider just the values β � 0. In Eq. (57), z is playing the role of a spectral
parameter. Using a notation analogous to (8) (now for the bilateral case), this means that

wn = qn/2β, λn = qn, and ζn := z − λn = z − qn, n ∈ Z. (58)

Notice that for a sequence {γn} obeying γnγn+1 = wn , ∀n ∈ Z, one can take

γ2k−1
2 = qk−1, γ2k

2 = qkβ2.

Since the sequence {wn/(λn +1)} is summable over Z, the Weyl theorem tells us that the essential
spectrum of the self-adjoint operator J (β,q) contains just one point, namely 0. Hence all nonzero
spectral points are eigenvalues.

Proposition 24. For 0 < q < 1 and β > 0, the spectrum of the Jacobi matrix operator J (β,q) in �2(Z), as
introduced above (see (58)), is pure point, all eigenvalues are simple and

specp J (β,q) = (−β2qZ+) ∪ qZ.

Eigenvectors v(+)
m corresponding to the eigenvalues qm, m ∈ Z, can be chosen as v(+)

m = {v(+)

m,k}∞k=−∞ , with

v(+)

m,k = q(m−k)/4j−m+k
(
2q−(2m+1)/4β;q

)
.

They are normalized as follows:

∥∥v(+)
m

∥∥2 =
∞∑

k=−∞
q−k/2jk

(
2q−(2m+1)/4β;q

)2 = (−q−mβ2;q
)
∞, ∀m ∈ Z.

Eigenvector v(−)
m corresponding to the eigenvalues −β2qm, m ∈ Z+ , can be chosen as v(−)

m = {v(−)

m,k}∞k=−∞ ,
with

v(−)

m,k = (−1)kqk(k−4m−1)/4

(q;q)∞
β−k(−q−m+k+1β−2;q

)
∞

× 0φ1
(;−q−m+k+1β−2;q,−q−2m+k+1β−2). (59)

Remark 25. An expression for the norms of vectors v(−)
m can be found, too,

∥∥v(−)
m

∥∥2 = (−1)mq−m(3m+1)/2 (−qβ−2;q)∞(−q−mβ−2;q)∞(−qm+1β2;q)∞
(−qβ2;q)∞(qm+1;q)∞

× 0φ1(;−qβ−2;q,−q−m+1β−2)

0φ1(;−qβ2;q,−q−m+1β2)
, ∀m ∈ Z+.



JID:LAA AID:12253 /FLA [m1G; v 1.104; Prn:10/07/2013; 15:22] P.20 (1-24)
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But the formula is rather cumbersome and its derivation somewhat lengthy and this is why we did
not include it in the proposition and omit its proof.

Proof. We use the substitution z = q−ν where ν is in general complex. The RHS in (12) can be
evaluated using (44) and (42). Applying some easy simplifications one gets two solutions of (57):

vn = q−(ν+n)/4jν+n
(
2q(2ν−1)/4β;q

)
, ṽn = (−1)nq−(ν+n)/4j−ν−n

(
2q(2ν−1)/4β;q

)
,

n ∈ Z.

One can argue that in the bilateral case, too, all eigenvalues of J (β,q) are simple. In fact, the
solution {vn} asymptotically behaves as

vn = 1

(q;q)∞
q

1
4 (n2+(4ν−1)n+(3ν−1)ν)βν+n(1 + O

(
qn)) as n → +∞.

For any other independent solution {yn} of (57), qn/2(yn vn+1 − yn+1 vn) is a nonzero constant. Ob-
viously, such a sequence {yn} cannot be bounded on any neighborhood of +∞. A similar argument
applies to the solution {ṽn} for n large but negative. In particular, one concludes that z = q−ν is an
eigenvalue of J (β,q) if and only if {vn} and {ṽn} are linearly dependent.

Using (50) one can derive a formula for the Wronskian,

W(v, ṽ) = qk/2β(vk ṽk+1 − vk+1 ṽk)

= (−1)k+1βq−(2ν+1)/4(jν+k
(
2q(2ν−1)/4β;q

)
j−ν−k−1

(
2q(2ν−1)/4β;q

)
+ jν+k+1

(
2q(2ν−1)/4β;q

)
j−ν−k

(
2q(2ν−1)/4β;q

))
= qν(ν−3)/2(qν;q)∞(q1−ν;q)∞(−qνβ2;q)∞

(q;q)∞2
.

Thus z is an eigenvalue if and only if either (z−1;q)∞(qz;q)∞ = 0 or (−z−1β2;q)∞ = 0. In the former
case z ∈ qZ , in the latter case −z ∈ β2qZ+ .

Thus in the case of positive eigenvalues one can put ν = −m, with m ∈ Z. With this choice, {vk}
coincides with {v(+)

m,k}. Notice that then the linear dependence of the sequences {vk} and {ṽk} is also

obvious from (43). Normalization of the eigenvectors v(+)
m is a consequence of (54).

As far as the negative spectrum is concerned, one can put, for example, τ = −(iπ + log β2)/ log q
and ν = τ − m, m ∈ Z+ . Then the sequence

vk = q−(τ−m+k)/4jτ−m+k
(−2iq−(2m+1)/4;q

)
, k ∈ Z,

represents an eigenvector corresponding to the eigenvalue −β2qm . But it is readily seen to be propor-
tional to the RHS of (59) whose advantage is to be manifestly real.

Finally let is show that 0 can never be an eigenvalue of J (β,q). We still assume β > 0. For z = 0,
one can find two mutually complex conjugate solutions of (57) explicitly. Let us call them v±,n , n ∈ Z,
where

v±,n = i±nq−n/4
1φ1

(
0;−q1/2;q1/2,± iq(2n+3)/4

β

)
= i±nq−n/4

∞∑
k=0

qk(k+2)/4

(q;q)k

(
∓ iqn/2

β

)k

.

Clearly,

v±,n = i±nq−n/4(1 + O
(
qn/2)) as n → +∞.

Using the asymptotic expansion one can evaluate the Wronskian getting

W(v+, v−) = qn/2β(v+,n v−,n+1 − v+,n+1 v−,n) = −2iq−1/4β.
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Hence the two solutions are linearly independent. It is also obvious from the asymptotic expansion
that no nontrivial linear combination of these solutions can be square summable. Hence 0 cannot be
an eigenvalue of J (β,q) whatever β is, and this concludes the proof. �

So one observes that the positive part of the spectrum of J (β,q) is stable and does not depend on
the parameter β . This behavior is very similar to what one knows from the non-deformed case. On
the other hand, there is an essentially new feature in the q-case when a negative part of the spectrum
emerges for β 	= 0, and it is even infinite-dimensional though it shrinks to zero with the rate β2 as β

tends to 0.

6. Q-confluent hypergeometric functions

In this section we deal with the q-confluent hypergeometric function

1φ1
(
a;b;q, z

) =
∞∑

k=0

(−1)kqk(k−1)/2 (a;q)k

(b;q)k(q;q)k
zk.

It can readily be checked to obey the recurrence rules

− qα+γ (1 − qγ −α+1)

(1 − qγ )(1 − qγ +1)
z1φ1

(
qα;qγ +2;q,qγ +2z

) −
(

1 − qγ z

1 − qγ

)
1φ1

(
qα;qγ +1;q,qγ +1z

)
+ 1φ1

(
qα;qγ ;q,qγ z

) = 0 (60)

and

1φ1
(
qα−γ +1;q2−γ ;q, z

) + q(q − qγ − q1−γ + 1)

qγ − qα 1φ1
(
qα−γ −1;q−γ ;q, z

)

−
(

q(q − qγ − q1−γ + 1)

qγ − qα
+ q − qγ

qγ − qα
z

)
1φ1

(
qα−γ ;q1−γ ;q, z

) = 0.

Put, for n ∈ Z,

ϕn = (
qn+γ ;q

)
∞1φ1

(
qα;qn+γ ;q,−qn+γ z

)
, (61)

ψn = q−α(n+γ )−(n+γ −1)(n+γ −2)/2 (qn+γ −α;q)∞
(qn+γ −1;q)∞

z1−n−γ
1φ1

(
qα−n−γ +1;q2−n−γ ;q,−qz

)
.

(62)

Here z,α,γ ∈ C, qγ /∈ qZ . The recurrence rules imply that both {ϕn} and {ψn} solve the three-term
difference equation

qα+γ +n−1(1 − qγ −α+n)zun+1 − (
1 − qγ +n−1 + qγ +n−1z

)
un + un−1 = 0, n ∈ Z. (63)

Lemma 26. The sequences {ϕn} and {ψn} defined in (61) and (62), respectively, fulfill

ϕ0ψ1 − ϕ1ψ0 = q−α(γ +1)− 1
2 γ (γ −1)

(
qγ −α+1;q

)
∞

(−qαz;q
)
∞z−γ . (64)

Alternatively, (64) can be rewritten as

1φ1
(
qα;qγ ;q,qγ −αz

)
1φ1

(
qα−γ ;q1−γ ;q,q1−αz

)
+ qγ −1(1 − qγ −α)z

(1 − qγ −1)(1 − qγ )
1φ1

(
qα;qγ +1;q,qγ −α+1z

)
1φ1

(
qα−γ +1;q2−γ ;q,q1−αz

) = (z;q)∞.
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Proof. Checking the Wronskian of the solutions ϕn and ψn one finds that

q
1
2 n(n−1)+(α+γ )n(qγ −α+1;q

)
nzn(ϕnψn+1 − ϕn+1ψn) = C (65)

is a constant independent of n. In particular, ϕ0ψ1 − ϕ1ψ0 = C . It is straightforward to examine the
asymptotic behavior for large n of the solutions in question getting ϕn = 1 + O (qn) and

ψn = q− 1
2 n(n−1)−(α+γ −1)n− 1

2 (γ −1)(γ −2)−αγ z1−γ −n(−qαz;q
)
∞

(
1 + O

(
qn)).

Sending n to infinity in (65) one finds that C equals the RHS of (64). �
Proposition 27. For α,γ , z ∈ C,

F

({
q

1
2 (α+γ +k)− 3

4 (qγ −α+k;q2)∞
√

z

(qγ −α+k+1;q2)∞(1 − (1 − z)qγ +k−1)

}∞

k=1

)

= (qγ ;q)∞
((1 − z)qγ ;q)∞

1φ1
(
qα;qγ ;q,−qγ z

)
. (66)

Proof. The both sides of the identity are regarded as meromorphic functions in z. Setting Imγ to a
constant, the both sides tend to 1 as Reγ tends to +∞. In virtue of Lemma 2, it suffices to verify
that the sequence

Fn = (qγ +n−1;q)∞
((1 − z)qγ +n−1;q)∞

1φ1
(
qα;qγ +n−1;q,−qγ +n−1z

)
, n ∈N,

satisfies the three-term recurrence relation Fn − Fn+1 + snzFn+2 = 0, n ∈ N, where

sn = qα+γ +n−1(1 − qγ −α+n)

(1 − (1 − z)qγ +n−1)(1 − (1 − z)qγ +n)
.

Since γ here is arbitrary one can consider just the equality for n = 1. But then the three-term recur-
rence coincides with (60) (provided z is replaced by −z). �

Let us now focus on Eq. (63). One can extract from it a solvable eigenvalue problem for a Jacobi
matrix obeying the convergence condition (14).

Proposition 28. For σ ∈ R and γ > −1, let J = J (σ ,γ ) be the Jacobi matrix operator in �2(N) defined by
(8) and

wn = 1

2
sinh(σ )q(n−γ −1)/2

√
1 − qn+γ , λn = qn−1. (67)

Then z 	= 0 is an eigenvalue of J (σ ,γ ) if and only if(
cosh2(σ/2)z−1;q

)
∞1φ1

(
q−γ cosh2(σ/2)z−1; cosh2(σ/2)z−1;q,− sinh2(σ/2)z−1) = 0.

Moreover, if z 	= 0 solves this characteristic equation then the sequence {vn}∞n=1 , with

vn = q− 1
2 γ n+ 1

4 n(n−3) sinhn(σ )(2z)−n√
(qγ +n;q)∞

(
qn cosh2

(
σ

2

)
z−1;q

)
∞

× 1φ1

(
q−γ cosh2

(
σ

2

)
z−1;qn cosh2

(
σ

2

)
z−1;q,−qn sinh2

(
σ

2

)
z−1

)
, (68)

is a corresponding eigenvector.

Remark 29. Notice that the matrix operator J (σ ,γ ) is compact (even trace class).
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Proof. First, apply in (63) the substitution

γ = γ̃ + α, z = qβ, un = q−αnũn,

and then forget about the tilde over γ and u. Next use the substitution

qβ/2 = tanh

(
σ

2

)
, qα = q−γ cosh2

(
σ

2

)
z̃−1, un = φnũn,

where {φn} is a sequence obeying

φn

φn+1
= q(β+γ +n−1)/2

√
1 − qγ +n.

Up to a constant multiplier, φn
2 = q−βn−γ n− 1

2 n(n−3)(qγ +n;q)∞ . We again forget about the tildes over
z and u, and restrict the values of the index n to natural numbers. If u0 = 0 then the transformed
sequence {uk}∞k=1 solves the Jacobi eigenvalue problem (9) with wn and λn given in (67).

Further apply the same sequence of transformations to the solution ϕn in (61). Let us call the
resulting sequence {vn}. A straightforward computation yields (68). Clearly, the sequence {vk; k � 1}
is square summable. On general grounds, since J (σ ,γ ) falls into the limit point case, any other
linearly independent solution of the recurrence in question, (17), cannot be square summable. Hence
the characteristic equation for this eigenvalue problem reads v0 = 0. This shows the proposition. �
Remark 30. In the particular case γ = 0 the characteristic equation simplifies to the form

(
cosh2(σ/2)z−1;q

)
∞

(− sinh2(σ/2)z−1;q
)
∞ = 0.

Hence in that case, apart of z = 0, one knows the point spectrum fully explicitly,

spec J (σ ,0) \ {0} = {
qk cosh2(σ/2); k = 0,1,2, . . .

} ∪ {−qk sinh2(σ/2); k = 0,1,2, . . .
}
.

Remark 31. Of course, Proposition 28 can be as well derived using formulas (16), (18), while know-
ing that (14) is fulfilled. To evaluate ξn(z) one can make use of (66). Applying the same series of
substitutions as above to Eq. (66) one gets

F

({
q

1
2 (k−γ )− 3

4 sinh(σ )(qγ +k;q2)∞
2(qγ +k+1;q2)∞(qk−1 − z)

}∞

k=1

)

= (cosh2(σ/2)z−1;q)∞
(z−1;q)∞

1φ1

(
q−γ cosh2

(
σ

2

)
z−1; cosh2

(
σ

2

)
z−1;q,− sinh2

(
σ

2

)
z−1

)
.

Then a straightforward computation yields

ξn(z) = 2q(γ +1)/2
√

(qγ +1;q)∞
sinh(σ )(z−1;q)∞

vn, n = 0,1,2, . . . ,

with vn being given in (68).
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Abstract

In a recent paper we have introduced a class of infinite Jacobi matrices with
discrete character of spectra. With each Jacobi matrix from this class we have
associated an analytic function, called the characteristic function, whose zero set
coincides with the point spectrum of the corresponding Jacobi operator. Here
we show that the characteristic function admits Hadamard’s factorization in two
possible ways – either in the spectral parameter or in an auxiliary parameter
which may be called the coupling constant. As an intermediate result we get
an explicit expression for the power series expansion of the logarithm of the
characteristic function.

Keywords : infinite Jacobi matrix, characteristic function, Hadamard’s factorization
AMS classification: 47B36; 33C99; 11A55

1 Introduction
In a recent paper [8] we have introduced a class of infinite Jacobi matrices characterized
by a simple convergence condition. Each Jacobi matrix from this class unambiguously
determines a closed operator on `2(N) having a discrete spectrum. Moreover, with such
a matrix one associates a complex function, called the characteristic function, which is
analytic on the complex plane with the closure of the range of the diagonal sequence
being excluded, and meromorphic on the complex plane with the set of accumulation
points of the diagonal sequence of the matrix being excluded. It turns out that the
zero set of the characteristic function actually coincides with the point spectrum of
the corresponding Jacobi operator on the domain of definition (with some subtleties
when handling the poles; see Theorem 1 below).

1



The aim of the current paper is to show that the characteristic function admits
Hadamard’s factorization in two possible ways. First, assuming that the Jacobi ma-
trix is real and the corresponding operator self-adjoint, we derive a factorization in the
spectral parameter. Further, for symmetric complex Jacobi matrices we assume the
off-diagonal elements to depend linearly on an auxiliary parameter which we call, fol-
lowing physical terminology, the coupling constant. The second factorization formula
then concerns this parameter.

Many formulas throughout the paper are expressed in terms of a function, called
F, which is defined on a suitable subset of the linear space of all complex sequences
x = {xk}∞k=1; see [7] for its original definition. This function was also heavily em-
ployed in [8]. So we start from recalling the definition and basic properties as well as
relevant results concerning F. In addition to Hadamard’s factorization we derive, as
an intermediate step, a formula for logF(x).

Define F : D → C,

F(x) = 1 +
∞∑
m=1

(−1)m
∞∑
k1=1

∞∑
k2=k1+2

. . .
∞∑

km=km−1+2

xk1xk1+1xk2xk2+1 . . . xkmxkm+1, (1)

where

D =

{
{xk}∞k=1 ⊂ C;

∞∑
k=1

|xkxk+1| <∞

}
. (2)

For a finite number of complex variables we identify F(x1, x2, . . . , xn) with F(x) where
x = (x1, x2, . . . , xn, 0, 0, 0, . . . ). By convention, let F(∅) = 1 where ∅ is the empty
sequence.

Note that `2(N) ⊂ D. For x ∈ D, one has the estimates

|F(x)| ≤ exp

(
∞∑
k=1

|xkxk+1|

)
, |F(x)− 1| ≤ exp

(
∞∑
k=1

|xkxk+1|

)
− 1, (3)

and it is true that
F(x) = lim

n→∞
F(x1, x2, . . . , xn). (4)

Furthermore, F satisfies the relation

F({xn}∞n=1) = F(x1, . . . , xk)F({xk+n}∞n=1)− F(x1, . . . , xk−1)xkxk+1F({xk+n+1}∞n=1) ,
(5)

for any k ∈ N and x ∈ D. Let us also point out a simple invariance property. For
x ∈ D and s ∈ C, s 6= 0, it is true that y ∈ D and

F(x) = F(y), where y2k−1 = sx2k−1, y2k = x2k/s, k ∈ N. (6)

We shall deal with symmetric Jacobi matrices

J =


λ1 w1

w1 λ2 w2

w2 λ3 w3

. . . . . . . . .

, (7)
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where λ = {λn}∞n=1 ⊂ C and w = {wn}∞n=1 ⊂ C \ {0}. Let us put

γ2k−1 =
k−1∏
j=1

w2j

w2j−1
, γ2k = w1

k−1∏
j=1

w2j+1

w2j

, k = 1, 2, 3, . . . . (8)

Then γkγk+1 = wk.
If for n ∈ N, Jn is the n× n Jacobi matrix: (Jn)j,k = Jj,k for 1 ≤ j, k ≤ n, and In

is the n× n unit matrix, then the formula

det(Jn − zIn) =

(
n∏
k=1

(λk − z)

)
F

(
γ 2
1

λ1 − z
,

γ 2
2

λ2 − z
, . . . ,

γ 2
n

λn − z

)
. (9)

holds true for all z ∈ C (after obvious cancellations, the RHS is well defined even for
z = λk; here and throughout we use the shorthands LHS and RHS for “left-hand side”
and “right-hand side”, respectively).

Let us denote
Cλ

0 := C \ {λn; n ∈ N} .
Moreover, der(λ) designates the set of all accumulation points of the sequence λ. The
following theorem is a compilation of several results from [8, Subsec. 3.3].

Theorem 1. Let a Jacobi matrix J be real and suppose that
∞∑
n=1

∣∣∣∣ w 2
n

(λn − z)(λn+1 − z)

∣∣∣∣ <∞ (10)

for at least one z ∈ Cλ
0 . Then

(i) J represents a unique self-adjoint operator on `2(N),
(ii) spec(J) ∩ (C \ der(λ)) consists of simple real eigenvalues with no accumulation
points in C \ der(λ),
(iii) the series (10) converges locally uniformly on Cλ

0 and

FJ(z) := F

({
γ 2
n

λn − z

}∞
n=1

)
(11)

is a well defined analytic function on Cλ
0 ,

(iv) FJ(z) is meromorphic on C \ der(λ), the order of a pole at z ∈ C \ der(λ) is less
than or equal to the number r(z) of occurrences of z in the sequence λ,
(v) z ∈ C \ der(λ) belongs to spec(J) iff

lim
u→z

(z − u)r(z)FJ(u) = 0

and, in particular, spec(J) ∩ Cλ
0 = specp(J) ∩ Cλ

0 = F −1J ({0}).

We shall mostly focus on real Jacobi matrices, with an exception of Section 4.
For our purposes the following particular case, a direct consequence of a more general
result derived in [8, Subsec. 3.3], will be sufficient.
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Theorem 2. Suppose J is a complex Jacobi matrix of the form (7) obeying λn = 0, ∀n,
and {wn} ∈ `2(N). Then J represents a Hilbert-Schmidt operator, FJ(z) is analytic
on C \ {0} and

spec(J) \ {0} = specp(J) \ {0} = F −1J ({0}).

2 The logarithm of F(x)
F (x1, . . . , xn) is a polynomial function in n complex variables, with F (0) = 1, and
so logF (x1, . . . , xn) is a well defined analytic function in some neighborhood of the
origin. The goal of the current section is to derive a formula for the coefficients of the
corresponding power series.

For a multiindex m ∈ N` denote by |m| its order and by d(m) its length, i.e.

|m| =
∑̀
j=1

mj, d(m) = `.

For N ∈ N define

M(N) =

{
m ∈

N⋃
`=1

N`; |m| = N

}
. (12)

One hasM(1) = {(1)} and

M(N) =
{(

1,m1,m2, . . . ,md(m)

)
; m ∈M(N − 1)

}
∪
{(
m1 + 1,m2, . . . ,md(m)

)
; m ∈M(N − 1)

}
.

Hence |M(N)| = 2N−1. Here and everywhere in what follows, if M is a finite set then
|M | stands for the number of elements of M . Furthermore, for an multiindex m ∈ N`

put

β(m) :=
`−1∏
j=1

(
mj +mj+1 − 1

mj+1

)
, α(m) :=

β(m)

m1

. (13)

Proposition 3. In the ring of formal power series in the variables t1, . . . , tn, one has

logF(t1, . . . , tn) = −
n−1∑
`=1

∑
m∈N`

α(m)
n−∑̀
k=1

∏̀
j=1

(tk+j−1tk+j)
mj . (14)

For a complex sequence x = {xk}∞k=1 such that
∑∞

k=1 |xkxk+1| < log 2 one has

logF(x) = −
∞∑
`=1

∑
m∈N`

α(m)
∞∑
k=1

∏̀
j=1

(xk+j−1xk+j)
mj . (15)

The proof of Proposition 3 is in principle a matter of some combinatorics. Below
we reveal the meaning of the combinatorial numbers β(m) and α(m). Let us first
introduce a few notions. For n ∈ N, n ≥ 2, we regard the set

Λn = {1, 2, . . . , n}
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as a finite one-dimensional lattice. A loop of length 2N , N ∈ N, in Λn is a mapping

π : {1, 2, . . . , 2N, 2N + 1} → Λn

such that π(1) = π(2N + 1) and |π(j + 1) − π(j)| = 1 for 1 ≤ j ≤ 2N . The vortex
π(1) is called the base point of a loop.

For m ∈ N` denote by Ω(m) the set of all loops of length 2|m| in Λ`+1 which
encounter each edge (j, j+1) exactly 2mj times (counting both directions), 1 ≤ j ≤ `.
Let Ω1(m) designate the subset of Ω(m) formed by those loops which are based at the
vortex 1. If π ∈ Ω1(m) then the sequence (π(1), π(2), . . . , π(2N)) contains the vortex
1 exactly m1 times, the vortices j, 2 ≤ j ≤ `, are contained (mj−1 +mj) times in the
sequence, and the number of occurrences of the vortex `+ 1 equals m`.

Lemma 4. For every ` ∈ N and m ∈ N`, |Ω1(m)| = β(m) and |Ω(m)| = 2|m|α(m).

Proof. To show the first equality one can proceed by induction in `. For ` = 1 and
any m ∈ N one clearly has |Ω1(m)| = 1. Suppose now that ` ≥ 2 and fix m ∈ N`.
Denote

m′ = (m2, . . . ,m`) ∈ N`−1.

For any π′ ∈ Ω1(m
′) put

π̃ = (1, π′(1) + 1, π′(2) + 1, . . . , π′(2N ′ + 1) + 1, 1)

where N ′ = |m′| = |m| −m1. The vortex 2 occurs in π̃ exactly (m2 + 1) times. After
any such an occurrence of 2 one may insert none or several copies of the two-letter
chain (1, 2). Do it so while requiring that the total number of inserted couples equals
m1 − 1. This way one generates all loops from Ω1(m), and each exactly once. This
implies the recurrence rule

|Ω1(m1,m2, . . . ,m`)| =
(
m1 − 1 +m2

m2

)
|Ω1(m2, . . . ,m`)| ,

thus proving that |Ω1(m)| = β(m).
Let us proceed to the second equality. Put N = |m|. Consider the cyclic group

G = 〈g〉, g2N = 1. G acts on Ω(m) according to the rule

g · π = (π(2), π(3), . . . , π(2N + 1), π(2)), ∀π ∈ Ω(m).

Clearly, G · Ω1(m) = Ω(m). Let us write Ω(m) as a disjoint union of orbits,

Ω(m) =
M⋃
s=1

Os.

For each orbit choose πs ∈ Os ∩ Ω1(m). Let Hs ⊂ G be the stabilizer of πs. Then

|Ω(m)| =
M∑
s=1

2N

|Hs|
.
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Denote further byG1
s the subset ofG formed by those elements a obeying a·πs ∈ Ω1(m)

(i.e. the vortex 1 is still the base point). Then |G1
s| = m1 and Os ∩ Ω1(m) = G1

s · πs.
Moreover, G1

s · Hs = G1
s, i.e. Hs acts freely from the right on G1

s, with orbits of
this action being in one-to-one correspondence with elements of Os ∩ Ω1(m). Hence
|Os ∩ Ω1(m)| = |G1

s|/|Hs| and

|Ω1(m)| =
M∑
s=1

|Os ∩ Ω1(m)| =
M∑
s=1

m1

|Hs|
.

This shows that |Ω(m)| = (2N/m1)|Ω1(m)|. In view of the first equality of the propo-
sition and (13), the proof is complete.

For m ∈ N` let (
|m|
m

)
:=

|m|!
m1!m2! . . . m`!

.

Lemma 5. For N ∈ N, ∑
m∈M(N)

α(m) =
1

2N

(
2N

N

)
. (16)

Proof. According to Lemma 4, the sum

2N
∑

m∈M(N)

α(m) =
∑

m∈M(N)

|Ω(m)|

equals the number of all classes of loops of length 2N in the one-dimensional lattice
Z provided loops differing by translations are identified. These classes are generated
by making 2N choices, in all possible ways, each time choosing either the sign plus
or minus (moving to the right or to the left on the lattice) while the total number of
occurrences of each sign being equal to N .

Lemma 6. For every ` ∈ N and m ∈ N`,

α(m) ≤ 1

|m|

(
|m|
m

)
,

and equality holds if and only if ` = 1 or 2 .

Proof. Put γ(m) = α(m)/
(|m|
m

)
. To show that γ(m) ≤ 1/|m| one can proceed by

induction in `. It is immediate to check that equality holds for ` = 1 and 2 . For ` ≥ 3
and m1 > 1 one readily verifies that

γ(m1,m2,m3, . . . ,m`) < γ(m1 − 1,m2 + 1,m3, . . . ,m`).

Furthermore, if ` ≥ 3, m1 = 1 and the inequality is known to be valid for ` − 1, one
has

γ(m1,m2,m3, . . . ,m`) =
m2 γ(m2,m3, . . . ,m`)

1 +m2 +m3 + . . .+m`

<
1

|m|
.

The lemma follows.
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Proof of Proposition 3. In the course of the proof and otherwise as well we repeatedly
use the trivial observation that

∪∞`=1N` = ∪∞N=1M(N) and ∪n−1`=1 N` = ∪∞N=1{m ∈M(N); d(m) < n}.

The coefficients of the power series expansion at the origin of the function logF (t1, . . . , tn)
can be calculated in the ring of formal power series. As observed in [8], one has

F(t1, . . . , tn) = det(I + T )

where

T =



0 t1
t2 0 t2

. . . . . . . . .
. . . . . . . . .

tn−1 0 tn−1
tn 0


. (17)

Since det exp(A) = exp(TrA) and so log det(I+T ) = Tr log(I+T ), and noticing that
TrT 2k+1 = 0, one gets

logF (t1, . . . , tn) = Tr log(I + T ) = −
∞∑
N=1

1

2N
TrT 2N .

From (17) one deduces that

TrT 2N =
∑

π∈L(N)

2N∏
j=1

tπ(j) (18)

where L(N) stands for the set of all loops of length 2N in Λn (see the notation preced-
ing Lemma 4). Further one observes that for each π ∈ L(N) there exist unambiguously
defined m ∈ M(N), with d(m) < n, an integer k, 1 ≤ k ≤ n − d(m), and π̃ ∈ Ω(m)
such that π(j) = k+ π̃(j)− 1 for 1 ≤ j ≤ 2N + 1 (then k = min{π(j); 1 ≤ j ≤ 2N}).
Hence the RHS of (18) equals

∑
m∈M(N)
d(m)<n

n−d(m)∑
k=1

|Ω(m)|
d(m)∏
j=1

(tk+j−1tk+j)
mj .

To verify (14) it suffices to apply Lemma 4.
Suppose now x is a complex sequence. If

∑
k |xkxk+1| < log 2 one has, by (3),

|F(x)− 1| < 1 and so logF(x) is well defined. Moreover, according to (4),

logF(x) = lim
n→∞

logF(x1, . . . , xn).
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If
∑

k |xkxk+1| < 1 then the RHS of (14) admits the limit procedure, too, as demon-
strated by the simple estimate (replacing tjs by xjs)

|the RHS of (14)| ≤
∞∑
N=1

[
max

m∈M(N)

α(m)(
N
m

) ] ∑
m∈M(N)

(
N

m

) ∞∑
k=1

d(m)∏
j=1

|xk+j−1xk+j|mj

≤
∞∑
N=1

1

N

(
∞∑
k=1

|xkxk+1|

)N
= − log

(
1−

∞∑
k=1

|xkxk+1|

)
.

Here we have used Lemma 6.

3 Factorization in the spectral parameter
In this section, we introduce a regularized characteristic function of a Jacobi matrix
and show that it can be expressed as a Hadamard infinite product.

Let λ = {λn}∞n=1, {wn}∞n=1 be real sequences such that limn→∞ λn = +∞ and
wn 6= 0, ∀n. In addition, without loss of generality, {λn}∞n=1 is assumed to be positive.
Moreover, suppose that

∞∑
n=1

w 2
n

λnλn+1

<∞ and
∞∑
n=1

1

λ 2
n

<∞. (19)

Under these assumptions, by Theorem 1, J defined in (7) may be regarded as a
self-adjoint operator on `2(N). Moreover, der(λ) is clearly empty and the characteristic
function FJ(z) is meromorphic on C with possible poles lying in the range of λ. To
remove the poles let us define the function

Φλ(z) :=
∞∏
n=1

(
1− z

λn

)
ez/λn .

Since
∑

n λ
−2
n <∞, Φλ is a well defined entire function. Further, Φλ has zeros at the

points z = λn, with multiplicity being equal to the number of repetitions of λn in the
sequence λ, and no zeros otherwise; see, for instance, [5, Chp. 15].

Finally we define (see (11))

HJ(z) := Φλ(z)FJ(z),

and call HJ(z) the regularized characteristic function of the Jacobi operator J . Note
that for ε ≥ 0, FJ+εI(z) = FJ(z − ε) and so

HJ+εI(z) = HJ(z − ε)Φλ(−ε)−1 exp

(
−z

∞∑
n=1

ε

λn(λn + ε)

)
. (20)

According to Theorem 1, the spectrum of J is discrete, simple and real, and

spec(J) = specp(J) = H −1J ({0}).
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As is well known, the determinant of an operator I + A on a Hilbert space can
be defined provided A belongs to the trace class. The definition, in a modified form,
can be extended to other Schatten classes Ip as well, in particular to Hilbert-Schmidt
operators; see [6] for a detailed survey of the theory. Let us denote, as usual, the trace
class and the Hilbert-Schmidt class by I1 and I2, respectively. If A ∈ I2 then

(I + A) exp(−A)− I ∈ I1,

and one defines
det2(I + A) := det ((I + A) exp(−A)) .

We shall need the following formulas [6, Chp. 9]. For A,B ∈ I2 one has

det2(I + A+B + AB) = det2(I + A) det2(I +B) exp (−Tr(AB)) . (21)

A factorization formula holds for A ∈ I2 and z ∈ C,

det2(I + zA) =

N(A)∏
n=1

(1 + zµn(A)) exp (−zµn(A)) , (22)

where µn(A) are all (nonzero) eigenvalues of A counted up to their algebraic multi-
plicity [6, Thm. 9.2]. In particular, I+zA is invertible iff det2(I+zA) 6= 0. Moreover,
the Plemejl-Smithies formula tells us that for A ∈ I2,

det2(I + zA) =
∞∑
m=0

am(A)
zm

m!
, (23)

where

am(A) = det



0 m− 1 0 . . . 0 0
TrA2 0 m− 2 . . . 0 0
TrA3 TrA2 0 . . . 0 0

...
...

... . . . ...
...

TrAm−1 TrAm−2 TrAm−3 . . . 0 1
TrAm TrAm−1 TrAm−2 . . . TrA2 0


(24)

for m ≥ 1, and a0(A) = 1 [6, Thm. 5.4]. Finally, there exists a constant C2 such that
for all A,B ∈ I2,

|det2(I + A)− det2(I +B)| ≤ ‖A−B‖2 exp
(
C2(‖A‖2 + ‖B‖2 + 1)2

)
, (25)

where ‖ · ‖2 stands for the Hilbert-Schmidt norm.
We write the Jacobi matrix in the form

J = L+W +W ∗

where L is a diagonal matrix while W is lower triangular. By assumption (19), the
operators L−1 and

K := L−1/2(W +W ∗)L−1/2 (26)
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are Hilbert-Schmidt. Hence for every z ∈ C, the operator L−1/2(W + W ∗ − z)L−1/2,
with its matrix being equal to

−z/λ1 w1/
√
λ1λ2

w1/
√
λ1λ2 −z/λ2 w2/

√
λ2λ3

w2/
√
λ2λ3 −z/λ3 w3/

√
λ3λ4

. . . . . . . . .

,
belongs to the Hilbert-Schmidt class.

Lemma 7. For every z ∈ C,

HJ(z) = det2
(
I + L−1/2(W +W ∗ − z)L−1/2

)
.

In particular,
HJ(0) = FJ(0) = det2(I +K).

Proof. We first verify the formula for the truncated finite rank operator JN = PNJPN ,
where PN is the orthogonal projection onto the subspace spanned by the firstN vectors
of the canonical basis in `2(N). Using formula (9) one derives

det
[
(I + PNL

−1/2(W +W ∗ − z)L−1/2PN) exp
(
−PNL−1/2(W +W ∗ − z)L−1/2PN

)]
= det(PNL

−1PN) det(JN − zIN) exp
(
zTr(PNL

−1PN)
)

=

(
N∏
n=1

(
1− z

λn

)
ez/λn

)
F

({
γ 2
n

λn − z

}N
n=1

)
.

Sending N to infinity it is clear, by (4) and (19), that the RHS tends to HJ(z).
Moreover, one knows that det2(I + A) is continuous in A in the Hilbert-Schmidt
norm, as it follows from (25). Thus to complete the proof it suffices to observe that if
A ∈ I2 then ‖PNAPN − A‖2 → 0 as N →∞.

We intend to apply toHJ(z) the Hadamard factorization theorem; see, for example,
[1, Thm. XI.3.4]. For simplicity we assume that FJ(0) 6= 0 and so J is invertible.
Otherwise one could replace J by J + εI for some ε > 0 and make use of (20).

As already mentioned, the operator K defined in (26) is Hilbert-Schmidt. At the
same time, this is a Jacobi matrix operator with zero diagonal admitting application
of Theorem 1. One readily finds that

FK(z) = F

({
− γ 2

n

zλn

}∞
n=1

)
.

Hence FK(−1) = FJ(0), and J is invertible if and only if the same is true for (I +K).
In that case, again by Theorem 1, 0 belongs to the resolvent set of J , and

J−1 = L−1/2(I +K)−1L−1/2. (27)
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Lemma 8. If J is invertible then J−1 is a Hilbert-Schmidt operator and

det2
(
I − z(I +K)−1L−1

)
= det2

(
I − zJ−1

)
(28)

for all z ∈ C.

Proof. By assumption (19), L−1/2 belongs to the Schatten class I4. Since the Schatten
classes are norm ideals and fulfill IpIq ⊂ Ir whenever r−1 = p−1 + q−1 [6, Thm. 2.8],
one deduces from (27) that J−1 ∈ I2.

Furthermore, one knows that Tr(AB) = Tr(BA) provided A ∈ Ip, B ∈ Iq and
p−1 + q−1 = 1 [6, Cor. 3.8]. Hence

Tr
(
(I +K)−1L−1

)k
= Tr

(
L−1/2(I +K)−1L−1/2

)k
= Tr(J−k), ∀k ∈ N, k ≥ 2.

It follows that the coefficients am defined in (24) fulfill

am((I +K)−1L−1) = am(J−1) for m = 0, 1, 2, . . . .

The Plemejl-Smithies formula (23) then implies (28).

Theorem 9. Using notation introduced in (7), suppose a real Jacobi matrix J obeys
(19) and is invertible. Denote by λn(J), n ∈ N, the eigenvalues of J (all of them are
real and simple). Then L−1 − J−1 ∈ I1,

∞∑
n=1

λn(J)−2 <∞, (29)

and for the regularized characteristic function of J one has

HJ(z) = FJ(0) ebz
∞∏
n=1

(
1− z

λn(J)

)
ez/λn(J) (30)

where

b = Tr
(
L−1 − J−1

)
=
∞∑
n=1

(
1

λn
− 1

λn(J)

)
.

Proof. Recall (27). By a simple algebra, and since L−1/2 ∈ I4, K ∈ I2, one has

L−1 − J−1 = L−1/2K(I +K)−1L−1/2 ∈ I1. (31)

By Lemma 8, the operator J−1 is Hermitian and Hilbert-Schmidt. This implies (29).
Furthermore, by Lemma 7, formula (21) and Lemma 8,

HJ(z) = det2(I +K − zL−1)
= det2(I +K) det2

(
I − z(I +K)−1L−1

)
exp
[
zTr

(
K(I +K)−1L−1

)]
= FJ(0) ebz det2

(
I − zJ−1

)
.
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Here we have used (31) implying

Tr
(
K(I +K)−1L−1

)
= Tr

(
L−1/2K(I +K)−1L−1/2

)
= Tr

(
L−1 − J−1

)
= b.

Finally, by formula (22),

det2
(
I − zJ−1

)
=
∞∏
n=1

(
1− z

λn(J)

)
ez/λn(J).

This completes the proof.

Corollary 10. For each ε > 0 there is Rε > 0 such that for |z| > Rε,

|HJ(z)| < exp
(
ε|z|2

)
. (32)

Proof. Theorem 9, and particularly the product formula (30) implies that HJ(z) is an
entire function of genus one. In that case the growth property (32) is known to be
valid; see, for example, Theorem XI.2.6 in [1].

Example 11. Put λn = n and wn = w 6= 0, ∀n ∈ N. As shown in [7], the Bessel
functions of the first kind can be expressed as

Jν(2w) =
wν

Γ(ν + 1)
F

({
w

ν + k

}∞
k=1

)
, (33)

as long as w, ν ∈ C, ν /∈ −N. Using (33) and the well known formula for the gamma
function,

Γ(z) =
e−γz

z

∞∏
n=1

(
1 +

z

n

)−1
ez/n,

where γ is the Euler constant, one gets

HJ(z) = eγzwzJ−z(2w).

Let us apply Theorem 9 to this Jacobi matrix. As a result one reveals the infinite
product formula for a Bessel function considered as a function of its order. Assuming
J0(2w) 6= 0, the formula reads

wzJ−z(2w)

J0(2w)
= ec(w)z

∞∏
n=1

(
1− z

λn(J)

)
ez/λn(J)

where

c(w) =
1

J0(2w)

∞∑
k=0

(−1)kψ(k + 1)
w2k

(k!)2

and ψ(z) = Γ′(z)/Γ(z) is the polygamma function (recall that ψ(1) = −γ and so
c(0) = −γ). To derive the expression for c(w) it suffices to compare the coefficients at
z on both sides.

12



4 Factorization in the coupling constant
Let x = {xn}∞n=1 be a sequence of nonzero complex numbers belonging to the domain
D defined in (2). Our goal in this section is to prove a factorization formula for the
entire function

f(w) := F(wx), w ∈ C.
Let us remark that f(w) is even.

To this end, let us put vk =
√
xk, ∀k, (any branch of the square root is suitable)

and introduce the auxiliary Jacobi matrix

A =


0 a1 0 0 · · ·
a1 0 a2 0 · · ·
0 a2 0 a3 · · ·
0 0 a3 0 · · ·
...

...
...

... . . .

, with ak = vkvk+1 , k ∈ N. (34)

Then A represents a Hilbert-Schmidt operator on `2(N) with the Hilbert-Schmidt
norm

‖A‖ 22 = 2
∞∑
k=1

|ak|2 = 2
∞∑
k=1

|xkxk+1|.

The relevance of A to our problem comes from the equality

FA(z) = F
({xk

z

}∞
k=1

)
= f

(
z−1
)
,

which can be verified with the aid of (6). Hence FA(z) is analytic on C \ {0}. By
Theorem 2, the set of nonzero eigenvalues of A coincides with the zero set of FA(z). It
even turns out that the algebraic multiplicity of a nonzero eigenvalue ζ of A equals the
multiplicity of ζ as a root of the function FA(z), as stated in the following supplement
to Theorem 2.

Proposition 12. Under the same assumptions as in Theorem 2, the algebraic multi-
plicity of any nonzero eigenvalue ζ of J is equal to the multiplicity of the root ζ−1 of
the entire function ϕ(z) = FJ(z−1) = F({zγ 2

n}∞n=1).

Proof. Recall that γnγn+1 = wn and so, by the assumptions of Theorem 2, {γ 2
n} ∈ D.

Denote again by PN , N ∈ N, the orthogonal projection onto the subspace spanned by
the first N vectors of the canonical basis in `2(N). From formula (9) we deduce that

F
(
{zγ 2

n}Nn=1

)
= det(I − zJN) = det

(
(I − zJN)ezJN

)
,

where JN = PNJPN . Since PNJPN tends to J in the Hilbert-Schmidt norm, as
N → ∞, and by continuity of the generalized determinant as a functional on the
space of Hilbert-Schmidt operators (see (25)) one immediately gets

ϕ(z) = F
(
{zγ 2

n}∞n=1

)
= det

(
(I − zJ)ezJ

)
= det2(I − zJ). (35)

From (22) it follows that ϕ(z) = (1− ζz)m ϕ̃(z) where m is the algebraic multiplicity
of ζ, ϕ̃(z) is an entire function and ϕ̃(ζ−1) 6= 0.

13



The zero set of f(w) is at most countable and symmetric with respect to the
origin. One can split C into two half-planes so that the border line passes through the
origin and contains no nonzero root of f . Fix one of the half-planes and enumerate
all nonzero roots in it as {ζk}N(f)

k=1 , with each root being repeated in the sequence
according to its multiplicity. The number N(f) may be either a non-negative integer
or infinity. Then

specp(A) \ {0} =
{
±ζ −1k ; k ∈ N, k ≤ N(f)

}
.

Since A2 is a trace class operator one has, by Proposition 12 and Lidskii’s theorem,

N(f)∑
k=1

1

ζ 2
k

=
1

2
TrA2 =

∞∑
k=1

xkxk+1. (36)

Moreover, the sum on the LHS converges absolutely, as it follows from Weyl’s inequal-
ity [6, Thm. 1.15].

Theorem 13. Suppose x = {xk}∞k=1 is a sequence of nonzero complex numbers such
that

∞∑
k=1

|xkxk+1| <∞.

Then zeros of the entire even function f(w) = F(wx) can be arranged into sequences

{ζk}N(f)
k=1 ∪ {−ζk}

N(f)
k=1 ,

with each zero being repeated according to its multiplicity, and

f(w) =

N(f)∏
k=1

(
1− w2

ζ 2
k

)
. (37)

Proof. Equality (37) can be deduced from Hadamard’s factorization theorem; see, for
example, [1, Chp. XI]. In fact, the absolute convergence of the series

∑
ζ −2k in (36)

means that the rank of f is at most 1. Furthermore, (3) implies that

|f(w)| ≤ exp

(
|w|2

∞∑
k=1

|xkxk+1|

)
,

and so the order of f is less than or equal to 2. Hadamard’s factorization theorem tells
us that the genus of f is at most 2. Taking into account that f is even and f(0) = 1,
this means nothing but

f(w) = exp(cw2)

N(f)∏
k=1

(
1− w2

ζ 2
k

)
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for some c ∈ C. Equating the coefficients at w2 one gets

−
∞∑
k=1

xkxk+1 = c−
N(f)∑
k=1

1

ζ 2
k

.

According to (36), c = 0.

Corollary 14. For any n ∈ N (and recalling (12), (13)),

N(f)∑
k=1

1

ζ 2n
k

= n
∑

m∈M(n)

α(m)
∞∑
k=1

d(m)∏
j=1

(xk+j−1xk+j)
mj . (38)

Proof. Using Proposition 3, one can expand log f(w) into a power series at w = 0.
Applying log to (37) and equating the coefficients at w2n gives (38).

If the sequence {xk} in Theorem 13 is positive one has some additional information
about the zeros of f(w). In that case the vks in (34) can be chosen positive, and so A
is a self-adjoint Hilbert-Schmidt operator. The zero set of f is countable and all roots
are real, simple and have no finite accumulation points. Enumerating positive zeros
in ascending order as ζk, k ∈ N, factorization (37) and identities (38) hold true. Since
the first positive root ζ1 is strictly smaller than all other positive roots, one has

ζ1 = lim
N→∞

 ∑
m∈M(N)

α(m)
∞∑
k=1

d(m)∏
j=1

(xk+j−1xk+j)
mj

−1/(2N)

.

Remark 15. Still assuming the sequence {xk} to be positive let g(z) be an entire
function defined by

g(z) = 1 +
∞∑
n=1

gnz
n =

∞∏
k=1

(
1− z

ζ 2
k

)
,

i.e. g(w2) = f(w). In some particular cases the coefficients gn may be known explicitly
and then the spectral zeta function can be evaluated recursively. Put

σ(2n) =
∞∑
k=1

1

ζ 2n
k

, n ∈ N.

Taking the logarithmic derivative of g(z) and equating coefficients at the same powers
of z leads to the recurrence rule

σ(2) = −g1, σ(2n) = −ngn −
n−1∑
k=1

gn−k σ(2k) for n > 1. (39)
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Example 16. Put xk = (ν + k)−1, with ν > −1. Recalling (33) and letting z = w/2,
one obtains the following factorization of the Bessel function [10],(z

2

)−ν
Γ(ν + 1)Jν(z) =

∞∏
k=1

(
1− z2

j 2
ν,k

)
,

as a particular case of Theorem 13. Corollary 14 implies a formula for the so called
Rayleigh function [4]

σν(s) =
∞∑
k=1

1

j sν,k
, Res > 1,

namely

σν(2N) = 2−2NN
∞∑
k=1

∑
m∈M(N)

α(m)

d(m)∏
j=1

(
1

(j + k + ν − 1)(j + k + ν)

)mj

, N ∈ N.

Example 17. This examples is perhaps less commonly known and concerns the Ra-
manujan function, also interpreted as the q-Airy function by some authors [3, 9], and
defined by

Aq(z) := 0φ1( ; 0; q,−qz) =
∞∑
n=0

qn
2

(q; q)n
(−z)n, (40)

where 0φ1( ; b; q, z) is the basic hypergeometric series (q-hypergeometric series) and
(a; q)k is the q-Pochhammer symbol (see, for instance, [2]). In (40) we suppose 0 <
q < 1 and z ∈ C. In [7] we have shown that

Aq(w
2) = q F

({
wq(2k−1)/4

}∞
k=1

)
. (41)

Denote by 0 < ζ1(q) < ζ2(q) < ζ3(q) < . . . the positive zeros of w 7→ Aq(w
2) and put

ιk(q) = ζk(q)
2, k ∈ N. Then Theorem 13 tells us that the zeros of Aq(z) are exactly

0 < ι1(q) < ι2(q) < ι3(q) < . . ., all of them are simple and

Aq(z) =
∞∏
k=1

(
1− z

ιk(q)

)
.

One has
{
ιk(q)

−1/2; k ∈ N
}

= spec(AAA(q))\{0} whereAAA(q) is a Hilbert-Schmidt matrix
operator in `2(N) whose matrix is of the form (34), with ak = qk/2. Corollary 14 yields
a formula for the spectral zeta function DN(q) associated with Aq(z), namely

DN(q) :=
∞∑
k=1

1

ιk(q)N
=

NqN

1− qN
∑

m∈M(N)

α(m) qε1(m), N ∈ N,

where∀m ∈ N`, ε1(m) =
∑`

j=1(j − 1)mj. In accordance with (39), from the power
series expansion of Aq(z) we get the recurrence

Dn(q) = (−1)n+1 nqn
2

(q; q)n
−

n−1∑
k=1

(−1)k
qk

2

(q; q)k
Dn−k(q), n = 1, 2, 3, . . . .
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Consider now a real Jacobi matrix J of the form (7) such that the diagonal sequence
{λn} is semibounded. Suppose further that the off-diagonal elements wn depend
on a real parameter w as wn = wωn, n ∈ N, with {ωn} being a fixed sequence
of positive numbers. Following physical terminology one may call w the coupling
constant. Denote λinf = inf λn. Assume that

∞∑
n=1

ω 2
n

(λn − z)(λn+1 − z)
<∞

for some and hence any z < λinf. For z < λinf, Theorem 13 can be applied to the
sequence

xn(z) =
κ 2
n

λn − z
, n ∈ N,

where {κn} is defined recursively by κ1 = 1, κnκn+1 = ωn; comparing to (8) one has
κ2k−1 = γ2k−1, κ2k = γ2k/w. Let

FJ(z;w) = F

({
γ 2
n

λn − z

}∞
n=1

)
= F({w xn(z)}∞n=1)

be the characteristic function of J = J(w). We conclude that for every z < λinf fixed,
the equation FJ(z;w) = 0 in the variable w has a countably many positive simple
roots ζk(z), k ∈ N, enumerated in ascending order, and

FJ(z;w) =
∞∏
k=1

(
1− w2

ζk(z)2

)
.
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A new class of orthogonal polynomials associated with Coulomb wave functions
is introduced. These polynomials play a role analogous to that the Lommel
polynomials have in the theory of Bessel functions. The orthogonality measure for
this new class is described in detail. In addition, the orthogonality measure problem
is discussed on a more general level. Apart from this, various identities derived
for the new orthogonal polynomials may be viewed as generalizations of certain
formulas known from the theory of Bessel functions. A key role in these derivations
is played by a Jacobi (tridiagonal) matrix JL whose eigenvalues coincide with the
reciprocal values of the zeros of the regular Coulomb wave function FL(η, ρ). The
spectral zeta function corresponding to the regular Coulomb wave function or, more
precisely, to the respective tridiagonal matrix is studied as well.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

In [9], Ikebe showed the zeros of the regular Coulomb wave function FL(η, ρ) and its derivative ∂ρFL(η, ρ)
(regarded as functions of ρ) to be related to eigenvalues of certain compact Jacobi matrices (see [1, Chp. 14]
and references therein for basic information about Coulomb wave functions). He applied an approach orig-
inally suggested for Bessel functions by Grad and Zakrajšek [8]. In more detail, reciprocal values of the
nonzero roots of FL(η, ρ) coincide with the nonzero eigenvalues of the Jacobi matrix

JL =

⎛
⎜⎜⎜⎝

λL+1 wL+1
wL+1 λL+2 wL+2

wL+2 λL+3 wL+3
. . . . . . . . .

⎞
⎟⎟⎟⎠ (1)
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2 F. Štampach, P. Šťovíček / J. Math. Anal. Appl. ••• (••••) •••–•••

where

wn =
√

(n + 1)2 + η2

(n + 1)
√

(2n + 1)(2n + 3)
and λn = − η

n(n + 1) (2)

for n = L,L+ 1, L+ 2, . . . . Similarly, reciprocal values of the nonzero roots of ∂ρFL(η, ρ) coincide with the
nonzero eigenvalues of the Jacobi matrix

J̃L =

⎛
⎜⎜⎜⎝

λ̃L w̃L

w̃L λL+1 wL+1
wL+1 λL+2 wL+2

. . . . . . . . .

⎞
⎟⎟⎟⎠ (3)

where

w̃L =
√

2L + 1
L + 1 wL and λ̃L = − η

(L + 1)2 . (4)

The parameters have been chosen so that L ∈ Z+ (non-negative integers) and η ∈ R. This is, however,
unnecessarily restrictive and one may wish to extend the set of admissible values of L. Note also that JL
and J̃L are both compact, even Hilbert–Schmidt operators on �2(N).

Ikebe uses this observation for evaluating the zeros of FL(η, ρ) and ∂ρFL(η, ρ) approximately by computing
eigenvalues of the respective finite truncated Jacobi matrices. In this paper, we are going to work with Jacobi
matrices JL and J̃L as well but with a fully different goal. We aim to establish a new class of orthogonal
polynomials (shortly OPs) associated with Coulomb wave functions and to analyze their properties. In
doing so, we make a thorough use of the formalism which has been introduced in [19] and further developed
in [20]. The studied polynomials represent a two-parameter family which is a generalization of the well
known Lommel polynomials associated with Bessel functions. Let us also note that another generalization
of Lommel polynomials, although going in a completely different direction, has been described by Ismail
in [10], see also [13,15].

When looking into a new class of OPs, our primary intention was to obtain the corresponding orthogonal-
ity relation. Before approaching this task we discuss the problem of finding a measure of orthogonality for
a sequence of OPs on a more general level. In particular, we address the situation when a sequence of OPs
is determined by a three-term recurrence whose coefficients satisfy a certain convergence condition. Apart
from solving the orthogonality measure problem, various identities are derived for the newly identified class
of OPs which may be viewed as generalizations of a number of formulas well known from the theory of
Bessel functions. Finally, the last section is devoted to the study of spectral zeta functions corresponding to
the regular Coulomb wave functions or, more precisely, to the respective tridiagonal matrices. In particular,
we derive recursive formulas for the values of zeta functions. This result can be used to localize the smallest
(in modulus) zero of FL(η, ρ), and hence the spectral radius of the Jacobi matrix JL.

2. Preliminaries and selected useful identities

2.1. The function F

In order to keep the paper self-contained we first briefly summarize such information concerning the
formalism originally introduced in [19] and [20] which will be needed in the course of this paper. Our
approach is based on employing the function F defined on the space of complex sequences. By definition,
F : D → C,
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F(x) = 1 +
∞∑

m=1
(−1)m

∞∑
k1=1

∞∑
k2=k1+2

. . .
∞∑

km=km−1+2

xk1xk1+1xk2xk2+1 . . . xkm
xkm+1,

where

D =
{
{xk}∞k=1 ⊂ C;

∞∑
k=1

|xkxk+1| < ∞
}
. (5)

For x ∈ D one has the estimate

∣∣F(x)
∣∣ ≤ exp

( ∞∑
k=1

|xkxk+1|
)
. (6)

We identify F(x1, x2, . . . , xn) with F(x) where x = (x1, x2, . . . , xn, 0, 0, 0, . . .), and put F(∅) = 1 where ∅
stands for an empty sequence.

Further we list from [19,20] several useful properties of F. First,

F(x) = F(x1, . . . , xk)F
(
T kx

)
− F(x1, . . . , xk−1)xkxk+1F

(
T k+1x

)
, k = 1, 2, . . . ,

where x ∈ D and T denotes the shift operator from the left, i.e. (Tx)k = xk+1. In particular, for k = 1 one
gets the rule

F(x) = F(Tx) − x1x2F
(
T 2x

)
. (7)

Second, for x ∈ D one has

lim
n→∞

F
(
Tnx

)
= 1, lim

n→∞
F(x1, x2, . . . , xn) = F(x). (8)

Third, one has (see [20, Subsection 2.3])

F(x1, x2, . . . , xd)F(x2, x3, . . . , xd+s) − F(x1, x2, . . . , xd+s)F(x2, x3, . . . , xd)

=
(

d∏
j=1

xjxj+1

)
F(xd+2, xd+3, . . . , xd+s) (9)

where d, s ∈ Z+. By sending s → ∞ in (9) one arrives at the equality

F(x1, . . . , xd)F(Tx) − F(x2, . . . , xd)F(x) =
(

d∏
k=1

xkxk+1

)
F
(
T d+1x

)
(10)

which is true for any d ∈ Z+ and x ∈ D.

2.2. The characteristic function and Weyl m-function

Let us consider a semi-infinite symmetric Jacobi matrix J of the form

J =

⎛
⎜⎜⎜⎝

λ0 w0
w0 λ1 w1

w1 λ2 w2
. . . . . . . . .

⎞
⎟⎟⎟⎠ (11)
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where w = {wn}∞n=0 ⊂ (0,+∞) and λ = {λn}∞n=0 ⊂ R. In the present paper, such a matrix J is always
supposed to represent a unique self-adjoint operator on �2(Z+), i.e. there exists exactly one such self-adjoint
operator so that the canonical basis is contained in its domain and its matrix in the canonical basis coincides
with J . For example, this hypothesis is evidently fulfilled if the sequence {wn} is bounded. With a certain
degree of notation abuse we use the same symbol, J , to denote this unique self-adjoint operator.

In [20], we have introduced the characteristic function FJ for a Jacobi matrix J provided its elements
satisfy the condition

∞∑
n=0

w2
n

|(λn − z)(λn+1 − z)| < ∞ (12)

for some (and hence any) z ∈ C \ der(λ) where der(λ) denotes the set of all finite cluster points of the
diagonal sequence λ, i.e. the set of limit values of all possible convergent subsequences of λ. By Corollary 17
in [20], condition (12) also guarantees that the matrix J represents a unique self-adjoint operator on �2(Z+).
The definition of the characteristic function reads

FJ(z) := F

({
γ2
n

λn − z

}∞

n=0

)
(13)

where {γn}∞n=0 is determined by the off-diagonal sequence w recursively as follows: γ0 = 1 and γk+1 = wk/γk,
for k ∈ Z+. The zeros of the characteristic function have actually been shown in [20] to coincide with the
eigenvalues of J . More precisely, under assumption (12) it holds true that

spec(J) \ der(λ) = specp(J) \ der(λ) = Z(J) (14)

where

Z(J) :=
{
z ∈ C \ der(λ); lim

u→z
(u− z)r(z)FJ (u) = 0

}
(15)

and r(z) :=
∑∞

k=0 δz,λk
∈ Z+ is the number of occurrences of an element z in the sequence λ. Moreover,

the eigenvalues of J have no accumulation points in C \ der(λ) and all of them are simple.
Finally, denoting by {en; n ∈ Z+} the canonical basis in �2(Z+), let us recall that the Weyl m-function

m(z) := 〈e0, (J − z)−1e0〉 can be expressed in terms of F,

m(z) = 1
λ0 − z

F

({
γ2
k

λk − z

}∞

k=1

)
F

({
γ2
k

λk − z

}∞

k=0

)−1

(16)

for z /∈ spec(J) ∪ der(λ). From its definition it is clear that m(z) is meromorphic on C \ der(λ) having only
simple real poles, and the set of these poles coincides with Z(J).

3. Some general results on orthogonal polynomials

The theory of OPs has been developed into considerable depths. Let us just mention the fundamental
monographs [2,3]. If convenient, a sequence of OPs, {Pn}∞n=0, where degPn = n, may be supposed to be
already normalized. Then one way of defining such a sequence is by requiring the orthogonality relation

∫
R

Pm(x)Pn(x) dμ(x) = δmn, m, n ∈ Z+, (17)

with respect to a positive Borel measure μ on R such that
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∫
R

x2n dμ(x) < ∞, ∀n ∈ Z+.

Without loss of generality, one may assume that μ is a probability measure, i.e. μ(R) = 1, and P0(x) = 1.
As usual, μ is unambiguously determined by the distribution function x �→ μ((−∞, x]). In particular,
the distribution function is supposed to be continuous from the right. With some abuse of notation, the
distribution function will again be denoted by the symbol μ. The set of monomials, {xn; n ∈ Z+}, is
required to be linearly independent in L2(R,dμ) and so the function μ should have an infinite number of
points of increase.

It is well known that a sequence of OPs, if normalized, satisfies a three-term recurrence relation,

xPn(x) = wn−1Pn−1(x) + λnPn(x) + wnPn+1(x), n ∈ N, (18)

with the initial conditions P0(x) = 1 and P1(x) = (x−λ0)/w0, where {λn}∞n=0 is a real sequence and {wn}∞n=0
is a positive sequence [2,3]. However, due to Favard’s theorem, the opposite statement is also true. For any
sequence of real polynomials, {Pn}∞n=0, with degPn = n, satisfying the recurrence (18) with the above-given
initial conditions, there exists a unique positive functional on the space of real polynomials which makes
this sequence orthonormal. Moreover, if the matrix J given in (11) represents a unique self-adjoint operator
on �2(Z+) then this functional is induced by a unique positive Borel measure μ on R. This means that (17)
is fulfilled. In other words, in that case the Hamburger moment problem is determinate; see, for instance,
§4.1.1 and Corollary 2.2.4 in [2] or Theorem 3.4.5 in [14].

Using (7) one easily verifies that the solution of (18) with the given initial conditions is related to F

through the identity

Pn(x) =
(

n−1∏
k=0

x− λk

wk

)
F

({
γ2
k

λk − x

}n−1

k=0

)
, n ∈ Z+. (19)

A second linearly independent solution of (18) can be written down in the form

Qn(x) = 1
w0

(
n−1∏
k=1

x− λk

wk

)
F

({
γ2
k+1

λk+1 − x

}n−2

k=0

)
, n ∈ N.

The latter solution satisfies the initial conditions Q0(x) = 0 and Q1(x) = 1/w0.
Being given a sequence of OPs, with {Pn}∞n=0, defined via the recurrence rule (18), i.e. via formula (19),

the crucial question is what does a measure of orthogonality looks like. Relying on the function F we provide
a partial description of the measure μ. Doing so we confine ourselves to such Jacobi matrices for which the
set of cluster points of the diagonal sequence λ is discrete. This assumption is not too restrictive, though,
since it turns out that der(λ) is a one-point set or even an empty set in many practical applications of
interest.

Theorem 1. Let J be a Jacobi matrix introduced in (11) and der(λ) be composed of isolated points only.
Suppose there exists z0 ∈ C such that (12) is fulfilled for z = z0. Then the orthogonality relation for the
sequence of OPs determined in (18) reads

∫
R

Pm(x)Pn(x) dν(x) +
∑
x∈D

Pm(x)Pn(x)
‖P (x)‖2 = δmn, m, n ∈ Z+, (20)

where D = specp(J) ∩ der(λ) and ‖P (x)‖ stands for the �2-norm of the vector P (x) = (P0(x), P1(x), . . .).
The measure dν is positive, purely discrete and supported on the set Z(J). The magnitude of jumps of the
step function ν(x) at those points x ∈ Z(J) which do not belong to the range of λ equals
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ν(x) − ν(x− 0) = 1
x− λ0

F

({
γ2
k+1

λk+1 − x

}∞

k=0

)[
d
dxF

({
γ2
k

λk − x

}∞

k=0

)]−1

. (21)

Remark. In Theorem 1 we avoided considering the points from Z(J) which belong to the range of λ. We
remark, however, that such points, if any, can be addressed as well, similarly to (21), though in a somewhat
more complicated way. But we omit further details for the sake of simplicity.

Proof. Let EJ stand for the projection-valued spectral measure of the self-adjoint operator J . As it is well
known, the measure of orthogonality μ is related to EJ by the identity

μ(M) =
〈
e0, EJ(M)e0

〉
(22)

holding for any Borel set M ⊂ R. Here again, e0 denotes the first vector of the canonical basis in �2(Z+).
Moreover, supp(μ) = spec(J). In fact, let us recall that (22) follows from the observation that en = Pn(J)e0
for all n ∈ Z+ and from the Spectral Theorem since

δmn = 〈em, en〉 =
〈
e0, Pm(J)Pn(J)e0

〉
=
∫
R

Pm(x)Pn(x) dμ(x).

The set der(λ) is closed and, by hypothesis, discrete – and therefore at most countable. We know, referring
to (14), that the part of the spectrum of J lying in C \ der(λ) is discrete, too. Consequently, spec(J) is
countable and therefore the continuous part of the spectral measure EJ necessarily vanishes, i.e. J has
a pure point spectrum. In that case, of course, in order to determine the spectral measure EJ it suffices
to determine the projections EJ({x}) for all x ∈ specp(J). Since the vector P (z) is a formal solution of
(J − z)P (z) = 0, unique up to a constant multiplier, one has the well known criterion x ∈ specp(J) iff
‖P (x)‖ < ∞. Moreover, P0(x) = 1 and so

〈
e0, EJ

(
{x}

)
e0
〉

= |〈P (x), e0〉|2
‖P (x)‖2 = 1

‖P (x)‖2 .

The point spectrum of J can be split into two disjoint sets, specp(J) = Z(J)∪D. The Hilbert space and
the spectral measure decompose correspondingly. Put

J ′ = JEJ

(
Z(J)

)
and ν(x) =

〈
e0, EJ ′

(
(−∞, x]

)
e0
〉

for x ∈ R.

Then the measure dν is supported on Z(J) and

∫
R

f(x) dμ(x) =
∫
R

f(x) dν(x) +
∑
x∈D

f(x)
‖P (x)‖2

for all f ∈ C(R). As pointed out in (14), any x ∈ Z(J) is a simple isolated eigenvalue of J . Then EJ({x})
can be written down as a Riezs spectral projection. When choosing a sufficiently small ε > 0, one has

〈
e0, EJ

(
{x}

)
e0
〉

= − 1
2πi

∮
|x−z|=ε

m(z) dz = −Res(m,x).

If, in addition, x does not belong to the range of λ then, in view of (16) and (13), (15) (with r(x) = 0), we
may evaluate
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Res(m,x) = 1
λ0 − x

F

({
γ2
k+1

λk+1 − x

}∞

k=0

)[
d
dz

∣∣∣∣
z=x

F

({
γ2
k

λk − z

}∞

k=0

)]−1

.

This concludes the proof. �
Remark 2. Of course, the sum on the LHS of (20) is void if der(λ) = ∅. The sum also simplifies in such a
case when J is a compact operator satisfying (12). One can readily see that this happens iff λn → 0 and
w ∈ �2(Z+). Then Theorem 1 is applicable and the orthogonality relation (20) takes the form

∫
R

Pn(x)Pm(x) dν(x) + Λ0Pn(0)Pm(0) = δmn.

If J is invertible then Λ0 vanishes. Yet, in general, Λ0 may be strictly positive – as demonstrated, for
instance, by the example of q-Lommel polynomials, see [16, Theorem 4.2].

For the intended applications of Theorem 1, the following case is of importance. Let λ ∈ �1(Z+) be real
and w ∈ �2(Z+) positive. Then J is compact and (12) holds for any z �= 0 not belonging to the range of λ.
Moreover, the characteristic function of J can be regularized with the aid of the entire function

φλ(z) :=
∞∏

n=0
(1 − zλn).

Let us define

GJ(z) :=
{
φλ(z)FJ (z−1) if z �= 0,
1 if z = 0.

(23)

The function GJ is entire and, referring to (14), one has

spec(J) = {0} ∪
{
z−1; GJ (z) = 0

}
. (24)

Let us also note that

GJ

(
z−1) = lim

n→∞
z−npn(z)

where

pn(x) :=
(

n−1∏
k=0

(x− λk)
)
F

({
γ2
k

λk − x

}n−1

k=0

)
, n ∈ Z+,

are the monic polynomials corresponding to the orthogonal polynomials Pn(x) given in (19).
Since

m(z) =
∫
R

dμ(x)
x− z

where dμ is the measure from (22), formula (16) implies that the identity

∫
R

dμ(x)
1 − xz

= GJ(1)(z)
GJ (z) (25)
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holds for any z /∈ G−1
J ({0}). Here J (1) denotes the Jacobi operator determined by the diagonal sequence

{λn+1}∞n=0 and the weight sequence {wn+1}∞n=0; i.e. J (1) is obtained from J by deleting the first row and
the first column.

Let us denote by {μn}∞n=1 the set of nonzero eigenvalues of the compact operator J . Remember that all
eigenvalues of J are necessarily simple and particularly the multiplicity of 0 as an eigenvalue of J does not
exceed 1. Since dμ is supported by spec(J), formula (25) yields the Mittag–Leffler expansion

Λ0 +
∞∑
k=1

Λk

1 − μkz
= GJ(1)(z)

GJ(z) (26)

where Λk denotes the jump of the piece-wise constant function μ(x) at x = μk, and similarly for Λ0 and
x = 0. From (26) one deduces that

Λk = lim
z→μ−1

k

(1 − μkz)
GJ(1)(z)
GJ (z) = −μk

GJ(1)(μ−1
k )

G′
J (μ−1

k )

for k ∈ N. This can be viewed as a regularized version of the identity (21) in this particular case. We have
shown the following proposition:

Theorem 3. Let λ be a real sequence from �1(Z+) and w be a positive sequence from �2(Z+). Then the
measure of orthogonality dμ for the corresponding sequence of OPs defined in (18) fulfills

supp(dμ) \ {0} =
{
z−1; GJ (z) = 0

}
where the RHS is a bounded discrete subset of R with 0 as the only accumulation point. Moreover, for
x ∈ supp(dμ) \ {0} one has

μ(x) − μ(x− 0) = −x
GJ(1)(x−1)
G′
J(x−1) . (27)

Let us denote ξ−1(z) := GJ(z) and

ξk(z) :=
(

k−1∏
l=0

wl

)
zk+1GJ(k+1)(z), k ∈ Z+, (28)

where

J (k) =

⎛
⎜⎜⎜⎝

λk wk

wk λk+1 wk+1
wk+1 λk+2 wk+2

. . . . . . . . .

⎞
⎟⎟⎟⎠ .

Lemma 4. Let λ ∈ �1(Z+), w ∈ �2(Z+) and z �= 0. Then the vector

ξ(z) =
(
ξ0(z), ξ1(z), ξ2(z), . . .

)
(29)

belongs to �2(Z+), and one has

1
z2

∞∑
k=0

ξk(z)2 = ξ−1(z)ξ′0(z) − ξ′−1(z)ξ0(z). (30)
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Moreover, the vector ξ(z) is nonzero and so

ξ−1(z)ξ′0(z) − ξ′−1(z)ξ0(z) > 0, ∀z ∈ R \ {0}, (31)

provided that the sequences λ and w are both real.

Proof. First, choose N ∈ Z+ so that z−1 �= λk for all k > N . This is clearly possible since λn → 0 as
n → ∞. Then we have, referring to (6) and (23),

∣∣GJ(k)(z)
∣∣ ≤ exp

( ∞∑
j=N+1

|z||λj | +
∞∑

j=N+1

|z|2 |wj |2
|(1 − zλj)(1 − zλj+1)|

)
for k > N.

Observing that wn → 0 as n → ∞, one concludes that there exists a constant C > 0 such that

|z|k+1
k−1∏
l=0

wl ≤ C2−k for k > N.

These estimates obviously imply the square summability of the vector ξ(z).
Second, with the aid of (7), one verifies that for all z �= 0 and k ∈ Z+,

wk−1ξk−1(z) +
(
λk − z−1)ξk(z) + wkξk+1(z) = 0

where we put w−1 := 1. From here one deduces that the equation
(
z−1 − x−1)ξk(z)ξk(x) = Wk(x, z) −Wk−1(x, z), (32)

with

Wk(x, z) = wk

(
ξk+1(z)ξk(x) − ξk+1(x)ξk(z)

)
,

holds for all k ∈ Z+. Now one can derive (30) from (32) in a routine way.
Finally, it can be stated that the first equality in (8) implies the limit

lim
k→∞

GJ(k)(z) = 1.

Referring to (28) this means ξk(z) �= 0 for all sufficiently large k. �
Proposition 5. Let λ ∈ �1(Z+) be real, w ∈ �2(Z+) be positive and z �= 0. If z−1 is an eigenvalue of the
Jacobi operator J given in (11), then the vector (29) is a corresponding eigenvector.

Proof. As mentioned in (24), z−1 is an eigenvalue of J iff GJ (z) ≡ ξ−1(z) = 0. Following from that, one
readily verifies, with the aid of (7), that ξ(z) is a formal solution of the eigenvalue equation (J−z−1)ξ(z) = 0.
According to Lemma 4, ξ(z) �= 0. Furthermore, it is true that ξ0(z) �= 0. Indeed, if ξ−1(z) = ξ0(z) = 0,
then, by recurrence, ξk(z) = 0 for all k ∈ Z+, which is a contradiction. Moreover, Lemma 4 also tells us
that ξ(z) ∈ �2(Z+). �
Theorem 6. Let λ ∈ �1(Z+) be real and w ∈ �2(Z+) be positive. Then the zeros of the function GJ are all
real and simple, and form a countable subset of R \ {0} with no finite accumulation points. Furthermore,
the functions GJ and GJ(1) have no common zeros, and the zeros of the same sign of GJ and GJ(1) mutually
separate each other, i.e. between any two consecutive zeros of GJ which have the same sign there is a zero
of GJ(1) and vice versa.
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Proof. The first part of the proposition follows from (24). In fact, all zeros of GJ are with certainty real since
J is a Hermitian operator in �2(Z+). Moreover, J is compact and all its eigenvalues are simple. Therefore
the set of reciprocal values of nonzero eigenvalues of J is countable and has no finite accumulation points.

Thus we know that the zeros of GJ and GJ(1) are all located in R \ {0} and ξ−1(z) = GJ(z), ξ0(z) =
zGJ(1)(z). Hence, as far as the zeros are concerned and we are considering an interval separated from
the origin, we can speak about ξ−1 and ξ0 instead of GJ and GJ(1) , respectively. The remainder of the
proposition can be deduced from (31) in a usual way. Suppose a zero of ξ−1, called z, is not simple. Then
ξ−1(z) = ξ′−1(z) = 0, which leads to a contradiction with (31). From (31) it arises that ξ−1 and ξ0 have no
common zeros in R\{0}. Furthermore, suppose z1 and z2 are two consecutive zeros of ξ−1 of the same sign.
Since these zeros are simple, the numbers ξ′−1(z1) and ξ′−1(z2) differ in their sign. From (31) one deduces
that ξ0(z1) and ξ0(z2) must differ in sign as well. Consequently, there is at least one zero of ξ0 lying between
z1 and z2. An entirely analogous argument applies if the roles of ξ−1 and ξ0 are interchanged. �
4. Lommel polynomials

4.1. Basic properties and the orthogonality relation

In this section we deal with the Lommel polynomials since they represent one of the simplest and most
interesting examples that enable to demonstrate the general results derived in Section 3. This is done
having in mind the main goal of this paper, namely formulating a generalization of the Lommel polynomials
established in the next section. Let us note that although the Lommel polynomials can be expressed in terms
of hypergeometric series, they do not fit into Askey’s scheme of hypergeometric orthogonal polynomials [12].

Let us recall that Lommel polynomials were introduced within the theory of Bessel function (see, for
instance, [22, §9.6–9.73] or [7, Chp. VII]). They can be written explicitly in the form

Rn,ν(x) =
[n/2]∑
k=0

(−1)k
(
n− k

k

)
Γ(ν + n− k)

Γ(ν + k)

(
2
x

)n−2k

(33)

where n ∈ Z+, ν ∈ C, −ν /∈ Z+ and x ∈ C \ {0}. Here we stick to the traditional terminology though,
obviously, Rn,ν(x) is a polynomial in the variable x−1 rather than in x. Proceeding by induction in n ∈ Z+

one easily verifies the identity

Rn,ν(x) =
(

2
x

)nΓ(ν + n)
Γ(ν) F

({
x

2(ν + k)

}n−1

k=0

)
. (34)

As it is well known, Lommel polynomials are directly related to Bessel functions,

Rn,ν(x) = πx

2
(
Y−1+ν(x)Jn+ν(x) − J−1+ν(x)Yn+ν(x)

)
= πx

2 sin(πν)
(
J1−ν(x)Jn+ν(x) + (−1)nJ−1+ν(x)J−n−ν(x)

)
.

From this and relation (37) below it follows that Lommel polynomials obey the recurrence

Rn+1,ν(x) = 2(n + ν)
x

Rn,ν(x) −Rn−1,ν(x), n ∈ Z+, (35)

with the initial conditions R−1,ν(x) = 0, R0,ν(x) = 1.
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The original meaning of the Lommel polynomials is revealed by the formula

Jν+n(x) = Rn,ν(x)Jν(x) −Rn−1,ν+1(x)Jν−1(x) for n ∈ Z+. (36)

As first observed by Lommel in 1871, (36) can be obtained by iterating the basic recurrence relation for
Bessel functions, namely

Jν+1(x) = 2ν
x
Jν(x) − Jν−1(x). (37)

Let us remark that (36) immediately follows from (10), (34) and the formula

F

({
ρ

ν + k

}∞

k=1

)
= Γ(ν + 1)ρ−νJν(2ρ) (38)

which has been observed in [19] and holds for any ν such that −ν /∈ N and ρ ∈ C.
The orthogonality relation for Lommel polynomials is well known and is expressed in terms of the zeros

of the Bessel function of order ν−1 as explained, for instance, in [4,6], see also [3, Chp. VI §6] and [10]. This
relation can also be rederived as a corollary of Theorem 3. For ν > −1 and n ∈ Z+, let us set temporarily

λn = 0 and wn = 1/
√

(ν + n + 1)(ν + n + 2).

Then the corresponding Jacobi operator J is compact, self-adjoint and 0 is not an eigenvalue. In fact, the
invertibility of J can be verified straightforwardly by solving the formal eigenvalue equation for 0. Referring
to (38), the regularized characteristic function of J equals

GJ(z) = FJ

(
z−1) = Γ(ν + 1)z−νJν(2z).

Consequently, the support of the measure of orthogonality turns out to coincide with the zero set of Jν(z).
Remember that x−νJν(x) is an even function. Let jk,ν stand for the k-th positive zero of Jν(x) and put
j−k,ν = −jk,ν for k ∈ N. Theorem 3 then tells us that the orthogonality relation takes the form

−2(ν + 1)
∑

k∈Z\{0}

Jν+1(jk,ν)
j2
k,νJ

′
ν(jk,ν)

Pm

(
2

jk,ν

)
Pn

(
2

jk,ν

)
= δmn

where J ′
ν(x) denotes the partial derivative of Jν(x) with respect to x.

Furthermore, (19) and (34) imply

Rn,ν+1(x) =
√

ν + 1
ν + n + 1Pn

(
2
x

)
. (39)

Using the identity

∂xJν(x) = ν

x
Jν(x) − Jν+1(x),

the orthogonality relation simplifies to the well known formula

∑
k∈Z\{0}

j−2
k,νRn,ν+1(jk,ν)Rm,ν+1(jk,ν) = 1

2(n + ν + 1)δmn, (40)

valid for ν > −1 and m,n ∈ Z+.
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4.2. Lommel polynomials in the variable ν

Lommel polynomials can also be addressed as polynomials in the parameter ν. Such polynomials are also
orthogonal with the measure of orthogonality supported on the zero set of a Bessel function of the first kind
regarded as a function of the order.

Let us consider a sequence of polynomials in the variable ν and depending on a parameter u �= 0,
{Qn(u; ν)}∞n=0, determined by the recurrence

uQn−1(u; ν) − nQn(u; ν) + uQn+1(u; ν) = νQn(u; ν), n ∈ Z+,

with the initial conditions Q−1(u; ν) = 0, Q0(u; ν) = 1. According to (19),

Qn(u, ν) = u−nΓ(ν + n)
Γ(ν) F

({
u

ν + k

}n−1

k=0

)
for n ∈ Z+.

Comparing the last formula with (34) one observes that

Qn(u, ν) = Rn,ν(2u), ∀n ∈ Z+.

The Bessel function Jν(x) regarded as a function of ν has infinitely many simple real zeros which are all
isolated provided that x > 0, see [20, Subsec. 4.3]. Below we denote the zeros of Jν−1(2u) by θn = θn(u),
n ∈ N, and restrict ourselves to the case u > 0 since θn(−u) = θn(u).

The Jacobi matrix J corresponding to this case, i.e. J with the diagonal λn = −n and the weights wn = u,
n ∈ Z+, is an unbounded self-adjoint operator with a discrete spectrum (see [20]). Hence the orthogonality
measure for {Qn(u; ν)} has the form stated in Remark 2. Thus, using (21) and (38), one arrives at the
orthogonality relation

∞∑
k=1

Jθk(2u)
u(∂z|z=θkJz−1(2u))Rn,θk(2u)Rm,θk(2u) = δmn, m, n ∈ Z+.

Let us remark that initially it was Dickinson who formulated the problem of constructing the measure
of orthogonality for the Lommel polynomials in the variable ν in 1958 [5]. Ten years later, Maki described
such a construction in [17].

5. A new class of orthogonal polynomials

5.1. Characteristic functions of the Jacobi matrices JL and J̃L

In this section, we work with matrices JL and J̃L defined in (1), (2) and (3), (4), respectively. In order to
have a positive weight sequence w and a Hermitian matrix, we assume, in the case of JL, that −1 �= L > −3/2
if η ∈ R \ {0}, and L > −3/2 if η = 0. Similarly, in the case of J̃L we assume that L > −1/2 and η ∈ R.

Let us recall that the regular and irregular Coulomb wave functions, FL(η, ρ) and GL(η, ρ), are two
linearly independent solutions of the second-order differential equation

d2u

dρ2 +
(

1 − 2η
ρ

− L(L + 1)
ρ2

)
u = 0; (41)

see, for instance, [1, Chp. 14]. One has the Wronskian formula (see [1, Eq. 14.2.5])
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FL−1(η, ρ)GL(η, ρ) − FL(η, ρ)GL−1(η, ρ) = L√
L2 + η2

. (42)

Furthermore, the function FL(η, ρ) admits the decomposition [1, Eqs. 14.1.3 and 14.1.7]

FL(η, ρ) = CL(η)ρL+1φL(η, ρ) (43)

where

CL(η) :=
√

2πη
e2πη − 1

√
(1 + η2)(4 + η2) . . . (L2 + η2)

(2L + 1)!!L!

and

φL(η, ρ) := e−iρ
1F1(L + 1 − iη, 2L + 2, 2iρ). (44)

For L not an integer, CL(η) is to be understood as

CL(η) = 2Le−πη/2|Γ(L + 1 + iη)|
Γ(2L + 2) . (45)

In [21], a formula for the characteristic function of the matrix JL has been derived. If expressed in terms of
GJL

, as defined in (23), the formula simply reads

GJL
(ρ) =

( ∞∏
k=L+1

(1 − λkρ)
)
F

({
γ2
kρ

1 − λkρ

}∞

k=L+1

)
= φL(η, ρ). (46)

For the particular values of parameters, L = ν − 1/2 and η = 0, one gets

F

({
ρ

2(ν + k)

}∞

k=1

)
= φν−1/2(0, ρ). (47)

It is also known that, see (44) and Eqs. 14.6.6 and 13.6.1 in [1],

Fν−1/2(0, ρ) =
√

πρ

2 Jν(ρ), (48)

φν−1/2(0, ρ) = e−iρ
1F1(ν + 1/2, 2ν + 1, 2iρ) = Γ(ν + 1)

(
2
ρ

)ν

Jν(ρ). (49)

Let us note that (47) with (49) jointly imply (38).
Using recurrence (7) for F, one can also obtain the characteristic function for J̃L,

FJ̃L

(
ρ−1) = FJL

(
ρ−1)− w̃2

L

(ρ−1 − λ̃L)(ρ−1 − λL+1)
FJL+1

(
ρ−1). (50)

Be reminded that φL(η, ρ) obeys the equations

∂ρφL+1(η, ρ) = 2L + 3
ρ

φL(η, ρ) −
(

2L + 3
ρ

+ η

L + 1

)
φL+1(η, ρ), (51)

∂ρφL(η, ρ) = η

L + 1φL(η, ρ) − ρ

2L + 3

(
1 + η2

(L + 1)2

)
φL+1(η, ρ), (52)
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as it follows from [1, Eqs. 14.2.1 and 14.2.2]. A straightforward computation based on (46), (50) and (52)
yields

(
1 + ηρ

(L + 1)2

)( ∞∏
n=L+1

(
1 + ηρ

n(n + 1)

))
FJ̃L

(
ρ−1) = φL(η, ρ) + ρ

L + 1∂ρφL(η, ρ).

In view of (43), this can be rewritten as

GJ̃L
(ρ) = φL(η, ρ) + ρ

L + 1∂ρφL(η, ρ) = 1
(L + 1)CL(η)ρ

−L∂ρFL(η, ρ).

5.2. Orthogonal polynomials associated with FL(η, ρ)

Following the general scheme outlined in Section 3 (see (18)), we denote by {P (L)
n (η; z)}∞n=0 the sequence

of OPs given by the three-term recurrence

zP (L)
n (η; z) = wL+nP

(L)
n−1(η; z) + λL+n+1P

(L)
n (η; z) + wL+n+1P

(L)
n+1(η; z), n ∈ Z+, (53)

with P
(L)
−1 (η; z) = 0 and P

(L)
0 (η; z) = 1. Again, we restrict ourselves to the range of parameters −1 �= L >

−3/2 if η ∈ R \ {0}, and L > −3/2 if η = 0. Likewise to Lommel polynomials, these polynomials are not
included in Askey’s scheme [12]. Further let us denote

R(L)
n (η; ρ) := P (L)

n

(
η; ρ−1) (54)

for ρ �= 0, n ∈ Z+. According to (19),

P (L)
n (η; z) =

(
n∏

k=1

z − λL+k

wL+k

)
F

({
γ2
L+k

z − λL+k

}n

k=1

)
, n ∈ Z+. (55)

Alternatively, these polynomials can be expressed in terms of Coulomb wave functions.

Proposition 7. For n ∈ Z+ and ρ �= 0 one has

R(L)
n (η; ρ) =

√
(L + 1)2 + η2

L + 1

√
2L + 2n + 3

2L + 3
(
FL(η, ρ)GL+n+1(η, ρ) − FL+n+1(η, ρ)GL(η, ρ)

)
.

Proof. To verify this identity it suffices to check that the RHS fulfills the same recurrence relation as
R

(L)
n (η, ρ) does, while sharing the same initial conditions. The RHS actually meets the first requirement as

it follows from the known recurrence relations for Coulomb wave functions, see [1, Eq. 14.2.3]. The initial
condition is a consequence of the Wronskian formula (42). �

For the computations to follow it is useful to note that the weights wn and the normalization constants
CL(η), as defined in (2) and (45), respectively, are related by the equation

n−1∏
k=0

wL+k =
√

2L + 2n + 1
2L + 1

CL+n(η)
CL(η) , n = 0, 1, 2, . . . . (56)

Proposition 8. For the above indicated range of parameters and ρ �= 0,

lim
n→∞

√
(2L + 3)(2L + 2n + 1)CL+n(η)ρL+nR

(L)
n−1(η; ρ) =

√
1 + η2

(L + 1)2FL(η, ρ). (57)
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Proof. Referring to (54) and (55), R(L)
n (η; ρ) can be expressed in terms of the function F. The sequence

whose truncation stands in the argument of F on the RHS of (55) belongs to the domain D defined in (5) –
meaning that the second equation in (8) can be applied. Concerning the remaining terms occurring on the
LHS of (57), one readily computes, with the aid of (56), that

lim
n→∞

√
(2L + 3)(2L + 2n + 1)CL+n(η)ρL+n

(
n−1∏
k=1

ρ−1 − λk+L

wk+L

)

=
√

(L + 1)2 + η2

L + 1 CL(η)ρL+1
∞∏
k=1

(
1 + ηρ

(L + k)(L + k + 1)

)
.

Recalling (46) and (43), the result immediately follows. �
Remark 9. Note that the polynomials R

(L)
n (η; ρ) can be regarded as a generalization of the Lommel poly-

nomials Rn,ν(x). Actually, if η = 0 then the Jacobi matrix Jν−1/2 is determined by the sequences

λn = 0, wn = 1/
(
2
√

(ν + n + 1)(ν + n + 2)
)
.

Thus the recurrence (53) reduces to (35) for η = 0 and L = ν − 1/2. More precisely, one finds that
P

(ν−1/2)
n (0; z) coincides with the polynomial Pn(2z) from Section 4.1 for all n. In view of (39) this means

R(ν−1/2)
n (0; ρ) =

√
ν + n + 1
ν + 1 Rn,ν+1(ρ) (58)

for n ∈ Z+, ρ ∈ C \ {0} and ν > −1. In addition we remark that, for the same values of parameters, (57)
yields Hurwitz’ limit formula (see §9.65 in [22])

lim
n→∞

(ρ/2)ν+n

Γ(ν + n + 1)Rn,ν+1(ρ) = Jν(ρ).

A more explicit description of the polynomials P
(L)
n (η; z) can be derived. Let us write

P (L)
n (η; z) =

n∑
k=0

ck(n,L, η)zn−k. (59)

Proposition 10. Let {Qk(n,L; η); k ∈ Z+} be a sequence of monic polynomials in the variable η defined by
the recurrence

Qk+1(n,L; η) = ηQk(n,L; η) − hk(n,L)Qk−1(n,L; η) for k ∈ Z+, (60)

with the initial conditions Q−1(n,L; η) = 0, Q0(n,L; η) = 1, where

hk(n,L) = k(2L + k + 1)(2n− k + 2)(2L + 2n− k + 3)
4(2n− 2k + 1)(2n− 2k + 3) , k ∈ Z+.

Then the coefficients ck(n,L, η) defined in (59) fulfill

ck(n,L, η) =
√

2L + 2n + 3
(L + 1)

√
2L + 3

∣∣∣∣ Γ(L + 2 + iη)
Γ(L + n + 2 + iη)

∣∣∣∣Γ(2n− k + 2)Γ(2L + 2n− k + 3)
Γ(2n− 2k + 2)Γ(2L + k + 2)

2−n+k−1

k! Qk(n,L; η)

(61)

for k = 0, 1, 2, . . . , n.
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For the proof we shall need an auxiliary identity. Note that, if convenient, Qk(n,L; η) can be treated as
a polynomial in η with coefficients belonging to the field of rational functions in the variables n, L.

Lemma 11. The polynomials Qk(n,L; η) defined in Proposition 10 fulfill

Qk(n,L; η) − αk(n,L)Qk(n− 1, L; η) − βk(n,L)ηQk−1(n− 1, L; η) = 0 (62)

for k = 0, 1, 2, . . . , where

αk(n,L) = 2(2n− 2k + 1)(L + n + 1)
(2n− k + 1)(2L + 2n− k + 2) , βk(n,L) = k(2L + k + 1)

(2n− k + 1)(2L + 2n− k + 2) .

Proof. It is easy to verify that αk(n,L), βk(n,L) fulfill the following identities

αk(n,L) + βk(n,L) = 1, (63)

αk+1(n,L)hk(n− 1, L) − αk−1(n,L)hk(n,L) = 0, (64)

βk(n,L)hk−1(n− 1, L) − βk−1(n,L)hk(n,L) = 0. (65)

In order to show (62) one can proceed by induction in k. The case k = 0 means α0(n,L) = 1 which is
obviously true. Furthermore, Q1(n,L; η) = η, meaning that the case k = 1 is a consequence of (63), with
k = 1. Suppose k ≥ 2 and further suppose that the identity is true for k − 1 and k − 2. Applying (60) both
to Qk(n,L; η) and Qk(n− 1, L; η) and using (63), (64) one can show the LHS of (62) to be equal to

−hk−1(n,L)
(
Qk−2(n,L; η) − αk−2(n,L)Qk−2(n− 1, L; η)

)
+ η

(
Qk−1(n,L; η) −Qk−1(n− 1, L; η)

)
.

In the next step, we apply the induction hypothesis both to Qk−1(n,L; η) and Qk−2(n,L; η) in the above
expression. It equals, up to a common factor η,

−βk−1(n,L)Qk−1(n− 1, L; η) + βk−1(n,L)ηQk−2(n− 1, L; η) − hk−1(n,L)βk−2(n,L)Qk−3(n− 1, L; η).

Finally, making once more use of (60), this time for the term Qk−1(n − 1, L; η), one can prove the last
expression to be equal to

(
hk−2(n− 1, L)βk−1(n,L) − hk−1(n,L)βk−2(n,L)

)
Qk−3(n− 1, L; η) = 0

as it follows from (65). �
Proof of Proposition 10. Write down the polynomials P

(L)
n (η; z) in the form of (59) and substitute the

RHS of (61) for the coefficients ck(n,L, η). By substituting the resulting expression for the polynomials in
(53), one finds that the recurrence relation for the sequence {P (L)

n (η; z)} is satisfied if and only if the terms
Qk(n,L; η) from the substitution fulfill

ak(n,L)Qk(n,L; η) − bk(n,L)Qk(n− 1, L; η) − ck(n,L)ηQk−1(n− 1, L; η)

+ dk(n,L, η)Qk−2(n− 2, L; η) = 0 (66)

for k, n ∈ N, n ≥ k, where we again put Q−1(n,L; η) = 0, Q0(n,L; η) = 1, and
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ak(n,L) = (2n− k)(2n− k + 1)(2L + 2n− k + 1)(2L + 2n− k + 2)
(2L + k)(2L + k + 1)(L + n + 1)

,

bk(n,L) = 4(2L + 2n + 1)(n− k)(2n− 2k + 1)
(2L + k)(2L + k + 1) ,

ck(n,L) = k(2L + 2n + 1)(2n− k)(2L + 2n− k + 1)
(2L + k)(L + n)(L + n + 1) ,

dk(n,L, η) = (k − 1)k(η2 + (L + n)2)
L + n

.

Note that for k = 0 one has

a0(n,L)Q0(n,L, η) − b0(n,L)Q0(n− 1, L, η) − c0(n,L)ηQ−1(n− 1, L, η) = a0(n,L) − b0(n,L) = 0.

It can be observed that relation (66) provides the terms Qk(n,L; η) with an unambiguous specification.
For this fact to be visible, one can proceed by induction in k. Suppose k > 0 and all terms Qj(n,L; η)
are already known for j < k, n ≥ j. Putting n = k in (66) one can express Qk(k, L; η) in terms of
Qk−1(k − 1, L; η) and Qk−2(k − 2, L; η) since bk(k, L) = 0. Then, treating k as being fixed and n as a
variable, one can interpret (66) as a first order difference equation in the index n, with a right hand side,
for an unknown sequence {Qk(n,L; η); n ≥ k}. The initial condition for n = k is now known as well as the
right hand side and so the difference equation can be solved unambiguously.

To prove this proposition it suffices to verify that if {Qk(n,L; η)} is a sequence of monic polynomials in
the variable η defined by the recurrence (60) then it obeys, too, the relation (66). To this end, one may
apply repeatedly the rule (62) to bring the LHS of (66) to the form

e0(n,L)Qk(n− 2, L; η) + e1(n,L)ηQk−1(n− 2, L; η) + e2(n,L, η)Qk−2(n− 2, L; η) (67)

where

e0(n,L) = ak(n,L)αk(n− 1, L)αk(n,L) − bk(n,L)αk(n− 1, L),

e1(n,L) = ak(n,L)αk−1(n− 1, L)βk(n,L) + ak(n,L)αk(n,L)βk(n− 1, L)

− bk(n,L)βk(n− 1, L) − ck(n,L)αk−1(n− 1, L),

and

e2(n,L, η) =
(
ak(n,L)βk−1(n− 1, L)βk(n,L) − ck(n,L)βk−1(n− 1, L)

)
η2 + dk(n,L, η).

Direct evaluation then yields

e1(n,L)/e0(n,L) = −1, e2(n,L, η)/e0(n,L) = hk−1(n− 2, L).

Referring to the defining relation (60), this proves (67) to be equal to zero indeed. �
Remark 12. Let us shortly discuss what Proposition 10 tells us in the particular case when η = 0, L = ν−1/2.
The recurrence (60) can be easily solved for η = 0. One has Q2k+1(n,L; 0) = 0 and

Q2k(n,L; 0) = (−1)k (2k)!(n− k)!(2n− 4k + 1)!
k!(n− 2k)!(2n− 2k + 1)!

Γ(L + k + 1)Γ(L + n + 2)
Γ(L + 1)Γ(L + n− k + 2)

for k = 0, 1, 2, . . . . Whence c2k+1(n, ν − 1/2, 0) = 0 and
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c2k

(
n, ν − 1

2 , 0
)

=
√

ν + n + 1
ν + 1 (−1)k2n−2k

(
n− k

k

)
Γ(ν + n− k + 1)

Γ(ν + k + 1) .

Recalling (58), the explicit expression (33) for the Lommel polynomials can be rederived.

Let us mention two more formulas. The first one is quite substantial and shows that the polynomials
R

(L)
n (η, ρ) play the same role for Coulomb wave functions as Lommel polynomials do for Bessel functions.

It follows from the abstract identity (10) where we specialize d = n,

xk =
γ2
L+k−1

ρ−1 − λL+k−1
, (68)

and again make use of (56). Thus we get

R(L−1)
n (η, ρ)FL(η, ρ) − L + 1

L

√
2L + 3
2L + 1

√
η2 + L2√

η2 + (L + 1)2
R

(L)
n−1(η, ρ)FL−1(η, ρ)

=
√

2L + 2n + 1
2L + 1 FL+n(η, ρ), (69)

where n ∈ Z+, 0 �= L > −1/2, η ∈ R and ρ �= 0. Moreover, referring to (48) and (58), one observes that
relation (36) is a particular case of (69) if one lets η = 0 and L = ν − 1/2.

Similarly, the announced second identity can be derived from (9) by making the same choice as the one
in (68) but writing z instead of ρ−1. Recalling (55) one finds that

P (L−1)
n (η; z)P (L)

n+s(η; z) − P
(L−1)
n+s+1(η; z)P

(L)
n−1(η; z) = wL

wL+n
P (L+n)
s (η; z)

holds for all n, s ∈ Z+.
We conclude this subsection by describing the measure of orthogonality for the generalized Lommel

polynomials. To this end, we need an auxiliary result concerning the zeros of the function φL(η, ·). It
is obtained by applying Theorem 6 to the sequences w and λ defined in (2). From (46) we know that
φL(η, ρ) = GJL

(ρ) and we note that, obviously, JL+1 = J
(1)
L . Thus we arrive at a proposition stated below.

Proposition 13. Let −1 �= L > −3/2 if η ∈ R \ {0}, and L > −3/2 if η = 0. Then the zeros of the function
φL(η, ·) form a countable subset of R\{0} with no finite accumulation points. Moreover, the zeros of φL(η, .)
are all simple, the functions φL(η, ·) and φL+1(η, ·) have no common zeros, and the zeros of the same sign
of φL(η, ·) and φL+1(η, ·) mutually separate each other.

Let us arrange the zeros of φL(η, ·) into a sequence ρL,n, n ∈ N (not indicating the dependence on η

explicitly). According to Proposition 13 we can carry this out in such a way that 0 < |ρL,1| ≤ |ρL,2| ≤
|ρL,3| ≤ . . . . Thus we have

{ρL,n; n ∈ N} =
{
ρ ∈ R; φL(η, ρ) = 0

}
=
{
ρ ∈ R \ {0}; FL(η, ρ) = 0

}
. (70)

Theorem 14. Let −1 �= L > −3/2 if η ∈ R \ {0}, and L > −3/2 if η = 0. Then the orthogonality relation

∞∑
k=1

ρ−2
L,kR

(L)
n (η; ρL,k)R(L)

m (η; ρL,k) = (L + 1)2 + η2

(2L + 3)(L + 1)2 δmn (71)

holds for all m,n ∈ Z+.
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Proof. According to Theorem 3, we have the orthogonality relation∫
R

P (L)
m (η; ρ)P (L)

n (η; ρ) dμ(ρ) = δmn

where dμ is supported on the set {ρ−1
L,n; n ∈ N} ∪ {0}. Applying formula (27) combined with (46) and (52)

one finds that

μ
(
ρ−1
L,k

)
− μ

(
ρ−1
L,k − 0

)
= −ρ−1

L,k

φL+1(η, ρL,k)
∂ρφL(η, ρL,k)

= (2L + 3)(L + 1)2

(L + 1)2 + η2 ρ−2
L,k.

We claim that 0 is a point of continuity of μ. Indeed, let us denote by Λk the magnitude of the jump of μ
at ρ−1

L,k if k ∈ N, and at 0 if k = 0. Then, since dμ is a probability measure, one has

1 =
∞∑
k=0

Λk = Λ0 + (2L + 3)(L + 1)2

(L + 1)2 + η2

∞∑
k=1

ρ−2
L,k = Λ0 + (2L + 3)(L + 1)2

(L + 1)2 + η2 ‖JL‖2
2 (72)

where ‖JL‖2 stands for the Hilbert–Schmidt norm of JL. This norm, however, can be computed directly,

‖JL‖2
2 =

∞∑
n=1

λ2
L+n + 2

∞∑
n=1

w2
L+n = (L + 1)2 + η2

(2L + 3)(L + 1)2 .

Comparing this equality to (72) one finds that Λ0 = 0. To conclude the proof it suffices to recall (54). �
In the course of the proof of Theorem 14 we have shown that 0 is a point of continuity of μ. It follows

that 0 is not an eigenvalue of the compact operator JL.

Corollary 15. Let −1 �= L > −3/2 if η ∈ R\{0}, and L > −3/2 if η = 0. Then the operator JL is invertible.

Remark 16. Again, letting η = 0 and L = ν − 1/2 in (71) and recalling (58), one readily verifies that (40)
is a special case of (71).

Remark 17. In the same way as above one can define a sequence of OPs associated with the function
∂ρFL(η, ρ) or, more generally, with αFL(η, ρ)+ρ∂ρFL(η, ρ) for a real α. Since our results in this respect are
not complete yet and since they are notably less elegant than those for the function FL(η, ρ), we confine
ourselves to this short comment for now and leave this problem open for further research.

Let us just consider the particular case of the function ∂ρFL(η, ρ) and call the corresponding sequence of
OPs {P̃ (L)

n (η; z)}∞n=0. It is defined by a recurrence analogous to (53) but now the coefficients in the relation
are matrix entries of J̃L rather than those of JL. The initial conditions are the same, and one has to restrict
the range of parameters to the values L > −1/2 and η ∈ R. Let us denote R̃

(L)
n (η; ρ) := P̃

(L)
n (η; ρ−1) for

ρ �= 0, n ∈ Z+. The zeros of the function ρ �→ ∂ρFL(η, ρ) can be shown to be all real and simple and to
form a countable set with no finite accumulation points. One can arrange the zeros into a sequence which
we call {ρ̃L,n; n ∈ N}. Then the corresponding orthogonality measure dμ is again supported on the set
{ρ̃−1

L,k; k ∈ N}∪{0}. It is possible to directly compute the magnitude Λk of the jump at ρ̃−1
L,k of the piece-wise

constant function μ with the result

Λk = L + 1
ρ̃2
L,k − 2ηρ̃L,k − L(L + 1) .

We propose that μ has no jump at the point 0 or, equivalently, that the Jacobi matrix J̃L is invertible, but
we have no proof for this hypothesis yet.
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6. The spectral zeta function associated with FL(η, ρ)

Let us recall that the spectral zeta function of a positive definite operator A with a discrete spectrum
whose inverse A−1 belongs to the p-th Schatten class is defined as

ζ(A)(s) :=
∞∑

n=1

1
λs
n

= TrA−s, Re s ≥ p,

where 0 < λ1 ≤ λ2 ≤ λ3 ≤ . . . are the eigenvalues of A. The zeta function can be used to approximately
compute the ground state energy of A, i.e. the lowest eigenvalue λ1. This approach is known as Euler’s
method (initially applied to the first positive zero of the Bessel function J0) which is based on the inequalities

ζ(A)(s)−1/s < λ1 <
ζ(A)(s)

ζ(A)(s + 1)
, s ≥ p. (73)

In fact, the inequalities in (73) become equalities in the limit s → ∞.
In this section we describe recursive rules for the zeta function associated with the regular Coulomb wave

function. The procedure can be applied, however, to a wider class of special functions. For example, this
approach can also be applied to Bessel functions, resulting in the well known convolution formulas for the
Rayleigh function [11]. Not surprisingly, the recurrences derived below can be viewed as a generalization of
these previously known results.

Recall also that the regularized determinant,

det2(1 + A) := det
(
(1 + A) exp(−A)

)
,

is well defined if A is a Hilbert–Schmidt operator, i.e. belonging to the second Schatten class, on a sepa-
rable Hilbert space. Moreover, the regularized determinant is continuous in the Hilbert–Schmidt norm [18,
Theorem 9.2].

Referring to (1), (46) and (70), we start from the identity

det2(1 − ρJL,n) = exp(ρTrJL,n) det(1 − ρJL,n)

= exp
(

ηρ

L + n + 1 − ηρ

L + 1

)( n∏
k=1

(1 − ρλk+L)
)
F

({
γ2
L+k

λL+k − ρ−1

}n

k=1

)

where JL,n stands for the n× n truncation of JL. The formula can be verified straightforwardly by mathe-
matical induction in n with the aid of the rule (7). Now, sending n to infinity and using (46), we get

det2(1 − ρJL) = exp
(
− ηρ

L + 1

)
φL(η, ρ). (74)

On the other hand, we have the Hadamard product formula

det2(1 − ρJL) =
∞∏

n=1

(
1 − ρ

ρL,n

)
eρ/ρL,n , (75)

see [18, Theorem 9.2]. Combining (74) and (75) one arrives at the Hadamard infinite product expansion of
φL(η, .),

φL(η, ρ) = exp
(

ηρ

L + 1

) ∞∏
n=1

(
1 − ρ

ρL,n

)
eρ/ρL,n . (76)
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F. Štampach, P. Šťovíček / J. Math. Anal. Appl. ••• (••••) •••–••• 21

Let us define

ζL(k) :=
∞∑

n=1

1
ρkL,n

, k ≥ 2.

In view of (76), we can expand the logarithm of φL(η, ρ) into a power series,

lnφL(η, ρ) = ηρ

L + 1 −
∞∑

n=1

∞∑
k=2

1
k

(
ρ

ρL,n

)k

,

whenever ρ ∈ C, |ρ| < |ρL,1|. Whence

∂ρφL(η, ρ)
φL(η, ρ) = η

L + 1 −
∞∑
k=1

ζL(k + 1)ρk.

Comparing this equality to (52) one finds that

∞∑
k=0

ζL(k + 2)ρk = 1
2L + 3

(
1 + η2

(L + 1)2

)
φL+1(η, ρ)
φL(η, ρ) for |ρ| < |ρL,1|. (77)

In this way, the values of ζL(k) for k ∈ N, k ≥ 2, can be obtained by an inspection of the Taylor series of
the RHS in (77).

However, an apparently more efficient tool to compute the values of the zeta function would be a recur-
rence formula. To find it, one has to differentiate Eq. (77) with respect to ρ and use both formulas (51)
and (52). By doing so, one arrives at the equation

(2L + 3)
(

1 + η2

(L + 1)2

)−1 ∞∑
k=0

k ζL(k + 2)ρk

= (2L + 3)
(

1 − φL+1(η, ρ)
φL(η, ρ)

)
− 2ηρ

L + 1
φL+1(η, ρ)
φL(η, ρ) + ρ2

2L + 3

(
1 + η2

(L + 1)2

)(
φL+1(η, ρ)
φL(η, ρ)

)2

.

Using (77) to express φL+1(η, ρ)/φL(η, ρ), one obtains

∞∑
k=1

kζL(k + 2)ρk = 1 + η2

(L + 1)2 − (2L + 3)
∞∑
k=0

ζL(k + 2)ρk

+ 2η
L + 1

∞∑
k=1

ζL(k + 1)ρk +
∞∑
k=0

k∑
l=0

ζL(l + 2)ζL(k − l + 2)ρk+2.

At this point, it suffices to equate coefficients at the same powers of ρ. In particular, for the absolute term
we get

ζL(2) = 1
2L + 3

(
1 + η2

(L + 1)2

)
. (78)

Note that ζL(2) is the square of the Hilbert–Schmidt norm of JL. The desired recurrence relation reads

ζL(k + 1) = 1
2L + k + 2

(
2η

L + 1ζL(k) +
k−2∑
l=1

ζL(l + 1)ζL(k − l)
)
, k = 2, 3, 4, . . . . (79)
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As described above, bounds on the first (in modulus) zero ρL,1 can be determined with the aid of the
zeta function. The operator JL is not positive, however, and so the bounds should be written as follows

ζL(2s)−1/s < ρ2
L,1 <

ζL(2s)
ζL(2s + 2) , s ≥ 1.

In the simplest case, for s = 1, we get the estimates

(2L + 3)(L + 1)2

(L + 1)2 + η2 < ρ2
L.1 <

(2L + 3)(2L + 5)(L + 2)(L + 1)2

(L + 4)η2 + (L + 2)(L + 1)2 .

Let us further examine the particular case when η = 0 and L = ν− 1/2. In that case, rules (78) and (79)
reproduce the well known recurrence relations for the Rayleigh function σ2n(ν), with n ≥ 2 and ν > −1
[11]. Recall that

σ2n(ν) :=
∞∑
k=1

j−2n
ν,k

where jν,k denotes the k-th positive zero of the Bessel function Jν . The recurrence relation reads

σ2(ν) = 1
4(ν + 1) , σ2n(ν) = 1

n + ν

n−1∑
k=1

σ2k(ν)σ2n−2k(ν) for n = 2, 3, 4, . . . .

Remark 18. Let us remark that instead of (79) one can derive a recurrence relation in a form which is a
linear combination of zeta functions. Rewrite Eq. (77) as

(
1 + η2

(L + 1)2

)
φL+1(η, ρ) = (2L + 3)φL(η, ρ)

∞∑
k=0

ζL(k + 2)ρk

and replace everywhere the function φL by the power expansion

φL(η, ρ) = e−iρ
∞∑
k=0

(L + 1 − iη)k
(2L + 2)k

(2iρ)k

k! .

After carrying out obvious cancellations and equating coefficients at the same powers of ρ on both sides one
arrives at the identity

2[(L + 1)2 + η2]
(L + 1)(L + 1 − iη)

Γ(L + 2 − iη + k)
Γ(2L + 4 + k)k! =

k∑
l=0

Γ(L + 1 − iη + k − l)(2i)−l

Γ(2L + 2 + k − l)(k − l)! ζL(l + 2),

which holds for any k ∈ Z+, L > −1 and η ∈ R.

Remark 19. The orthogonality measure dμ for the sequence of OPs {P (L)
n (η, ρ)}, as described in Theorem 14,

fulfills
∫
R

f(x) dμ(x) = (2L + 3)(L + 1)2

(L + 1)2 + η2

∞∑
k=1

ρ−2
L,kf

(
ρ−1
L,k

)

for every f ∈ C(R). Consequently, the moment sequence associated with the measure dμ can be expressed
in terms of the zeta function,
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mn :=
∫
R

xn dμ(x) = ζL(n + 2)
ζL(2)

, n ∈ Z+

(recall also (78)). In view of formulas (78) and (79), this means that the moment sequence can be evaluated
recursively.

Remark 20. This comment extends Remark 17. We note that it is possible to derive formulas analogous to
(79) for the spectral zeta function associated with the function ∂ρFL(η, ρ) though the resulting recurrence
rule is notably more complicated in this case. One may begin, similarly to (75), with the identities

det2(1 − ρJ̃L) =
∞∏

n=1

(
1 − ρ

ρ̃L,n

)
eρ/ρ̃L,n = exp

(
− (L + 2)ηρ

(L + 1)2

)(
φL(η, ρ) + ρ

L + 1∂ρφL(η, ρ)
)
.

Hence for ψL(η, ρ) := φL(η, ρ) + (ρ/(L + 1))∂ρφL(η, ρ) we have

lnψL(η, ρ) = (L + 2)ηρ
(L + 1)2 −

∞∑
n=1

∞∑
k=2

1
k

(
ρ

ρ̃L,n

)k

(80)

whenever ρ ∈ C, |ρ| < |ρ̃L,1|. Let us define

ζ̃L(k) :=
∞∑

n=1

1
ρ̃kL,n

, k ≥ 2.

Having arrived at this point, manipulations quite similar to those used in the case of the zeta function
associated with FL(η, ρ) can be applied. Differentiating Eq. (80) twice and both times taking into account
that FL(η, ρ) solves (41), one arrives, after some tedious but straightforward computation, at the equation

2(ρ− η)
ρ2 − 2ηρ− L(L + 1)

(
−Lρ− (L + 2)ηρ2

(L + 1)2 +
∞∑
k=2

ζ̃L(k)ρk+1

)
+
(
−L− (L + 2)ηρ

(L + 1)2 +
∞∑
k=2

ζ̃L(k)ρk
)2

= L2 + 2(L2 + L− 1)ηρ
(L + 1)2 − ρ2 +

∞∑
k=2

(k + 1)ζ̃L(k)ρk.

From here the sought-after recurrence rules can be extracted in a routine way, yet we refrain from writing
them down explicitly because of their length and complexity.
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Abstract

A family T (ν), ν ∈ R, of semiinfinite positive Jacobi matrices is introduced with
matrix entries taken from the Hahn-Exton q-difference equation. The corre-
sponding matrix operators defined on the linear hull of the canonical basis in
`2(Z+) are essentially self-adjoint for |ν| ≥ 1 and have deficiency indices (1, 1)
for |ν| < 1. A convenient description of all self-adjoint extensions is obtained
and the spectral problem is analyzed in detail. The spectrum is discrete and
the characteristic equation on eigenvalues is derived explicitly in all cases. Par-
ticularly, the Hahn-Exton q-Bessel function Jν(z; q) serves as the characteristic
function of the Friedrichs extension. As a direct application one can reproduce,
in an alternative way, some basic results about the q-Bessel function due to
Koelink and Swarttouw.

Keywords : Jacobi matrix, Hahn-Exton q-Bessel function, self-adjoint extension, spec-
tral problem
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1 Introduction

There exist three commonly used q-analogues of the Bessel function Jν(z). Two of
them were introduced by Jackson in the beginning of the 20th century and are mutually
closely related, see [6] for a basic overview and original references. Here we shall be
concerned with the third analogue usually named after Hahn and Exton. Its most
important features like properties of the zeros and the associated Lommel polynomials

1



including orthogonality relations were studied not so long ago [11, 10, 9]. The Hahn-
Exton q-Bessel function is defined as follows

Jν(z; q) ≡ J (3)
ν (z; q) =

(qν+1; q)∞
(q; q)∞

zν 1φ1(0; qν+1; q, qz2). (1)

Here rφs(a1, . . . , ar; b1, . . . , bs; q, z) stands for the basic hypergeometric series (see, for
instance, [6]). It is of importance that Jν(z; q) obeys the Hahn-Exton q-Bessel differ-
ence equation

Jν(qz; q) + q−ν/2(qz2 − 1− qν)Jν(q1/2z; q) + Jν(z; q) = 0. (2)

Using the coefficients from (2) one can introduce a two-parameter family of real
symmetric Jacobi matrices

T ≡ T (ν) =


β0 α0

α0 β1 α1

α1 β2 α2

. . . . . . . . .

 (3)

depending on ν ∈ R and also on q, 0 < q < 1. But q is treated below as having been
fixed and in most cases is not indicated explicitly. Matrix entries are supposed to be
indexed by m,n = 0, 1, 2, . . .. More formally, we put Tn,n = βn, Tn,n+1 = Tn+1,n = αn
and Tm,n = 0 otherwise, where

αn ≡ α(ν)
n = −q−n+(ν−1)/2, βn ≡ β(ν)

n = (1 + qν) q−n, n ∈ Z+. (4)

In order to keep notations simple we will also suppress the superscript (ν) provided
this cannot lead to misunderstanding.

Our main goal in this paper is to provide a detailed analysis of those operators
T in `2 ≡ `2(Z+) (with Z+ standing for nonnegative integers) whose matrix in the
canonical basis equals T . This example has that interesting feature that it exhibits a
transition between the indeterminate and determinate cases depending on ν. In more
detail, denote by C∞ the linear space of all complex sequences indexed by Z+ and by
D the subspace of those sequences having at most finitely many nonvanishing entries.
One may also say that D is the linear hull of the canonical basis in `2. It turns out
that the matrix operator induced by T on the domain D is essentially self-adjoint in
`2 if and only if |ν| ≥ 1. For |ν| < 1 there exists a one-parameter family of self-adjoint
extensions.

Another interesting point is a close relationship between the spectral data for these
operators T and the Hahn-Exton q-Bessel function. It turns out that, for an appro-
priate (Friedrichs) self-adjoint extension, Jν(q

−1/2
√
x; q) serves as the characteristic

function of T in the sense that its zero set on R+ exactly coincides with the spectrum
of T . There also exists an explicit formula for corresponding eigenvectors. Moreover,
T−1 can be shown to be compact. This makes it possible to reproduce, in a quite
straightforward but alternative way, some results originally derived in [11, 9].
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Finally we remark that recently we have constructed, in [14, 15], a number of ex-
amples of Jacobi operators with discrete spectra and characteristic functions explicitly
expressed in terms of special functions, a good deal of them comprising various com-
binations of q-Bessel functions. That construction confines, however, only to a class
of Jacobi matrices characterized by a convergence condition imposed on the matrix
entries. For this condition is readily seen to be violated in the case of T , as defined in
(3) and (4), in the present paper we have to follow another approach whose essential
part is a careful asymptotic analysis of formal eigenvectors of T .

2 Self-adjoint operators induced by T

2.1 A ∗-algebra of semiinfinite matrices

Denote by Mfin the set of all semiinfinite matrices indexed by Z+×Z+ such that each
row and column of a matrix has only finitely many nonzero entries. For instance, Mfin

comprises all band matrices and so all finite-order difference operators. Notice that
Mfin is naturally endowed with the structure of a ∗-algebra, matrices from Mfin act
linearly on C∞ and D is Mfin-invariant.

Choose A ∈ Mfin and let AH stand for its Hermitian adjoint. Let us introduce,
in a fully standard manner, operators Ȧ, Amin and Amax on `2, all of them being
restrictions of A to appropriate domains. Namely, Ȧ is the restriction A

∣∣
D , Amin is

the closure of Ȧ and
DomAmax = {f ∈ `2; Af ∈ `2}.

Clearly, Ȧ ⊂ Amax. Straightforward arguments based just on systematic application
of definitions show that

(Ȧ)∗ = (Amin)∗ = AH
max, (Amax)∗ = AH

min.

Hence Amax is closed and Amin ⊂ Amax.

Lemma 1. Suppose p, w ∈ C and let A ∈Mfin be defined by

An,n = pn, An+1,n = −wpn+1 for all n ∈ Z+, Am,n = 0 otherwise. (5)

Then Amin 6= Amax if and only if 1/|p| < |w| < 1, and in that case

DomAmin = {f ∈ DomAmax ; lim
n→∞

w−nfn = 0}.

Proof. Choose arbitrary f ∈ DomAmax. Then f ∈ DomAmin iff

∀g ∈ DomAH
max, 0 = 〈AHg, f〉 − 〈g,Af〉 = − lim

n→∞
An,n gnfn. (6)

Since both f and g in (6) are supposed to belong to `2 this condition is obviously
fulfilled if |p| ≤ 1. Furthermore, the situation becomes fully transparent for w = 0.
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In that case the sequences {pngn} and {pnfn} are square summable and (6) is always
fulfilled. In the remainder of the proof we assume that |p| > 1 and w 6= 0.

Consider first the case when |w| ≥ 1. Relation Af = h can readily be inverted
even in C∞ and one finds that

pnfn =
n∑
k=0

(pw)khn−k = (pw)n
n∑
k=0

(pw)−khk, ∀n.

Denote temporarily by h̃ the sequence with h̃n = (pw)−n. It is square summable since,
by our assumptions, |pw| > 1. For f ∈ DomAmax one has h ∈ `2 and

fn = wn(〈h̃, h〉 − ζn) where ζn =
∞∑

k=n+1

(pw)−khk.

Assumption f ∈ `2 clearly implies 〈h̃, h〉 = 0 and then, by the Schwarz inequality,

|An,nfn| ≤ ‖h‖/
√
|pw| − 1 , ∀n.

Whence An,n gnfn → 0 as n→∞ for all g ∈ DomAH
max and so f ∈ DomAmin.

Suppose now that |w| < 1. If AHg = h in C∞ and h is bounded then, as an easy
computation shows,

(p)n gn = γ(w)−n +
∞∑
k=0

(w)khn+k (7)

for all n and some constant γ. Observe that, by the Schwarz inequality,∣∣∣∣∣
∞∑
k=0

(w)khn+k

∣∣∣∣∣ ≤ 1√
1− |w|2

(
∞∑
k=n

|hk|2
)1/2

, (8)

and this expression tends to zero as n tends to infinity provided h ∈ `2.
In the case when |pw| ≤ 1 the property g ∈ `2 and AHg = h ∈ `2 implies that the

constant γ in (7) is zero, and from (8) one infers that An,n gn → 0 as n → ∞. Thus
one finds condition (6) to be always fulfilled meaning that f ∈ DomAmin.

If |pw| > 1 then the sequence g defined in (7) is square summable whatever γ ∈ C
and h ∈ `2 are. Condition (6) is automatically fulfilled, however, for γ = 0. Hence
(6) can be reduced to the single nontrivial case when we choose g̃ ∈ DomAH

max with
g̃n = (pw)−n. Then AHg̃ = 0 and condition 〈g̃,Af〉 = 0 means that w−nfn → 0 as
n→∞. It remains to show that there exists f ∈ DomAmax not having this property.
However the sequence f̃ , with f̃n = wn, does the job since Af̃ = (1, 0, 0, . . .) ∈ `2.

2.2 Associated orthogonal polynomials, self-adjoint extensions

The tridiagonal matrix T defined in (3), (4) belongs to Mfin. With T there is asso-

ciated a sequence of monic orthogonal polynomials [7], called {Pn(x) ≡ P
(ν)
n (x)} and

defined by the recurrence

Pn(x) = (x− βn−1)Pn−1(x)− α 2
n−2 Pn−2(x), n ≥ 1, (9)
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with P−1(x) = 0, P0(x) = 1. Put

P̂n(x) ≡ P̂ (ν)
n (x) = (−1)nqn(n−ν)/2P (ν)

n (x). (10)

Then (P̂0(x), P̂1(x), P̂2(x), . . .) is a formal eigenvector of T (≡ an eigenvector of T in
C∞), i.e.

(β0−x)P̂0(x)+α0P̂1(x) = 0, αn−1P̂n−1(x)+(βn−x)P̂n(x)+αnP̂n+1(x) = 0 for n ≥ 1.
(11)

Observe that T (−ν) = q−ν T (ν). Since we are primarily interested in spectral prop-
erties of T (ν) in the Hilbert space `2 we may restrict ourselves, without loss of gen-
erality, to nonnegative values of the parameter ν. The value ν = 0 turns out to be
somewhat special and will be discussed separately later in Subsection 3.2. Thus, if
not stated otherwise, we assume from now on that ν > 0.

Given T ∈ Mfin we again introduce the operators Ṫ , Tmin, Tmax as explained in
Subsection 2.1. Notice that

βn = q(ν−1)/2|αn−1|+ q−(ν−1)/2|αn|.

It follows at once that the operators Ṫ and consequently Tmin are positive. In fact, for
any real sequence {fn} ∈ D one has

∞∑
m=0

∞∑
n=0

Tm,nfmfn = |α−1|q(ν−1)/2 f 2
0 +

∞∑
n=1

|αn−1|(q(ν−1)/4fn − q−(ν−1)/4fn−1)2 ≥ 0.

This is equivalent to the factorization T =AHA where the matrix A ≡ A(ν) ∈Mfin is
defined by the prescription: ∀f ∈ C∞,

(Af)0 = |α−1|1/2q(ν−1)/4 f0, (Af)n = |αn−1|1/2(q(ν−1)/4fn − q−(ν−1)/4fn−1) for n ≥ 1.

That is, ∀n ≥ 0,

An,n = |αn−1|1/2q(ν−1)/4 = q−(n−ν)/2, An+1,n = −|αn|1/2q−(ν−1)/4 = −q−n/2 , (12)

and Am,n = 0 otherwise.
Thus T induces a positive form on the domain D with values 〈f, T f〉 = ‖Af‖2,

∀f ∈ D . Let us call t its closure. Then Dom t = DomAmin and t(x) = ‖Amin x‖2, ∀x ∈
Dom t. The positive operator TF associated with t according to the representation
theorem is the Friedrichs extension of the closed positive operator Tmin. One has

TF = A ∗minAmin.

It is known that TF has the smallest form-domain among all self-adjoint extensions
of Tmin and also that this is the only self-adjoint extension of Tmin with its domain
contained in Dom t, see [8, Chapter VI].
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One can apply Lemma 1, with p = q−1/2 and w = q(1−ν)/2, to obtain an explicit
description of the form-domain of TF. Using still A defined in (12) one has Dom t =
{f ∈ `2; Af ∈ `2} for ν ≥ 1 and

Dom t = {f ∈ `2; Af ∈ `2 and lim
n→∞

q(ν−1)n/2fn = 0} (13)

for 0 < ν < 1.
In [5] one finds a clear explicit description of the domain of the Friedrichs extension

of a positive Jacobi matrix which can be applied to our case. To this end, consider
the homogeneous three-term recurrence equation

αnQn+1 + βnQn + αn−1Qn−1 = 0 (14)

on Z. It simplifies to a recurrence equation with constant coefficients,

q(ν−1)/2Qn+1 − (1 + qν)Qn + q(ν+1)/2Qn−1 = 0. (15)

One can distinguish two independent solutions, {Q(1)
n } and {Q(2)

n }, where

Q(1)
n =

q(1−ν)n/2 − qν+(1+ν)n/2

1− qν
, Q(2)

n = q(1+ν)n/2, n ∈ Z. (16)

Notice that {Q(1)
n } satisfies the initial conditions Q

(1)
−1 = 0, Q

(1)
0 = 1, and so Q

(1)
n =

P̂n(0), ∀n ≥ 0. On the other hand, {Q(2)
n } is always square summable over Z+, and

this is the so-called minimal solution at +∞ since

lim
n→+∞

Q
(2)
n

Qn

= 0

for every solution {Qn} of (14) which is linearly independent of {Q(2)
n }. The Wronskian

of Q(1) and Q(2) equals
Wn(Q(1), Q(2)) = 1, ∀n ∈ Z,

where Wn(f, g) := αn(fngn+1 − gnfn+1). Theorem 4 in [5] tells us that

DomTF = {f ∈ `2; T f ∈ `2 and W∞(f,Q(2)) = 0} (17)

where we put
W∞(f, g) = lim

n→∞
Wn(f, g)

for f, g ∈ C∞ provided the limit exists. It is useful to note, however, that discrete
Green’s formula implies existence of the limit whenever f, g ∈ DomTmax, and then

〈Tmaxf, g〉 − 〈f, Tmaxg〉 = −W∞(f, g).

We wish to determine all self-adjoint extensions of the closed positive operator
Tmin. This is a standard general fact that the deficiency indices of Tmin for any real
symmetric Jacobi matrix T of the form (3), with all αn’s nonzero, are either (0, 0)
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or (1, 1). The latter case happens if and only if for some x ∈ C all solutions of the
second-order difference equation

αnQn+1 + (βn − x)Qn + αn−1Qn−1 = 0 (18)

are square summable on Z+, and in that case this is true for any value of the spectral
parameter x (see, for instance, a detailed discussion in Section 2.6 of [16]).

Let us remark that a convenient description of the one-parameter family of all self-
adjoint extensions is also available if the deficiency indices are (1, 1). Fix x ∈ R and
any couple Q(1), Q(2) of independent solutions of (18). Then all self-adjoint extensions
of Tmin are operators T̃ (κ) defined on the domains

Dom T̃ (κ) = {f ∈ `2; T f ∈ `2 and W∞(f,Q(1)) = κW∞(f,Q(2))}, (19)

with κ ∈ R ∪ {∞}. Moreover, all of them are mutually different. Of course, T̃ (κ)f =
T f , ∀f ∈ Dom T̃ (κ).

In our case we know, for x = 0, a couple of solutions of (18) explicitly, cf. (16).
From their form it becomes obvious that Tmin = Tmax is self-adjoint if and only if
ν ≥ 1. With this choice of Q(1), Q(2) and sticking to notation (19), it is seen from (17)
that the Friedrichs extension TF coincides with T̃ (∞).

Lemma 2. Suppose 0 < ν < 1. Then every sequence f ∈ DomTmax has the asymptotic
expansion

fn = C1q
(1−ν)n/2 + C2q

(1+ν)n/2 + o(qn) as n→∞, (20)

where C1, C2 ∈ C are some constants.

Proof. Let f ∈ DomTmax. That means f ∈ `2 and AHAf = h ∈ `2 where A is defined
in (5), with p = q−1/2, w = q(1−ν)/2 (then T = qνAHA). Denote g = Af . Hence
AHg = h and, as already observed in the course of the proof of Lemma 1, there exists
a constant γ such that

gn = γqνn/2 + qn/2
∞∑
k=0

q(1−ν)k/2hn+k, ∀n.

Furthermore, the relation Af = g can be inverted,

fn = q(1−ν)n/2

n∑
k=0

qνk/2gk, ∀n.

Whence

fn =
γ

1− qν
(
q(1−ν)n/2 − qν+(1+ν)n/2

)
+ q(1−ν)n/2

n∑
k=0

q(1+ν)k/2

∞∑
j=0

q(1−ν)j/2hk+j

= C1 q
(1−ν)n/2 + C2 q

(1+ν)n/2 + qn ζn
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where

C1 =
γ

1− qν
+
∞∑
k=0

q(1+ν)k/2

∞∑
j=0

q(1−ν)j/2hk+j, C2 = − γqν

1− qν
,

and

ζn = −
∞∑
k=1

q(1+ν)k/2

∞∑
j=0

q(1−ν)j/2hn+k+j.

Bearing in mind that h ∈ `2 one concludes with the aid of the Schwarz inequality that
ζn → 0 as n→∞.

With the knowledge of asymptotic expansions established in Lemma 2 one can
formulate a somewhat simpler and more explicit description of self-adjoint extensions
of Tmin.

Proposition 3. The operator Tmin ≡ T
(ν)
min, with ν > 0, is self-adjoint if and only if

ν ≥ 1. If 0 < ν < 1 then all mutually different self-adjoint extensions of Tmin are
parametrized by κ ∈ P 1(R) ≡ R∪{∞} as follows. For f ∈ DomTmax let C1(f), C2(f)
be the constants from the asymptotic expansion (20), i.e.

C1(f) = lim
n→∞

fnq
−(1−ν)n/2 , C2(f) = lim

n→∞

(
fn − C1(f)q(1−ν)n/2

)
q−(1+ν)n/2 .

For κ ∈ P 1(R), a self-adjoint extension T (κ) of Tmin is a restriction of Tmax to the
domain

DomT (κ) = {f ∈ `2; T f ∈ `2 and C2(f) = κC1(f)}. (21)

In particular, T (∞) equals the Friedrichs extension TF.

Proof. Let 0 < ν < 1, {ζn} be a sequence converging to zero (bounded would be
sufficient) and g(1), g(2), h ∈ C∞ be the sequences defined by

g(1)
n = q(1−ν)n/2, g(2)

n = q(1+ν)n/2, hn = qnζn, ∀n.

Hence, referring to (16),

Q(1) =
1

1− qν
(g(1) − qνg(2)), Q(2) = g(2).

One finds at once that W∞(g(1), h) = W∞(g(2), h) = 0 and

Wn(g(1), g(2)) = 1− qν , ∀n.

After a simple computation one deduces from (19) that f ∈ DomTmax belongs to
Dom T̃ (κ̃) for some κ̃ ∈ P 1(R), i.e. W∞(f,Q(1)) = κ̃W∞(f,Q(2)), if and only if
C2(f) = κC1(f) with κ = −qν − (1 − qν)κ̃. In other words, T̃ (κ̃) = T (κ). Since the
mapping

P 1(R)→ P 1(R) : κ̃ 7→ κ = −qν − (1− qν)κ̃
is one-to-one, P 1(R) 3 κ 7→ T (κ) is another parametrization of self-adjoint extensions
of Tmin. Particularly, κ̃ =∞ maps to κ =∞ and so T (∞) = TF.
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Remark 4. One can also describe DomTmin. For ν ≥ 1 we simply have Tmin =
Tmax = TF. In the case when 0 < ν < 1 it has been observed in [5] that a sequence
f ∈ DomTmax belongs to DomTmin if and only if W∞(f, g) = 0 for all g ∈ DomTmax.
But this is equivalent to the requirement C1(f) = C2(f) = 0. Thus one has

DomTmin = {f ∈ `2; T f ∈ `2 and lim
n→∞

fnq
−(1+ν)n/2 = 0}. (22)

2.3 The Green function and spectral properties

For ν ≥ 1 we shall write shortly T ≡ T (ν) instead of Tmin = Tmax = TF. Referring
to solutions (16) we claim that the Green function (matrix) of T , if ν ≥ 1, or TF, if
0 < ν < 1, reads

Gj,k =

{
Q

(1)
j Q

(2)
k for j ≤ k,

Q
(1)
k Q

(2)
j for j > k.

(23)

Proposition 5. The matrix (Gj,k) defined in (23) represents a Hilbert-Schmidt oper-
ator G ≡ G(ν) on `2 with the Hilbert-Schmidt norm

‖G‖ 2
HS =

1 + q2+ν

(1− q2)(1− q1+ν)2(1− q2+ν)
. (24)

The operator G is positive and one has, ∀f ∈ `2,

〈f,Gf〉 =
∞∑
k=0

qk
∣∣∣∣ ∞∑
j=0

q(1+ν)j/2fk+j

∣∣∣∣2.
Moreover, the inverse G−1 exists and equals T , if ν ≥ 1, or TF, if 0 < ν < 1.

Proof. As is well known, if Tmin is not self-adjoint then the resolvent of any of its
self-adjoint extensions is a Hilbert-Schmidt operator [16, Lemma 2.19]. But in our
case the resolvent is Hilbert-Schmidt for ν ≥ 1 as well, and one can directly compute
the Hilbert-Schmidt norm of G for any ν > 0,

∞∑
j=0

∞∑
k=0

G 2
j,k =

∞∑
j=0

(Q
(1)
j )2(Q

(2)
j )2 + 2

∞∑
j=0

∞∑
k=j+1

(Q
(1)
j )2(Q

(2)
k )2

=
1 + q1+ν

1− q1+ν

∞∑
j=0

(
1− qν (j+1)

1− qν

)2

q2j.

Thus one obtains (24). Hence the Green matrix unambiguously defines a self-adjoint
compact operator G on `2.

Concerning the formula for the quadratic form one has to verify that, for all m,n ∈
Z+, m ≤ n,

Q(1)
m Q(2)

n =
∞∑
k=0

qk

(
∞∑
j=0

q(1+ν)j/2δm,k+j

)(
∞∑
j=0

q(1+ν)j/2δn,k+j

)
.
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But this can be carried out in a straightforward manner.
A simple computation shows that for any f ∈ C∞ and n,N ∈ Z+, n < N ,

Q(2)
n

n∑
k=0

Q
(1)
k (T f)k +Q(1)

n

N∑
k=n+1

Q
(2)
k (T f)k = fn −Q(1)

n αN
(
Q

(2)
N+1fN −Q

(2)
N fN+1

)
.

Considering the limit N →∞ one finds that, for a given f ∈ DomTmax, the equality
GT f = f holds iff W∞(f,Q(2)) = 0. According to (17), this condition determines the
domain of the Friedrichs extension TF. Hence GTF ⊂ I (the identity operator).

Furthermore, one readily verifies that, for all f ∈ `2, T Gf = f . We still have
to check that RanG ⊂ DomTF. But using the equality W∞(Q(1), Q(2)) = 1 one
computes, for f ∈ `2 and n ∈ Z+,

Wn(Gf,Q(2)) =
∞∑

k=n+1

Q
(2)
k fk → 0 as n→∞,

since Q(2) ∈ `2. Hence TFG = I. We conclude that G−1 = TF. Remember that we
have agreed to write TF = T for ν ≥ 1.

Considering the case ν ≥ 1, the fact that the Jacobi operator T is positive and T−1

is compact has some well known consequences for its spectral properties. The same
conclusions can be made for 0 < ν < 1 provided we replace T by TF. And from the
general theory of self-adjoint extensions one learns that T (κ), for κ ∈ R, has similar
properties as TF [18, Theorem 8.18].

Proposition 6. The spectrum of any of the operators T , if ν ≥ 1, or T (κ), with
arbitrary κ ∈ P 1(R), if 0 < ν < 1, is pure point and bounded from below, with
all eigenvalues being simple and without finite accumulation points. Moreover, the
operator T , for ν ≥ 1, or TF, for 0 < ν < 1, is positive definite and one has the
following lower bound on the spectrum, i.e. on the smallest eigenvalue ξ1 ≡ ξ

(ν)
1 ,

ξ 2
1 ≥

(1− q2)(1− q1+ν)2(1− q2+ν)

1 + q2+ν
.

Proof. This is a simple general fact that all formal eigenvectors of the Jacobi matrix
T are unique up to a multiplier [3]. By Proposition 5, (TF)−1 is compact and therefore
the spectrum of TF is pure point and with eigenvalues accumulating only at infinity.

For 0 < ν < 1, the deficiency indices of Tmin are (1, 1). Whence, by the general
spectral theory, if TF has an empty essential spectrum then the same is true for all
other self-adjoint extensions T (κ), κ ∈ R. Moreover, there is at most one eigenvalue of
T (κ) below ξ1 := min spec(TF), see [18, § 8.3]. Referring once more to Proposition 5
one has

min spec(TF) = (max spec(G))−1 ≥ ‖G‖−1
HS .

In view of (24), one obtains the desired estimate on ξ1.
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2.4 More details on the indeterminate case

In this subsection we confine ourselves to the case 0 < ν < 1 and focus on some general
spectral properties of the self-adjoint extensions T (κ), κ ∈ P 1(R), in addition to those
already mentioned in Proposition 6. The spectra of any two different self-adjoint
extensions of Tmin are known to be disjoint (see, for instance, proof of Theorem 4.2.4
in [3]). Moreover, the eigenvalues of such a couple of self-adjoint extensions interlace
(see [12] and references therein, or this can also be deduced from general properties of
self-adjoint extensions with deficiency indices (1, 1) [18, § 8.3]). It is useful to note, too,
that every x ∈ R is an eigenvalue of a unique self-adjoint extension T (κ), κ ∈ P 1(R)
[13, Theorem 4.11].

For positive symmetric operators there exists another powerful theory of self-
adjoint extensions due to Birman, Krein and Vishik based on the analysis of associated
quadratic forms. A clear exposition of the theory can be found in [2]. Its application
to our case, with deficiency indices (1, 1), is as follows. A crucial role is played by the
null space of Tmax = T ∗min which we denote by

N := KerTmax = CQ(1)

(recall that Q
(1)
n = P̂n(0), ∀n ∈ Z+). Let t∞ = t be the quadratic form associated

with the Friedrichs extension TF. Remember that the domain of t has been specified
in (13). All other self-adjoint extensions of Tmin, except of TF, are in one-to-one
correspondence with real numbers τ . The corresponding associated quadratic forms
tτ , τ ∈ R, have all the same domain,

Dom tτ = Dom t∞ +̇ N (25)

(a direct sum), and for f ∈ Dom t∞, λ ∈ C, one has

tτ (f + λQ(1)) = t∞(f) + τ |λ|2. (26)

Our next task is to relate the self-adjoint extensions T (κ) described in Proposition 3
to the quadratic forms tτ .

Proposition 7. The quadratic form associated with a self-adjoint extension T (κ),
κ ∈ R, is tτ defined in (25), (26), with τ = (κ+ qν)/(1− qν).

Proof. Let κ ∈ R and σ be the real parameter such that tσ is the quadratic form
associated with T (κ). Recall (16). One has T Q(1) = 0 and (T Q(2))n = δn,0, ∀n ∈ Z+.
According to (17),

Q(2) ∈ DomT (∞) ⊂ Dom t∞.

One computes t∞(Q(2)) = 〈Q(2), T Q(2)〉 = 1. Let τ = (κ+ qν)/(1− qν) and

h = τQ(2) +Q(1) ∈ Dom t∞ + CQ(1) = Dom tσ.

Then (1 − qν)hn = q(1−ν)n/2 + κq(1+ν)n/2, ∀n ∈ Z+. Hence, in virtue of (21), h ∈
DomT (κ), and, referring to (26),

τ 2 + σ = tσ(h) = 〈h, T (κ)h〉 = 〈h, T h〉 = τ(τ + 1).

Whence σ = τ .
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Now we are ready to describe the announced additional spectral properties of
T (κ). The terminology and basic results concerning quadratic (sesquilinear) forms
used below are taken from Kato [8].

Lemma 8. Let S and B be linear subspaces in a Hilbert space H such that S ∩B =
{0}, and let s and b be positive quadratic forms on S and B, respectively. Denote by
s̃ and b̃ the extensions of these forms to S + B defined by

∀ϕ ∈ S , ∀η ∈ B, s̃(ϕ+ η) = s(ϕ) and b̃(ϕ+ η) = b(η),

and assume that, for every ρ ∈ R, the form s̃ + ρb̃ is semibounded and closed. Then,
for any τ ∈ C, the form s̃ + τ b̃ is sectorial and closed. In particular, if S + B is
dense in H then s̃ + τ b̃, τ ∈ C, is a holomorphic family of forms of type (a) in the
sense of Kato.

Proof. Fix τ ∈ C, θ ∈ (π/4, π/2), and choose γ1, γ2, γ3 ∈ R so that

s̃ + Re(τ)b̃ ≥ γ1, (tan(θ)− 1)s̃ + tan(θ) Re(τ)b̃ ≥ γ2, s̃− | Im(τ)|b̃ ≥ γ3.

Let γ = min{γ1, cot(θ)(γ2 + γ3)}. Then Re(s̃ + τ b̃) ≥ γ and, for any couple ϕ ∈ S ,
η ∈ B,

| Im(s̃ + τ b̃)(ϕ+ η)| = | Im τ |b(η) ≤ s(ϕ)− γ3‖ϕ+ η‖2

≤ tan(θ)
(
s(ϕ) + Re(τ)b(η)

)
− (γ2 + γ3)‖ϕ+ η‖2

≤ tan(θ)
(
s(ϕ) + Re(τ)b(η)− γ‖ϕ+ η‖2

)
.

This estimates show that s̃ + τ b̃ is sectorial. Finally, a sectorial form is known to be
closed if and only if its real part is closed.

Proposition 9. Let {ξn(κ); n ∈ N} be the eigenvalues of T (κ), κ ∈ P 1(R), ordered
increasingly. Then for every n ∈ N, ξn(κ) is a real-analytic strictly increasing function
on R, and one has, ∀κ ∈ R,

ξ1(κ) < ξ1(∞) < ξ2(κ) < ξ2(∞) < ξ3(κ) < ξ3(∞) < . . . . (27)

Moreover,

lim
κ→−∞

ξ1(κ) = −∞, lim
κ→−∞

ξn(κ) = ξn−1(∞) for n ≥ 2, lim
κ→+∞

ξn(κ) = ξn(∞) for n ≥ 1.

(28)

Proof. The Friedrichs extension of a positive operator is maximal in the form sense
among all self-adjoint extensions of that operator [2]. Particularly,

ξ1(κ) = min(specT (κ)) ≤ ξ1(∞) = min(specT (∞)).

But as already remarked above, the eigenvalues of T (κ) and T (∞) interlace and so
we have (27).
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Referring to (25), (26), the property κ1, κ2 ∈ R, κ1 < κ2 clearly implies tτ(κ1) <
tτ(κ2) where τ(κ) = (κ + qν)/(1 − qν). In virtue of Proposition 7 and the min-max
principle, ξn(κ1) ≤ ξn(κ2), ∀n ∈ N. But the spectra of T (κ1) and T (κ2) are disjoint
and so the functions ξn(κ) are strictly increasing on R.

One can admit complex values for the parameter τ in (25), (26). Then, according
to Lemma 8, the family of forms tτ , τ ∈ C, is of type (a) in the sense of Kato. Referring
once more to Proposition 7 one infers from [8, Theorem VII-4.2] that the family of
self-adjoint operators T (κ), κ ∈ R, extends to a holomorphic family of operators on C.
This implies that for any bounded interval K ⊂ R there exists an open neighborhood
D of K in C and ρ ∈ R sufficiently large so that the resolvents (T (κ) + ρ)−1, κ ∈ K,
extend to a holomorphic family of bounded operators on D. In addition we know that,
for every fixed n ∈ N and κ ∈ R, the nth eigenvalue of T (κ) is simple and isolated.
By the analytic perturbation theory [8, § VII.3], ξn(κ) is an analytic function on R.

Finally we note that every x ∈ R is an eigenvalue of T (κ) for some (in fact,
unambiguous) κ ∈ R and so the range ξn(R) must exhaust the entire interval either
(−∞, ξ1(∞)), if n = 1, or (ξn−1(∞), ξn(∞)), if n > 1. This clearly means that (28)
must hold.

Remark 10. As noted in [2, Theorem 2.15], ξ1(κ) is a concave function.

3 The characteristic function

3.1 A construction of the characteristic function for ν > 0

Recall (9), (10). Observe that the sequence {P̂n(x)} obeys the relation

P̂n(x) = Q(1)
n − xq(1−ν)/2

n∑
k=0

Q
(1)
n−k−1q

kP̂k(x) for n ≥ −1. (29)

This relation already implies that P̂−1(x) = 0, P̂0(x) = 1. Notice also that the last
term in the sum, with k = n, is zero and so (29) is in fact a recurrence for {P̂n(x)}.
Equation (29) is pretty standard. Nevertheless, one may readily verify it by checking
that this recurrence implies the original defining recurrence, i.e. the formal eigenvalue
equation (11) which can be rewritten as follows

q(ν−1)/2P̂n+1(x)− (1 + qν)P̂n(x) + q(ν+1)/2P̂n−1(x) = −xqnP̂n(x), ∀n ≥ 0. (30)

Actually, from (29) one derives that

q(ν−1)/2P̂n+1(x)− P̂n(x) = q(ν−1)/2Q
(1)
n+1 −Q(1)

n

−x
n∑
k=0

(
Q

(1)
n−k − q

(1−ν)/2Q
(1)
n−k−1

)
qkP̂k(x)

= qν+(1+ν)n/2 − xq(1+ν)n/2

n∑
k=0

q(1−ν)k/2P̂k(x)

13



and so

q(ν−1)/2P̂n+1(x)− P̂n(x)− q(ν+1)/2
(
q(ν−1)/2P̂n(x)− P̂n−1(x)

)
= −xqnP̂n(x),

as claimed.

Proposition 11. The sequence of polynomials {q(ν−1)n/2P̂n(x)} converges locally uni-
formly on C to an entire function Φ(x) ≡ Φ(ν)(x; q). Moreover, Φ(x) fulfills

Φ(x) =
1

1− qν

(
1− x

∞∑
k=0

q(1+ν)k/2P̂k(x)

)
(31)

and one has, ∀n ∈ Z, n ≥ −1,

P̂n(x) = (1− qν)Φ(x)Q(1)
n + xQ(2)

n

n∑
k=0

Q
(1)
k P̂k(x) + xQ(1)

n

∞∑
k=n+1

Q
(2)
k P̂k(x). (32)

Proof. Denote (temporarily) Hn(x) = q(ν−1)n/2P̂n(x), n ∈ Z+. Then (29) means that

(1− qν)Hn(x) = 1− qν(n+1) − x
n−1∑
k=0

(1− qν(n−k))qkHk(x), n ∈ Z+. (33)

Proceeding by mathematical induction in n one can show that, ∀n ∈ Z+,

|Hn(x)| ≤ (−a; q)n
1− qν

where a =
|x|

1− qν
and (−a; q)n =

n−1∏
k=0

(1 + qka) (34)

is the q-Pochhammer symbol. This is obvious for n = 0. For the the induction step it
suffices to notice that (33) implies

|Hn(x)| ≤ 1

1− qν
+ a

n−1∑
k=0

qk|Hk(x)|.

Moreover,

1 + a

n−1∑
k=0

qk(−a; q)k = (−a; q)n.

From the estimate (34) one infers that {Hn(x)} is locally uniformly bounded on
C. Consequently, from (33) it is seen that the RHS converges as n → ∞ and so
Hn(x) → Φ(x) pointwise. This leads to identity (31). Furthermore, one can rewrite
(29) as follows

P̂n(x) = Q(1)
n − x

n∑
k=0

q(1−ν)n/2q(1+ν)k/2 − q(1+ν)n/2q(1−ν)k/2

1− qν
P̂k(x)

= Q(1)
n + xQ(2)

n

n∑
k=0

Q
(1)
k P̂k(x)− xQ(1)

n

n∑
k=0

Q
(2)
k P̂k(x)

=

(
1− x

∞∑
k=0

Q
(2)
k P̂k(x)

)
Q(1)
n + xQ(2)

n

n∑
k=0

Q
(1)
k P̂k(x) + xQ(1)

n

∞∑
k=n+1

Q
(2)
k P̂k(x)

14



Taking into account (31) one arrives at (32).
Finally, from the locally uniform boundedness and Montel’s theorem it follows

that the convergence of {Hn(x)} is even locally uniform and so Φ(x) is an entire
function.

It turns out that Φ(x) may be called the characteristic function of the Jacobi
operator T , if ν ≥ 1, or the Friedrichs extension TF, if 0 < ν < 1.

Lemma 12. Assume that ν ≥ 1. Suppose further that f ∈ C∞, {q−σ0 nfn} is bounded
for some σ0 > −(ν + 1)/2 and f = xG̃f for some x ∈ R where

(G̃f)n := Q(2)
n

n∑
k=0

Q
(1)
k fk +Q(1)

n

∞∑
k=n+1

Q
(2)
k fk, n ∈ Z+. (35)

Then the sequence {q−σnfn} is bounded for every σ < (ν+ 1)/2. In particular, f ∈ `2.

Proof. Put
S = {σ > −(ν + 1)/2; {q−σnfn} ∈ `∞}, σ∗ = supS.

Notice that, by the assumptions, S 6= ∅ and the definition of G̃f makes good sense.
We have to show that σ∗ ≥ (1 + ν)/2. Let us assume the contrary.

We claim that if σ ∈ S and σ < (ν − 1)/2 then σ + 1 ∈ S. In particular,
σ∗ ≥ (ν− 1)/2. In fact, write fn = qσnhn, h ∈ `∞. From (35) one derives the estimate

|(G̃f)n| ≤
‖h‖∞
1− qν

(
q(ν+1)n/2

n−1∑
k=0

q(σ+(1−ν)/2)k +
q(σ+1)n

1− qσ+(1+ν)/2

)
.

From here one deduces that there exists a constant C ≥ 0 such that

∀n, |fn| = |x(G̃f)n| ≤ Cq(σ+1)n,

as claimed.
Choose σ such that σ∗ < σ < (ν + 1)/2. Then

−ν + 1

2
≤ ν − 1

2
− 1 ≤ σ∗ − 1 < σ − 1 <

ν − 1

2
≤ σ∗

and so σ − 1 ∈ S. But in that case σ ∈ S as well, a contradiction.

Proposition 13. If ν ≥ 1, the spectrum of T coincides with the zero set of Φ(x).
If 0 < ν < 1 then specT (κ), κ ∈ P 1(R), consists of the roots of the characteristic
equation

κΦ(x) + Ψ(x) = 0 (36)

where

Ψ(x) ≡ Ψ(ν)(x; q) =
1

1− qν

(
qν − x

∞∑
k=0

q(1−ν)k/2P̂k(x)

)
. (37)

In particular, the spectrum of TF = T (∞) equals the zero set of Φ(x).
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Proof. From Proposition 6 we already know that the spectrum of T (or T (κ)) is pure
point and with no finite accumulation points. Assume first that ν ≥ 1. According to
Proposition 3, we are dealing with the determinate case and so x is an eigenvalue of T
if and only if the formal eigenvector P̂ (x) = {P̂n(x)} is square summable. If P̂ (x) ∈ `2

then q(ν−1)n/2P̂n(x)→ 0 as n→∞ and so Φ(x) = 0 (see Proposition 11). Conversely,
if Φ(x) = 0 then (32) tells us that P̂ = xG̃P̂ , cf. (35). By Lemma 12, P̂ (x) ∈ `2.

Assume now that 0 < ν < 1. This the indeterminate case meaning that P̂ (x) is
square summable for all x ∈ C. Hence x is an eigenvalue of T (κ) iff P̂ (x) ∈ DomT (κ).
Recall that T (κ) is defined in Proposition 3. From (32) one derives the asymptotic
expansion

P̂n(x) = Φ(x)(q(1−ν)n/2 − qν+(1+ν)n/2) + xq(1+ν)n/2

∞∑
k=0

Q
(1)
k P̂k(x) + o(qn) as n→∞.

From here it is seen that P̂ (x) fulfills the boundary condition in (21) if and only if x
solves the equation

(κ+ qν)Φ(x)− x〈Q(1), P̂ (x)〉 = 0.

Referring to (16) one finds that x〈Q(1), P̂ (x)〉 = qνΦ(x)−Ψ(x).

Proposition 14. For ν > 0 one has

Φ(x) =
1

1− qν 1φ1(0; qν+1; q, x) =
(q; q)∞
(qν ; q)∞

qν/2x−ν/2Jν(q
−1/2
√
x; q), (38)

and for 0 < ν < 1,

Ψ(x) =
qν

1− qν 1φ1(0; q1−ν ; q, q−νx) = − (q; q)∞
(q−ν ; q)∞

q−ν(ν+1)/2xν/2J−ν(q
−(ν+1)/2

√
x; q).

(39)
If Φ(x) = 0 and so x is an eigenvalue of T , provided ν > 0, or TF, provided

0 < ν < 1, then x > 0 and the components of a corresponding eigenvector can be
chosen as

uk(x) = qk/2 Jν(q
k/2
√
x; q) = C q(1+ν)k/2

1φ1(0; qν+1; q, qk+1x), k ∈ Z+, (40)

where C = xν/2 (q1+ν ; q)∞/(q; q)∞.

If 0 < ν < 1, κ ∈ R and κΦ(x) + Ψ(x) = 0 and so x is an eigenvalue of T (κ) then
the components of a corresponding eigenvector can be chosen as

uk(κ, x) = qk/2
(
κJν(q

k/2
√
x; q)− (qν ; q)∞

(q−ν ; q)∞
q−ν(ν+2)/2xνJ−ν(q

(k−ν)/2
√
x; q)

)
= C

(
κq(1+ν)k/2

1φ1(0; qν+1; q, qk+1x) + q(1−ν)k/2
1φ1(0; q1−ν ; q, qk+1−νx)

)
,

with k ∈ Z+(C is the same as above).
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Lemma 15. For every m ∈ Z+ and σ > 0,

∞∑
k=0

q(σ+(ν−1)/2)k d
mP̂k(0)

dxm
=

(−1)mm! qmσ+m(m−1)/2

(qσ; q)m+1 (qσ+ν ; q)m+1

. (41)

Proof. For a given m ∈ N, one derives from (30) the three-term inhomogeneous re-
currence relation

q(ν−1)/2 d
mP̂n+1(0)

dxm
−(1+qν)

dmP̂n(0)

dxm
+q(ν+1)/2 d

mP̂n−1(0)

dxm
= −mqn d

m−1P̂n(0)

dxm−1
, n ≥ 0,

(42)
with the initial conditions

dmP̂−1(0)

dxm
= 0,

dmP̂0(0)

dxm
= δm,0 for all m ≥ 0. (43)

Recall that, by Proposition 11, the sequence {q(ν−1)n/2P̂n(x)} converges on C locally
uniformly and hence it is locally uniformly bounded. Combining this observation
with Cauchy’s integral formula one justifies that, for any m ∈ Z+ fixed, the sequence
{q(ν−1)n/2dmP̂n(0)/dxm} is bounded as well. Therefore the LHS of (41) is well defined.
Let us call it Sm,σ. Using summation in (42) and bearing in mind (43) one derives the
recurrence

Sm,σ = − mqσ

(1− qσ) (1− qσ+ν)
Sm−1,σ+1 for m ≥ 1, σ > 0.

Particularly, for m = 0 we know that P̂n(0) = Q
(1)
n , n ∈ Z+. Whence

S0,σ =
1

(1− qσ) (1− qσ+ν)
,

cf. (16). A routine application of mathematical induction in m proves (41).

Proof of Proposition 14. Letting σ = 1 in (41) and making use of the locally uniform
convergence (cf. Proposition 11) one has

1

m!

dm

dxm

∞∑
k=0

q(ν+1)k/2P̂k(x)
∣∣∣
x=0

=
(−1)mqm(m+1)/2

(q; q)m+1 (qν+1; q)m+1

, ∀m ∈ Z+.

Now, since Φ(x) is analytic it suffices to refer to formula (31) to obtain

Φ(x) =
1

1− qν
∞∑
n=0

(−1)nq(n−1)n/2 xn

(q; q)n (qν+1; q)n
=

1

1− qν 1φ1(0; qν+1; q, x).

Letting σ = 1−ν in (41), a fully analogous computation can be carried out to evaluate
the RHS of (37) thus getting formula (39) for Ψ(x).

From (2) it is seen that the sequences {uk(x); k ∈ Z} and {vk(x); k ∈ Z}, where

uk(x) = qk/2 Jν(q
k/2
√
x; q) and vk(x) = qk/2 J−ν(q

(k−ν)/2
√
x; q),
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obey both the difference equation

αkuk+1 + βkuk + αk−1uk−1 = xuk (44)

(with αk, βk being defined in (4)). In the case of the former sequence, ν can be
arbitrary positive, in the case of the latter one we assume that 0 < ν < 1. Hence the
sequence (u0(x), u1(x), u2(x), . . .) is a formal eigenvector of the Jacobi matrix T if and
only if u−1(x) = 0. A similar observation holds true if we replace uk(x) by uk(κ, x).
In view of Proposition 14, it suffices to notice that u−1(x) is proportional to Φ(x) and
u−1(κ, x) to κΦ(x) + Ψ(x).

3.2 The case ν = 0

The case ν = 0 is very much the same thing as the case when 0 < ν < 1. First of all,
this is again an indeterminate case, i.e. Tmin is not self-adjoint. On the other hand,
there are some differences causing the necessity to modify several formulas, some
of them rather substantially. Perhaps the main reason for this is the fact that the
characteristic polynomial of the difference equation with constant coefficients, (15),
has one double root if ν = 0 while it has two different roots if 0 < ν. Here we
summarize the basic modifications but without going into details since the arguing
remains quite analogous.

For ν = 0 one has Dom t = {f ∈ `2; Af ∈ `2}, and two distinguished solutions of
(14) are

Q(1)
n = (n+ 1)qn/2, Q(2)

n = qn/2, n ∈ Z,

where again Q
(1)
n = P̂n(0) for n ≥ 0 and {Q(2)

n } is a minimal solution, Wn(Q(1), Q(2)) =
1. The asymptotic expansion of a sequence f ∈ DomTmax reads

fn =
(
C1 (n+ 1) + C2

)
qn/2 + o(qn) as n→∞,

with C1, C2 ∈ C. The one-parameter family of self-adjoint extensions of Tmin is again
denoted T (κ), κ ∈ P 1(R). Definition (21) of DomT (κ) formally remains the same but
the constants C1(f), C2(f) in the definition are now determined by the limits

C1(f) = lim
n→∞

fn (n+ 1)−1q−n/2 , C2(f) = lim
n→∞

(
fn − C1(f) (n+ 1)qn/2

)
q−n/2 .

One still has T (∞) = TF. Similarly, f ∈ DomTmax belongs to DomTmin if and only if
C1(f) = C2(f) = 0 meaning that (22) is true for ν = 0, too. Furthermore, everything
what is claimed in Propositions 5 and 6 about the values 0 < ν < 1 is true for ν = 0
as well.

Proposition 7 should be modified so that the quadratic form associated with a
self-adjoint extension T (κ), κ ∈ R, is tκ+1, i.e. for ν = 0 one lets τ ≡ τ(κ) = κ + 1.
On the other hand, Proposition 9 holds verbatim true also for ν = 0.

Relation (29) is valid for ν = 0 as well but more substantial modifications are
needed in Proposition 11. One has

q−n/2

n+ 1
P̂n(x)→ Φ(x) = 1− x

∞∑
k=0

qk/2P̂k(x) as n→∞,
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and the convergence is locally uniform on C for one can estimate∣∣∣∣ q−n/2n+ 1
P̂n(x)

∣∣∣∣ ≤ n∏
k=0

(
1 + (k + 1)qk|x|

)
, n ∈ Z+.

Equation (32) should be replaced by

P̂n(x) = Φ(x)Q(1)
n + xQ(2)

n

n∑
k=0

Q
(1)
k P̂k(x) + xQ(1)

n

∞∑
k=n+1

Q
(2)
k P̂k(x).

From here one infers the asymptotic expansion

P̂n(x) = Φ(x)(n+ 1)qn/2 + xqn/2
∞∑
k=0

Q
(1)
k P̂k(x) + o(qn) as n→∞.

One concludes that what is claimed in Proposition 13 about the values 0 < ν < 1 is
true for ν = 0 as well but instead of (37) one should write

Ψ(x) = −x
∞∑
k=0

(k + 1)qk/2P̂k(x).

Finally let us consider modifications needed in Proposition 14. For ν = 0 one has

Φ(x) = 1φ1(0; q; q, x) = J0(q−1/2
√
x; q)

and

Ψ(x) =
∂

∂p
2φ2(0, q; pq, pq; q, px)

∣∣∣∣
p=1

= 2q
∂

∂p
1φ1(0; p; q, x)

∣∣∣∣
p=q

+ x
∂

∂x
1φ1(0; q; q, x).

Let
uk(x) = q(k+1)/2J0(q−k/2

√
x; q)

and

vk(x) = (k + 1)q(k+1)/2
1φ1(0; q; q, qk+1x) + 2q(k+3)/2 ∂

∂p
1φ1(0; p; q, qk+1x)

∣∣∣∣
p=q

+ q(k+1)/2x
∂

∂x
1φ1(0; q; q, qk+1x),

k ∈ Z. Then both sequences {uk(x)} and {vk(x)} solve (44) on Z and u−1(x) = Φ(x),
v−1(x) = Ψ(x). Consequently, if Φ(x) = 0 then components of an eigenvector of
T (∞) = TF corresponding to the eigenvalue x can be chosen to be uk(x), k ∈ Z+.
Similarly, if κΦ(x) + Ψ(x) = 0 for some κ ∈ R then components of an eigenvector of
T (κ) corresponding to the eigenvalue x can be chosen to be κuk(x) + vk(x), k ∈ Z+.

19



4 Some applications to the q-Bessel functions

In this section we are going to only consider the Friedrichs extension if 0 < ν < 1. To
simplify the formulations below we will unify the notation and use the same symbol
TF for the corresponding self-adjoint Jacobi operator for all values of ν > 0, this is to
say even in the case when ν ≥ 1. Making use of the close relationship between the
spectral data for TF and the q-Bessel functions, as asserted in Propositions 13 and 14,
we are able to reproduce in an alternative way some results from [11, 9].

Proposition 16 (Koelink, Swarttouw). Assume that ν > 0. The zeros of z 7→ Jν(z; q)
are all real (arranged symmetrically with respect to the origin), simple and form an
infinite countable set with no finite accumulation points. Let 0 < w1 < w2 < w3 < . . .
be the positive zeros of Jν(z; q). Then the sequences

u(n) =
(
Jν(q

1/2wn; q), q1/2Jν(qwn; q), qJν(q
3/2wn; q), . . .

)
, n ∈ N, (45)

form an orthogonal basis in `2. In particular, the orthogonality relation

∞∑
k=0

qkJν(q
(k+1)/2wm; q) Jν(q

(k+1)/2wn; q) = −q
−1+ν/2

2wn
Jν(q

1/2wn; q)
∂Jν(wn; q)

∂z
δm,n

(46)
holds for all m,n ∈ N.

Remark. It is not difficult to show that the proposition remains valid also for −1 <
ν ≤ 0. To this end, one can extend the values ν > 0 to ν = 0 following the lines
sketched in Subsection 3.2 and employ Propositions 13 and 14 while letting κ = 0 in
order to treat the values −1 < ν < 0. But we omit the details. An original proof of
this proposition can be found in [11, Section 3].

Proof. All claims, except the simplicity of zeros and the normalization of eigenvectors,
follow from the known spectral properties of TF. Namely, TF is positive definite,
(TF)−1 is compact, specTF = {qw 2

n ; n ∈ N} and corresponding eigenvectors are given
by formula (40); cf. Propositions 5, 6, 13 and 14.

The remaining properties can be derived, in an entirely standard way, with the
aid of discrete Green’s formula. Suppose a sequence of differentiable functions un(x),
n ∈ Z, obeys the difference equation (44). Then Green’s formula implies that, for all
m,n ∈ Z, m ≤ n,

n∑
k=m

uk(x)2 = αm−1

(
u′m−1(x)um(x)−um−1(x)u′m(x)

)
−αn

(
u′n(x)un+1(x)−un(x)u′n+1(x)

)
(with the dash standing for a derivative). We choose m = 0 and uk(x) as defined in
(40). From definition (1) one immediately infers the asymptotic behavior

uk(x) = C(x)(1+O(qk)) q(ν+1)k/2, u′k(x) = C ′(x)(1+O(qk)) q(ν+1)k/2, as k →∞, (47)
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where C(x) = xν/2 (q1+ν ; q)∞/(q; q)∞. It follows that one can send n→∞ in Green’s
formula. For x = qw 2

n we have u−1(x) = 0 and the formula reduces to the equality

∞∑
k=0

qkJν(q
(k+1)/2wn; q)2 = −qν/2 Jν(q1/2wn; q)

∂Jν(q
−1/2
√
x; q)

∂x

∣∣∣∣
x=qw 2

n

.

Whence (46). From the asymptotic behavior (47) it is also obvious that uk(x) 6= 0 for
sufficiently large k. Necessarily, ∂Jν(wn; q)/∂z 6= 0.

In addition, one obtains at once an orthogonality relation for the sequence of
orthogonal polynomials {P̂n(x)}. As is well known from the general theory [3] and
Proposition 3, the orthogonality relation is unique if ν ≥ 1 and indeterminate if
0 < ν < 1. It was originally derived in [9, Theorem 3.6].

Proposition 17 (Koelink). Assume that ν > 0 and let {P̂n(x)} be the sequence of
orthogonal polynomials defined in (9), (10), and 0 < w1 < w2 < w3 < . . . be the
positive zeros of z 7→ Jν(z; q). Then the orthogonality relation

−2q1−ν/2
∞∑
k=1

wkJν(q
1/2wk; q)

∂Jν(wk; q)/∂z
P̂m(qw 2

k )P̂n(qw 2
k ) = δm,n (48)

holds for all m,n ∈ Z+.

Proof. Let u(k), k ∈ N, be the orthogonal basis in `2 introduced in (45), i.e. we put

u(k)n = qn/2Jν(q
(n+1)/2wk; q), k ∈ N, n ∈ Z+.

Notice that the norm ‖u(k)‖ is known from (46). The vectors u(k) and P̂ (x) =
(P̂0(x), P̂1(x), P̂2(x), . . .), with x = qw 2

k , are both eigenvectors of TF corresponding to
the same eigenvalue. Hence these vectors are linearly dependent and one has

qn/2Jν(q
(n+1)/2wk; q) = Jν(q

1/2wk; q)P̂n(qw 2
k ), k ∈ N, n ∈ Z+.

One concludes that Parseval’s equality

∞∑
k=1

u(k)mu(k)n
‖u(k)‖2

= δm,n, m, n ∈ Z+,

yields (48).

Remark 18. To complete the picture let us mention two more results which are known
about the Hahn-Exton q-Bessel functions and the associated polynomials. First, de-
note again by w

(ν)
n ≡ wn, n ∈ N, the increasingly ordered positive zeros of Jν(z; q). In

[1] it is proved that if q is sufficiently small, more precisely, if qν+1 < (1− q)2 then

q−m/2 > wm > q−m/2
(

1− qm+ν

1− qm

)
, ∀m ∈ N.
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More generally, in Theorem 2.2 and Remark 2.3 in [4] it is shown that for any q,
0 < q < 1, one has

wm = q−m/2 (1 +O(qm)) as m→∞.
Second, in [11, 9] one can find an explicit expression for the sequence of orthogonal

polynomials {P̂n(x)}, namely

P̂n(x) = qn/2
n∑
j=0

qn(j−ν/2)(q−n; q)j
(q; q)j

2φ1(qj−n, qj+1; q−n; q, q−j+ν)xj, n ∈ Z+.

Let us remark that a relative formula in terms of the Al-Salam–Chihara polynomials
has been derived in [17, Theorem 2].

Acknowledgments

The authors wish to acknowledge gratefully partial support from grant No. GA13-
11058S of the Czech Science Foundation.

References

[1] L. D. Abreu, J. Bustoz, J. L. Cardoso: The roots of the third Jackson q -Bessel
function, Internat. J. Math. Math. Sci. 67 (2003) 4241-4248.

[2] A. Alonso, B. Simon: The Birman-Krein-Vishik theory of self-adjoint extensions
of semibounded operators, J. Operator Theory 4 (1980) 251-270.

[3] N. I. Akhiezer: The Classical Moment Problem and Some Related Questions in
Analysis, (Oliver & Boyd, Edinburgh, 1965).

[4] M. H. Annaby, Z. S. Mansour: On the zeros of the second and third Jackson q
-Bessel functions and their associated q -Hankel transforms, Math. Proc. Camb.
Phil. Soc. 147 (2009) 47-67.

[5] B. M. Brown, J. S. Christiansen: On the Krein and Friedrichs extensions of a
positive Jacobi operator, Expo. Math. 23 (2005) 179-186.

[6] G. Gasper, M. Rahman: Basic Hypergeometric Series, (Cambridge University
Press, Cambridge, 1990).

[7] T. S. Chihara: An Introduction to Orthogonal Polynomials, (Gordon and Breach,
Science Publishers, Inc., New York, 1978).

[8] T. Kato: Perturbation Theory for Linear Operators, (Springer-Verlag, Berlin,
1980).

[9] H. T. Koelink: Some basic Lommel polynomials, J. Approx. Theory 96 (1999)
345-365.

22



[10] H. T. Koelink, W. Van Assche: Orthogonal polynomials and Laurent polynomials
related to the Hahn-Exton q-Bessel function, Constr. Approx. 11 (1995) 477-512.

[11] H. T. Koelink, R. F. Swarttouw: On the zeros of the Hahn-Exton q-Bessel func-
tion and associated q-Lommel polynomials, J. Math. Anal. Appl. 186 (1994) 690-
710.

[12] L. O. Silva, R. Weder: On the two-spectra inverse problem for semi-infinite Jacobi
matrices in the limit-circle case, Math. Phys. Anal. Geom. 11 (2008) 131-154.

[13] B. Simon: The classical moment problem as a self-adjoint finite difference oper-
ator, Adv. Math. 137 (1998) 82-203.
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Abstract

The Hamburger moment problem for the q-Lommel polynomials which are re-
lated to the Hahn-Exton q-Bessel function is known to be indeterminate for a
certain range of parameters. In this paper, the Nevanlinna parametrization for
the indeterminate case is provided in an explicit form. This makes it possible to
describe all respective N-extremal measures of orthogonality. Moreover, a linear
and quadratic recurrence relation are derived for the moment sequence, and the
asymptotic behavior of the moments for large powers is revealed with the aid of
appropriate estimates.

Keywords : q-Lommel polynomials, Nevanlinna parametrization, measure of orthogo-
nality, moment sequence
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1 Introduction

The Lommel polynomials represent a class of orthogonal polynomials known from the
theory of Bessel functions. Several q-analogues of the Lommel polynomials have been
introduced and studied in [12, 11, 13]. One of the three commonly used q-analogues
of the Bessel function of the first kind is known as the Hahn-Exton q-Bessel function
(sometimes also called the third Jackson q-Bessel function or 1φ1 q-Bessel function).
It is defined by the equality

Jν(z; q) = zν
(qν+1; q)∞

(q; q)∞
1φ1(0; qν+1; q, qz2). (1)
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It is of importance that Jν(z; q) satisfies the recurrence relation

Jν+1(z; q)−
(
z +

1− qν

z

)
Jν(z; q) + Jν−1(z; q) = 0.

By iterating this rule one arrives at the formula

Jν+n(z; q) = hn,ν(z
−1; q)Jν(z; q)− hn−1,ν+1(z

−1; q)Jν−1(z; q) (2)

where hm,ν(w; q) are polynomials in qν and Laurent polynomials in w, see [11] for
more details. This is a familiar situation, with equation (2) being analogous to the
well known relation between the Lommel polynomials and the Bessel functions, cf.
[20, Chapter 9]. Thus the polynomials hm,ν(w; q) can be referred to as the q-Lommel
polynomials.

On one hand, the polynomials hn,ν(w; q) can be treated as orthogonal Laurent
polynomials in the variable w. The corresponding orthogonality relation has been
described in [11]. On the other hand, hn,ν(w; q) are also orthogonal polynomials
in the variable qν . In Theorem 3.6 and Corollary 3.7 in [13], Koelink described a
corresponding measure of orthogonality. It turns out that the measure of orthogonality
is supported on the zeros of the Hahn-Exton q-Bessel function considered as a function
of the order ν . Moreover, the measure of orthogonality is unique if w−2 ≤ q or
w−2 ≥ q−1. For q < w−2 < q−1, however, the corresponding Hamburger moment
problem is indeterminate and so there exist infinitely many measures of orthogonality.
The measure described in [13] represents a Nevanlinna (or N-) extremal solution of
the indeterminate Hamburger moment problem and it can be seen to correspond to
the Friedrichs extension of the underlying Jacobi matrix operator.

Let us also remark that the q-Lommel polynomials admit another interpretation
in the framework of a birth and death process with exponentially growing birth and
death rates. More precisely, the birth rate is supposed to be λn = w−2q−n while the
death rate is µn = q−n (or vice versa). See, for example, [9] for more information on
the subject.

As already pointed out in [13], it is of interest and in fact a fundamental ques-
tion to determine all possible measures of orthogonality in terms of the Nevanlinna
parametrization. An explicit solution of this problem becomes the main goal of the
current paper. To achieve it we heavily rely on the knowledge of the generating func-
tion for the q-Lommel polynomials. Having the Nevanlinna parametrization at hand
it is straightforward to describe all N-extremal measures of orthogonality. The case
when w = 1 turns out to be somewhat special and requires additional efforts though no
new ideas are in principle needed. To our best knowledge, formulas for this particular
case have been omitted in the past research works on the q-Lommel polynomials.

In addition, we pay some attention to the sequence of moments related to the
q-Lommel polynomials. By Favard’s theorem, the moments are unambiguously deter-
mined by the coefficients in the recurrence relation for the q-Lommel polynomials and
otherwise they are independent of a particular choice of the measure of orthogonality
in the indeterminate case. It does not seem that the moment sequence can be found
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explicitly. We provide at least a linear and quadratic recurrence relation for it and
describe qualitatively its asymptotic behavior for large powers.

Let us note that throughout the whole paper the parameter q is assumed to satisfy
0 < q < 1. Furthermore, as far as the basic (or q-) hypergeometric series are concerned,
as well as other q-symbols and functions, we follow the notation of Gasper and Rahman
[8].

2 The Nevanlinna functions for q-Lommel polyno-

mials

2.1 The q-Lommel polynomials

In the current paper we prefer to work directly with the 1φ1 basic hypergeometric
function and do not insist on its interpretation as the q-Bessel function in accordance
with (1). This leads us to using a somewhat modified notation if compared to that
usually used in connection with q-Bessel functions, for instance, in [13]. Moreover,
the notation used in this paper may stress some similarity of the Hamburger moment
problem for the q-Lommel polynomials with the same problem for the Al-Salam-
Carlitz II polynomials. The Hamburger moment problem is actually known to be
indeterminate for particular values of parameters in both cases but there are also
some substantial differences, see [3, Section 4].

Thus we write a > 0 instead of w−2 and x ∈ C instead of qν . The basic recurrence
relation we are going to study, defining a sequence of monic orthogonal polynomials
{Fn(a, q;x)}∞n=0 (in the variable x and depending on two parameters a and q), reads

un+1 =
(
x− (a+ 1)q−n

)
un − aq−2n+1un−1, n ∈ Z+ (3)

(Z+ standing for nonnegative integers). As usual, the initial conditions are imposed
in the form F−1(a, q;x) = 0 and F0(a, q;x) = 1. In order to be able to compare some
results derived below with the already known results on the q-Lommel polynomials
let us remark that the q-Lommel polynomials hn,ν(w; q) introduced in (2) are related
to the monic polynomials Fn(a, q;x) by the formula

hn,ν(w; q) = (−1)nwnqn(n−1)/2Fn(w−2, q; qν).

From (3) one immediately deduces the symmetry property

anFn(a−1, q;x) = Fn(a, q; ax), n ∈ Z+.

This suggests that one can restrict values of the parameter a to the interval 0 < a < 1.
We usually try, however, to formulate our results for both cases, a < 1 and a > 1, for
the sake of completeness. The case a = 1 is somewhat special and should be treated
separately.

Letting
Gn(a, q;x) = q1−nFn−1(a, q; qx), n ∈ Z+, (4)
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we get a second linearly independent solution of (3), a sequence of monic polynomials
{Gn(a, q;x)} fulfilling the initial conditions G0(a, q;x) = 0 and G1(a, q;x) = 1. Nor-
malizing the monic polynomials Fn(a, q;x) we get an orthonormal polynomial sequence
{Pn(a, q;x)}∞n=0. Explicitly,

Pn(a, q;x) = a−n/2qn
2/2Fn(a, q;x), n ∈ Z+. (5)

The polynomials of the second kind, Qn(a, q;x), are related to the monic polynomials
Gn(a, q;x) by a similar equality,

Qn(a, q;x) = a−n/2qn
2/2Gn(a, q;x), n ∈ Z+, (6)

and obey the initial conditions Q0(a, q;x) = 0, Q1(a, q;x) =
√
q/a.

Note that polynomials Pn(a, q;x) solve the second-order difference equation
√
aq−n+1/2vn−1 +

(
(a+ 1)q−n − x

)
vn +

√
aq−n−1/2vn+1 = 0, n ∈ Z+,

with the initial conditions P−1(a, q;x) = 0 and P0(a, q;x) = 1. Denote by αn and βn
the coefficients in this difference equation,

αn = a1/2q−n−1/2, βn = (a+ 1)q−n, n ∈ Z+. (7)

The difference equation can be interpreted as the formal eigenvalue equation for the
Jacobi matrix

J = J(a, q) =


β0 α0

α0 β1 α1

α1 β2 α2

. . . . . . . . .

. (8)

Then (P0(x), P1(x), P2(x), . . .) is a formal eigenvector (where Pj(x) ≡ Pj(a, q;x)). Let
us emphasize that J is positive on the subspace in `2(Z+) formed by sequences with
only finitely many nonzero entries, i.e. on the linear hull of the canonical basis in
`2(Z+). Actually, it is not difficult to verify that for every N ∈ Z+ and ξ ∈ RN+1,

N∑
n=0

βnξ
2
n + 2

N−1∑
n=0

αnξnξn+1 = aξ 2
0 + q−Nξ 2

N +
N−1∑
n=0

q−n

((
a

q

)1/2

ξn+1 + ξn

)2

≥ 0. (9)

Recurrence (3) can be solved explicitly in the particular case when x = 0. One
finds that

Fn(a, q; 0) = (−1)nq−n(n−1)/2
1− an+1

1− a
, Gn(a, q; 0) = (−1)n+1q−n(n−1)/2

1− an

1− a
,

for n ∈ Z+ and a 6= 1. Consequently,

Pn(a, q; 0) = (−1)nqn/2a−n/2
1− an+1

1− a
, Qn(a, q; 0) = (−1)n+1qn/2a−n/2

1− an

1− a
. (10)

The quantities Pn(1, q; 0) and Qn(1, q; 0) can be obtained from (10) in the limit a→ 1,

Pn(1, q; 0) = (−1)nqn/2(n+ 1), Qn(1, q; 0) = (−1)n+1qn/2n.
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2.2 The generating function

A formula for the generating function for the q-Lommel polynomials has been derived
in [12, Eq. (4.22)]. Here we reproduce the formula and provide its proof since it is
quite crucial for the computations to follow of the Nevanlinna functions A, B, C, and
D.

Proposition 1. Let a > 0. The generating function for the polynomials Fn(a, q;x)
equals

∞∑
n=0

qn(n−1)/2Fn(a, q;x)(−t)n =
∞∑
k=0

qk(k−1)/2(−xt)k

(t; q)k+1(at; q)k+1

=
2φ2(q, 0; qt, qat; q, xt)

(1− t)(1− at)
(11)

where |t| < min(1, a−1).

Proof. The last equality in (11) is obvious from the definition of the basic hypergeo-
metric function. Suppose a and x being fixed and put

V (t) =
∞∑
k=0

qk(k−1)/2(−xt)k

(t; q)k+1(at; q)k+1

.

V (t) is a well defined analytic function for |t| < min(1, a−1) which is readily seen to
satisfy the q-difference equation

(1− t)(1− at)V (t) = 1− xtV (qt). (12)

Writing the power series expansion of V (t) at t = 0 in the form

V (t) =
∞∑
n=0

unq
n(n−1)/2(−t)n

and inserting the series into (12) one finds that the coefficients un obey the recurrence
(3) and the initial conditions u0 = 1, u1 = −1 − a + x. Necessarily, un = Fn(a, q;x)
for all n ∈ Z+.

In [12, Section 4] and particularly in [13, Eq. (2.6)] there is stated an explicit
formula for the polynomials Fn(a, q;x), namely

Fn(a, q;x) = (−1)nq−n(n−1)/2
n∑
j=0

qjn(q−n; q)j
(q; q)j

2φ1(q
j−n, qj+1; q−n; q, q−ja)xj.

Let us restate this formula as an immediate corollary of Proposition 1.

Corollary 2. The polynomials Fn(a, q;x), n ∈ Z+, can be expressed explicitly as
follows

Fn(a, q;x) = (−1)nq−n(n−1)/2
n∑
j=0

(−1)jqj(j−1)/2

(q; q) 2
j

(
n−j∑
k=0

(qk+1; q)j(q
n−j−k+1; q)j a

k

)
xj.

(13)
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Proof. The formula can be derived by equating the coefficients of equal powers of t in
(11). To this end, one has to apply the q-binomial formula

1

(z; q)k
= 1φ0(q

k; ; q; z) =
∞∑
n=0

(qk; q)n
(q; q)n

zn, |z| < 1,

cf. [8, Eq. (II.3)].

2.3 The indeterminate case and the Nevanlinna parametriza-
tion

We are still assuming that a is positive. In [13, Lemma 3.1] it is proved that the
Hamburger moment problem for the orthogonal polynomials Fn(a, q;x) (or Pn(a, q;x))
is indeterminate if and only if q < a < q−1. This is, however, clear from formulas (10)
and from the well known criterion (cf. Addenda and Problems 10. to Chapter 2 in
[1]) according to which the Hamburger moment problem is indeterminate iff

∞∑
n=0

(
Pn(a, q; 0)2 +Qn(a, q; 0)2

)
<∞.

This also means that the Jacobi matrix operator J defined in (8), (7), with Dom J
equal to the linear hull of the canonical basis in `2(Z+), is not essentially self-adjoint
if and only if a belongs to the interval (q, q−1), and if so then the deficiency indices
are (1, 1) [1, Chapter 4].

Hence for q < a < q−1 there exist infinitely many distinct measures of orthogonality
parametrized with the aid of the Nevanlinna functions A, B, C and D,

A(z) = z
∞∑
n=0

Qn(0)Qn(z), B(z) = −1 + z
∞∑
n=0

Qn(0)Pn(z),

C(z) = 1 + z

∞∑
n=0

Pn(0)Qn(z), D(z) = z

∞∑
n=0

Pn(0)Pn(z),

where Pn and Qn are the polynomials of the first and second kind, respectively [1, 16].
All these Nevanlinna functions are entire and

A(z)D(z)−B(z)C(z) = 1, ∀z ∈ C. (14)

According to the Nevanlinna theorem, all measures of orthogonality µϕ for which the
set {Pn; n ∈ Z+} is orthonormal in L2(R, dµϕ), are in one-to-one correspondence
with functions ϕ belonging to the one-point compactification P ∪ {∞} of the space
of Pick functions P . Recall that Pick functions are defined and holomorphic on the
open complex halfplane Im z > 0, with values in the closed halfplane Im z ≥ 0. The
correspondence is established by identifying the Stieltjes transform of the measure µϕ,

ˆ
R

dµϕ(x)

z − x
=
A(z)ϕ(z)− C(z)

B(z)ϕ(z)−D(z)
, z ∈ C \ R. (15)
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By a theorem due to M. Riesz, {Pn; n ∈ Z+} is an orthonormal basis in L2(R, dµϕ)
if and only if ϕ = t is a constant function with t ∈ R∪ {∞} [1, Theorem 2.3.3]. Then
the measure µt is said to be N-extremal. Moreover, the N-extremal measures µt are
in one-to-one correspondence with self-adjoint extensions Tt of the Jacobi operator J
mentioned above. In more detail, if Et is the spectral measure of Tt and e0 is the first
vector of the canonical basis in `2(Z+) then µt = 〈e0, Et(·)e0〉 [1, Chapter 4]. The
operators Tt in the indeterminate case are known to have a compact resolvent. Hence
any N-extremal measure µt is purely discrete and supported on specTt.

On the other hand, referring to (15), the support of µt is also known to be equal
to the zero set

Zt = {x ∈ R; B(x)t−D(x) = 0} (16)

[1, Section 2.4]. Hence

µt =
∑
x∈Zt

ρ(x)δx (17)

where ρ(x) = µt({x}) and δx is the Dirac measure supported on {x}. Equation (15),
with ϕ = t, is nothing but the Mittag-Leffler expansion of the meromorphic function
on the right-hand side, ∑

x∈Zt

ρ(x)

z − x
=
A(z)t− C(z)

B(z)t−D(z)
,

cf. [1, footnote on p. 55]. From here it can be deduced that

ρ(x) = Resz=x
A(z)t− C(z)

B(z)t−D(z)
=

A(x)t− C(x)

B′(x)t−D′(x)
=

1

B′(x)D(x)−B(x)D′(x)
(18)

since, for x ∈ Zt, t = D(x)/B(x).
It should be noted that we are dealing with the Stieltjes case for the matrix operator

J is positive on its domain of definition, see (9). This means that, for any choice of
parameters from the specified range, there always exists a measure of orthogonality
with its support contained in [0,+∞). In particular, if a ∈ (q, q−1) then at least one
of the measures of orthogonality is supported by [0,+∞). From [7, Lemma 1] it is
seen that there exists the limit

lim
n→∞

Pn(0)

Qn(0)
= α ∈ (−∞, 0 ].

And, as explained in [3, Remark 2.2.2], an N-extremal measure of orthogonality µt is
supported by [ 0,∞) iff t ∈ [α, 0 ], the Stieltjes moment is determinate for α = 0 and
indeterminate for α < 0. Let us note that µ0 is the unique N-extremal measure for
which 0 is a mass point.

In our case, making once more use of the explicit form (10), we have

α = lim
n→∞

Pn(a, q; 0)

Qn(a, q; 0)
=

{
−1, if a ∈ (0, 1],

−a, if a > 1.
(19)

Hence the Stieltjes problem is indeterminate for any value a ∈ (q, q−1).
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The self-adjoint operator Tα corresponding to the N-extremal measure µα is noth-
ing but the Friedrichs extension of J [15, Proposition 3.2]. The parameter α can also
be computed in the limit

α = lim
x→−∞

D(x)

B(x)
,

and by inspection of the function D(x)/B(x) one finds that µt has exactly one negative
mass point if t /∈ [α, 0 ] including t = ∞ [3, Lemma 2.2.1]. It is known, too, that
Markov’s theorem applies in the indeterminate Stieltjes case meaning that

lim
n→∞

Qn(z)

Pn(z)
=
A(z)α− C(z)

B(z)α−D(z)
, z ∈ C \ supp(µα) (20)

[4, Theorem 2.1]. In addition, in the same case, one has the limit

lim
n→∞

Pn(z)

Qn(0)
= D(z)−B(z)α, z ∈ C, (21)

as derived in [7] and also in [15].
Finally we wish to recall yet another interesting application of the Nevanlinna

functions. It is shown in [6] that the reproducing kernel can be expressed in terms of
functions B(z) and D(z),

K(u, v) :=
∞∑
n=0

Pn(u)Pn(v) =
B(u)D(v)−D(u)B(v)

u− v
, (22)

see also [5, Section 1].

2.4 An explicit form of the Nevanlinna functions

In order to describe conveniently the Nevanlinna parametrization in the studied case
we introduce a shorthand notation for particular basic hypergeometric series while not
indicating the dependance on q explicitly. We put

ϕa(z) = 1φ1(0; qa; q, z), ψa(z) = 1φ1(0; qa−1; q, a−1z), (23)

and

χ1(z) =
∂

∂p
1φ1(0; p; q, z)

∣∣∣
p=q

.

Theorem 3. Let 1 6= a ∈ (q, q−1). Then the entire functions A, B, C and D from
the Nevanlinna parametrization are as follows:

A(a, q; z) =
ϕa(qz)− ψa(qz)

1− a
, B(a, q; z) =

aψa(z)− ϕa(z)

1− a
,

C(a, q; z) =
ψa(qz)− aϕa(qz)

1− a
, D(a, q; z) =

a
(
ϕa(z)− ψa(z)

)
1− a

. (24)
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For a = 1 these functions take the form

A(1, q; z) = −2q χ1(qz)− z ∂

∂z
ϕ1(qz), B(1, q; z) = 2q χ1(z) + z2

∂

∂z

(
z−1ϕ1(z)

)
,

C(1, q; z) = 2q χ1(qz) +
∂

∂z

(
zϕ1(qz)

)
, D(1; q, z) = −2q χ1(z)− z ∂

∂z
ϕ1(z). (25)

Proof. We shall confine ourselves to computing the function A only. The formulas for
B, C and D can be derived in a fully analogous manner. Starting from the definition of
A and recalling formulas (10) and (6), (4) for Qn(a, q; 0) and Qn(a, q;x), respectively,
one has

A(a, q; z) =
qz

1− a

∞∑
n=1

(−1)n+1(a−n − 1)qn(n−1)/2Fn−1(a, q; qz)

=
zq

1− a

(
a−1

∞∑
n=0

qn(n−1)/2Fn(a, q; qz)(−qa−1)n −
∞∑
n=0

qn(n−1)/2Fn(a, q; qz)(−q)n
)
.

From comparison of both sums in the last expression with formula (11) for the gen-
erating function it becomes clear that the sums can be expressed in terms of basic
hypergeometric functions, namely

A(a, q; z) =
qz

1− a

(
a−1 2φ2(0, q; q

2a−1, q2; q, q2a−1z)

(1− qa−1)(1− q)
− 2φ2(0, q; q

2, aq2; q, zq2)

(1− q)(1− qa)

)
=

1

1− a
((

1− 1φ1(0; qa−1; q, qa−1z)
)
−
(
1− 1φ1(0; qa; q, qz)

))
.

Thus one arrives at the first equation in (24).
Concerning the particular case a = 1, formulas (25) can be derived by applying

the limit a→ 1 to formulas (24). This is actually possible since Proposition 2.4.1 and
Remark 2.4.2 from [3] guarantee that the functions A(a, q; z), B(a, q; z), C(a, q; z),
D(a, q; z) depend continuously on a ∈ (q, q−1). In order to be able to apply this
theoretical result one has to note that the coefficients in the recurrence (3) depend
continuously on a, and to verify that the series

∑∞
n=0 Pn(a, q; 0)2 and

∑∞
n=0Qn(a, q; 0)2

converge uniformly for a in compact subsets of (q, q−1). But the latter fact is obvious
from (10).

For instance, in case of function A one finds that

A(1, q; z) = lim
a→1

ϕa(qz)− ψa(qz)

1− a
= − ∂

∂a

(
ϕa(qz)− ψa(qz)

)∣∣∣
a=1

.

A straightforward computation yields the first equation in (25), and similarly for the
remaining three equations.
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Corollary 4. The following limits are true:

lim
n→∞

(−1)n
(
a

q

)n/2
Pn(a, q;x) =

1φ1(0; qa; q, x)

1− a
, if q < a < 1,

lim
n→∞

(−1)n(qa)−n/2Pn(a, q;x) =
a 1φ1(0; qa−1; q, a−1x)

a− 1
, if 1 < a < q−1, (26)

lim
n→∞

(−1)n

n
q−n/2Pn(1, q;x) = 1φ1(0; q; q, x),

and

lim
n→∞

Qn(z)

Pn(z)
=



−1φ1(0; qa; q, qz)

1φ1(0; qa; q, z)
for q < a < 1,

− 1φ1(0; qa−1; q, qa−1z)

a 1φ1(0; qa−1; q, a−1z)
for 1 < a < q−1,

−1φ1(0; q; q, qz)

1φ1(0; q; q, z)
for a = 1.

(27)

Proof. From (24), (25) and (19) one immediately infers that

C(a, q; z)− A(a, q; z)α = ϕa(qz) or ψa(qz) or ϕ1(qz),

D(a, q; z)−B(a, q; z)α = −ϕa(z) or − aψa(z) or − ϕ1(z),

depending on whether q < a < 1 or 1 < a < q−1 or a = 1. Equations (26) follow from
(21) and (10) while equations (27) are a direct consequence of (20).

Remark 5. The limits (26) can be proved, in an alternative way, by applying Darboux’s
method to the generating function whose explicit form is given in (11). According to
this method, the leading asymptotic term of qn(n−1)/2Fn(a, q;x) is determined by the
singularity of the function on the left-hand side in (11) which is located most closely
to the origin, cf. [14, Section 8.9]. Proceeding this way one can show that the first
limit in (26) is valid even for all 0 < a < 1 while the second one is valid for all a > 1.
Let us also note that the limits established in (26) can be interpreted as a q-analogue
to Hurwitz’s limit formula for the Lommel polynomials. The case a < 1 has been
derived, probably for the first time, in [12, Eq. (4.24)], see also [11, Eq. (3.4)] and
[13, Eq. (2.7)], while the case a > 1 has been treated in [11, Eq. (3.6)].

The following formula for the reproducing kernel can be established.

Corollary 6. Suppose q < a < q−1. Then

K(u, v) =
a
(
ϕa(u)ψa(v)− ψa(u)ϕa(v)

)
(1− a)(u− v)

if a 6= 1, and

K(u, v) =
ϕ1(u)

(
2qχ1(v) + vϕ′1(v)

)
−
(
2qχ1(u) + uϕ′1(u)

)
ϕ1(v)

u− v
if a = 1.

10



Proof. This is a direct consequence of (22) and (24), (25).

Remark 7. In [18], self-adjoint extensions of the Jacobi matrix J , defined in (7), (8),
are described in detail while addressing only the case q < a < 1. The self-adjoint
extensions, called T (κ), are parametrized by κ ∈ R∪{∞}, with κ =∞ corresponding
to the Friedrichs extension. The domain DomT (κ) ⊂ Dom J∗ is specified by the
asymptotic boundary condition: a sequence f from Dom J∗ belongs to DomT (κ) iff
C2(f) = κC1(f) where

C1(f) = lim
n→∞

(−1)n
(
a

q

)n/2
fn, C2(f) = lim

n→∞

(
(−1)nfn − C1(f)

(q
a

)n/2)
(qa)−n/2

(the limits can be shown to exist). The eigenvalues of T (κ) are exactly the roots of
the equation

κ 1φ1(0; qa; q, x) + a 1φ1(0; qa−1; q, a−1x) = 0.

On the other hand, consider the self-adjoint extension Tt corresponding the measure
of orthogonality µt, with t ∈ R∪{∞} being a Nevanlinna parameter. The eigenvalues
of Tt are the mass points from the support of µt, i.e. the zeros of the function

(1− a)
(
B(a, q;x)t−D(a, q;x)

)
= (t+ 1)a 1φ1(0; qa−1; q, a−1x)− (t+ a) 1φ1(0; qa; q, x),

as one infers from (23) and (24). Since a self-adjoint extension is unambiguously
determined by its spectrum (see, for instance, proof of Theorem 4.2.4 in [1]) one gets
the correspondence κ = −(t+ a)/(t+ 1).

2.5 Measures of orthogonality

With the explicit knowledge of the Nevanlinna parametrization established in Theo-
rem 3 it is straightforward to describe all N-extremal solutions.

Proposition 8. Let 1 6= a ∈ (q, q−1). Then all N-extremal measures µt = µt(a, q) are
of the form

µt =
∑
x∈Zt

ρ(x) δx where
1

ρ(x)
=

a

1− a
(
ψa(x)ϕ′a(x)− ϕa(x)ψ′a(x)

)
, (28)

Zt = Zt(a, q) = {x ∈ R; a(t+ 1)ψa(x)− (t+ a)ϕa(x) = 0},
and δx stands for the Dirac measure supported on {x}.

For a = 1, all N-extremal measures µt = µt(1, q) are of the form µt =
∑

x∈Yt
ρ(x) δx

where

1

ρ(x)
= 2q

(
ϕ′1(x)χ1(x)− ϕ1(x)χ′1(x)

)
+ x
(
ϕ′1(x)

)2 − ϕ1(x)ϕ′1(x)− xϕ1(x)ϕ′′1(x).

and
Yt = Yt(q) = {x ∈ R; 2q(t+ 1)χ1(x) + (t+ 1)xϕ′1(x)− tϕ1(x) = 0}.

11



Proof. Referring to general formulas (17) and (16), (18), it suffices to apply Theorem 3.

Lemma 9. With the notation introduced in (23) it holds true that

ϕa(z)ψa(qz)− aψa(z)ϕa(qz) = 1− a if a 6= 1, (29)

and

2q
(
ϕ1(z)χ1(qz)− χ1(z)ϕ1(qz)

)
+ z
(
qϕ1(z)ϕ′1(qz)− ϕ′1(z)ϕ1(qz)

)
+ ϕ1(z)ϕ1(qz) = 1,

for all z ∈ C.

Proof. These identities follow from (14) and, again, from Theorem 3.

Let us examine a bit more closely two particular N-extremal measures µt described
in Proposition 8, with t = −1 and t = −a. They correspond to the distinguished case
t = α if a ∈ (q, 1) or a ∈ (1, q−1), respectively (cf. (19)). As already mentioned, if
t = α then the corresponding self-adjoint extension of the underlying Jacobi matrix
is the Friedrichs extension, and the measure µt is necessarily a Stieltjes measure. In
the case t = −1 the orthogonality relation for the orthonormal polynomials Pn(a, q;x)
reads

−
∞∑
k=1

ϕa(qξk)

ϕ′a(ξk)
Pn(a, q; ξk)Pm(a, q; ξk) = δmn (30)

where {ξk; k ∈ N} are the zeros of the function ϕa. Actually, from (28) and (29) one
infers that ρ(x) = −ϕa(qξk)/ϕ′a(ξk) if ϕa(ξk) = 0. Similarly, the same orthogonality
relation for t = −a reads

−1

a

∞∑
k=1

ψa(qηk)

ψ′a(ηk)
Pn(a, q; ηk)Pm(a, q; ηk) = δmn (31)

where {ηk; k ∈ N} are the zeros of the function ψa.

Remark 10. The orthogonality relation (30) has been derived already in [13, Theorem
3.6.]. This is the unique orthogonality relation for the polynomials Pn(a, q;x) if a ∈
(0, q] (the determinate case), and an example of an N-extremal orthogonality relation
if a ∈ (q, 1). Similarly, (31) is the unique orthogonality relation if a ≥ q−1. Of course,
(30) and (31) coincide for a = 1.

Remark 11. In [2, Section 1], an explicit expression has been found for the measures of
orthogonality µϕ corresponding to constant Pick functions ϕ(z) = β + iγ, with β ∈ R
and γ > 0. Let us call these measures µβ,γ = µβ,γ(a, q). It turns out that µβ,γ is an
absolutely continuous measure supported on R with the density

dµβ,γ
dx

=
γ

π

((
βB(a, q;x)−D(a, q;x)

)2
+ γ2B(a, q;x)2

)−1
.
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In our case, referring to (24), (25), we get the probability density

dµβ,γ
dx

=
γ (1− a)2

π
((

(β + 1)aψa(x)− (β + a)ϕa(x)
)2

+ γ2
(
aψa(x)− ϕa(x)

)2) ,
provided 1 6= a ∈ (q, q−1), and

dµβ,γ
dx

=
γ

π

×
((

2q(β + 1)χ1(x)− βϕ1(x) + (β + 1)xϕ′1(x)
)2

+ γ2
(
2qχ1(x)− ϕ1(x) + xϕ′1(x)

)2)−1
,

provided a = 1. Letting β = −1 or β = −a and γ > 0 arbitrary, one obtains
comparatively simple and nice orthogonality relations for the polynomials Pn(a, q;x),
namely

ˆ
R

Pm(a, q;x)Pn(a, q;x)

γ
(
aψa(x)− ϕa(x)

)2
+ γ−1(a− 1)2ϕa(x)2

dx =
π

(a− 1)2
δmn

and ˆ
R

Pm(a, q;x)Pn(a, q;x)

γ
(
aψa(x)− ϕa(x)

)2
+ γ−1(a− 1)2a2ψa(x)2

dx =
π

(a− 1)2
δmn,

valid for all m,n ∈ Z+ and a ∈ (q, q−1), a 6= 1. If a = 1, a similar orthogonality
relation takes the formˆ

R

Pm(1, q;x)Pn(1, q;x)

γ
(
2qχ1(x) + xϕ′1(x)− ϕ1(x)

)2
+ γ−1ϕ1(x)2

dx = πδmn.

3 The moment sequence

3.1 Passing to the determinate case

Let µ be any measure of orthogonality for the orthonormal polynomials Pn(a, q;x)
introduced in (5). Denote by

mn(a, q) =

ˆ
R
xn dµ(x), n ∈ Z+,

the corresponding moment sequence. It is clear from Favard’s theorem, however, that
the moments do not depend on the particular choice of the measure of orthogonality.
It is even known that

mn(a, q) = 〈e0, J(a, q)ne0〉, n ∈ Z+, (32)

where J(a, q) is the Jacobi matrix defined in (7), (8), and e0 is the first vector of the
canonical basis in `2(Z+). Whence mn(a, q) is a polynomial in a and q−1. Conse-
quently, in order to compute the moments one can admit a wider range of parameters
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than that we were using up to now, namely 0 < q < 1 and q < a < q−1. This ob-
servation can be of particular importance for the parameter q since the properties of
the matrix operator J(a, q) would change dramatically if q was allowed to take values
q > 1. We wish to stick, however, to the widely used convention according to which
the modulus of q is smaller than 1. This is why we replace the symbol q by p in this
section whenever this restriction is relaxed. Concerning the parameter a, it is always
supposed to be positive.

Put, for p > 0 and a > 0,

ωn(a, p) =
n∑
k=0

[
n
k

]
p

p−k(n−k)ak, n ∈ Z+. (33)

The meaning of the q-binomial ceofficient in (33) is the standard one, cf. [8, Eq. (I.39)].
Let us remark that ωn(a, p) can be expressed in terms of the continuous q-Hermite
polynomials Hn(x; q), namely

ωn(a, p) = 2φ0(p
n, 0; ; p−1, p−na) = an/2Hn

( 1

2

(
a1/2 + a−1/2

)
; p−1

)
, (34)

see [10].
As before, the monic polynomials Fn(a, p;x) are generated by the recurrence (3),

with F−1(a, p;x) = 0 and F0(a, p;x) = 1 (writing p instead of q). The following
proposition is due to Van Assche and is contained in [19, Theorem 2].

Proposition 12. For p > 1 and x 6= 0 one has

lim
n→∞

x−nFn(a, p;x) =
∞∑
k=0

ωk(a, p)

(p; p)k

(p
x

)k
.

Note that if p > 1 then the Jacobi matrix J(a, p) represents a compact (even trace
class) operator on `2(Z+). In particular, this implies that the Hamburger moment
problem is determinate. Several additional useful facts are known in this case which
we summarize in the following remark.

Remark 13. In [17, Section 3] it is noted that if {βn}∞n=0 is a real sequence belonging
to `1(Z+), {αn}∞n=0 is a positive sequence belonging to `2(Z+) and {Fn(x)}∞n=0 is a
sequence of monic polynomials defined by the recurrence

Fn+1(x) = (x− βn)Fn(x)− α 2
n−1Fn−1(x), n ≥ 0,

with F0(x) = 1 and (conventionally) F−1(x) = 0, then

lim
n→∞

x−nFn(x) = G(x−1) for x 6= 0 (35)

where G(z) is an entire function. Moreover, let µ be the (necessarily unique) measure
of orthogonality for the sequence of polynomials {Fn(x)}. Then the Stieltjes transform
of µ reads ˆ

R

dµ(x)

1− zx
=
G̃(z)

G(z)
(36)
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where G̃(z) is an entire function associated in an analogous manner with the shifted
sequences {α̃n = αn+1}∞n=0, {β̃n = βn+1}∞n=0.

Theorem 14. Let p > 1 and x 6= 0. Then

lim
n→∞

x−nFn(a, p;x) = G(x−1)

where

G(z) = (z; p−1)∞ 1φ1(0; z; p−1, az) =
∞∑
k=0

ωk(a, p)

(p; p)k
(pz)k (37)

is an entire function obeying the second-order q-difference equation

G(z)−
(
1− (a+ 1)z

)
G(p−1z) + ap−1z2G(p−2z) = 0. (38)

The Stieltjes transform of the (unique) measure of orthogonality µ for the sequence of
orthogonal polynomials {Fn(a, p;x)} is given by the formulaˆ

R

dµ(x)

1− zx
=
G(p−1z)

G(z)
. (39)

Proof. In view of Proposition 12, in order to show (37) it suffices to verify only the sec-
ond equality. But this equality follows from the definition of the basic hypergeometric
series and from the well known identity [8, Eq. (II.2)]

(z; p−1)∞ =
∞∑
n=0

(pz)n

(p; p)n
.

Using the power series expansion of G(z) established in (37) one finds that (38) is
equivalent to

ωk − (a+ 1)ωk−1 + a (1− p−k+1)ωk−2 = 0 for k ≥ 2

and ω1 − (a + 1)ω0 = 0. This is true, indeed, if we take into account (34) and the
recurrence relation for the continuous q-Hermite polynomials [10, Eq. (14.26.3)]

2xHk(x; q) = Hk+1(x; q) + (1− qk)Hk−1(x; q).

Recalling once more (3), the polynomials Fn(a, p;x) solve the recurrence relation

un+1 =
(
x− (a+ 1)p−n

)
un − ap−2n+1un−1 (40)

while the polynomials F̃n(a, p;x) := p−nFn(a, q; px) obviously obey the recurrence

ũn+1 =
(
x− (a+ 1)p−n−1

)
ũn − ap−2n−1ũn−1. (41)

Comparing these two equations one observes that (41) is obtained from (40) just by
shifting the index. In other words, the sequences of monic polynomials {F̃n(a, p;x)}
and {Fn(a, p;x)} are generated by the same recurrence relation, but the index has to
be shifted in the latter case. Hence, referring to Remark 13 and equation (35), one
can compute

G̃(x−1) = lim
n→∞

x−nF̃n(a, p;x) = lim
n→∞

(px)−nFn(a, p; px) = G(p−1x−1).

Thus G̃(z) = G(p−1z) and (39) is a particular case of (36).
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3.2 Recurrence relations and asymptotic behavior

From (32) it is seen that mn(a, p) ≤ ‖J(a, p)‖n. Moreover, from (39) one deduces that

∞∑
n=0

mn(a, p)zn =
G(p−1z)

G(z)
, (42)

and the series is clearly convergent if p > 1 and |z| < ‖J(a, p)‖−1.
Remark 15. Any explicit formula for monic polynomials Fn(x), n ∈ Z+, which are
members of a sequence of orthogonal polynomials with a measure of orthogonality
µ, automatically implies a linear recursion for the corresponding moments. In fact,
F0(x) = 1 and so, by orthogonality,

´
R Fn(x)dµ(x) = 0 for n ≥ 1. Particularly, in our

case, formula (13) implies the relation

n∑
j=0

(−1)jq(j−1)j/2

(q; q)j2

(
n−j∑
k=0

(qk+1; q)j(q
n−j−k+1; q)j a

k

)
mj(a, q) = 0 for n ≥ 1.

Further we derive two more recursions for the moments, a linear and a quadratic
one.

Proposition 16. The moment sequence {mn(a, q)} solves the equations m0(a, q) = 1
and

mn(a, q) =
ωn(a, q)

(q; q)n−1
−

n−1∑
k=1

qkωk(a, q)

(q; q)k
mn−k(a, q), n ∈ N. (43)

Proof. Equations (42) and (37) imply that

∞∑
m=0

pmωm(a, p)

(p; p)m
zm

∞∑
n=0

mn(a, p)zn =
∞∑
m=0

ωm(a, p)

(p; p)m
zm

holds for p > 1 and z from a neighborhood of 0. Equating the coefficients of equal
powers of z one finds that (43) holds true for q = p > 1. But for the both sides are
rational functions in q the equation remains valid also for 0 < q < 1.

Proposition 17. The moment sequence {mn(a, q)} solves the equations m0(a; q) = 1
and

mn+1(a, q) = (a+ 1)mn(a, q) + a
n−1∑
k=0

q−k−1mk(a, q)mn−k−1(a, q), n ∈ Z+. (44)

Proof. Equation (38) can be rewritten as

G(p−1z)

G(z)

(
1− (a+ 1)z − ap−1z2 G(p−2z)

G(p−1z)

)
= 1
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and holds true for p > 1 and z from a neighborhood of the origin. Substituting the
power series expansion (42) one has(

1− (a+ 1)z − ap−1z2
∞∑
n=0

mn(a, p) p−nzn

)
∞∑
n=0

mn(a, p)zn = 1.

Equating the coefficients of equal powers of z one concludes that (44) holds for q =
p > 1. For the both sides are polynomials in q−1 the equation is valid for 0 < q < 1
as well.

Our final task is to provide estimates bringing some insight into the asymptotic
behavior of the moments for large powers. We still assume that 0 < q < 1 and a > 0.
On the other hand, a is not required to be restricted to the interval q < a < q−1. Let
us note that it has been shown in [3, Lemma 4.9.1] that

an/2q−n(n−1)/4 ≤ ωn(a, q) ≤ (1 + a)nq−n
2/4, n ∈ Z+. (45)

Proposition 18. Let a > 0. The moments mn(a, q) obey the inequalities

mn(a, q) ≤ (1 + a)n

(q; q)n−1
q−n

2/4, n ∈ Z+, (46)

and
m2n(a, q) ≥ anq−n

2

, m2n+1(a, q) ≥ (a+ 1)anq−n(n+1), n ∈ Z+. (47)

Proof. It is clear, for instance from (44), that each moment mn(a, q) is a polynomial
in a and q−1 with nonnegative integer coefficients. Furthermore, by the very definition
(34), ωn(a, q) is a polynomial in a of degree n with positive coefficients. From (43) it
is seen that

mn(a; q) ≤ ωn(a, q)

(q; q)n−1
,

and then (45) implies (46).
From (44) one infers that

m2n+1(a, q) ≥ aq−2nm2n−1(a, q), m2n(a, q) ≥ aq−2n+1m2n−2(a, q), for n ≥ 1.

Using these inequalities and proceeding by mathematical induction one can verify
(47).
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